
Contents

2 How to Obtain and Estimate Accuracy 1
2.1 Basic Concepts in Error Estimation 1

2.1.1 Sources of Error . 1
2.1.2 Absolute and Relative Errors 4
2.1.3 Rounding and Chopping 6

Review Questions . 7
2.2 Computer Number Systems . 7

2.2.1 The Position System 7
2.2.2 Fixed and Floating Point Representation 10
2.2.3 IEEE Floating Point Standard 13
2.2.4 Elementary Functions 17
2.2.5 Multiple Precision Arithmetic 19

Review Questions . 19
Problems and Computer Exercises . 20
2.3 Accuracy and Rounding Errors 21

2.3.1 Floating Point Arithmetic 21
2.3.2 Basic Rounding Error Results 27
2.3.3 Statistical Models for Rounding Errors 31
2.3.4 Avoiding Overflow 33
2.3.5 Cancellation of Terms 34

Review Questions . 36
Problems . 37
Computer Exercises . 39
2.4 Error Propagation . 40

2.4.1 Numerical Problems, Methods and Algorithms . . . 40
2.4.2 Propagation of Errors 42
2.4.3 Condition Numbers of Problems 46
2.4.4 Perturbation Analysis for Linear Systems 49
2.4.5 Forward and Backward Error Analysis 52
2.4.6 Stability of Algorithms 52

Review Questions . 57
Problems and Computer Exercises . 58
2.5 Automatic Control of Accuracy and Verified Computing 60

2.5.1 Running Error Analysis 60

i

ii Contents

2.5.2 Experimental Perturbations 62
2.5.3 Introduction to Interval Arithmetic 62

Review Questions . 70
Problems . 70

Bibliography 73

Index 77

Chapter 2

How to Obtain and

Estimate Accuracy

2.1 Basic Concepts in Error Estimation

The main purpose of numerical analysis and scientific computing is to develop ef-
ficient and accurate methods to compute approximations to quantities that are
difficult or impossible to obtain by analytic means. It has been convincingly argued
(N. Trefethen [44]) that controlling rounding errors is just a small part of this, and
that the main business of computing is the development of algorithms that converge
fast. Even if we acknowledge the truth of this statement, it is still necessary to be
able to control different sources of errors, including round-off errors, so that these
will not interfere with the computed results.

2.1.1 Sources of Error

Numerical results are affected by many types of errors. Some sources of error are
difficult to influence; others can be reduced or even eliminated by, for example,
rewriting formulas or making other changes in the computational sequence. Errors
are propagated from their sources to quantities computed later, sometimes with a
considerable amplification or damping. It is important to distinguish between the
new error produced at the computation of a quantity (a source error), and the error
inherited (propagated) from the data that the quantity depends on.

A. Errors in Given Input Data. Input data can be the result of measurements which
have been contaminated by different types of errors. In general one should be
careful to discriminate between systematic errors and random errors. A
systematic error can, e.g., be produced by insufficiencies in the construction of
an instrument; such an error is the same in each trial. Random errors depend
on the variation in the experimental environment which cannot be controlled.

B. Rounding Errors During the Computations. A rounding error occurs whenever
an irrational number is shortened (“rounded off”) to a fixed number of digits,
e.g., when a decimal fraction is converted to the binary form used in the

1

2 Chapter 2. How to Obtain and Estimate Accuracy

computer. The limitation of floating point numbers in a computer leads at
times to a loss of information that, depending on the context, may or may
not be important. Two typical cases are:

(i) If the computer cannot handle numbers which have more than, say, s
digits, then the exact product of two s-digit numbers (which contains 2s or
2s− 1 digits) cannot be used in subsequent calculations; the product must be
rounded off.

(ii) If, in a floating point computation, a relatively small term b is added to
a, then some digits of b are “shifted out” (see Example 2.3.1, and they will
not have any effect on future quantities that depend on the value of a + b.

The effect of such rounding can be quite noticeable in an extensive calculation,
or in an algorithm which is numerically unstable (see Example 1.3.1).

C. Truncation Errors. These are errors committed when a limiting process is trun-
cated (broken off) before one has come to the limiting value. A truncation
error occurs, for example, when an infinite series is broken off after a finite
number of terms, or when a derivative is approximated with a difference quo-
tient (although in this case the term discretization error is better). Another
example is when a nonlinear function is approximated with a linear function
as in Newton’s method. Observe the distinction between truncation error and
rounding error.

D. Simplifications in the Mathematical Model. In most of the applications of math-
ematics, one makes idealizations. In a mechanical problem, for example, one
might assume that a string in a pendulum has zero mass. In many other types
of problems it is advantageous to consider a given body to be homogeneously
filled with matter, instead of being built up of atoms. For a calculation in
economics, one might assume that the rate of interest is constant over a given
period of time. The effects of such sources of error are usually more difficult
to estimate than the types named in A, B, and C.

E. “Human” Errors and Machine Errors. In all numerical work, one must expect
that clerical errors, errors in hand calculation, and misunderstandings will
occur. One should even be aware that textbooks (!), tables and formulas
may contain errors. When one uses computers, one can expect errors in the
program itself, typing errors in entering the data, operator errors, and (more
seldom) pure machine errors.

Errors which are purely machine errors are responsible for only a very small
part of the strange results which (occasionally with great publicity) are produced
by computers. Most of the errors depend on the so-called human factor. As a
rule, the effect of this type of error source cannot be analyzed with the help of
the theoretical considerations of this chapter! We take up these sources of error
in order to emphasize that both the person who carries out a calculation and the
person who guides the work of others can plan so that such sources of error are
not damaging. One can reduce the risk for such errors by suitable adjustments in

2.1. Basic Concepts in Error Estimation 3

working conditions and routines. Stress and tiredness are common causes of such
errors.

Intermediate results that may reveal errors in a computation are not visible
when using a computer. Hence the user must be able to verify the correctness of
his results or be able to prove that his process cannot fail! Therefore one should
carefully consider what kind of checks can be made, either in the final result or
in certain stages of the work, to prevent the necessity of redoing a whole project
for the sake of a small error in an early stage. One can often discover whether
calculated values are of the wrong order of magnitude or are not sufficiently regular,
for example using difference checks (see Sec. 4.5).

Occasionally one can check the credibility of several results at the same time
by checking that certain relations are true. In linear problems, one often has the
possibility of sum checks. In physical problems, one can check, for example, to see
whether energy is conserved, although because of the error sources A–D one cannot
expect that it will be exactly conserved. In some situations, it can be best to treat
a problem in two independent ways, although one can usually (as intimated above)
check a result with less work than this.

Errors of type E do occur, sometimes with serious consequences. For example,
the first American Venus probe was lost due to a program fault caused by the
inadvertent substitution of a statement in a Fortran program of the form DO 3

I = 1.3 for one of the form DO 3 I = 1,3.1 A hardware error that got much
publicity surfaced in 1994, when it was found that the INTEL Pentium processor
gave wrong results for division with floating point numbers of certain patterns. This
was discovered during research on prime numbers (see Edelman [18]) and later fixed.

From a different point of view, one may distinguish between controllable and
uncontrollable (or unavoidable) error sources. Errors of type A and D are usually
considered to be uncontrollable in the numerical treatment (although a feedback
to the constructor of the mathematical model may sometimes be useful). Errors
of type C are usually controllable. For example, the number of iterations in the
solution of an algebraic equation, or the step size in a simulation can be chosen,
either directly or by setting a tolerance, see Sec. 1.4.3.

The rounding error in the individual arithmetic operation (type B) is, in a
computer, controllable only to a limited extent, mainly through the choice between
single and double precision. A very important fact is, however, that it can often be
controlled by appropriate rewriting of formulas or by other changes of the algorithm,
see, e.g., Example 2.3.3.

If it doesn’t cost too much, a controllable error source should be controlled
so that its effects are evidently negligible, for example compared to the effects of
the uncontrollable sources. A reasonable interpretation of “full accuracy” is that
the controllable error sources should not increase the error of a result more than
about 20%. Sometimes, “full accuracy” may be expensive, for example in terms of
computing time, memory space or programming efforts. Then it becomes important
to estimate the relation between accuracy and these cost factors. One goal of the

1The erroneous replaced symbol “,” with “.” converts the intended loop statement into an
assignment statement!

4 Chapter 2. How to Obtain and Estimate Accuracy

rest of this chapter is to introduce concepts and techniques useful to this purpose.
Many real-world problems contain some non-standard features, where under-

standing the general principles of numerical methods can save much time in the
preparation of a program as well as in in the computer runs. Nevertheless, we
strongly encourage the reader to use quality library programs whenever possible,
since a lot of experience and profound theoretical analysis has often been built into
these (sometimes far beyond the scope of this text). It is not practical to “reinvent
the wheel”!

2.1.2 Absolute and Relative Errors

Approximation is a central concept in almost all the uses of mathematics. One must
often be satisfied with approximate values of the quantities with which one works.
Another type of approximation occurs when one ignores some quantities which are
small compared to others. Such approximations are often necessary to insure that
the mathematical and numerical treatment of a problem does not become hopelessly
complicated.

We make the following definition:

Definition 2.1.1.
Let x̃ be an approximate value whose exact value is x. Then the absolute

error in x̃ is:
∆x = x̃ − x,

and if x 6= 0 the relative error is:

∆x/x = (x̃ − x)/x.

In some books the error is defined with the opposite sign to that we use here.
It makes almost no difference which convention one uses, as long as one is consistent.
Using our definition x− x̃ is the correction which should be added to x̃ to get rid of
the error. The correction and the error have then the same magnitude but different
sign.

It is important to distinguish between the error x̃−x, which can be positive or
negative, and a bound for the magnitude of the error. In many situations one wants
to compute strict or approximate error bounds for the absolute or relative error.
Since it is sometimes rather hard to obtain an error bound that is both strict and
sharp, one sometimes prefers to use less strict but often realistic error estimates.
These can be based on the first neglected term in some expansion or some other
asymptotic considerations.

The notation x = x̃ ± ǫ means, in this book, |x̃ − x| ≤ ǫ. For example, if
x = 0.5876 ± 0.0014 then 0.5862 ≤ x ≤ 0.5890, and |x̃ − x| ≤ 0.0014. In other
texts, the same plus-minus notation is sometimes used for the “standard error” (see
Sec. 2.3.3) or some other measure of deviation of a statistical nature. If x is a vector
‖ · ‖ then the error bound and the relative error bound may be defined as bounds
for

‖x̃ − x‖ and ‖x̃ − x‖/‖x‖,

2.1. Basic Concepts in Error Estimation 5

respectively, where ‖ · ‖ denotes some vector norm (see Sec. 1.6.8). Then a bound
‖x̃− x‖/‖x‖ ≤ 1/2 · 10−p implies that components x̃i with |x̃i| ≈ ‖x‖ have about p
significant digits but this is not true for components of smaller absolute value. An
alternative is to use componentwise relative errors, e.g.,

max
i

|x̃i − xi|/|xi|, (2.1.1)

but this assumes that xi 6= 0, for all i.
We will distinguish between the terms accuracy and precision. By accuracy

we mean the absolute or relative error of an approximate quantity. The term pre-
cision will be reserved for the accuracy with which the basic arithmetic operations
+,−, ∗, / are performed. For floating point operations this is given by the unit
roundoff; see (2.2.8).

Numerical results which are not followed by any error estimations should often,
though not always, be considered as having an uncertainty of 1

2 a unit in the last
decimal place. In presenting numerical results, it is a good habit, if one does not
want to go to the difficulty of presenting an error estimate with each result, to give
explanatory remarks such as:

• “All the digits given are thought to be significant.”

• “The data has an uncertainty of at most 3 units in the last digit.”

• “For an ideal two-atomed gas, cP /cV = 1.4 (exactly).”

We shall also introduce some notations, useful in practice, though their defi-
nitions are not exact in a mathematical sense:

a ≪ b (a ≫ b) is read: “a is much smaller (much greater) than b”. What is
meant by “much smaller”(or “much greater”) depends on the context—among
other things, on the desired precision.

a ≈ b is read: “a is approximately equal to b” and means the same as |a−b| ≪
c, where c is chosen appropriate to the context. We cannot generally say, for
example, that 10−6 ≈ 0.

a / b (or b ' a) is read: “a is less than or approximately equal to b” and
means the same as “a ≤ b or a ≈ b.”

Occasionally we shall have use for the following more precisely defined math-
ematical concepts:

f(x) = O(g(x)), x → a, means that |f(x)/g(x)| is bounded as x → a
(a can be finite, +∞, or −∞).

f(x) = o(g(x)), x → a, means that limx→a f(x)/g(x) = 0.

f(x) ∼ g(x), x → a, means that limx→a f(x)/g(x) = 1.

6 Chapter 2. How to Obtain and Estimate Accuracy

2.1.3 Rounding and Chopping

When one counts the number of digits in a numerical value one should not include
zeros in the beginning of the number, as these zeros only help to denote where the
decimal point should be. If one is counting the number of decimals, one should of
course include leading zeros to the right of the decimal point. For example, the
number 0.00147 is given with three digits but has five decimals. The number 12.34
is given with four digits but has two decimals.

If the magnitude of the error in ã does not exceed 1
2 · 10−t, then ã is said to

have t correct decimals. The digits in ã which occupy positions where the unit is
greater than or equal to 10−t are called, then, significant digits (any initial zeros
are not counted). Thus, the number 0.001234± 0.000004 has five correct decimals
and three significant digits, while 0.001234 ± 0.000006 has four correct decimals
and two significant digits. The number of correct decimals gives one an idea of the
magnitude of the absolute error, while the number of significant digits gives a rough
idea of the magnitude of the relative error.

We distinguish here between two ways of rounding off a number x to a given
number t of decimals. In chopping (or round toward zero) one simply leaves off all
the decimals to the right of the tth. That way is generally not recommended since
the rounding error has, systematically, the opposite sign of the number itself. Also,
the magnitude of the error can be as large as 10−t.

In rounding to nearest (sometimes called “correct” or “optimal” round-
ing”), one chooses, a number with s decimals which is nearest to x. Hence if p is
the part of the number which stands to the right of the sth decimal one leaves the
tth decimal unchanged if and only if |p| < 0.5 ·10−s. Otherwise one raises the sth
decimal by 1. In case of a tie, when x is equidistant to two s digit numbers then
one raises the sth decimal if it is odd or leaves it unchanged if it is even (round
to even). In this way, the error is positive or negative about equally often. The
error in rounding a decimal number to s decimals will always lie in the interval
[

− 1
210−s, 1

210−s
]

.

Example 2.1.1.
Shortening to three decimals:

0.2397 rounds to 0.240 (is chopped to 0.239)
−0.2397 rounds to −0.240 (is chopped to −0.239)
0.23750 rounds to 0.238 (is chopped to 0.237)
0.23650 rounds to 0.236 (is chopped to 0.236)
0.23652 rounds to 0.237 (is chopped to 0.236)

Observe that when one rounds off a numerical value one produces an error;
thus it is occasionally wise to give more decimals than those which are correct.
Take, for example, a = 0.1237± 0.0004, which has three correct decimals according
to the definition given previously. If one rounds to three decimals, one gets 0.124;
here the third decimal is not correct, since the least possible value for a is 0.1233.

Suppose that you are tabulating a transcendental function and a particular
entry has been evaluated as 1.2845 correct to the digits given. You want to round

Review Questions 7

the value to three decimals. Should the final digit be 4 or 5? The answer depends
on whether there is a nonzero trailing digit. You compute the entry more accu-
rately and find 1.28450, then 1.284500, then 1.2845000, etc. Since the function is
transcendental, there clearly is no bound on the number of digits that has to be
computed before distinguishing if to round to 1.284 or 1.285. This is called the
tablemaker’s dilemma.2

Example 2.1.2.
The difference between chopping and rounding can be important as is illus-

trated by the following story. The index of the Vancouver Stock Exchange, founded
at the initial value 1000.000 in 1982, was hitting lows in the 500s at the end of 1983
even though the exchange apparently performed well. It was discovered (The Wall
Street Journal, Nov. 8, 1983, p. 37) that the discrepancy was caused by a computer
program which updated the index thousands of times a day and used chopping
instead of rounding to nearest! The rounded calculation gave a value of 1098.892.

Review Questions

1. Clarify with examples the various types of error sources which occur in nu-
merical work.

2. (a) Define “absolute error” and “relative error” for an approximation x̄ to a
scalar quantity x. What is meant by an error bound?

(b) Generalize the definitions in (a) to a vector x.

3. How is “rounding to nearest” performed?

4. Give π to four decimals using: (a) chopping; (b) rounding.

5. What is meant by the “tablemaker’s dilemma”?

2.2 Computer Number Systems

2.2.1 The Position System

In order to represent numbers, we use in daily life a position system with base 10
(the decimal system). Thus to represent the numbers we use ten different characters,
and the magnitude with which the digit a contributes to the value of a number
depends on the digit’s position in the number. If the digit stands n steps to the
right of the decimal point, the value contributed is a · 10−n. For example, the
sequence of digits 4711.303 means

4 · 103 + 7 · 102 + 1 · 101 + 1 · 100 + 3 · 10−1 + 0 · 10−2 + 3 · 10−3.

Every real number has a unique representation in the above way, except for the
possibility of infinite sequences of nines—for example, the infinite decimal fraction

2This can be used to advantage in order to protect mathematical tables from illegal copying
by rounding a few entries incorrectly where the error in doing so is insignificant due to several
trailing zeros. An illegal copy could then be exposed simply by looking up these entries!

8 Chapter 2. How to Obtain and Estimate Accuracy

0.3199999 . . . represents the same number as 0.32.
One can very well consider other position systems with base different from

10. Any integer β ≥ 2 (or β ≤ −2) can be used as base. One can show that
every positive real number a has, with exceptions analogous to the nines-sequences
mentioned above, a unique representation of the form

a = dnβn + dn−1β
n−1 + . . . + d1β

1 + d0β
0 + d−1β

−1 + d−2β
−2 + . . . ,

or more compactly a = (dndn−1 . . . d0.d−1d−2 . . .)β , where the coefficients di, the
“digits” in the system with base β, are positive integers di such that 0 ≤ di ≤ β−1.

One of the greatest advantages of the position system is that one can give
simple, general rules for the arithmetic operations. The smaller the base is, the
simpler these rules become. This is just one reason why most computers operate in
base 2, the binary number system. The addition and multiplication tables then
take the following simple form:

0 + 0 = 0; 0 + 1 = 1 + 0 = 1; 1 + 1 = 10;

0 · 0 = 0; 0 · 1 = 1 · 0 = 0; 1 · 1 = 1;

In the binary system, the number seventeen, for example, becomes 10001, since
1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = sixteen + one = seventeen. Put another way
(10001)2 = (17)10, where the index (in decimal representation) denotes the base of
the number system. The numbers become longer written in the binary system; large
integers become about 3.3 times as long, since N binary digits suffice to represent
integers less than 2N = 10N log

10
2 ≈ 10N/3.3.

Occasionally one groups together the binary digits in subsequences of three or
four, which is equivalent to using 23 and 24, respectively, as base. These systems
are called the octal and hexadecimal number systems, respectively. The octal
system uses the digits from 0 to 7; in the hexadecimal system the digits 0 through
9 and the letters A, B, C, D, E, F (“ten” through “fifteen”) are used.

Example 2.2.1.

(17)10 = (10001)2 = (21)8 = (11)16,

(13.25)10 = (1101.01)2 = (15.2)8 = (D.4)16,

(0.1)10 = (0.000110011001 . . .)2 = (0.199999 . . .)16.

Note that the finite decimal fraction 0.1 cannot be represented exactly by a finite
fraction in the binary number system! (For this reason some pocket calculators use
the base 10.)

Example 2.2.2.
In 1991 a Patriot missile in Saudi Arabia failed to track and interrupt an in-

coming Scud due to a precision problem. The Scud then hit an Army barrack and
killed 28 Americans. The computer used to control the Patriot missile was based on

2.2. Computer Number Systems 9

a design dating from the 1970’s using 24-bit arithmetic. For the tracking computa-
tions time was recorded by the system clock in tenth of a second but converted to
a 24-bit floating point number. Rounding errors in the time conversions caused an
error in the tracking. After 100 hours of consecutive operations the calculated time
in seconds was 359999.6567 instead of the correct value 360000, an error of 0.3433
seconds leading to an error in the calculated range of 687 meters; see Skeel [41].
Modified software was later installed.

In the binary system the “point” used to separate the integer and fractional
part of a number (corresponding to the decimal point) is called the binary point.
The digits in the binary system are called bits(=binary digits).

We are so accustomed to the position system that we forget that it is built
upon an ingenious idea. The reader can puzzle over how the rules for arithmetic
operations would look if one used Roman numerals, a number system without the
position principle described above.

Recall that rational numbers are precisely those real numbers which can be
expressed as a quotient between two integers. Equivalently rational numbers are
those whose representation in a position system have a finite number of digits or
whose digits are repeating.

We now consider the problem of conversion between two number systems with
different base. Since almost all computers use a binary system this problem arises
as soon as one want to input data in decimal form or print results in decimal form.

Algorithm 2.2.1 Conversion between number systems:

Let a be an integer given in number systems with base α. We want to determine
its representation in a number system with base β:

a = bnβm + bm−1β
n−1 + · · · + b0, 0 ≤ bi < β. (2.2.1)

The computations are to be done in the system with base α and thus also β is
expressed in this representation. The conversion is done by successive divisions of
a with β: Set q0 = a, and

qk/β = qk+1 + bk/β, k = 0, 1, 2, . . . (2.2.2)

(qk+1 is the quotient and bk the remainder in the division).

If a is not an integer, we write a = b + c, where b is the integer part and

c = c−1β
−1 + c−2β

−2 + c−3β
−3 + · · · (2.2.3)

is the fractional part, where c−1, c−2, . . . are to be determined. These digits are
obtained as the integer parts when successively multiplying c with β: Set p−1 = c,
and

pk · β = ckβ + pk−1, k = −1,−2,−3 (2.2.4)

Since a finite fraction in a number system with base α usually does not correspond
to a finite fraction in the number system with base β rounding of the result is in
general needed.

10 Chapter 2. How to Obtain and Estimate Accuracy

When converting by hand between the decimal system and, for example, the
binary system all computations are made in the decimal system (α = 10 and β =
2). (It is then more convenient to convert the decimal number first to octal or
hexadecimal, from which the binary representation easily follows.) If, on the other
hand, the conversion is carried out on a binary computer, the computations are
made in the binary system (α = 2 and β = 10).

Example 2.2.3.
Convert the decimal number 176.524 to ternary form (base β = 3). For the

integer part we get 176/3 = 58 with remainder 2; 58/3 = 19 with remainder 1;
19/3 = 6 with remainder 1; 6/3 = 2 with remainder 0; 2/3 = 0 with remainder 2.
It follows that (176)10 = (20112)3.

For the fractional part we compute .524 · 3 = 1.572, .572 · 3 = 1.716, .716 · 3 =
2.148, Continuing in this way we obtain (.524)10 = (.112010222 . . .)3. The finite
decimal fraction does not correspond to a finite fraction in the ternary number
system!

2.2.2 Fixed and Floating Point Representation

A computer is in general built to handle pieces of information of a fixed size called a
word. The number of digits in a word (usually binary) is called the word-length
of the computer. Typical word-lengths are 32 and 64 bits. A real or integer number
is usually stored in a word. Integers can be exactly represented, provided that the
word-length suffices to store all the digits in its representation.

In the first generation of computers calculations were made in a fixed-point
number system, that is, real numbers were represented with a fixed number of t
binary digits in the fractional part. If the word-length of the computer is s + 1 bits
(including the sign bit), then only numbers in the interval I = [−2s−t, 2s−t] are
permitted. Some common conventions in fixed point are t = s (fraction convention)
or t = 0 (integer convention). This limitation causes difficulties, since even when
x ∈ I, y ∈ I, we can have, e.g., x − y 6∈ I or x/y 6∈ I.

In a fixed point number system one must see to it that all numbers, even inter-
mediate results, remain within I. This can be attained by multiplying the variables
by appropriate scale factors, and then transforming the equations accordingly.
This is a tedious process. Moreover it is complicated by the risk that if the scale
factors are chosen carelessly, certain intermediate results can have many leading ze-
ros which can lead to poor accuracy in the final results. As a consequence, current
numerical analysis literature rarely deals with other than floating point arithmetic.
In Scientific Computing fixed point is mainly limited to computations with integers
as in subscript expressions for vectors and matrices.

On the other hand, fixed point computations can be much faster than floating-
point, especially since modern microprocessors have super-scalar architectures with
several fixed point units but only one floating-point unit. For example, in computer
graphics, fixed point is used almost exclusively once the geometry is transformed
and clipped to the visible window. Fixed point square roots and trigonometric
functions are also pretty quick, and easy to write.

2.2. Computer Number Systems 11

By a normalized floating point representation of a real number a, we
mean a representation in the form

a = ±m · βe, β−1 ≤ m < 1, e an integer. (2.2.5)

Such a representation is possible for all real numbers a, and unique if a 6= 0. (The
number 0 is treated as a special case.) Here the fraction part m is called the
mantissa3 or significand), e is the exponent and β the base (also called the
radix).

In a computer, the number of digits for e and m is limited by the word-length.
Suppose that t digits is used to represent m. Then we can only represent floating
point numbers of the form

ā = ±m · βe, m = (0.d1d2 · · · dt)β , 0 ≤ di < β, (2.2.6)

where m is the mantissa m rounded to t digits, and the exponent is limited to a
finite range

emin ≤ e ≤ emax. (2.2.7)

A floating point number system F is characterized by the base β, the precision
t, and the numbers emin, emax. Only a finite set F of rational numbers can be
represented in the form (2.2.6). The numbers in this set are called floating point
numbers. Since d1 6= 0 this set contains, including the number 0, precisely

2(β − 1)βt−1(emax − emin + 1) + 1

numbers. (Show this!) The limited number of digits in the exponent implies that
a is limited in magnitude to an interval which is called the range of the floating
point system. If a is larger in magnitude than the largest number in the set F , then
a cannot be represented at all (exponent spill). The same is true, in a sense, of
numbers smaller than the smallest nonzero number in F .

0
1

4

1

2
1 2 3

Figure 2.2.1. Positive normalized numbers when β = 2, t = 3, emin = −1,
and emax = 2.

Example 2.2.4.
Consider the floating point number system for β = 2, t = 3, emin = −1,

and emax = 2. The positive normalized numbers in the corresponding set F are

3Strictly speaking mantissa refers to the decimal part of a logarithm.

12 Chapter 2. How to Obtain and Estimate Accuracy

shown in Figure 2.2.1. The set F contains exactly 2 · 16 + 1 = 33 numbers. In this
example the nonzero numbers of smallest magnitude that can be represented are
(0.100)2 · 2−1 = 1

4 and the largest is (0.111)2 · 22 = 7
2 .

Notice that floating point numbers are not equally spaced; the spacing jumps
by a factor β at each power of β. This wobbling is smallest for β = 2.

Definition 2.2.1.
The spacing of floating point numbers is characterized by the machine ep-

silon, which is the distance ǫM from 1.0 to the next larger floating point number.

The leading significant digit of numbers represented in a number system with
base β has been observed to closely fit a logarithmic distribution, i.e. the proportion
of numbers with leading digit equal to n is lnβ(1+1/n) (n = 0, 1, . . . , β− 1). It has
been shown that under this assumption taking the base equal to 2 will minimize the
mean square representation error. A discussion of this intriguing fact with historic
references is found in Higham [29, Sec. 2.7].

Even if the operands in an arithmetic operation are floating point numbers
in F , the exact result of the operation may not be in F . For example, the exact
product of two floating point t-digit numbers has 2t or 2t− 1 digits.

If a real number a is in the range of the floating point system the obvious way
is to represent a by ā = fl (a), where fl (a) denotes a number in F which is nearest
to a. This corresponds to rounding of the mantissa m, and according to Sec. 2.1.3,
we have

|m − m| ≤ 1

2
β−t.

(There is one exception. If |m| after rounding should be raised to 1, then |m| is set
equal to 0.1 and e raised by 1.) Since m ≥ 0.1 this means that the magnitude of
the relative error in ā is at most equal to

1
2β−t · βe

m · βe
≤ 1

2
β−t+1.

Even with the exception mentioned above this relative bound still holds. (If chop-
ping is used, this doubles the error bound above.) This proves the following theorem:

Theorem 2.2.2.
In a floating point number system F = F (β, t, emin, emax) every real number

in the floating point range of F can be represented with a relative error, which does
not exceed the unit roundoff u, which is defined by

u =

{

1
2β−t+1, if rounding is used,
β−t+1, if chopping is used.

(2.2.8)

Note that in a floating point system both large and small numbers are repre-
sented with nearly the same relative precision. The quantity u is, in many contexts,

2.2. Computer Number Systems 13

a natural unit for relative changes and relative errors. For example, termination
criteria in iterative methods usually depend on the unit roundoff.

To measure the difference between a floating point number and the real number
it approximates we shall occasionally use “unit in last place” or ulp. We shall
often say that “the quantity is perturbed by a few ulps”. For example, if in a
decimal floating point system the number 3.14159 is represented as 0.3142 · 101 this
has an error of 0.41 ulps.

Example 2.2.5.
Sometimes it is useful to be able to approximately determine the unit roundoff

in a program at run time. This may be done using the observation that u ≈ µ, where
µ is the smallest floating point number x such that fl (1 + x) > 1. The following
program computes a number µ which differs from the unit roundoff u at most by a
factor of 2:

x := 1;

while 1 + x > 1 x := x/2; end;

µ := x;

One reason why u does not exactly equal µ is that so called double rounding may
occur. This is when a result is first rounded to extended format and then to the
target precision.

0
1

4

1

2
1 2 3

Figure 2.2.2. Positive normalized and denormalized numbers when β = 2,
t = 3, emin = −1, and emax = 2.

A floating point number system can be extended by including denormalized
numbers (also called subnormal numbers). These are numbers with the minimum
exponent and with the most significant digit equal to zero. The three numbers

(.001)22
−1 = 1/16, (.010)22

−1 = 2/16, (.011)22
−1 = 3/16,

can then also be represented. Because the representation of denormalized numbers
have initial zero digits these have fewer digits of precision than normalized numbers.

2.2.3 IEEE Floating Point Standard

Actual computer implementations of floating point representations may differ in
detail from the one given above. Although some pocket calculators use a floating
point number system with base β = 10, almost all modern computers use base
β = 2. Most current computers now conform to the IEEE 754 standard for binary

14 Chapter 2. How to Obtain and Estimate Accuracy

floating point arithmetic.4 This standard from 1985 (see [20]) which is the result of
several years work by a subcommittee of the IEEE, is now implemented on almost
all chips used for personal computers and workstations. There is also a standard
IEEE 854 for radix independent floating point arithmetic [21]. This is used, e.g.,
with base 10 by several hand calculators.

The IEEE 754 standard specifies basic and extended formats for floating point
numbers, elementary operations and rounding rules available, conversion between
different number formats, and binary-decimal conversion. The handling of excep-
tional cases like exponent overflow or underflow and division by zero are also spec-
ified.

Two main basic formats, single and double precision are defined, using 32 and
64 bits respectively. In single precision a floating point number a is stored as a
sign s (one bit), the exponent e (8 bits), and the mantissa m (23 bits). In double
precision of the 64 bits 11 are used for the exponent, and 52 bits for the mantissa.
The value v of a is in the normal case

v = (−1)s(1.m)22
e, −emin ≤ e ≤ emax. (2.2.9)

Note that the digit before the binary point is always 1 for a normalized number.
Thus the normalization of the mantissa is different from that in (2.2.6). This bit
is not stored (the hidden bit). In that way one bit is gained for the mantissa. A
biased exponent is stored and no sign bit used for the exponent. For example, in
single precision emin = −126 and emax = 127 and e + 127 is stored.

The unit roundoff equals

u =

{

2−24 ≈ 5.96 · 10−8, in single precision;
2−53 ≈ 1.11 · 10−16 in double precision.

(The machine epsilon is twice as large.) The largest number that can be represented
is approximately 2.0 · 2127 ≈ 3.4028 × 1038 in single precision and 2.0 · 21023 ≈
1.7977× 10308 in double precision. The smallest normalized number is 1.0 · 2−126 ≈
1.1755 × 10−38 in single precision and 1.0 · 2−1022 ≈ 2.2251 × 10−308 in double
precision.

An exponent e = emin − 1 and m 6= 0, signifies the denormalized number

v = (−1)s(0.m)22
emin ;

The smallest denormalized number that can be represented is 2−126−23 ≈ 1.401 ·
10−45 in single precision and 2−1022−52 ≈ 4.94 · 10−324 in double precision.

There are distinct representations for +0 and −0. ±0 is represented by a sign
bit, the exponent emin − 1 and a zero mantissa. Comparisons are defined so that
+0 = −0. One use of a signed zero is to distinguish between positive and negative
underflowed numbers. Another use occurs in complex arithmetic.

4W. Kahan, University of California, Berkeley, was given the Turing Award by the Association
of Computing Machinery for his contribution to this standard.

2.2. Computer Number Systems 15

Example 2.2.6.
The function

√
x is multivalued and there is no way to select the values so

the function is continuous over the whole complex plane. If a branch cut is made
by excluding all real negative numbers from consideration the square root becomes
continuous. Signed zero provides a way to distinguish numbers of the form x+i(+0)
and x + i(−0) and to select one or the other side of the cut.

Infinity is also signed and ±∞ is represented by the exponent emax + 1 and
a zero mantissa. When overflow occurs the result is set to ±∞. This is safer than
simply returning the largest representable number, that may be nowhere near the
correct answer. The result ±∞ is also obtained from the illegal operations a/0,
where a 6= 0. The infinity symbol obeys the usual mathematical conventions, such
as ∞ + ∞ = ∞, (−1) ×∞ = −∞, a/∞ = 0.

The IEEE standard also includes two extended precision formats that offer
extra precision and exponent range. The standard only specifies a lower bound
on how many extra bits it provides.5 Extended formats simplify tasks such as
computing elementary functions accurately in single or double precision. Extended
precision formats are used also by hand calculators. These will often display 10
decimal digits but use 13 digits internally—“the calculator knows more than it
shows”!

The characteristics of the IEEE formats are summarized in Table 2.2.1. (The
hidden bit in the mantissa accounts for the +1 in the table. Note that double
precision satisfies the requirements for single extended, so three different precisions
suffice.)

Table 2.2.1. IEEE floating point formats.

Format t e emin emax

Single 32 bits 23 + 1 8 bits −126 127
Single extended ≥ 43 bits ≥ 32 ≥ 11 bits ≤ −1022 ≥ 1023
Double 64 bits 52 + 1 11 bits −1022 1023
Double extended ≥ 79 bits ≥ 64 ≥ 15 bits ≤ −16382 ≥ 16383

Example 2.2.7.
Although the exponent range of the floating point formats seems reassuringly

large, even simple programs can quickly give exponent spill. If x0 = 2, xn+1 = x2
n,

then already x10 = 21024 is larger than what IEEE double precision permits. One
should also be careful in computations with factorials, e.g., 171! ≈ 1.24 · 10309 is
larger than the largest double precision number.

Four rounding modes are supported by the standard. The default rounding
mode is round to nearest representable number, with round to even in case of a

5Hardware implementation of extended precision normally does not use a hidden bit, so the
double extended format uses 80 bits rather than 79.

16 Chapter 2. How to Obtain and Estimate Accuracy

tie. (Some computers in case of a tie round away from zero, i.e. raise the absolute
value of the number, because this is easier to realize technically.) Chopping is also
supported as well as directed rounding to ∞ and to −∞. The latter mode simplifies
the implementation of interval arithmetic, see Sec. 2.5.3.

The standard specifies that all arithmetic operations should be performed as if
they were first calculated to infinite precision and then rounded to a floating point
number according to one of the four modes mentioned above. This also includes
the square root and conversion between integer and floating point. The standard
also requires the conversion between internal formats and decimal to be correctly
rounded.

This can be implemented using extra guard digits in the intermediate result
of the operation before normalization and rounding. Using a single guard digit,
however, will not always ensure the desired result. However by introducing a second
guard digit and a third sticky bit (the logical OR of all succeeding bits) the rounded
exact result can be computed at only a little more cost (Goldberg [25]). One
reason for specifying precisely the results of arithmetic operations is to improve
the portability of software. If a program is moved between two computers both
supporting the IEEE standard intermediate results should be the same.

IEEE arithmetic is a closed system, i.e. every operation, even mathematical
invalid operations, even 0/0 or

√
−1 produces a result. To handle exceptional

situations without aborting the computations some bit patterns (see Table 2.2.2)
are reserved for special quantities like NaN (“Not a Number”) and ∞. NaNs (there
are more than one NaN) are represented by e = emax + 1 and m 6= 0.

Table 2.2.2. IEEE 754 representation.

Exponent Mantissa Represents
e = emin − 1 m = 0 ±0
e = emin − 1 m 6= 0 ±0.m · 2emin

emin < e < emax ±1.m · 2e

e = emax + 1 m = 0 ±∞
e = emax + 1 m 6= 0 NaN

Note that the gap between 0 and the smallest normalized number is 1.0×2emin.
This is much larger than for the spacing 2−p+1 × 2emin for the normalized numbers
for numbers just larger than the underflow threshold; compare Example 2.2.4. With
denormalized numbers the spacing becomes more regular and permits what is called
gradual underflow. This makes many algorithms well behaved also close to the
underflow threshold. Another advantage of having gradual underflow is that it
makes it possible to preserve the property

x = y ⇔ x − y = 0

as well as other useful relations. Several examples of how denormalized numbers
makes writing reliable floating point code easier are analyzed by Demmel [17].

One illustration of the use of extended precision is in converting between
IEEE 754 single precision and decimal. The converted single precision number

2.2. Computer Number Systems 17

should ideally be converted with enough digits so that when it is converted back
the binary single precision number is recovered. It might be expected that since
224 < 108 eight decimal digits in the converted number would suffice. But it can be
shown that nine decimal digits are needed to recover the binary number uniquely
(see Goldberg [25, Theorem. 15] and Problem 3). When converting back to binary
form a rounding error as small as one ulp will give the wrong answer. To do this
conversion efficiently extended single precision is needed!6

A NaN is generated by operations such as 0/0, +∞+(−∞), 0×∞ and
√
−1.

A NaN compares unequal with everything including itself. (Note that x 6= x is a
simple way to test if x equals a NaN.) When a NaN and an ordinary floating-point
number is combined the result is the same as the NaN operand. A NaN is often
used also for uninitialized or missing data.

Exceptional operations also raise a flag. The default is to set a flag and
continue, but it is also possible to pass control to a trap handler. The flags are
“sticky” in that they remain set until explicitly cleared. This implies that without
a log file everything before the last setting is lost, why it is always wise to use a
trap handler. There is one flag for each of the following five exceptions: underflow,
overflow, division by zero, invalid operation and inexact. By testing the flags it is,
for example, possible to test if an overflow is genuine or the result of division by
zero.

Because of cheaper hardware and increasing problem sizes double precision
is more and more used in scientific computing. With increasing speed and mem-
ory becoming available, bigger and bigger problems are being solved and actual
problems may soon require more than IEEE double precision! When the IEEE 754
standard was defined no one expected computers able to execute more than 1012

floating point operations per second!

2.2.4 Elementary Functions

Although the square root is included, the IEEE 754 standard does not deal with the
implementation of elementary functions, i.e. the exponential function exp, the natu-
ral logarithm log, and the trigonometric and hyperbolic functions sin, cos, tan, sinh,
cosh, tanh, and their inverse functions. With the IEEE 754 standard more accurate
implementations are possible which in many cases give almost correctly rounded
exact results. To always guarantee correctly rounded exact results sometimes re-
quire computing many more digits than the target accuracy (cf. the tablemaker’s
dilemma) and therefore is in general too costly. It is also important to preserve
monotonicity, e.g, 0 ≤ x ≤ y ≤ π/2 ⇒ sin x ≤ sin y, and range restrictions, e.g.,
sin x ≤ 1, but these demands may conflict with rounded exact results!

The first step in computing an elementary function is to perform a range
reduction.

• To compute trigonometric functions, e.g., sinx, an additive range reduction

6It should be noted that some computer languages do not include input/output routines, but
these are developed separately. This can lead to double rounding, which spoils the careful designed
accuracy in the IEEE 754 standard. (Some banks use separate routines with chopping even today—
you may guess why!)

18 Chapter 2. How to Obtain and Estimate Accuracy

is first performed, in which a reduced argument x∗, −π/4 ≤ x∗ ≤ π/4, is
computed by finding an integer k such that

x∗ = x − kπ/2, (π/2 = 1.57079 63267 94896 61923 . . .).

(Quantities such as π/2, log(2), that are often used in standard subroutines
are listed in decimal form to 30 digits and octal form to 40 digits in Hart
et al. [28, Appendix C] and to 40 and 44 digits in Knuth [32, Appendix A].)
Then sin x = ± sin x∗ or sinx = ± cosx∗, depending on if k mod 4 equals
0, 1, 2 or 3. Hence approximation for sinx and cosx need only be provided for
0 ≤ x ≤ π/4. If the argument x is very large then cancellation in the range
reduction can lead to poor accuracy; see Example 2.3.8.

• To compute the exponential function exp(x) an integer k is determined such
that

x∗ = x − k log 2, x∗ ∈ [0, log 2] (log 2 = 0.69314 71805 59945 30942 . . .).

It then holds that exp(x) = exp(x∗) · 2k and hence we only need an approxi-
mation of exp(x) for the range x ∈ [0, log 2]; see Problem 13.

• To compute log x, x > 0, a multiplicative range reduction is used. If an integer
k is determined such that

x∗ = x/2k, x∗ ∈ [1/2, 1],

then log x = log x∗ + k · log 2.

We remark that rational approximations often give much better accuracy than
polynomial approximations. This as related to the fact that continued fraction
expansions often converge much faster than those based on power series. We refer
to Sec. 3.3 for a discussion of continued fraction and related Padé approximations.

Coefficients of polynomial and rational approximations suitable for software
implementations are tabulated in Hart et al. [28] and Cody and Waite [15]. But
approximation of functions can now be simply obtained using software such as
Maple [12]. For example in Maple the commands

Digits = 40; minimax(exp(x), x = 0..1, [i,k],1,’err’)

means that we are looking for the coefficients of the minimax approximation of
the exponential function on [0, 1] by a rational function with numerator of de-
gree i and denominator of degree k with weight function 1 and that the variable
err should be equal to the approximation error. The coefficients are to be com-
puted to 40 decimal digits. A trend now is that elementary functions are more
and more implemented in hardware. Hardware implementations are discussed
by Muller [35]. Carefully implemented algorithms for elementary functions are
available from www.netlib.org/fdlibm in the library package fdlibm (Freely Dis-
tributable Math. Library) developed by Sun Microsystems and used by Matlab.

To test the implementation of elementary functions a Fortran package ELE-
FUNT has been developed by Cody [13]. This checks the quality using indentities
like cosx = cos(x/3)(4 cos2(x/3)− 1). For complex elementary functions a package
CELEFUNT serves the same purpose; see Cody [14].

Review Questions 19

2.2.5 Multiple Precision Arithmetic

Hardly any quantity in the physical world is known to an accuracy beyond IEEE
double precision. A value of π correct to 20 decimal digits would suffice to cal-
culate the circumference of a circle around the sun at the orbit of the earth to
within the width of an atom. There seems to be little need for multiple precision
calculations. Occasionally, however, one may want to perform some calculations,
e.g., the evaluation of some mathematical constant (such as π and Euler’s constant
γ) or elementary functions, to very high precision.7 Extremely high precision is
sometimes needed in experimental mathematics, e.g., when trying to discover new
mathematical identities. Algorithms, which may be used for these purposes include
power series, continued fractions, solution of equations with Newton’s method or
other superlinearly convergent methods, etc.).

For performing such tasks it is convenient to use arrays to represent numbers
in a floating point form with a large base and a long mantissa and have routines
for performing floating point operations on such numbers. In this way it is possible
to simulate arithmetic of arbitrarily high precision using standard floating point
arithmetic.

Brent [9, 8] developed the first major such multiple-precision package in For-
tran 66. His package represents multiple precision numbers as arrays of integers and
operates on them with integer arithmetic. It includes subroutines for multiple pre-
cision evaluation of elementary functions. A more recent package called MPFUN,
written in Fortran 77 code, is that of Bailey [3]. In MPFUN a multiple precision
number is represented as a vector of single precision floating point numbers with
base 224. Complex multiprecision numbers are also supported. There is also a
Fortran 90 version of this package [4], which is easy to use.

Fortran routines for high-precision computation are also provided in Press
et al [37, §20.6], and is also supported by symbolic manipulation systems such as
Maple [12] and Mathematica [49]. A package of Matlab m-files called Mulprec
for, in principle, unlimited multiple precision floating point computations has been
developed; see Dahlquist [16] for documentation and some examples of its use.

Review Questions

1. What base β is used in the binary, octal and hexadecimal number systems?

2. Show that any finite decimal fraction corresponds to a binary fraction that
eventually is periodic.

3. What is meant by a normalized floating point representation of a real number?

4. (a) How large can the maximum relative error be in representation of a real
number a in the floating point system F = F (β, p, emin, emax)? It is assumed
that a is in the range of F .

(b) How are the quantities “machine epsilon” and “unit round off”defined?

7In Oct. 1995 Yasumasa Kanada of the University of Tokyo computed π to 6,442,458,938
decimals on a Hitachi supercomputer; see [5].

20 Chapter 2. How to Obtain and Estimate Accuracy

5. What are the characteristics of the IEEE single and double precision formats?

6. What are the advantages of including denormalized numbers in the IEEE
standard?

7. Give examples of operations that give NaN as result.

Problems and Computer Exercises

1. Which rational numbers can be expressed with a finite number of binary digits
to the right of the binary point?

2. (a) Prove the algorithm for conversion between number systems given in
Sec. 2.2.1.

(b) Give the hexadecimal form of the decimal numbers 0.1 and 0.3. What
error is incurred in rounding these numbers to IEEE 754 single and double
precision?

(c) What is the result of the computation 0.3/0.1 in IEEE 754 single and
double precision ?

3. (W. Kahan) An (over-)estimate of u can be obtained for almost any computer
by evaluating |3×(4/3−1)−1| using rounded floating point for every operation.
Test this on a calculator or computer available to you.

4. (Goldberg [25]) The binary single precision numbers in the half-open interval
[103, 1024) have 10 bits to the left and 14 bits to the right of the binary
point. Show that there are (210 − 103) · 214 = 393, 216 such numbers, but only
(210−103) ·104 = 240, 000 decimal numbers with 8 decimal digits in the same
interval. Conclude that 8 decimal digits are not enough to uniquely represent
single precision binary numbers in the IEEE 754 standard.

5. Suppose one wants to compute the power An of a square matrix A, where n
is a positive integer. To compute Ak+1 = A · Ak, for k = 1 : n − 1 requires
n− 1 matrix multiplications. Show that the number of multiplications can be
reduced to less than 2⌊log2 n⌋ by converting n into binary form and successive
squaring A2k = (Ak)2, k = 1 : ⌊log2 n⌋.

6. Give in decimal representation: (a) (10000)2; (b) (100)8; (c) (64)16; (d)
(FF)16; (e) (0.11)8; (g) the largest positive integer which can be written with
thirty–one binary digits (answer with one significant digit).

7. (a) Show how the following numbers are stored in the basic single precision
format of the IEEE 754 standard: 1.0; −0.0625; 250.25; 0.1.

(b) Give in decimal notation the largest and smallest positive numbers which
can be stored in this format.

8. (Goldberg [25, Theorem. 7].) When β = 2, if m and n are integers with
m < 2p−1 (p is the number of bits in the mantissa) and n has the special form
n = 2i + 2j , then fl((m/n) · n) = m provided that floating-point operations
are exactly rounded to nearest. The sequence of possible values of n start with
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17. Test the theorem on your computer for these

2.3. Accuracy and Rounding Errors 21

numbers.

9. Let pi be the closest floating point number to π in double precision IEEE 754
standard. Find a sufficiently accurate approximation to π from a table and
show that π − pi ≈ 1.2246 · 10−16. What value do you get on your computer
for sinπ?

10. (A. Edelman.) Let x, 1 ≤ x < 2, be a floating point number in IEEE double
precision arithmetic. Show that fl(x · fl(1/x)) is either 1 or 1− ǫM/2, where
ǫM = 2−52 (the machine epsilon).

11. (N. J. Higham.) Let a and b be floating point numbers with a ≤ b. Show that
the inequalities a ≤ fl((a + b)/2) ≤ b can be violated in base 10 arithmetic.
Show that a ≤ fl(a+ (b− a)/2) ≤ b in base β arithmetic, assuming the use of
a guard digit.

12. (J.-M. Muller) A rational approximation of tanx in [−π/4, π/4] is

r(x) =
(0.99999 99328− 0.09587 5045x2)x

1 − (0.42920 9672 + 0.00974 3234x2)x2
.

Determine the approximate maximum error of this approximation by compar-
ing with the function on your system on 100 equidistant points in [0, π/4].

13. (a) Show how on a binary computer the exponential function can be approx-
imated by first performing a range reduction based on the relation ex = 2y,
y = x/ log 2, and then approximating 2y on y ∈ [0, 1/2].

(b) Show that since 2y satisfies 2−y = 1/2y a rational function r(y) approxi-
mating 2y should have the form

r(y) =
q(y2) + ys(y2)

q(y2) − ys(y2)
,

where q and s are polynomials.

(c) Suppose the r(y) in (b) is used for approximating 2y with

q(y) = 20.81892 37930 062+ y,

s(y) = 7.21528 91511 493+ 0.05769 00723 731y.

How many additions, multiplications and divisions are needed in this case to
evaluate r(y)? Investigate the accuracy achieved for y ∈ [0, 1/2].

2.3 Accuracy and Rounding Errors

2.3.1 Floating Point Arithmetic

It is useful to have a model of how the basic floating point operations are carried
out. If x and y are two floating point numbers, we denote by

fl (x + y), f l (x − y), f l (x · y), f l (x/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following

22 Chapter 2. How to Obtain and Estimate Accuracy

assume that underflow or overflow does not occur, and that the following standard
model for the arithmetic holds:

Definition 2.3.1.
Assume that x, y ∈ F . Then in the standard model it holds

fl (x op y) = (x op y)(1 + δ), |δ| ≤ u, (2.3.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, −, ·, and /.

The standard model holds with the default rounding mode for computers
implementing the IEEE 754 standard. In this case we also have

fl (
√

x) =
√

x(1 + δ), |δ| ≤ u, (2.3.2)

If a guard digit is lacking then instead of (2.3.1) only the weaker model

fl (x op y) = x(1 + δ1) op y(1 + δ2), |δi| ≤ u, (2.3.3)

holds for addition/subtraction. The lack of a guard digit is a serious drawback
and can lead to damaging inaccuracy caused by cancellation. Many algorithms
can be proved to work satisfactorily only if the standard model (2.3.1) holds. We
remark that on current computers multiplication is as fast as addition/subtraction.
Division usually is 5–10 times slower than a multiply and a square root about twice
slower than division.

Some earlier computers lack a guard digit in addition/subtraction. Notable
examples are several models of Cray computers (Cray 1,2, X-MP,Y-MP, and C90)
before 1995, which were designed to have the highest possible floating-point perfor-
mance. The IBM 360, which used a hexadecimal system, lacked a (hexadecimal)
guard digit between 1964–1967. The consequences turned out to be so intolerable
that a guard digit had to be retrofitted.

Sometimes the floating point computation is more precise than what the stan-
dard model assumes. An obvious example is that when the exact value x op y can
be represented as a floating point number there is no rounding error at all.

Some computers can perform a fused multiply-add operation, i.e. an expression
of the form a × x + y can be evaluated with just one instruction and there is only
one rounding error at the end

fl (a × x + y) = (a × x + y)(1 + δ), |δ| ≤ u.

Fused multiply-add can be used to advantage in many algorithms. For example,
Horner’s rule to evaluate the polynomial p(x) = a0x

n + a1x
n−1 + · · ·+ an−1x + an,

which uses the recurrence relation b0 = a0, bi = bi−1 · x + ai, i = 1 : n, needs only
n fused multiply-add operations.

It is important to realize that these floating point operations have, to some
degree, other properties than the exact arithmetic operations. For example, float-
ing point addition and multiplication are commutative, but not associative and
the distributive law also fails for them. This makes the analysis of floating point
computations quite difficult.

2.3. Accuracy and Rounding Errors 23

Example 2.3.1.
To show that associativity does not, in general, hold for floating addition,

consider adding the three numbers

a = 0.1234567 · 100, b = 0.4711325 · 104, c = −b.

in a decimal floating point system with t = 7 digits in the mantissa. The following
scheme indicates how floating point addition is performed:

fl (b + c) = 0, f l (a + fl (b + c)) = a = 0.1234567 · 100

a = 0.0000123 4567 · 104

+b = 0.4711325 ·104

fl (a + b) = 0.4711448 ·104

c = −0.4711325 ·104

The last four digits to the right of the vertical line are lost by outshifting, and

fl (fl (a + b) + c) = 0.0000123 · 104 = 0.1230000 · 100 6= fl (a + fl (b + c)).

An interesting fact is that assuming a guard digit is used floating point sub-
traction of two sufficiently close numbers is always exact.

Lemma 2.3.2 (Sterbenz).
Let the floating point numbers x and y satisfy

y/2 ≤ x ≤ 2y.

If subtraction is performed with a guard digit then fl(x − y) = x − y, unless x − y
underflows.

Proof. By the assumption the exponent of x and y in the floating point represen-
tations of x and y can differ at most by one unit. If the exponent is the same then
the exact result will be computed. Therefore assume the exponents differ by one.
After scaling and, if necessary, interchanging x and y it holds that x/2 ≤ y ≤ x < 2
and the exact difference z = x − y is of the form

x = x1.x2 . . . xt

y = 0 .y1 . . . yt−1yt

z = z1.z2 . . . ztzt+1

But from the assumption x/2− y ≤ 0 or x− y ≤ y. Hence we must have z1 = 0, so
after shifting the exact result is obtained also in this case.

With gradual underflow, as in the IEEE 754 standard, the condition that x−y
does not underflow can be dropped.

24 Chapter 2. How to Obtain and Estimate Accuracy

Example 2.3.2.
A corresponding result holds for any base β. For example, using four digit

floating decimal arithmetic we get with guard digit

fl (0.1000 · 101 − 0.9999) = 0.0001 = 1.000 · 10−4,

(exact) but without guard digit

fl (0.1000 · 101 − 0.9999) = (0.1000− 0.0999)101 = 0.0001 · 101 = 1.000 · 10−3.

The last result satisfies equation (2.3.3) with |δi| ≤ 0.5 · 10−3 since 0.10005 · 101 −
0.9995 = 10−3.

Outshiftings are common causes of loss of information that may lead to catas-
trophic cancellation later, in the computations of a quantity that one would have
liked to obtain with good relative accuracy.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

n

Figure 2.3.1. Computed values for n = 10p, p = 1 : 14, of the sequences:
solid line |(1 + 1/n)n − e|; dashed line | exp(n log(1 + 1/n)) − e| using (2.3.4).

Example 2.3.3.
An example where the result of Lemma 2.3.2 can be used to advantage is in

computing compounded interest. Consider depositing the amount c every day on
an account with an interest rate i compounded daily. Then with the accumulated
capital at the end of the year equals

c[(1 + x)n − 1]/x, x = i/n ≪ 1,

and n = 365. Using this formula does not give accurate results. The reason is that
a rounding error occurs in computing fl(1 + x) = 1 + x̄ and low order bits of x is
lost. For example, if i = 0.06 then i/n = 0.0001643836 and in decimal arithmetic

2.3. Accuracy and Rounding Errors 25

using six digits when this is added to one we get fl(1+ i/n) = 1.000164 so four low
order digits are lost.

The problem then is to accurately compute (1+x)n = exp(n log(1 + x)). The
formula

log(1 + x) =

x, if fl (1 + x) = 1;

x
log(1 + x)

(1 + x) − 1
, otherwise.

(2.3.4)

can be shown to yield accurate results when x ∈ [0, 3/4] provided subtraction is
performed with a guard digit and the computed value of log(1+x) equals the exact
result rounded; see Goldberg [25, p. 12].

To check this formula we recall that the base e of the natural logarithm can
be defined by the limit

e = lim
n→∞

(1 + 1/n)n

In Fig. 2.3.1 we show computed values, using double precision floating point arith-
metic, of the sequence |(1 + 1/n)n − e| for n = 10p, p = 1 : 14. More precisely, the
expression was computed as

| exp(n log(1 + 1/n)) − exp(1)|.
The smallest difference 3 ·10−8 occurs for n = 108, for which about half the number
of bits in x = 1/n are lost. For larger values of n rounding errors destroy the
convergence. But using (2.3.4) we obtain correct results for all values of n! (The
Maclaurin series log(1+x) = x−x2/2+x3/3−x4/4+ · · · will also give good results;
see Computer Exercise 1.)

A fundamental insight from the above examples can be expressed in the fol-
lowing way:

“mathematically equivalent” formulas or algorithms are not in general
“numerically equivalent”.

This adds a new dimension to calculations in finite precision arithmetic and it will
be a recurrent theme in the analysis of algorithms in this book!

By mathematical equivalence of two algorithms we mean here that the
algorithms give exactly the same results from the same input data, if the com-
putations are made without rounding error (“with infinitely many digits”). One
algorithm can then, as a rule, formally be derived from the other using the rules
of algebra for real numbers, and with the help of mathematical identities. Two
algorithms are numerically equivalent if their respective floating point results,
using the same input data are the same.

In error analysis for compound arithmetic expressions based on the standard
model (2.3.1) one often needs an upper bound for quantities of this form

ǫ ≡ |(1 + δ1)(1 + δ2) · · · (1 + δn) − 1|, |δi| ≤ u, i = 1 : n.

Then ǫ ≤ (1 + u)n − 1. Assuming that nu < 1 an elementary calculation gives

(1 + u)n − 1 = nu +
n(n − 1)

2!
u2 + · · · +

(

n

k

)

uk + · · ·

26 Chapter 2. How to Obtain and Estimate Accuracy

< nu
(

1 +
nu

2
+ · · · +

(nu

2

)k−1

+ · · ·
)

=
nu

1 − nu/2
(2.3.5)

Similarly it can be shown that (1−u)−n−1 < nu/(1−nu), and the following useful
result follows:

Lemma 2.3.3. [N. J. Higham [29, Lemma3.1]]
Let |δi| ≤ u, ρi = ±1, i = 1:n, and

n
∏

i=1

(1 + δi)
ρi = 1 + θn.

If nu < 1, then |θn| < γn, where

γn = nu/(1 − nu). (2.3.6)

Complex arithmetic can be reduced to real arithmetic. Let x = a+ ib and
y = c + id be two complex numbers. Then we have:

x ± y = a ± c + i(b ± d),

xy = (ac − bd) + i(ad + bc), (2.3.7)

x/y =
ac + bd

c2 + d2
+ i

bc− ad

c2 + d2
,

Using the above formula complex addition (subtraction) needs two real additions
and multiplying two complex numbers requires four real multiplications

Lemma 2.3.4. Assuming the standard model (2.3.1) the complex operations com-
puted according to (2.3.7) satisfy

fl (x ± y) = (x ± y)(1 + δ), |δ| ≤ u,

fl (xy) = xy(1 + δ), |δ| ≤
√

2γ2, (2.3.8)

fl (x/y) = x/y(1 + δ), |δ| ≤
√

2γ4,

where δ is a complex number and γn is defined in (2.3.6).

Proof. See Higham [29, Sec. 3.6].

The square root of a complex number u + iv =
√

x + iy is given by

u =

(

r + x

2

)1/2

, v =

(

r − x

2

)1/2

, r =
√

x2 + y2. (2.3.9)

When x > 0 there will be cancellation when computing v, which can be severe if
also |x| ≫ |y| (cf. Sec. 2.3.5). To avoid this we note that uv =

√
r2 − x2/2 = y/2,

2.3. Accuracy and Rounding Errors 27

so v can be computed from v = y/(2u). When x < 0 we instead compute v from
(2.3.9) and set u = y/(2v).

Most rounding error analysis given in this book are formulated for real arith-
metic. Since the bounds in Lemma 2.3.4 are of the same form as the standard model
for real arithmetic, these can simply be extended to complex arithmetic.

In some cases it may be desirable to avoid complex arithmetic when working
with complex matrices. This can be achieved in a simple way by replacing the
complex matrices and vectors by real ones of twice the order. Suppose that a
complex matrix A ∈ Cn×n and a complex vector z ∈ Cn are given, where

A = B + iC, z = x + iy,

with real B, C, x and y. Form the real matrix Ã ∈ R2n×2n and real vector z̃ ∈ R2n

defined by

Ã =

(

B −C
C B

)

, z̃ =

(

x
y

)

.

It is easy to verify the following rules

(̃Az) = Ãz̃, (̃AB) = ÃB̃, (̃A−1) = (Ã)−1,

etc. Thus we can solve complex valued matrix problems using algorithms for the
real case. But this incurs a penalty in storage and arithmetic operations.

2.3.2 Basic Rounding Error Results

We now use the notation of Sec. 2.3.1 and the standard model of floating point
arithmetic (Definition 2.3.1) to carry out rounding error analysis of some basic
computations. Most but not all results are still true if only the weaker bound
(2.3.3) hold for addition and subtraction. Note that fl (x op y) = (x op y)(1 + δ),
|δ| ≤ u, can be interpreted for multiplication to mean that fl (x · y) is the exact
result of x · y(1 + δ) for some δ, |δ| ≤ u. In the same way, the results using the
three other operations can be interpreted as the result of exact operations where
the operands have been perturbed by a relative amount which does not exceed u. In
backward error analysis (see Sec. 2.4.5) one applies the above interpretation step
by step backwards in an algorithm.

By repeatedly using formula (2.3.1) in case of multiplication, one can show
that

fl (x1x2 · · ·xn) = x1x2(1 + δ2)x3(1 + δ3) · · ·xn(1 + δn),

|δi| ≤ u, i = 2 : n.

That is, the computed product fl (x1x2 · · ·xn) is exactly equal to a product of the
factors

x̃1 = x1, x̃i = xi(1 + δi), i = 2 : n.

Using the estimate and notation of (2.3.6) it follows from this analysis that

|fl (x1x2 · · ·xn) − x1x2 · · ·xn| < γn−1|x1x2 · · ·xn|, (2.3.10)

28 Chapter 2. How to Obtain and Estimate Accuracy

which bounds the forward error of the computed result.
For a sum of n floating point numbers similar results can be derived. If the

sum is computed in the natural order we have

fl (· · · (((x1 + x2) + x3) + · · · + xn))

= x1(1 + δ1) + x2(1 + δ2) + · · · + xn(1 + δn),

where
|δ1| < γn−1, |δi| < γn+1−i. i = 2 : n,

and thus the computed sum is the exact sum of the numbers xi(1 + δi). This also
gives an estimate of the forward error

|fl (· · · (((x1 + x2) + x3) + · · · + xn)) − (x1 + x2 + x3 + · · · + xn)|

<

n
∑

i=1

γn+1−i|xi| ≤ γn−1

n
∑

i=1

|xi|, (2.3.11)

where the last upper bound holds independent of the summation order.
Notice that to minimize the first upper bound in equation (2.3.11), the terms

should be added in increasing order of magnitude! For large n an even better bound
can be shown if the summation is done using the divide-and-conquer technique
described in Sec. 1.3.2; see Problem 5.

Example 2.3.4.
Using a hexadecimal machine (β = 16), with t = 6 and chopping (u = 16−5 ≈

10−6) one computed
10,000
∑

n=1

n−2 ≈ 1.644834

in two different orders. Using the natural summation order n = 1, 2, 3, . . . the error
was 1.317 · 10−3. Summing in the opposite order n = 10, 000, 9, 999, 9, 998 . . . the
error was reduced to 2 · 10−6. This was not unexpected. Each operation is an
addition, where the partial sum s is increased by n−2. Thus, in each operation,
one commits an error of about s · u, and all these errors are added. Using the first
summation order, we have 1 ≤ s ≤ 2 in every step, but using the other order of
summation we have s < 10−2 in 9, 900 of the 10, 000 additions.

Similar bounds for roundoff errors can easily be derived for basic vector and
matrix operations; see Wilkinson [47, pp. 114–118]. For an inner product xT y
computed in the natural order we have

fl (xT y) = x1y1(1 + δ1) + x2y2(1 + δ2) + · · · + xnyn(1 + δn)

where
|δ1| < γn, |δr| < γn+2−i, i = 2 : n.

The corresponding forward error bound becomes

|fl (xT y) − xT y| <

n
∑

i=1

γn+2−i|xi||yi| < γn

n
∑

i=1

|xi||yi|,

2.3. Accuracy and Rounding Errors 29

If we let |x|, |y| denote vectors with elements |xi|, |yi| the last estimate can be
written in the simple form

|fl (xT y) − xT y| < γn|xT ||y|. (2.3.12)

This bound is independent of the summation order and holds also for the weaker
model (2.3.3) valid with no guard digit rounding.

The outer product of two vectors x, y ∈ Rn is the matrix xyT = (xiyj). In
floating point arithmetic we compute the elements fl (xiyj) = xiyj(1+δij), δij ≤ u,
and so

|fl (xyT) − xyT | ≤ u |xyT |. (2.3.13)

This is a satisfactory result for many purposes, but the computed result is not
in general a rank one matrix and it is not possible to find ∆x and ∆y such that
fl(xyT) = (x + ∆x)(x + ∆y)T .

The product of two t digit floating point numbers can be exactly represented
with at most 2t digits. This allows inner products to be computed in extended pre-
cision without much extra cost. If fle denotes computation with extended precision
and ue the corresponding unit roundoff then the forward error bound for an inner
product becomes

|fl (fle((x
T y)) − xT y| < u|xT y| + nue

1 − nue/2
(1 + u)|xT ||y|, (2.3.14)

where the first term comes form the final rounding. If |xT ||y| ≤ u|xT y| then the
computed inner product is almost as accurate as the correctly rounded exact result.
These accurate inner products can be used to improve accuracy by iterative refine-
ment in many linear algebra problems (see Chapters 7–9, Volume II). But since
computations in extended precision are machine dependent it has been difficult to
make such programs portable.8 The recent development of Extended and Mixed
Precision BLAS (Basic Linear Algebra Subroutines) (see [33]) may now make this
more feasible!

Similar error bounds can easily be obtained for matrix multiplication. Let
A ∈ Rm×n, B ∈ Rn×p, and denote by |A| and |B| matrices with elements |aij | and
|bij |. Then it holds that

|fl (AB) − AB| < γn|A||B|. (2.3.15)

where the inequality is to be interpreted elementwise. Often we shall need bounds
for some norm of the error matrix. From (2.3.15) it follows that

‖fl (AB) − AB‖ < γn‖ |A| ‖ ‖ |B| ‖. (2.3.16)

Hence, for the 1-norm, ∞-norm and the Frobenius norm we have

‖fl (AB) − AB‖ < γn‖A‖ ‖B‖. (2.3.17)

8It was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.

30 Chapter 2. How to Obtain and Estimate Accuracy

but unless A and B have only non-negative elements, we get for the 2-norm only
the weaker bound

‖fl (AB) − AB‖2 < nγn‖A‖2 ‖B‖2. (2.3.18)

To reduce the effects of rounding errors in computing a sum
∑n

i=1 xi one can
use compensated summation. In this algorithm the rounding error in each addi-
tion is estimated and then compensated for with a correction term. Compensated
summation can be useful when a large number of small terms are to be added as in
numerical quadrature. Another example is the case in the numerical solution of ini-
tial value problems for ordinary differential equations. Note that in this application
the terms have to be added in the order in which they are generated.

Compensated is based on the possibility to simulate double precision floating
point addition in single precision arithmetic. To illustrate the basic idea we take as
in Example 2.3.1

a = 0.1234567 · 100, b = 0.4711325 · 104,

so that s = fl (a + b) = 0.4711448 · 104, Suppose we form

c = fl (fl (b − s) + a) = −0.1230000 · 100 + 0.1234567 · 100 = 4567000 · 10−3.

Note that the variable c is computed without error and picks up the information
that was lost in the operation fl (a + b).

The following algorithm uses this idea to accurately computing
∑n

i=1 xi:

Algorithm 2.3.1 Compensated Summation.

s := x1; c := 0;

for i = 2 : n

y := c + xi;

t := s + y;

c := (s − t) + y;

s := t;

end

It can be proved (see Goldberg [25,]) that on binary machines with a
guard digit the computed sum satisfies

s =
n
∑

i=1

(1 + ξi)xi, |ξi| < 2u + O(nu2). (2.3.19)

This formulation is a typical example of a backward error analysis; see Sec. 2.4.5.
The first term in the error bound is independent of n.

2.3. Accuracy and Rounding Errors 31

2.3.3 Statistical Models for Rounding Errors

The bounds for the accumulated rounding error we have derived so far are estimates
of the maximal error. These bounds ignore the sign of the errors and tend to be
much too pessimistic when the number of variables is large. They can still give
valuable insight into the behavior of a method and be used for the purpose of
comparing different methods.

An alternative is a statistical analysis of rounding errors, which is based on the
assumption that rounding errors are independent and have some statistical distri-
bution. It was observed already in the 1950s that rounding errors occurring in the
solution of differential equations are not random and often are strongly correlated.
This does not in itself preclude that useful information can sometimes be obtained
by modeling them by random uncorrelated variables! For example, in many com-
putational situations and scientific experiments, where the error can be considered
to have arisen from the addition of a large number of independent error sources of
about the same magnitude an assumption that the errors are normally distributed
is justified.

Example 2.3.5.
Fig. 2.3.2 illustrates the effect of rounding errors on the evaluation of two

different expressions for the polynomial p(x) = (x − 1)5 for x ∈ [0.999, 1.001], in
IEEE double precision (unit roundoff u = 1.1 ·10−16). Among other things it shows
that the monotonicity of a function can be lost due to rounding errors. The model
of rounding errors as independent random variables works well in this example. It
is obvious that it would be impossible to locate the zero of p(x) to a precision better
than about (0.5 ·10−14)1/6 ≈ 0.0007 using the expanded form of p(x). But using the
expression p(x) = (1 − x)5 function values can be evaluated with constant relative
precision even close to x = 1, and the problem disappears!

0.999 0.9992 0.9994 0.9996 0.9998 1 1.0002 1.0004 1.0006 1.0008 1.001
−2

0

2
x 10

−15

Figure 2.3.2. Calculated values of a polynomial: solid line p(x) = x5 −
5x4 + 10x3 − 10x2 + 5x − 1 = 0; dashed line p(x) = (x − 1)5.

32 Chapter 2. How to Obtain and Estimate Accuracy

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

y

Figure 2.3.3. The frequency function of the normal distribution for σ = 1.

The theory of standard error is based on probability theory and will not be
treated in detail here. The standard error of an estimate of a given quantity is the
same as the standard deviation of its sampling distribution.

If in a sum y =
∑n

i=1 xi each xi has error |∆i| ≤ δ, then the maximum
error bound for y is nδ. Thus, the maximal error grows proportionally to n. If
n is large—for example, n = 1000—then it is in fact highly improbable that the
real error will be anywhere near nδ, since that bound is attained only when every
∆xi has the same sign and the same maximal magnitude. Observe, though, that
if positive numbers are added, each of which has been abridged to t decimals by
chopping, then each ∆xi has the same sign and a magnitude which is on the average
1
2δ, where δ = 10−t. Thus, the real error is often about 500δ.

If the numbers are rounded instead of chopped, and if one can assume that the
errors in the various terms are stochastically independent with standard deviation
ǫ, then the standard error in y becomes (see Theorem 2.4.5)

(ǫ2 + ǫ2 + . . . + ǫ2)1/2 = ǫ
√

n.

Thus the standard error of the sum grows only proportionally to
√

n. This supports
the following rule of thumb, suggested by Wilkinson [46, p. 26], that if a rounding
error analysis gives a bound f(n)u for the maximum error, then one can expect the
real error to be of size

√

f(n)u.
If n ≫ 1, then the error in y is, under the assumptions made above, approxi-

mately normally distributed with standard deviation σ = ǫ
√

n. The corresponding
frequency function,

f(t) =
1√
2π

e−t2/2,

is illustrated in Fig. 2.3.3; the curve shown there is also called the Gauss curve.
The assumption that the error is normally distributed with standard deviation σ
means, e.g., that the statement “the magnitude of the error is greater than 2σ” (see
the shaded area of Fig. 2.3.3) is true in about only 5 % of all cases (the clear area
under the curve). More generally, the assertion that the magnitude of the error is
larger than σ, 2σ, and 3σ respectively, is about 32%, 5%, and 0.27%.

2.3. Accuracy and Rounding Errors 33

One can show that if the individual terms in a sum y =
∑n

i=1 xi have a uni-
form probability distribution in the interval [− 1

2δ, 1
2δ], then the standard deviation

of an individual term is δ/12. Therefore, in only about 5% of the cases is the error
in the sum of 1, 000 terms greater than 2δ

√

1000/12 ≈ 18δ, which can be compared
to the maximum error 500δ. This shows that rounding can be far superior to chop-
ping when a statistical interpretation (especially, the assumption of independence)
can be given to the principal sources of errors. Observe that, in the above, we have
only considered the propagation of errors which were present in the original data,
and have ignored the effect of possible round-off errors in the additions themselves.

For rounding errors the formula for standard errors is used. For systematic
errors, however, the formula for maximal error (2.4.5) should be used.

2.3.4 Avoiding Overflow

In the rare cases when input and output data are so large or small in magnitude that
the range of the machine is not sufficient, one can, for example, use higher precision
or else work with logarithms or some other transformation of the data. One should,
however, keep in mind the risk that intermediate results in a calculation can produce
an exponent which is too large (overflow) or too small (underflow) for the floating
point system of the machine. Different actions may be taken in such situations,
as well for division by zero. Too small an exponent is usually, but not always,
unprovoking. If the machine does not signal underflow, but simply sets the result
equal to zero, there is a risk of harmful consequences. Occasionally, “unexplainable
errors” in output data are caused by underflow somewhere in the computations.

The Pythagorean sum c =
√

a2 + b2 occurs frequently, e.g., in conversion to
polar coordinates and in computing the complex modulus and complex multiplica-
tion. If the obvious algorithm is used, then damaging underflows and overflows may
occur in the squaring of a and b even if a and b and the result c are well within the
range of the floating point system used. This can be avoided by using instead the
algorithm: If a = b = 0 then c = 0; otherwise set p = max(|a|, |b|), q = min(|a|, |b|),
and compute

ρ = q/p; c = p
√

1 + ρ2. (2.3.20)

Example 2.3.6.
The formula (2.3.7) for complex division suffers from the problem that inter-

mediate results can overflow even if the final result is well within the range of the
floating point system. This problem can be avoided by rewriting the formula as for
the Pythagorean sum: If |c| > |d| then compute

a + ib

c + id
=

a + be

r
+ i

b − ae

r
, e = d/c, r = c + de.

If |d| > |c| then e = c/d is computed and a corresponding formula used.

34 Chapter 2. How to Obtain and Estimate Accuracy

Similar precautions are also needed for computing the Euclidian length (norm)

of a vector ‖x‖2 =
(
∑n

i=1 x2
i

)1/2
, x 6= 0. We could avoid overflows by first finding

xmax = max1≤i≤n |xi| and then forming

s =

n
∑

i=1

(xi/xmax)2, ‖x‖2 = xmax

√
s. (2.3.21)

This has the drawback of needing two passes through the data.

Example 2.3.7.
The following algorithm requiring only one pass due to S. J. Hammarling is

used in the level-1 BLAS:

t = 0; s = 1;

for i = 1 : n

if |xi| > 0

if |xi| > t

s = 1 + s(t/xi)
2; t = |xi|;

else

s = s + (xi/t)2;

end

end

end

‖x‖2 = t
√

s;

On the other hand this code does not vectorize and can therefore be slower if
implemented on a vector computer.

2.3.5 Cancellation of Terms

One very common reason for poor accuracy in the result of a calculation is that
somewhere a subtraction has been carried out in which the difference between the
operands is considerably less than either of the operands.

Consider the computation of y = x1−x2 where x̃1 = x1 +∆x1, x̃2 = x2 +∆x2

are approximations to the exact values. If the operation is carried out exactly the
result is ỹ = y + ∆y, where ∆y = ∆x1 − ∆x2. But, since the errors ∆x1 and ∆x2

can have opposite sign, the best error bound for ỹ is

|∆y| ≤ |∆x1| + |∆x2|. (2.3.22)

Notice the plus sign! Hence for the relative error we have
∣

∣

∣

∣

∆y

y

∣

∣

∣

∣

≤ |∆x1| + |∆x2|
|x1 − x2|

. (2.3.23)

This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms.

2.3. Accuracy and Rounding Errors 35

In Sec. 1.2.1 it was shown that when using the well-known “text-book” formula

r1,2 =
(

− b ±
√

b2 − 4ac
)/

(2a).

for computing the real roots of the quadratic equation ax2 + bx + c = 0 (a 6= 0)
cancellation could cause a loss of accuracy in the root of smallest magnitude. This
can be avoided by computing the root of smaller magnitude from the relation r1r2 =
c/a between coefficients and roots. The following is a suitable algorithm:

Algorithm 2.3.2 Solving a quadratic equation.

d := b2 − 4ac;

if d ≥ 0 % real roots

r1 := −sign(b)
(

|b| +
√

d
)

/(2a);

r2 := c/(a · r1);

else % complex roots x + iy

x := −b/(2a);

y :=
√
−d/(2a);

end

Note that we define sign (b) = 1, if b ≥ 0, else sign (b) = −1.9 It can be proved that
in IEEE arithmetic this algorithm computes a slightly wrong solution to a slightly
wrong problem.

Lemma 2.3.5.
Assume that the Algorithm 2.3.2 is used to compute the roots r1,2 of the

quadratic equation ax2 + bx + c = 0. Denote the computed roots by r̄1,2 and let
r̃1,2 be the exact roots of the nearby equation ax2 + bx+ c̃ = 0, where |c̃− c| ≤ γ2|c̃|.
Then |r̃i − r̄i| ≤ γ5|r̃i|, i = 1, 2.

Proof. See Kahan [30].

More generally, if |δ| ≪ x, then one should rewrite

√
x + δ −

√
x =

x + δ − x√
x + δ +

√
x

=
δ√

x + δ +
√

x
.

There are other exact ways of rewriting formulas which are as useful as the
above; for example,

cos(x + δ) − cosx = −2 sin(δ/2) sin(x + δ/2).

If one cannot find an exact way of rewriting a given expression of the form f(x +
δ) − f(x), it is often advantageous to use one or more terms in the Taylor series

f(x + δ) − f(x) = f ′(x)δ +
1

2
f ′′(x)δ2 + · · ·

9In Matlab sign (0) = 0, which can lead to failure of this algorithm!

36 Chapter 2. How to Obtain and Estimate Accuracy

Example 2.3.8. (Cody [13])
To compute sin 22 we first find ⌊22/(π/2)⌋ = 14. It follows that sin 22 =

− sinx∗, where x∗ = 22 − 14(π/2). Using the correctly rounded 10 digit approxi-
mation π/2 = 1.57079 6327 we obtain

x∗ = 22 − 1.57079 6327 = 8.85142 · 10−3.

Here cancellation has taken place and the reduced argument has a maximal error
of 7 · 10−9, The actual error is slightly smaller since the correctly rounded value
is x∗ = 8.85144 8711 · 10−3, which corresponds to a relative error in the computed
sin 22 of about 2.4 · 10−6, in spite of using a ten digit approximation to π/2.

For very large arguments the relative error can be much larger. Techniques for
carrying out accurate range reductions without actually needing multiple precision
calculations are discussed by Muller [35]; see also Problem 9.

In previous examples we got a warning that cancellation would occur, since
x2 was found as the difference between two nearly equal numbers each of which
was, relatively, much larger than the difference itself. In practice, one does not
always get such a warning, for two reasons: first, in using a computer one has no
direct contact with the individual steps of calculation; secondly, cancellation can be
spread over a great number of operations. This may occur in computing a partial
sum of an infinite series. For example, in a series where the size of some terms are
many orders of magnitude larger than the sum of the series, small relative errors in
the computation of the large terms can then produce large errors in the result.

It has been emphasized here that calculations where cancellation occur should
be avoided. But there are cases, where one has not been able to avoid it, and there
is no time to wait for a better method. Situations occur in practice where (say)
the first ten digits are lost, and we need a decent relative accuracy in what will be
left.10 Then, high accuracy is required in intermediate results. This is an instance
where the high accuracy in IEEE double precision is needed!

Review Questions

1. What is the standard model for floating point arithmetic? What weaker model
holds if a guard digit is lacking?

2. Give examples to show that some of the axioms for arithmetic with real num-
bers do not always hold for floating point arithmetic.

3. (a) Give the results of a backward and forward error analysis for computing
fl (x1 + x2 + · · · + xn). It is assumed that the standard model holds.

(b) Describe the idea in compensated summation.

4. Explain the terms “maximum error” and “standard error”. What statistical
assumption about rounding errors is often made, for example, when calculating
the standard error in a sum due to rounding?

10G. Dahlquist has encountered just this situation in a problem of financial mathematics.

Problems 37

5. Explain, what is meant by “cancellation of terms”. Give an example how this
can be avoided by rewriting a formula.

Problems

1. Rewrite the following expression to avoid cancellation of terms:
(a) 1 − cosx, |x| ≪ 1; (b) sinx − cosx, |x| ≈ π/4;

2. (a) The expression x2−y2 exhibits catastrophic cancellation if |x| ≈ |y|. Show
that it is more accurate to evaluate it as (x + y)(x − y).

(b) Consider using the trigonometric identity sin2 x + cos2 x = 1 to compute
cosx = (1 − sin2 x)1/2. For which arguments in the range 0 ≤ x ≤ π/4 will
this formula fail to give good accuracy?

3. The polar representation of a complex number is

z = x + iy = r(sin φ + cosφ) ≡ r · eiφ.

Develop accurate formulas for computing this polar representation from x and
y using real operations.

4. (Kahan) Show that with the use of fused multiply-add the algorithm

w := bc; c := w − bc; y := (ad − w) + c;

computes x = det

(

a b
c d

)

with high relative accuracy.

5. Suppose that the sum s =
∑n

i=1 xi, n = 2k, is computed using the the divide-
and-conquer technique described in Sec. 1.3.2. Show that this summation
algorithm computes an exact sum

s̄ =
n
∑

i=1

xi(1 + δi), |δi| ≤ ũ log2 n.

Hence for large values of n this summation order can be much more accurate
than the conventional order.

6. Show that for the evaluation of a polynomial p(x) =
∑n

i=0 aix
i by Horner’s

rule the following roundoff error estimate holds:

|fl (p(x)) − p(x)| < γ1

n
∑

i=0

(2i + 1)|ai| |x|i, (2nu ≤ 0.1).

7. In solving linear equations by Gaussian elimination there often occurs expres-
sions of the form s = (c −

∑n−1
i=1 aibi)/d. Show that by a slight extension of

the result above that the computed s̄ satisfies

∣

∣

∣s̄d − c +

n−1
∑

i=1

aibi

∣

∣

∣ ≤ γn

(

|s̄d| +
n−1
∑

i=1

|ai||bi|
)

,

where the inequality holds independent of the summation order.

38 Chapter 2. How to Obtain and Estimate Accuracy

8. The zeros of the reduced cubic polynomial z3 + 3qz − 2r = 0, can be found
from the Cardano–Tartaglia formula:

z =
(

r +
√

q3 + r2
)1/3

+
(

r −
√

q3 + r2
)1/3

.

The two cubic roots are to be chosen so that their product equals −q. One
real root is obtained if q3 + r2 ≥ 0, which is the case unless all three roots are
real and distinct.
The above formula can lead to cancellation. Rewrite it so that it becomes
more suitable for numerical calculation and requires the calculation of only
one cubic root.

9. (Eldén and Wittmeyer-Koch) In the interval reduction for computing sinx
there can be a loss of accuracy through cancellation in the computation of
the reduced argument x∗ = x − k · π/2 when k is large. A way to avoid
this without reverting to higher precision has been suggested by Cody and
Waite [15]). Write

π/2 = π0/2 + r,

where π0/2 is exactly representable with a few digits in the (binary) floating
point system. The reduced argument is now computed as x∗ = (x−k ·π0/2)−
kr. Here, unless k is very large, the first term can be computed without
rounding error. The rounding error in the second term is bounded by k|r|u,
where u is the unit roundoff.
In IEEE single precision one takes

π0/2 = 201/128 = 1.573125 = (10.1001001)2, r = 4.838267949 · 10−4

Estimate the relative error in the computed reduced argument x∗ when x =
1000 and r is represented in IEEE single precision.

10. (W. Kahan [1983]) The area A of a triangle with sides equal to a, b, c is given
by Heron’s formula11

A =
√

s(s − a)(s − b)(s − c), s = (a + b + c)/2.

Show that this formula fails for needle-shaped triangles, using five digit decimal
floating arithmetic and a = 100.01, b = 99.995, c = 0.025.
The following formula can be proved to work if addition/subtraction satisfies
(2.3.20):
Order the sides so that a ≥ b ≥ c, and use

A =
1

4

√

(a + (b + c))(c − (a − b))(c + (a − b))(a + (b − c)).

Compute a correct result for the data above using this modified formula. If a
person tells you that this gives an imaginary result if a − b > c, what do you
answer him?

11Heron (or Hero) of Alexandria, 1st century AD.

Computer Exercises 39

Computer Exercises

1. As is well known f(x) = (1 + x)1/x has the limit e = 2.71828 18284 59045 . . .,
when x → ∞. Study the sequences f(xn) for xn = 10−n and xn = 2−n, for
n = 1, 2, 3, Stop when xn < 10−10 (or when xn < 10−20 if you are using
double precision). Give your results as a table of n, xn, and the relative error
gn = (f(xn) − e)/e. Also plot log(|gn|) against log(|xn|). Comment on and
explain your observations.

2. (a) Compute the derivative of the exponential function ex at x = 0, by approx-
imating with the difference quotients (ex+h − ex)/h, for h = 2−i, i = 1 : 20.
Explain your results.

(b) Same as in (a) but approximate instead with the central difference ap-
proximation (ex+h − ex−h)/(2h).

3. (W. Gautschi) Euler’s constant γ = 0.57721566490153286 . . . is defined as the
limit

γ = lim
n→∞

γn, where γn = 1 + 1/2 + 1/3 + · · · + 1/n− log n.

Assuming that γ − γn ∼ cn−d, n → ∞, for some constants c and d > 0, try to
determine c and d experimentally on your computer.

4. In the statistical treatment of data, one often needs to compute the quantities

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n

n
∑

i=1

(xi − x̄)2.

If the numbers xi are the results of statistically independent measurements of
a quantity with expected value m, then x̄ is an estimate of m, whose standard
deviation is estimated by s/

√
n − 1.

(a) The computation of x̄ and m using the formulas above have the drawback
that they require two passes through the data xi. Let α be a provisional mean,
chosen as an approximation to x̄, and set x′

i = xi −α. Show that the formulas

x̄ = α +
1

n

n
∑

i=1

x′
i, s2 =

1

n

n
∑

i=1

(x′
i)

2 − (x̄ − α)2.

hold for an arbitrary α.

(b) In sixteen measurements of a quantity x one got the following results:

i xi i xi i xi i xi

1 546.85 5 546.81 9 546.96 13 546.84
2 546.79 6 546.82 10 546.94 14 546.86
3 546.82 7 546.88 11 546.84 15 546.84
4 546.78 8 546.89 12 546.82 16 546.84

Compute x̄ and s2 to two significant digits using α = 546.85.

40 Chapter 2. How to Obtain and Estimate Accuracy

(c) In the computations in (b), one never needed more than three digits.
If one uses the value α = 0, how many digits is needed in (x′

i)
2 in order

to get two significant digits in s2? If one uses five digits throughout the
computations, why is the cancellation in the s2 more fatal than the cancellation
in the subtraction x′

i − α? (one can even get negative values for s2!)

(d) If we define

mk =
1

k

k
∑

i=1

xi, qk =

k
∑

i=1

(xi − mk)2 =

k
∑

i=1

x2
i −

1

k

(

k
∑

i=1

xi

)2

,

then it holds that x̄ = mn, and s2 = qn/n. Show the recursion formulas

m1=x1, mk = mk−1 + (xk − mk−1)/k

q1=0, qk = qk−1 + (xk − mk−1)
2(k − 1)/k

5. Compute the sum in Example 2.3.4 using the natural summation ordering
in IEEE 754 double precision. Repeat the computations using compensated
summation (Algorithm 2.3.1).

2.4 Error Propagation

2.4.1 Numerical Problems, Methods and Algorithms

By a numerical problem we mean here a clear and unambiguous description of
the functional connection between input data —that is, the “independent vari-
ables” in the problem—and output data—that is, the desired results. Input data
and output data consist of a finite number of real (or complex) quantities and are
thus representable by finite dimensional vectors. The functional connection can be
expressed in either explicit or implicit form. We require for the following discussion
also that the output data should be uniquely determined and depend continuously on
the input data.

By an algorithm12 for a given numerical problem we mean a complete descrip-
tion of well-defined operations through which each permissible input data vector is
transformed into an output data vector. By “operations” we mean here arithmetic
and logical operations, which a computer can perform, together with references to
previously defined algorithms. It should be noted that, as the field of computing has
developed, more and more complex functions (e.g., square root, circular and hyper-
bolic functions) are built into the hardware. In many programming environments
operations like matrix multiplication, solution of linear systems, etc., are considered
as “elementary operations” and for the user appear as black boxes.

(The concept algorithm can be analogously defined for problems completely
different from numerical problems, with other types of input data and fundamental

12The term “algorithm” is a latinization of the name of the Arabic 9th century mathematician Al-
Khowârizmı̂. He also introduced the word algebra (Al-jabr). Western Europe became acquainted
with the Hindu positional number system from a latin translation of his book entitled “Algorithmi
de numero Indorum”.

2.4. Error Propagation 41

operations—for example, inflection, merging of words, and other transformations of
words in a given language.)

Example 2.4.1.
To determine the largest real root of the cubic equation

p(z) = a0z
3 + a1z

2 + a2z + a3 = 0,

with real coefficients a0, a1, a2, a3, is a numerical problem. The input data vector
is (a0, a1, a2, a3). The output data is the desired root x; it is an implicitly defined
function of the input data.

An algorithm for this problem can be based on Newton’s method, supple-
mented with rules for how the initial approximation should be chosen and how the
iteration process is to be terminated. One could also use other iterative methods,
or algorithms based upon the formula by Cardano–Tartaglia for the exact solution
of the cubic equation (see Problem 2.3.8). Since this uses square roots and cube
roots, one needs to assume that algorithms for the computation of these functions
have been specified previously.

One often begins the construction of an algorithm for a given problem by
breaking down the problem into subproblems in such a way that the output data
from one subproblem is the input data to the next subproblem. Thus the distinction
between problem and algorithm is not always so clearcut. The essential point is that,
in the formulation of the problem, one is only concerned with the initial state and
the final state. In an algorithm, however, one should clearly define each step along
the way, from start to finish.

We use the term numerical method in this book to mean a procedure ei-
ther to approximate a mathematical problem with a numerical problem or to solve
a numerical problem (or at least to transform it to a simpler problem). A numer-
ical method should be more generally applicable than an algorithm, and set lesser
emphasize on the completeness of the computational details. The transformation
of a differential equation problem to a system of nonlinear equations, as in Exam-
ple 1.4.1 can be called a numerical method—even without instructions as to how to
solve the system of nonlinear equations. Newton’s method is a numerical method
for determining a root of a large class of nonlinear equations. In order to call it
an algorithm conditions for starting and stopping the iteration process should be
added.

For a given numerical problem one can consider many differing algorithms. As
we have seen in Sec. 2.3 these can, in floating point arithmetic, give approximations
of widely varying accuracy to the exact solution.

Example 2.4.2.
The problem of solving the differential equation

d2y

dx2
= x2 + y2

with boundary conditions y(0) = 0, y(5) = 1, is not a numerical problem according

42 Chapter 2. How to Obtain and Estimate Accuracy

to the definition stated above. This is because the output data is the function y,
which cannot in any conspicuous way be specified by a finite number of parameters.
The above mathematical problem can be approximated with a numerical problem
if one specifies the output data to be the values of y for x = h, 2h, 3h, . . . , 5 − h.
Also the domain of variation of the unknowns must be restricted in order to show
that the problem has a unique solution. This can be done, however, and there are a
number of different algorithms for solving the problem approximately, which have
different properties with respect to number of arithmetic operations needed and the
accuracy obtained.

Before an algorithm can be used it has to be implemented in an algorithmic
program language in a reliable and efficient manner. We leave these aspects aside
for the moment, but this is far from a trivial task—it has been said that when the
novice thinks the job is done then the expert knows that most of the hard work lies
ahead!

2.4.2 Propagation of Errors

In scientific computing the given input data is usually imprecise. The errors in the
input will propagate and give rise to errors in the output. In this section we develop
some general tools for studying the propagation of errors. Error-propagation formu-
las are also of great interest in the planning and analysis of scientific experiments.

Note that rounding errors from each step in a calculation are also propagated
to give errors in the final result. For many algorithms a rounding error analysis can
be given, which shows that the computed result always equals the exact (or slightly
perturbed) result of a nearby problem, where the input data has been slightly
perturbed (see, e.g, Lemma 2.3.5). The effect of rounding errors on the final result
can then be estimated using the tools of this section.

We first consider two simple special cases of error propagation. For a sum of
an arbitrary number of terms we get from (2.3.22) by induction:

Lemma 2.4.1.
In addition (and subtraction) a bound for the absolute errors in the result is

given by the sum of the bounds for the absolute errors of the operands

y =

n
∑

i=1

xi, |∆y| ≤
n
∑

i=1

|∆xi|. (2.4.1)

To obtain a corresponding result for the error propagation in multiplication
and division, we start with the observations that for y = log x we have ∆(log x) ≈
∆(x)/x. In words: the relative error in a quantity is approximately equal to the
absolute error in its natural logarithm. This is related to the fact that displacements
of the same length at different places on a logarithmic scale, mean the same relative
change of the value. From this we obtain the following result:

Lemma 2.4.2.

2.4. Error Propagation 43

In multiplication and division, an approximate bound for the relative error is
obtained by adding the relative errors of the operands. More generally, for y =
xm1

1 xm2

2 · · ·xmn

n ,
∣

∣

∣

∣

∆y

y

∣

∣

∣

∣

/
n
∑

i=1

|mi|
∣

∣

∣

∣

∆xi

xi

∣

∣

∣

∣

. (2.4.2)

Proof. The proof follows by differentiating log y = m1 log x1 + m2 log x2 + · · · +
mn log xn.

We now study the propagation of errors in more general non-linear expressions.
Consider first the case when we want to compute a function y = f(x) of a single real
variable x. How is the error in x propagated to y? Let x̃−x = ∆x. Then, a natural
way is to approximate ∆y = ỹ − y with the differential of y (see Figure 2.4.1). By
the mean value theorem,

∆y = f(x + ∆x) − f(x) = f ′(ξ)∆x,

where ξ is a number between x and x+∆x. Suppose that |∆x| ≤ ǫ. Then it follows
that

|∆y| ≤ max
ξ

|f ′(ξ)|ǫ, ξ ∈ [x − ǫ, x + ǫ]. (2.4.3)

In practice, it is usually sufficient to replace ξ by the available estimate of x. Even
if high precision is needed in the value of f(x), one rarely needs a high relative
precision in an error bound or an error estimate. (In the neighborhood of zeros of
the first derivative f ′(x) one has to be more careful!)

x

∆x

∆ y y′ ∆ x

Figure 2.4.1. Propagated error in function y = f(x).

By the implicit function theorem a similar result holds if y is an implicit
function of x defined by g(x, y) = 0. If g(x, y) = 0 and ∂g

∂y (x, y) 6= 0, then in a

neighborhood of x, y there exists a unique function y = f(x) such that g(x, f(x)) = 0
and it holds that

f ′(x) = −∂g

∂x
(x, f(x))

/∂g

∂y
(x, f(x)).

44 Chapter 2. How to Obtain and Estimate Accuracy

Example 2.4.3.
The result in Lemma 2.3.5 does not say that the computed roots of the

quadratic equation are close to the exact roots r1, r2. To answer that question
we must determine how sensitive the roots are to a relative perturbation in the
coefficient c. Differentiating ax2 + bx + c = 0, where x = x(c) with respect to c
we obtain (2ax + b)dx/dc + 1 = 0, dx/dc = −1/(2ax + b). With x = r1 and using
r1 + r2 = −b/a, r1r2 = c/a this can be written

dr1

r1
= −dc

c

r2

r1 − r2
.

This shows that when |r1 − r2| ≪ |r2| the roots can be very sensitive to small
relative perturbations in c.

When r1 = r2, i.e. when there is a double root, this linear analysis breaks
down. Indeed it is easy to see that the equation (x − r)2 − ∆c = 0 has roots
x = r ±

√
∆c.

To analyze error propagation in a function of several variables we need the
following generalization of the mean value theorem:

Theorem 2.4.3.
Assume that the real valued function f is differentiable in a neighborhood of

the point x = (x1, x2, . . . , xn), and let x = x + ∆x be a point in this neighborhood.
Then there exists a number θ, such that

∆f = f(x + ∆x) − f(x) =
n
∑

i=1

∂f

∂xi
(x + θ∆x)∆xi, 0 ≤ θ ≤ 1.

Proof. The proof follows by considering the function F (t) = f(x+ t∆x) and using
the mean value theorem for functions of one variable and the chain rule.

From Theorem 2.4.3 it follows that the perturbation ∆f is approximately equal
to the total differential. The use of this approximation means that the function
f(x) is, in a neighborhood of x that contains the point x + ∆x, approximated by
a linear function. All the techniques of differential calculus, such as logarithmic
differentiation, implicit differentiation etc. may be useful for the calculation of the
total differential; see the examples and the problems at the end of this section.

Theorem 2.4.4. General Formula for Error Propagation:
Let the real valued function f = f(x1, x2, . . . , xn) be differentiable in a neigh-

borhood of the point x = (x1, x2, . . . , xn) with errors ∆x1, ∆x2, . . . , ∆xn. Then it
holds

∆f ≈
n
∑

i=1

∂f

∂xi
∆xi. (2.4.4)

where the partial derivatives are evaluated at x.

2.4. Error Propagation 45

For the maximal error in f(x1, x2, . . . , xn) we have the approximate bound

|∆f | /
n
∑

i=1

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

|∆xi|. (2.4.5)

In order to get a strict bound for |∆f |, one should use in (2.4.5) the maximum
absolute values of the partial derivatives in a neighborhood of the known point x.
In most practical situations it suffices to calculate |∂f/∂xi| at x and then add a
certain marginal amount (5 to 10 percent, say) for safety. Only if the ∆xi are
large or if the derivatives have a large relative variation in the neighborhood of x,
need the maximal values be used. (The latter situation occurs, for example, in a
neighborhood of an extremal point of f(x).)

The bound in Theorem 2.4.4 is the best possible, unless one knows some
dependence between the errors of the terms. Sometimes it can, for various reasons,
be a coarse overestimate of the real error.

Example 2.4.4.
Compute error bounds for f = x2

1−x2, where x1 = 1.03±0.01, x2 = 0.45±0.01.
We obtain

∣

∣

∣

∣

∂f

∂x1

∣

∣

∣

∣

= |2x1| ≤ 2.1,

∣

∣

∣

∣

∂f

∂x2

∣

∣

∣

∣

= | − 1| = 1,

and find |∆f | ≤ 2.1 · 0.01 + 1 · 0.01 = 0.031, or f = 1.061 − 0.450 ± 0.032 =
0.611±0.032. the error bound has been raised 0.001 because of the rounding in the
calculation of x2

1.

One is seldom asked to give mathematically guaranteed error bounds. More
often it is satisfactory to give an estimate of the order of magnitude of the anticipated
error. The bound for |∆f | obtained with Theorem 2.4.3 estimates the maximal
error, i.e, covers the worst possible cases, where the sources of error ∆xi contribute
with the same sign and magnitudes equal to the error bounds for the individual
variables.

In practice, the trouble with formula (2.4.5) is that it often gives bounds which
are too coarse. More realistic estimates are often obtained using the standard error
introduced in Sec. 2.3.3. Here we give without proof the result for the general case,
which can be derived using probability theory and the formula (2.4.4). (Compare
with the result for the standard error of a sum given in Sec. 2.3.3.)

Theorem 2.4.5.
Assume that the errors ∆x1, ∆x2, . . . , ∆xn are independent random variables

with mean zero and standard deviations ǫ1, ǫ2, . . . , ǫn. Then the standard error ǫ for
f(x1, x2, . . . , xn) is given by the formula:

ǫ ≈
(

n
∑

i=1

(

∂f

∂xi

)2

ǫ2i

)1/2

(2.4.6)

46 Chapter 2. How to Obtain and Estimate Accuracy

Analysis of error propagation is more than just a means for judging the relia-
bility of calculated results. As remarked above, it has an equally important function
as a means for the planning of a calculation or scientific experiment. For example,
it can help in the choice of algorithm, and in making certain decisions during a
calculation. Examples of such decisions are the choice of step length during a nu-
merical integration. Increased accuracy often has to be bought at the price of more
costly or complicated calculations. One can also shed some light to what degree
it is advisable to obtain a new apparatus to improve the measurements of a given
variable, when the measurements of other variables are subject to error as well.

Example 2.4.5.
In Newton’s method for solving a nonlinear equation a correction is to be

calculated as a quotient ∆x = f(xk)/f ′(xk). Close to a root the relative error in
the computed value of f(xk) can be quite large due to cancellation. How accurately
should one compute f ′(xk), assuming that the work grows as one demands higher
accuracy? Since the limit for the relative error in ∆x is equal to the sum of the
bounds for the relative errors in f(xk) and f ′(xk), there is no gain in making
the relative error in f ′(xk) very much less than the relative error in f(xk). This
observation is of great importance in particular in the generalization of Newton’s
method to systems of nonlinear equations.

2.4.3 Condition Numbers of Problems

It is useful to have a measure of how sensitive the output data is for variations
in the input data. In general, if “small” changes in the input data can result in
“large” changes in the output data, we call the problem ill-conditioned; otherwise
it is called well-conditioned. (The definition of large may differ from problem
to problem depending on the accuracy of the data and the accuracy needed in the
solution.)

We have seen in Sec. 2.4.2 that |f ′(x)| can be taken as a measure of the sen-
sitivity of f(x) to a perturbation ∆x of x.

Definition 2.4.6.
Assume that f(x) is differentiable at x. Then the absolute condition num-

ber for the numerical problem of computing y = f(x) given x is

κabs = lim
|∆x|→0

|f(x + ∆x) − f(x)|
|∆x| = |f ′(x)|. (2.4.7)

Usually it is preferable to use condition numbers that are invariant with respect
of scaling. Then the ratio of the relative perturbations in f(x) and x is the relevant
quantity.

Definition 2.4.7.
Assume that f(x) is differentiable at x and that x 6= 0 and f(x) 6= 0. Then

2.4. Error Propagation 47

the relative condition number κrel is

κrel = lim
|∆x|→0

|f(x + ∆x) − f(x)|
|f(x)|

/ |∆x|
|x| = |x| |f

′(x)|
|f(x)| . (2.4.8)

We say that the problem of computing f(x) given x is ill-conditioned if κ is “large”
and well-conditioned otherwise.

It is important to note that the condition number is a property of the numerical
problem and does not depend on the algorithm used! An ill-conditioned problem is
intrinsically difficult to solve accurately using any numerical algorithm. Even if the
input data is exact rounding errors made during the calculations in floating point
arithmetic may cause large perturbations in the final result. Hence, in some sense
an ill-conditioned problem is not well posed.

Example 2.4.6.
If we get an inaccurate solution to an ill-conditioned problem, then often

nothing can be done about the situation. (If you ask a stupid question you get
a stupid answer!) But sometimes the difficulty can depend on the form one has
chosen to represent the input and output data of the problem.

The polynomial

P (x) = (x − 10)4 + 0.200(x− 10)3 + 0.0500(x− 10)2 − 0.00500(x− 10) + 0.00100,

is identical with a polynomial Q which if the coefficients are rounded to six digits,
becomes

Q̃(x) = x4 − 39.8000x3 + 594.050x2 − 3941.00x + 9805.05.

One finds that P (10.11) = 0.0015± 10−4, where only three digits are needed in the
computation, while Q̃(10.11) = −0.0481 ± 1

2 · 10−4, in spite of the fact that eight
digits were used in the computation. The rounding to six digits of the coefficients
of Q has thus caused an error in the polynomial’s value at x = 10.11; the erroneous
value is more than 30 times larger than the correct value and has the wrong sign.
When the coefficients of Q are input data, the problem of computing the value of
the polynomial for x ≈ 10 is far more ill-conditioned than when the coefficients of
P are input data.

Consider now a multivariate numerical problem, where the solution is given
by the function y = f(x), or in component form

yj = fj(x1, . . . , xn), j = 1 : m.

It is usually more convenient to have a single number to measure the conditioning.
This can be achieved by using norms, e.g., the special cases (p = 1, 2 and ∞) of the
family of vector p-norms, (see Sec. 1.6.8)

‖x‖p = (x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p < ∞,

and the corresponding matrix norms.

48 Chapter 2. How to Obtain and Estimate Accuracy

Definition 2.4.8.
Consider a problem of computing y = f(x), where the input data is (x1, . . . , xn)

and the output data is (y1, . . . , ym). The absolute condition number of this problem
is

κabs = lim
ǫ→0

sup
1

ǫ
{‖f(x̃) − f(x)‖ : ‖x̃ − x‖ ≤ ǫ} . (2.4.9)

If x 6= 0 and f(x) 6= 0, then the (normwise) relative condition number is

κrel = lim
ǫ→0

sup
1

ǫ

{‖f(x̃) − f(x)‖
‖f(x)‖ : ‖x̃ − x‖ ≤ ǫ‖x‖

}

. (2.4.10)

Input data
Space of Space of

Output data

X Y
P

Figure 2.4.2. Geometrical illustration of the condition number.

The (absolute or relative) condition number is a function of the input data x
and also depends on the choice of norms in the data space and in the solution space.
If the relative condition number of a problem is κrel, then for sufficiently small ǫ we
have the estimate

‖ỹ − y‖ ≤ κǫ‖y‖ + O(ǫ2).

It follows that the solution will have roughly s = log10 κ less significant decimal
digits than the input data, but this may not hold for all components of the output.

The conditioning of a problem can to some degree be illustrated geometrically.
A numerical problem P means a mapping of the space X of possible input data onto
the space Y of the output data. The dimensions of these spaces are usually quite
large. In Fig 2.4.2 we picture a mapping in two dimensions. Since we are considering
relative changes, we take the coordinate axis to be logarithmically scaled. A small
circle of radius r is mapped onto an ellipse whose major axis is κr, where κ is the
condition number of the problem P .

Assume that each function fj has partial derivatives with respect to all n
variables xi, i = 1 : n and let J be the Jacobian matrix with elements

Jij =
∂fj

∂xi
, j = 1 : m, i = 1 : n. (2.4.11)

Conditioning numbers of general differentiable functions have been studied already
by Rice [38], who showed that the condition numbers defined above can then be

2.4. Error Propagation 49

expressed as

κabs = ‖J‖, κrel =
‖x‖

‖f(x)‖‖J‖. (2.4.12)

where the matrix norm is subordinate to the vector norm.
The normwise analysis used above is usually satisfactory provided the problem

is “well scaled”, i.e. when the error in the components of x have roughly similar
magnitude. If this is not the case then a component-wise perturbation analysis
may give sharper bounds.

2.4.4 Perturbation Analysis for Linear Systems

An important special case is the perturbation analysis for a linear systems. Ax = b,
where x, b ∈ Rn. We assume that A is nonsingular and b 6= 0 so that the system has
a unique solution x 6= 0. We shall investigate the sensitivity of x to perturbations
δA and δb in A and b.

The perturbed solution x + δx satisfies the linear system

(A + δA)(x + δx) = b + δb.

Subtracting Ax = b we obtain (A + δA)δx = δb − δAx. Assuming that also the
matrix (A + δA) = A(I + A−1δA) is nonsingular, and solving for δx yields

δx = (I + A−1δA)−1A−1(δb − δAx), (2.4.13)

which is the basic identity for the analysis. Taking norms gives

‖δx‖ ≤ ‖(I + A−1δA)−1‖ ‖A−1‖ (‖δA‖ ‖x‖ + ‖δb‖) .

It can be shown (see Problem 9) that if ‖A−1δA‖ < 1, then A + δA is nonsingular
and

‖(I + A−1δA)−1‖ < 1/(1 − ‖A−1δA‖).
When δA = 0 we have δx = A−1δb. It follows that ‖δx‖ ≤ ‖A−1‖ ‖δb‖, and

hence κabs = ‖A−1‖ is the absolute condition number. For the (normwise) relative
perturbation, we get the upper bound

‖δx‖
‖x‖ ≤ κrel(A, b)

‖δb‖
‖b‖ , κrel(A, b) :=

‖Ax‖
‖x‖ ‖A−1‖, (2.4.14)

This inequality is sharp in the sense that for any matrix norm and for any A and b
there exists a perturbation δb such that equality holds.

Consider now the case δb = 0. From (2.4.13) we obtain, neglecting second
order terms,

‖δx‖
‖x‖ / κrel(A)

‖δA‖
‖A‖ , κrel(A) = κ = ‖A‖ ‖A−1‖. (2.4.15)

We have

κrel(A, b) =
‖Ax‖
‖x‖ ‖A−1‖ ≤ ‖A‖ ‖A−1‖ = κrel(A).

50 Chapter 2. How to Obtain and Estimate Accuracy

although, for given x (or b), this upper bound may not be achievable for any per-
turbation δb. But usually the factor κ = ‖A‖ ‖A−1‖ is used as condition number
for both perturbations in A and in b.

For the Euclidian vector and matrix norm (p = 2) we define:

Definition 2.4.9.
The condition number for a square nonsingular matrix A is

κ2 = κ2(A) = ‖A‖2 ‖A−1‖2 = σ1/σn, (2.4.16)

where σ1 and σn are the largest and smallest singular value of A.

Note that κ(αA) = κ(A), i.e. the condition number is invariant under multi-
plication of A by a scalar. From the definition and the identity AA−1 = I it also
follows that κ(AB) ≤ κ(A)κ(B) and

κ2(A) = ‖A‖2‖A−1‖2 ≥ ‖I‖ = 1,

that is, the condition number κ2 is always greater or equal to one. Matrices with
small condition numbers are said to be well-conditioned.

For any real, orthogonal matrix Q we have

κ2(Q) = ‖Q‖2‖Q−1‖2 = 1,

so Q is perfectly conditioned. By Lemma 1.6.3 we have ‖QAP‖2 = ‖A‖2 for any
orthogonal P and Q. It follows that

κ2(PAQ) = κ2(A),

i.e. the condition number of a matrix A is invariant under orthogonal transforma-
tions. This important fact is one reason why orthogonal transformations play a
central role in numerical linear algebra!

How large may κ be before we consider the problem to be ill-conditioned?
That depends on the accuracy of the data and the accuracy desired in the solution.
If the data have a relative error of 10−7 then we can guarantee a (normwise) relative
error in the solution ≤ 10−3 if κ ≤ 0.5 · 104. But to guarantee a (normwise) relative
error in the solution ≤ 10−6 we need to have κ ≤ 5.

Table 2.4.1. Condition numbers of Hilbert matrices of order ≤ 12.

n κ2(Hn) n κ2(Hn)
1 1 7 4.753·108

2 19.281 8 1.526·1010

3 5.241·102 9 4.932·1011

4 1.551·104 10 1.602·1013

5 4.766·105 11 5.220·1014

6 1.495·107 12 1.678·1016

2.4. Error Propagation 51

Example 2.4.7.
The Hilbert matrix Hn of order n with elements

Hn(i, j) = hij = 1/(i + j − 1), 1 ≤ i, j ≤ n.

is a notable example of an ill-conditioned matrix. In Table 2.4.1 approximate condi-
tion numbers of Hilbert matrices of order ≤ 12, computed in IEEE double precision,
are given. For n > 12 the Hilbert matrices are too ill-conditioned even for IEEE
double precision! From a result by G. Szegö (see Gautschi [24, p. 34]) it follows that

κ2(Hn) ≈ (
√

2 + 1)4(n+1)

215/4
√

πn
∼ e3.5n,

that is, the condition numbers grows exponentially with n. Although the severe
ill-conditioning exhibited by the Hilbert matrices is rare, moderately ill-conditioned
linear systems do occur regularly in many practical applications!

The normwise analysis in the previous section usually is satisfactory when
the linear system is “well scaled”. If this is not the case then a component-wise
perturbation analysis may give sharper bounds.

We first introduce some notations. The absolute values |A| and |b| of a matrix
A and vector b is interpreted componentwise,

|A|ij = (|aij |), |b|i = (|bi|).

The partial ordering “≤” for the absolute values of matrices |A|, |B| and vectors
|b|, |c|, is to be interpreted component-wise13

|A| ≤ |B| ⇐⇒ |aij | ≤ |bij |, |b| ≤ |c| ⇐⇒ |bi| ≤ |ci|.

It follows easily that |AB| ≤ |A| |B| and a similar rule holds for matrix-vector
multiplication.

Assume now that we have component-wise bounds for the perturbations in A
and b,

|δA| ≤ ω|E|, |δb| ≤ ω|f |, (2.4.17)

where E and f are known. Taking absolute values in (2.4.13) gives component-wise
error bounds for the corresponding perturbations in x,

|δx| ≤ |(I + A−1δA)−1| |A−1|(|δA||x| + |δb|)

The matrix (I − |A−1||δA|) is guaranteed to be nonsingular if ‖ |A−1| |δA| ‖ < 1.
Neglecting second order terms in ω and using (2.4.17) gives

|δx| / |A−1|(|δA||x| + |δb|) ≤ ω|A−1|(|E| |x| + |f |), (2.4.18)

If we set E = |A| and f = |b|, then taking norms in (2.4.18) we get

‖δx‖ / ω‖ |A−1|(|A| |x| + |b|) ‖ + O(ω2). (2.4.19)

13Note that A ≤ B in other contexts means that B − A is positive semidefinite.

52 Chapter 2. How to Obtain and Estimate Accuracy

2.4.5 Forward and Backward Error Analysis

Consider a finite algorithm with input data (a1, . . . , ar), in which by a sequence
of arithmetic operations the output data (w1, . . . , ws) is computed. There are two
basic forms of roundoff error analysis for such an algorithm, which both are useful:

(i) In forward error analysis one attempts to find bounds for the errors in the
solution |wi − wi|, i = 1 : s, where wi denotes the computed value of wi.

(ii) In backward error analysis, pioneered by J. H. Wilkinson in the late fifties,
one attempts to determine a modified set of data ãi such that the computed
solution wi is the exact solution, and give bounds for |ãi − ai|. There may be
an infinite number of such sets; sometimes there is just one and it can happen,
even for very simple algorithms, that no such set exists.

By means of backward error analysis it has been shown, even for many quite
complicated algorithms, that the computed results the algorithm produces under
the influence of roundoff error are the exact output data of a problem of the same
type in which the relative change data only is of the order of the unit roundoff u.

Sometimes, when a pure backward error analysis is difficult to achieve, one
can show that the computed solution is a slightly perturbed solution to a problem
with slightly modified input data. An example of such a mixed error analysis is
the error analysis given in Lemma 2.3.5 for the solution of a quadratic equation.

In backward error analysis no reference is made to the exact solution for the
original data. In practice, when the data is known only to a certain accuracy,
the “exact” solution may not be well-defined. Then any solution, whose backward
error is smaller than the domain of uncertainty of the data, may be considered to a
satisfactory result.

To yield error bounds for wi, a backward error analysis has to be comple-
mented with a perturbation analysis. For this the error propagation formulas in
Sec. 2.4.2 can often be used. A great advantage of backward error analysis is that
when it applies, it tends to give much sharper results than a forward error analysis.
Perhaps more important, it usually also gives a better insight into the stability (or
lack of it) of the algorithm. It should be stressed that the primary purpose of a
rounding error analysis is to give insight in the properties of the algorithm.

2.4.6 Stability of Algorithms

One common reason for poor accuracy in the computed solution is that the problem
is ill-conditioned. But poor accuracy can also be caused by a poorly constructed
algorithm. We say in general that an algorithm is unstable if it can introduce large
errors in the computed solutions to a well-conditioned problem.

There are different definitions of stability of algorithms for different classes
of numerical problems. The treatment here is geared towards stationary problems
and may not be very useful for time dependent problems in ordinary and partial
differential equations. In Example 3.3.14 the stability of some methods for solving

2.4. Error Propagation 53

the initial-value problem

y′′ = −y, y(0) = 0, y′(0) = 1,

are studied. The further treatment of suitable definitions of stability for these
classes of problems are deferred until Volume III.

Example 2.4.8.
For ǫ = 10−6 the system

(

ǫ 1
1 1

)(

x1

x2

)

=

(

1
0

)

,

is well-conditioned and has the exact solution x1 = −x2 = −1/(1 − ǫ) ≈ −1. If
Gaussian elimination is used, multiplying the first equation by 106 and subtracting
from the second, we obtain (1− 106)x2 = −106. Rounding this to x2 = 1 is correct
to six digits. In the back-substitution to obtain x1, we then get 10−6x1 = 1 − 1, or
x1 = 0, which is a completely wrong result. This shows that Gaussian elimination
can be an unstable algorithm. To ensure stability it is necessary to perform row
(and/or column) interchanges not only when a pivotal element is exactly zero, but
also when it is small.

Definition 2.4.10.
An algorithm is backward stable if the computed solution w for the data a

is the exact solution of a problem with slightly perturbed data ā such that for some
norm ‖ · ‖ it holds

‖ā − a‖/‖a‖ < c1u, (2.4.20)

where c1 is a not too large constant and u is the unit roundoff.

We are usually satisfied if we can prove normwise forward or backward stability
for some norm, e.g., ‖ · ‖2 or ‖ · ‖∞. Occasionally we may like the estimates to hold
element-wise, e.g.

|āi − ai|/|ai| < c2u, i = 1 : r. (2.4.21)

For example, by equation (2.3.15) the usual algorithm for computing an inner prod-
uct xT y is backward stable, for element-wise relative perturbations.

We would like stability to hold for some class of input data. For example,
a numerical algorithm for solving systems of linear equations Ax = b is backward
stable for a class of matrices A if for each A ∈ A and for each b the computed
solution x̄ satisfies Āx̄ = b̄ where Ā and b̄ are close to A and b.

A backward stable algorithm will not necessarily compute an accurate solution.
But if the condition number of the problem is κ, then it follows that

‖w − w‖ ≤ c1uκ‖w‖ + O(u2). (2.4.22)

Hence the error in the solution may still be large if the problem is ill-conditioned.
But we have obtained an answer which is the exact mathematical solution to a

54 Chapter 2. How to Obtain and Estimate Accuracy

problem with data close to the one we wanted to solve. If the perturbations ā − a
are within the uncertainties of the given data, the computed solution is as good as
our data warrants!

An important property of backward stable algorithms for the solution of linear
systems is given in the following theorem.

Theorem 2.4.11.
An algorithm for solving Ax = b is backward stable according to Defini-

tion 2.4.10 if and only if the computed solution x̄ has a small residual, that is,

‖b − Ax̄‖ ≤ c3u‖A‖‖x̄‖. (2.4.23)

Proof. Suppose that (2.4.23) holds. If we define for the 2-norm

δA = rx̄T /‖x̄‖2
2, r = b − Ax̄,

then it holds exactly that (A + δA)x̄ = Ax̄ + r = b, where

‖δA‖2 ≤ ‖r‖2/‖x̄‖2 ≤ c3u‖A‖2.

We can take δb = 0 and hence the algorithm is backward stable by Definition 2.4.10.
Conversely, if the algorithm is backward stable then, Āx̄ = b̄, where

‖Ā − A‖ ≤ c2u‖A‖, ‖b̄ − b‖ ≤ c2u‖b‖.

Since b − Ax̄ = (Ā − A)x̄ + b − b̄ it follows that an estimate of the form (2.4.23)
holds for the norm of the residual.

Many important algorithms for solving linear systems are not backward stable.
This is true, for example, of most iterative methods, The following weaker definition
of stability can be useful in such situations.

Definition 2.4.12.
An algorithm is stable if the computed solution w satisfies (2.4.22), where c1

is a not too large constant, u is the unit roundoff, and κ is the condition number of
the problem.

By the definition of the condition number κ it follows that backward stability
implies forward stability, but the converse is not true.

Sometimes it is necessary to weaken the definition of stability. Often an algo-
rithm can be considered stable if it produces accurate solutions for well-conditioned
problems. Such an algorithm can be called weakly stable. Weak stability may be
sufficient for giving confidence in an algorithm.

Example 2.4.9.
In the method of normal equations for computing the solution of a linear

least squares problem one first forms the matrix AT A. This product matrix can be

2.4. Error Propagation 55

expressed in outer form as

AT A =

m
∑

i=1

aia
T
i ,

where aT
i is the ith row of A, i.e. AT = (a1 a2 . . . am). From (2.3.13) it follows

that this computation is not backward stable, i.e. it is not true that fl(AT A) =
(A+E)T (A+E) for some small error matrix E. In order to avoid loss of significant
information higher precision need to be used.

Backward stability is easier to prove when there is a sufficiently large set of
input data compared to the number of output data. When computing the outer
product xyT (as in Example 2.4.9) there are 2n data and n2 results. This is not a
backward stable operation. When the input data is structured rather than general
backward stability often does not hold.

Example 2.4.10.
It can be shown that many algorithms for solving a linear system Ax = b

are backward stable, i.e. the computed solution is the exact solution of a system
(A + E)x = b, where the normwise relative error ‖E‖/‖A‖ is not much larger
than the machine precision. In many cases the system matrix is structured. An
important example is Toeplitz matrices T . A Toeplitz matrix has entries that
are constant along every diagonal

T = (ti−j)1≤i,j≤n =

t0 t1 . . . tn−1

t−1 t0 . . . tn−2

...
...

. . .
...

t−n+1 t−n+2 . . . t0

∈ Rn×n

and is defined by the vector of 2n − 1 quantities t = (t−n+1, . . . , t0, . . . , tn−1).
Ideally, in a strict backward error analysis, we would like to show that a

solution algorithm always computes an exact solution to a nearby Toeplitz system
defined by t + s, where s is small. It has been shown that no such algorithm can
exist! We have to be content with algorithms that (at best) compute the exact
solution of (T + E)x = b, where ‖E‖ is small but E unstructured.

In the construction of an algorithm for a given problem, one often breaks
down the problem into a chain of subproblems, P1, P2, . . . , Pk for which algorithms
A1, A2, . . . , Ak are known, in such a way that the output data from Pi−1 is the input
data to Pi. Different ways of decomposing the problem give numerically different
algorithms. It is dangerous if the last subproblem in such a chain is ill-conditioned.

In Fig. 2.4.3 we see two examples of a decomposition of the problem P into
two subproblems. From X to X ′′ there is a strong contraction which is followed
by an expansion about equally strong in the mapping from X ′′ to Y . The roundoff
errors which are made in X ′′ when the intermediate results are stored have as a
consequence that one arrives somewhere in the surrounding circle, which is then
transformed into a very large region in Y . The important conclusion is that even if

56 Chapter 2. How to Obtain and Estimate Accuracy

Good algorithm

X X′ Y

Poor algorithm

X X′′ Y

Figure 2.4.3. Two examples of a decomposition of a problem P into two
subproblems.

the algorithms for the subproblems are stable we cannot conclude that the composed
algorithm is stable!

Example 2.4.11.
The problem of computing the eigenvalues λi of a symmetric matrix A, given

its elements (aij), is always a well-conditioned numerical problem with condition
number equal to 1. Consider an algorithm which breaks down this problem into
two subproblems:

• P1: compute the coefficients of the characteristic polynomial of the matrix A
p(λ) = det(A − λI) of the matrix A.

• P2: compute the roots of the polynomial p(λ) obtained from P1.

It is well known that the second subproblem P2 can be very ill-conditioned.
For example, for a symmetric matrix A with eigenvalues ±1,±2, . . . ,±20 the con-
dition number for P2 is 1014 in spite of the fact that the origin lies exactly between
the largest and smallest eigenvalues, so that one cannot blame the high condition
number on a difficulty of the same type as that encountered in Example 2.4.7.

The important conclusion that eigenvalues should not be computed as outlined
above is further discussed in Sec. 6.4.1.

On the other hand, as the next example shows, it need not be dangerous if
the first subproblem of a decomposition is ill-conditioned, even if the problem itself
is well-conditioned.

Review Questions 57

Example 2.4.12.
The first step in many algorithms for computing the eigenvalues λi of a sym-

metric matrix A is to use orthogonal similarity transformations to symmetric tridi-
agonal form,

QT AQ = T =

α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn

.

In the second step the eigenvalues of T , which coincide with those of A, are com-
puted.

Wilkinson [47, §5.28] showed that the computed tridiagonal matrix can differ
a lot from the matrix corresponding to exact computation. Hence here the first
subproblem is ill-conditioned. (This fact is not as well known as it should be and
still alarms many users!) But the second subproblem is well-conditioned and the
combined algorithm is known to be backward stable, i.e. the computed eigenvalues
are the exact eigenvalues of a matrix A + E, where ‖E‖2 < c(n)u‖A‖2. This is a
more complex example of a calculation, where rounding errors cancel!

In Sec. 1.4 some methods for the numerical solution of differential equations
were illustrated. It should be realized that there are possibilities for catastrophic
growth of errors in such processes. The notion of stability for such methods is
related to the stability of linear difference equations and will be treated in Sec. 3.2
and at length in Vol. III.

Review Questions

1. The maximal error bounds for addition and subtraction can for various reasons
be a coarse overestimate of the real error. Give, preferably with examples, two
such reasons.

2. How is the condition number κ(A) of a matrix A defined? How does κ(A)
relate to perturbations in the solution x to a linear system Ax = b, when A
and b are perturbed?

3. Define the condition number of a numerical problem P of computing output
data y1, . . . , ym given input data x1, . . . , xn.

4. Give examples of well-conditioned and ill-conditioned problems.

5. What is meant by (a) a forward error analysis; (b) a backward error analysis;
(c) a mixed error analysis?

6. What is meant by (a) a backward stable algorithm; (b) a forward stable algo-
rithm; (c) a mixed stable algorithm; (d) a weakly stable algorithm?

58 Chapter 2. How to Obtain and Estimate Accuracy

Problems and Computer Exercises

1. (a) Determine the maximum error for y = x1x
2
2/
√

x3, where x1 = 2.0 ± 0.1,
x2 = 3.0 ± 0.2, and x3 = 1.0 ± 0.1. Which variable contributes most to the
error?

(b) Compute the standard error using the same data as in (a), assuming that
the error estimates for the xi indicate standard deviations.

2. One wishes to compute f = (
√

2 − 1)6, using the approximate value 1.4 for√
2. Which of the following mathematically equivalent expressions gives the

best result

1

(
√

2 + 1)6
; (3 − 2

√
2)3;

1

(3 + 2
√

2)3
; 99 − 70

√
2;

1

99 + 70
√

2
?

3. Analyze the error propagation in xα:

(a) If x is exact and α in error. (b) If α is exact and x in error.

4. One is observing a satellite in order to determine its speed. At the first
observation, R = 30, 000 ± 10 miles. Five seconds later, the distance has
increased by r = 125.0 ± 0.5 miles and the change in the angle was φ =
0.00750 ± 0.00002 radians. What is the speed of the satellite, assuming that
it moves in a straight line and with constant speed in the interval?

5. One has measured two sides and the included angle of a triangle to be a =
100.0± 0.1, b = 101.0± 0.1, and the angle C = 1.00o ± 0.01o. Then the third
side is given by the cosine theorem

c = (a2 + b2 − 2ab cosC)1/2.

(a) How accurately is it possible to determine c from the given data?

(b) How accurately does one get c if one uses the value cos 1o = 0.9998, which
is correct to four decimal places.

(c) Rewrite the cosine theorem so that it is possible to compute c to full
accuracy using only a four-decimal table for the trigonometric functions.

6. Consider the linear system

(

1 α
α 1

)(

x
y

)

=

(

1
0

)

,

where α 6= 1. What is the relative condition number for computing x? Using
Gaussian elimination and four decimal digits compute x and y for α = 0.9950
and compare with the exact solution x = 1/(1 − α2), y = −α/(1 − α2).

7. (a) Let two vectors u and v be given with components (u1, u2) and (v1, v2).
The angle φ between u and v is given by the formula

cosφ =
u1v1 + u2v2

(u2
1 + u2

2)
1/2(v2

1 + v2
2)

1/2
.

Problems and Computer Exercises 59

Show that computing the angle φ from the components of u and v is a well-
conditioned problem.

Hint: Take the partial derivative of cosφ with respect to u1, and from this
compute ∂φ/∂u1. The other partial derivatives are obtained by symmetry.

(b) Show that the formula in (a) is not stable for small angles φ.

(c) Show that the following algorithm is stable. First normalize the vectors
ũ = u/‖u‖2, ṽ = v/‖v‖2. Then compute α = ‖ũ − ṽ‖2, β = ‖ũ + ṽ‖2 and set

φ =

{

2 arctan(α/β), if α ≤ β;
π − 2 arctan(β/α), if α > β.

8. For the integral

I(a, b) =

∫ 1

0

e−bx

a + x2
dx.

the physical quantities a and b have been measured to be a = 0.4000± 0.003,
b = 0.340±0.005. When the integral is computed for various perturbed values
of a and b, one obtains:

a b I

0.39 0.34 1.425032
0.40 0.32 1.408845
0.40 0.34 1.398464
0.40 0.36 1.388198
0.41 0.34 1.372950

Estimate the uncertainty in I(a, b)!

9. Let B ∈ Rn×n be a matrix for which ‖B‖ < 1. Show that the infinite sum
and product

(I − B)−1 =

{

I + B + B2 + B3 + B4 · · · ,
(I + B)(I + B2)(I + B4)(I + B8) · · ·

both converge to the indicated limit.

Hint: Use the identity (I − B)(I + B + · · · + Bk) = I − Bk+1.

(b) Show that the matrix (I − B) is nonsingular and that

‖(I − B)−1‖ ≤ 1/(1 − ‖B‖).

10. Solve the linear system in Example 2.4.8 with Gaussian elimination after ex-
changing the two equations. Do you now get an accurate result?

11. Derive forward and backward recursion formulas for calculating the integrals

In =

∫ 1

0

xn

4x + 1
dx.

Why is one algorithm stable and the other unstable?

60 Chapter 2. How to Obtain and Estimate Accuracy

11. (a) Use the results in Table 2.4.1 to determine constants c and q such that
κ(Hn) ≈ c · 10q.

(b) Compute the Bauer–Skeel condition number cond (Hn) = ‖ |H−1
n ||Hn| ‖2,

of the Hilbert matrices for n = 1 : 12. Compare the result with the values of
κ(Hn) given in Table 2.4.1.

12. Vandermonde matrices are structured matrices of the form

Vn =

1 1 · · · 1
α1 α2 · · · αn
...

... · · ·
...

αn−1
1 αn−1

2 · · · αn−1
n

.

Let αj = 1 − 2(j − 1)/(n − 1), j = 1 : n. Compute the condition numbers
κ2(Vn) for n = 5, 10, 15, 20, 25. Is the growth in κ2(Vn) exponential in n?

2.5 Automatic Control of Accuracy and Verified
Computing

2.5.1 Running Error Analysis

A different approach to rounding error analysis is to perform the analysis automat-
ically, for each particular computation. This gives an a posteriori error analysis as
compared to the a priori error analysis discussed above.

A simple form of a posteriori analysis, called running error analysis, was used
in the early days of computing, see Wilkinson [48]. To illustrate his idea we rewrite
the basic model for floating point arithmetic as

x op y = fl (x op y)(1 + ǫ).

These are also satisfied for most implementations of floating point arithmetic. Then,
the actual error can be estimated |fl (x op y) − x op y| ≤ u|fl (x op y)|. Note that
the error is now given in terms of the computed result and is available in the computer
at the time the operation is performed. This running error analysis can often be
easily implemented. We just take an existing program and modify it, so that as
each arithmetic operation is performed, the absolute value of the computed results
is added into the accumulating error bound.

Example 2.5.1.
The inner product fl (xT y) is computed by the program

s = 0; η = 0;
for i = 1, 2, . . . , n

t = fl (xiyi); η = η + |t|;
s = fl (s + t); η = η + |s|;

end

2.5. Automatic Control of Accuracy and Verified Computing 61

For the final error we have the estimate |fl (xT y)−xT y| ≤ ηu. Note that a running
error analysis takes advantage of cancellations in the sum. This is in contrast to the
previous estimates, which we call a priori error analysis, where the error estimate
is the same for all distribution of signs of the elements xi and yi.

Efforts have been made to design the computational unit of a computer so
that it gives, in every arithmetic operation, only those digits of the result which
are judged to be significant (possibly with a fixed number of extra digits), so-called
unnormalized floating arithmetic. This method reveals poor construction in al-
gorithms, but in many other cases it gives a significant and unnecessary loss of
accuracy. The mechanization of the rules, which a knowledgeable and experienced
person would use for control of accuracy in hand calculation, is not as free from
problems as one might expect. As complement to arithmetical operations of con-
ventional type, the above type of arithmetic is of some interest, but it is doubtful
that it will ever be widely used.

A fundamental difficulty in automatic control of accuracy is that to decide how
many digits are needed in a quantity to be used in later computation, one needs
to consider the entire context of the computations. It can in fact occur that the
errors in many operands depend on each other in such a way that they cancel each
other. Such cancellation of error, is a completely different phenomenon from the
previously discussed cancellation of terms, is most common in larger problems, but
will be illustrated here with a simple example.

Example 2.5.2.
Suppose we want to compute y = z1 + z2, where z1 =

√
x2 + 1, z2 = 200 − x,

x = 100 ± 1, with a rounding error which is negligible compared to that resulting
from the errors in z1 and z2. The best possible error bounds in the intermediate
results are z1 = 100 ± 1, z2 = 100 ± 1. It is then tempting to be satisfied with the
result y = 200 ± 2.

But the errors in z1 and z2 due to the uncertainty in x will, to a large extent,
cancel each other! This becomes clear if we rewrite the expression as

y = 200 + (
√

x2 + 1 − x) = 200 +
1√

x2 + 1 + x
.

It follows that y = 200 + z, where 1/202 / z ≤ 1/198. Thus y can be computed
with an absolute error less than about 2/(200)2 = 0.5 · 10−4. Therefore using the
expression y = z1 + z2 the intermediate results z1 and z2 should be computed
to four decimals even though the last integer in these is uncertain! The result is
y = 200.0050± 1

210−4.

In larger problems, such a cancellation of errors can occur even though one
cannot easily give a way to rewrite the expressions involved. The authors have
seen examples where the final result, a sum of seven terms, was obtained correctly
to eight decimals even though the terms, which were complicated functions of the
solution to a system of nonlinear equations with fourteen unknowns, were correct
only to three decimals! Another nontrivial example is given in Example 2.4.12.

62 Chapter 2. How to Obtain and Estimate Accuracy

2.5.2 Experimental Perturbations

In many practical problems, the functional dependence between input data and
output data are so complicated that it is difficult to directly apply the general
formulas for error propagation derived in Sec. 2.4.4. One can then investigate the
sensitivity of the output data for perturbations in the input data by means of an
experimental perturbational calculation: one performs the calculations many
times with perturbed input data and studies the perturbations in the output data.

Important data, such as the step length in a numerical integration or the
parameter which determines when an iterative process is going to be broken off,
should be varied with all the other data left unchanged. If one can easily vary the
precision of the machine in the arithmetic operations one can get an idea of the
influence of rounding errors. It is generally not necessary to make a perturbational
calculation for each and every data component; one can instead perturb many input
data simultaneously–for example, by using random numbers.

A perturbational calculation often gives not only an error estimate, but also
greater insight into the problem. Occasionally, it can be difficult to interpret the
perturbational data correctly, since the disturbances in the output data depend not
only on the mathematical problem, but also on the choice of numerical method
and the details in the design of the algorithm. The rounding errors during the
computation are not the same for the perturbed and unperturbed problem. Thus if
the output data reacts more sensitively than one had anticipated, it can be difficult
to immediately point out the source of the error. It can then be profitable to plan
a series of perturbation experiments with the help of which one can separate the
effects of the various sources of error. If the dominant source of error is the method
or the algorithm, then one should try another method or another algorithm. It is
beyond the scope of this book to give further comments on the planning of such
experiments. Imagination and the general insights regarding error analysis, which
this chapter is meant to give, play a large role.

2.5.3 Introduction to Interval Arithmetic

In interval arithmetic one assumes that all input values are given as intervals
and systematically calculates an inclusion interval for each intermediate result. It is
partly an automatization of calculation with maximal error bounds. The importance
of interval arithmetic is that it provides a tool for computing validated answers to
mathematical problems.

The most frequently used representations for the intervals are the infimum-
supremum representation

I = [a, b] := {x | a ≤ x ≤ b}, (a ≤ b). (2.5.1)

where x is a real number. The absolute value or the magnitude of an interval is
defined as

| [a, b] | = mag([a, b]) = max{|x| | x ∈ [a, b]}, (2.5.2)

and the mignitude of an interval is defined as

mig([a, b]) = min{|x| | x ∈ [a, b]}. (2.5.3)

2.5. Automatic Control of Accuracy and Verified Computing 63

In terms of the endpoints we have

mag([a, b]) = max{|a|, |b|},

mig([a, b]) =

{

min{|a|, |b|}, if 0 /∈ [a, b],
0, otherwise

.

The result of an interval operation equals the range of the corresponding real
operation. For example, the difference between the intervals [a1, a2] and [b1, b2],
is defined as the shortest interval which contains all the numbers x1 − x2, where
x1 ∈ [a1, a2], x2 ∈ [b1, b2], i.e. [a1, a2]− [b1, b2] := [a1−b2, a2−b1]. Other elementary
interval arithmetic operations are similarly defined:

[a1, a2] op [b1, b2] := {x1 opx2 | x1 ∈ [a1, a2], x2 ∈ [b1, b2]}, (2.5.4)

where op ∈ {+,−, ·, div }. The interval value of a function φ (e.g., the elementary
functions sin, cos, exp, log) evaluated on an interval is defined as

φ([a, b]) = [inf
x∈[a,b]

φ(x), sup
x∈[a,b]

φ(x)].

Operational Definitions

Although (2.5.4) characterizes interval arithmetic operations we also need opera-
tional definitions. We take

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2],

[a1, a2] − [b1, b2] = [a1 − b2, a2 − b1],

[a1, a2] · [b1, b2] =
[

min{a1b1, a1b2, a2b1, a2b2}, max{a1b1, a1b2, a2b1, a2b2}
]

,

1/[a1, a2] = [1/a2, 1/a1], for a1a2 > 0, (2.5.5)

[a1, a2]/[b1, b2] = [a1, a2] · (1/[b1, b2]).

It is easy to prove that in exact interval arithmetic the operational definitions above
give the exact range (2.5.4) of the interval operations. Division by an interval
containing zero is not defined and may cause an interval computation to come to a
premature end.

A degenerate interval with radius zero is called a point interval and can be
identified with a single number a ≡ [a, a]. In this way the usual arithmetic is
recovered as a special case. The intervals 0 = [0, 0] and 1 = [1, 1] are the neutral
elements with respect to interval addition and interval multiplication, respectively.
A non-degenerate interval has no inverse with respect to addition or multiplication
For example, we have

[1, 2] − [1, 2] = [−1, 1], [1, 2]/[1, 2] = [0.5, 2].

For interval operations the commutative law

[a1, a2] op [b1, b2] = [b1, b2] op [a1, a2]

64 Chapter 2. How to Obtain and Estimate Accuracy

holds. But the distributive law has to be replaced by so called subdistributivity

[a1, a2]([b1, b2] + [c1, c2]) ⊆ [a1, a2][b1, b2] + [a1, a2][c1, c2]. (2.5.6)

This unfortunately means that expressions, which are equivalent in real arithmetic,
differ in exact interval arithmetic. The simple example

[−1, 1]([1, 1] + [−1,−1]) = 0 ⊂ [−1, 1][1, 1] + [−1, 1][−1,−1] = [−2, 2]

shows that −[−1, 1] is not the additive inverse to [−1, 1] and also illustrates (2.5.6).
The operations introduced are inclusion monotonic, i.e,

[a1, a2] ⊆ [c1, c2], [b1, b2] ⊆ [d1, d2] ⇒ [a1, a2] op [b1, b2] ⊆ [c1, c2] op [d1, d2].
(2.5.7)

An alternative representation for an interval is the midpoint-radius repre-
sentation, for which we use brackets

〈c, r〉 := {x
∣

∣ |x − c| ≤ r} (0 ≤ r), (2.5.8)

where the midpoint and radius of the interval [a, b] are defined as

c = mid ([a, b]) =
1

2
(a + b), r = rad ([a, b]) = 1

2 (b − a). (2.5.9)

For intervals in the midpoint-radius representation we take as operational definitions

〈c1, r1〉 + 〈c2, r2〉 = 〈c1 + c2, r1 + r2〉,
〈c1, r1〉 − 〈c2, r2〉 = 〈c1 − c2, r1 + r2〉,
〈c1, r1〉 · 〈c2, r2〉 = 〈c1c2, |c1|r2 + r1|c2| + r1r2〉, (2.5.10)

1/〈c, r〉 = 〈c/(|c|2 − r2), r/(|c|2 − r2)〉, (|c| > r),

〈c1, r1〉/〈c2, r2〉 = 〈c1, r1〉 · (1/〈c2, r2〉).

For addition, subtraction and inversion, these give the exact range, but for multipli-
cation and division they overestimate the range (see Problem 2). For multiplication
we have for any x1 ∈ 〈c1, r1〉 and x2 ∈ 〈c2, r2〉

|x1x2 − c1c2| = |c1(x2 − c2) + c2(x1 − c1) + (x1 − c1)(x2 − c2)|
≤ |c1|r2 + |c2|r1 + r1r2.

In implementing interval arithmetic using floating point arithmetic the oper-
ational interval results may not be exactly representable as floating point numbers.
Then if the lower bound is rounded down to the nearest smaller machine num-
ber and the upper bound rounded up, the exact result must be contained in the
resulting interval. Recall that these rounding modes (rounding to −∞ and +∞)
are supported by the IEEE 754 standard. For example, using 5 significant decimal
arithmetic, we would like to get

[1, 1] + [−10−10, 10−10] = [0.99999, 1.0001],

2.5. Automatic Control of Accuracy and Verified Computing 65

or in midpoint-radius representation

〈1, 0〉 + 〈0, 10−10〉 = 〈1, 10−10〉.

Note that in the conversion between decimal and binary representation rounding
the appropriate rounding mode must also be used where needed. For example, con-
verting the point interval 0.1 to binary IEEE double precision we get an interval
with radius 1.3878 · 10−17. The conversion between the infimum-supremum repre-
sentation is straightforward but the infimum-supremum and midpoint may not be
exactly representable.

Interval arithmetic applies also to complex numbers. A complex interval in
the infimum-supremum representation is

[z1, z2] = {z = x + iy | x ∈ [x1, x2], y ∈ [y1, y2]}.

This defines a closed rectangle in the complex plane defined by the two real intervals,

[z1, z2] = [x1, x2] + i[y1, y2], x1 ≤ x2, y1 ≤ y2.

This can be written more compactly as [z1, z2] := {z | z1 ≤ z ≤ z2}, where we use
the partial ordering

z ≤ w ⇐⇒ ℜz ≤ ℜw & ℑz ≤ ℑw.

Complex interval operations in the infimum-supremum arithmetic are defined in
terms of the real intervals in the same way as the complex operations are defined
for complex numbers z = x + iy. For addition and subtraction the result coincides
with the exact range. This is not the case for complex interval multiplication,
where the result is a rectangle in the complex plane, whereas the actual range is
not of this shape. Therefore, for complex intervals multiplication will result in an
overestimation.

In the complex case the midpoint-radius representation is

〈c, r〉 := {z ∈ C | |z − c| ≤ r}, 0 ≤ r,

where the midpoint c now is a complex number. This represents a closed circular
disc in the complex plane. The operational definitions (2.5.10) are still valid, except
that some operations now are complex operations and that inversion becomes

1/〈c, r〉 = 〈c̄/(|c|2 − r2), r/(|c|2 − r2)〉, for |c| > r,

where c̄ is the complex conjugate of c. Complex interval midpoint-radius arithmetic
is also called circular arithmetic. For complex multiplications it generates less
overestimation than the infimum-supremum notation.

Although the midpoint-radius arithmetic seems more appropriate for complex
intervals, most older implementations of interval arithmetic use infimum-supremum
arithmetic. One reason for this is the overestimation caused also for real inter-
vals by the operational definitions for midpoint-radius multiplication and division.
Rump [39] has shown that the overestimation is bounded by a factor 1.5 in radius
and that midpoint-radius arithmetic allows for a much faster implementation for
modern vector and parallel computers.

66 Chapter 2. How to Obtain and Estimate Accuracy

Range of Functions

One use of interval arithmetic is to enclose the range of a real valued function. This
can be used, e.g., for localizing and enclosing global minimizers and global minima
of a real function of one or several variables in a region. It can also be used for
verifying the nonexistence of a zero of f(x) in a given interval.

Let f(x) be a real function composed of a finite number of elementary opera-
tions and standard functions. If one replaces the variable x by an interval [x, x] and
evaluates the resulting interval expression one gets as result an interval denoted by
f([x, x]). (It is assumed that all operations can be carried out.) A fundamental
result in interval arithmetic is that this evaluation is inclusion monotonic, i.e.

[x, x] ⊆ [y, y], ⇒ f([x, x]) ⊆ f([y, y]).

In particular this means that

x ⊆ [x, x] ⇒ f(x) ⊆ f([x, x]),

i.e. f([x]) contains the range of f(x) over the interval [x, x]. A similar result holds
also for functions of several variables f(x1, . . . , xn).

An important case when interval evaluation gives the exact range of a function
is when f(x1, . . . , xn) is a rational expression, where each variable xi occurs only
once in the function.

Example 2.5.3.
In general narrow bounds cannot be guaranteed. For example, if f(x) =

x/(1 − x) then

f([2, 3]) = [2, 3]/(1 − [2, 3]) = [2, 3]/[−2,−1] = [−3,−1].

The result contains but does not coincide with the exact range [−2,−3/2]. But if
we rewrite the expression as f(x) = 1/(1/x− 1), where x only occurs once, then we
get

f([2, 3]) = 1/(1/[2, 3]− 1) = 1/[−2/3,−1/2] = [−2,−3/2],

which is the exact range.

When interval analysis is used in a naive manner as a simple technique for
simulating forward error analysis it does not in general give sharp bounds on the
total computational error. To get useful results the computations in general need
to be arranged so that overestimation as far as possible is minimized. Often a
refined design of the algorithm is required in order to prevent the bounds for the
intervals from becoming unacceptably coarse. The answer [−∞,∞] is of course
always correct but not at all useful!

The remainder term in Taylor expansions includes a variable ξ, which is known
to lie in an interval ξ ∈ [a, b]. This makes it suitable to treat the remainder term
with interval arithmetic.

2.5. Automatic Control of Accuracy and Verified Computing 67

Example 2.5.4.
Evaluate for [x] = [2, 3] the polynomial

p(x) = 1 − x + x2 − x3 + x4 − x5

Using exact interval arithmetic we find

p([2, 3]) = [−252, 49]

(verify this!). This is an overestimate of the exact range, which is [−182,−21].
Rewriting p(x) in the form p(x) = (1−x)(1 +x2 +x4) we obtain the correct range.
In the first example there is a cancellation of errors in the intermediate results
(cf. Example 2.5.2), which is not revealed by the interval calculations.

Sometimes it is desired to compute a tiny interval that is guaranteed to enclose
a real simple root x∗ of f(x). This can be done using an interval version of Newton’s
method. Suppose that the function f(x) is continuously differentiable. Let f ′([x0])
denote an interval containing f ′(x) for all x in a finite interval [x] := [a, b]. Define
the Newton operator N([x]), [x] = [a, b], by

N([x]) := m − f(m)

f ′([x])
, m = mid [x]. (2.5.11)

For the properties of the interval Newton iteration

[xk+1] = N([xk]), k = 0, 1, 2, . . . ,

see Sec. 6.3.4.
Another important application of interval arithmetic is to initial value prob-

lems for ordinary differential equations

y′ = f(x, y), y(x0) = y0, y ∈ Rn.

Interval techniques can be used to provide for errors in the initial values, as well as
truncation and rounding errors, so that at each step intervals are computed that
contain the actual solution. But it is a most demanding task to construct an interval
algorithm for the initial value problem, and they tend to be significantly slower than
corresponding point algorithms. One problem is that a wrapping effect occurs at
each step and causes the computed interval widths to grow exponentially. This is
illustrated in the following example.

Example 2.5.5.
The recursion formulas

xn+1 = (xn − yn)/
√

2, yn+1 = (xn + yn)/
√

2,

mean a series of 45-degree rotations in the xy-plane (see Fig. 2.3.5). By a two-
dimensional interval one means a rectangle whose sides are parallel to the coordinate
axes.

68 Chapter 2. How to Obtain and Estimate Accuracy

If the initial value (x0, y0) is given as an interval [x0] = [1−ǫ, 1+ǫ], [y0] = [−ǫ, ǫ]
(see the dashed square, in the leftmost portion of Figure 2.3.5), then (xn, yn) will,
with exact performance of the transformations, also be a square with side 2ǫ, for
all n (see the other squares in Figure 2.3.5). If the computations are made using
interval arithmetic, rectangles with sides parallel to the coordinate axis will, in
each step, be circumscribed about the exact image of the interval one had in the
previous step. Thus the interval is multiplied by

√
2 in each step. After 40 steps,

for example, the interval has been multiplied by 220 > 106. This phenomenon,
intrinsic to interval computations, is called the wrapping effect. (Note that if one
uses discs instead of rectangles, there would not have been any difficulties in this
example.)

Figure 2.5.1. Wrapping effect in interval analysis.

Interval Matrix Computations

In order to treat multidimensional problems we introduce interval vectors and matri-
ces. An interval vector is denoted by [x] and has interval components [xi] = [xi, xi]),
i = 1 : n. Likewise an interval matrix [A] = ([aij]) has interval elements

[aij] = [aij , aij], i = 1 : m, j = 1 : n.

Operations between interval matrices and interval vectors are defined in an obvious
manner. The interval matrix-vector product [A][x] is the smallest interval vector,
which contains the set

{Ax | A ∈ [A], x ∈ [x]}
but normally does not coincide with it. By the inclusion property it holds that

{Ax | A ∈ [A], x ∈ [x]} ⊆ [A][x] =

(

n
∑

j=1

[aij][xj]

)

.

In general, there will be an overestimation in enclosing the image with an inter-
val vector, caused by the fact that the image of an interval vector under a linear
transformation in general is not an interval vector. This phenomenon, intrinsic to
interval computations, is similar to the wrapping effect described in Example 2.5.5.

2.5. Automatic Control of Accuracy and Verified Computing 69

Example 2.5.6.
We have

A =

(

1 1
−1 1

)

, [x] =

(

[0, 1]
[0, 1]

)

, ⇒ A[x] =

(

[0, 2]
[−1, 1]

)

.

Hence b = (2 −1)
T ∈ A[x], but there is no x ∈ [x] such that Ax = b. (The

solution to Ax = b is x = (3/2 1/2)
T
.)

The magnitude of an interval vector or matrix is interpreted component-wise
and defined by

| [x] | = (| [x1] |, | [x2] |, . . . , | [xn] |)T ,

where the magnitude of the components are defined by

| [a, b] | = max{|x| | x ∈ [a, b]}, (2.5.12)

The ∞-norm of an interval vector or matrix is defined as the ∞-norm of their
magnitude,

‖ [x] ‖∞ = ‖ | [x] | ‖∞, ‖ [A] ‖∞ = ‖ | [A] | ‖∞. (2.5.13)

In implementing matrix multiplication it is important to avoid case distinc-
tions in the inner loops, because that would make it impossible to use fast vector
and matrix operations. Using interval arithmetic it is possible to compute strict
enclosures of the product of two matrices. Note that this is needed also in the case
of the product of two point matrices since rounding errors will in general occur.

We assume that the command

setround(i), i = −1, 0, 1,

sets the rounding mode to −∞, to nearest, and to +∞, respectively. (Recall that
these rounding modes are supported by the IEEE standard.) Let A and B be point
matrices and suppose we want to compute an interval matrix [C] such that

fl(A · B) ⊂ [C] = [Cinf , Csup].

Then the following simple code, using two matrix multiplications, does that:

setround(−1); Cinf = A · B;

setround(1); Csup = A · B;

We next consider the product of a point matrix A and an interval matrix [B] =
[Binf , Bsup]. The following code performs this using four matrix multiplications:

A− = min(A, 0); A+ = max(A, 0);

setround(−1);

Cinf = A+ · Binf + A− · Bsup;

setround(1);

Csup = A− · Binf + A+ · Bsup;

70 Chapter 2. How to Obtain and Estimate Accuracy

(Note that the commands A− = min(A, 0) and A+ = max(A, 0) acts component-
wise.) For an algorithm for computing the product of two interval matrices using
eight matrix multiplications; see Rump [40].

Fast portable codes for interval matrix computations are now available. that
makes use of the Basic Linear Algebra Subroutines (BLAS) and IEEE 754 stan-
dard. This makes it possible to efficiently use high-performance computers for
interval computation. INTLAB (INTerval LABoratory) by Rump [40, 39], is based
on Matlab, and particularly easy to use. It includes many useful subroutines, e.g.,
one to compute an enclosure of the difference between the solution and an approx-
imate solution xm = Cmid [b]. Verified solutions of linear least squares problems
can also be computed.

Review Questions

1. (a) Define the magnitude and mignitude of an interval I = [a, b].

(b) How is the ∞-norm of an interval vector defined?

2. Describe the two different ways of representing intervals used in real and com-
plex interval arithmetic. Mention some of the advantages and drawbacks of
each of these!

3. An important property of interval arithmetic is that the operations are inclu-
sion monotonic. Define this term!

4. What is meant by the “wrapping effect” in interval arithmetic and what are
its implications? Give some examples of where it occurs.

5. Assume that the command

setround(i), i = −1, 0, 1,

sets the rounding mode to −∞, to nearest, and to +∞, respectively. Give
a simple code that, using two matrix multiplications, computes an interval
matrix [C] such that for point matrices A and B,

fl(A · B) ⊂ [C] = [Cinf , Csup].

Problems

1. Carry out the following calculations in exact interval arithmetic:

(a) [0, 1] + [1, 2]; (b) [3, 3.1]− [0, 0, 2]; (c) [−4. − 1] · [−6, 5];

(d) [2, 2] · [−1, 2]; (e) [−1, 1]/[−2,−0.5]; (f) [−3, 2] · [−3.1, 2.1];

2. Show that using the operational definitions (2.5.5) the product of the discs
〈c1, r1〉 and 〈c2, r2〉 contains zero if c1 = c2 = 1 and r1 = r2 =

√
2 − 1.

3. (J. Stoer) Evaluate using Horner’s scheme and exact interval arithmetic the

Problems 71

cubic polynomial

p(x) = ((x − 3)x + 3)x, [x] = [0.9, 1.1].

Compare the result with the exact range, which can be determined by observ-
ing that p(x) = (x − 1)3 + 1.

4. Treat the Example 1.3.2 using interval analysis and four decimal digits. Start-
ing with the inclusion interval I10 = [0, 1/60] = [0, 0.01667] generate succes-
sively intervals Ik, k = 9 : −1 : 5, using interval arithmetic and the recursion

In−1 = 1/(5n) − In/5.

Notes and References

A treatment of many different aspects of number systems and floating point com-
putations is given in Knuth [32, Chapter 4]. It contains an interesting overview of
the historical development of number representation. Leibniz 1703 seems to have
been the first to discuss binary arithmetic. He did not advocate it for practical
calculations, but stressed its importance for number-theoretic investigations. King
Charles XII of Sweden came upon the idea of radix 8 arithmetic in 1717. He felt
this to be more convenient than the decimal notation and considered introducing
octal arithmetic into Sweden. He died in battle before decreeing such a change!

In the early days of computing floating point computations were not built into
the hardware but implemented in software. The earliest subroutines for floating
point arithmetic were probably those developed by J. H. Wilkinson at the National
Physical Laboratory, England, in 1947. A general source on floating point computa-
tion is Sterbenz [43]. An excellent tutorial on IEEE 754 standard for floating-point
arithmetic, defined in [20,], is Goldberg [25,]. A self-contained, accessible
and easy to read introduction with many illustrating examples is the monograph by
Overton [36,]. An excellent treatment on floating point computation, round-
ing error analysis, and related topics is given in Higham [29, Chapter 2]. Different
aspects of accuracy and reliability are discussed in [19].

The fact that thoughtless use mathematical formulas and numerical methods
can lead to disastrous results are exemplified by Stegun and Abramowitz [42] and
Forsythe [22,]. Numerous examples in which incorrect answers are obtained
from plausible numerical methods can be found in Fox [23,].

Statistical analysis of rounding errors goes back to an early paper of Goldstine
and von Neumann [26,]. Barlow and Bairess [6] have investigated the distribu-
tion of rounding errors for different modes of rounding under the assumption that
the mantissa of the operands are from a logarithmic distribution.

Backward error analysis was developed and popularized by J. H. Wilkinson
in the 1950s and 1960s and the classic treatise on rounding error analysis is [46].
The more recent survey [48] gives a good summary and a historical background.
Kahan [30] gives an in depth discussion of rounding error analysis with examples
how flaws in the design of hardware and software in computer systems can have
undesirable effects on accuracy. The normwise analysis is natural for studying the

72 Chapter 2. How to Obtain and Estimate Accuracy

effect of orthogonal transformations in matrix computations; see Wilkinson [46].
The componentwise approach, used in perturbation analysis for linear systems by
Bauer [7], has recently gained in popularity.

Condition numbers are often viewed pragmatically as the coefficients of the
backward errors in bounds on forward errors. Wilkinson in [46] avoids a precise
definition of condition numbers in order to use them more freely. The more precise
limsup definition in Definition 2.4.8 is usually attributed to Rice [38].

Even in the special literature, the discussion of planning of experimental per-
turbations is surprisingly meager. An exception is the collection of software tools
called PRECISE, developed by Chaitin-Chatelin et al., see [10, 11]. These are de-
signed to help the user set up computer experiments to explore the impact of the
quality of convergence of numerical methods. It involves a statistical analysis of the
effect on a computed solution of random perturbations in data.

The modern development of interval arithmetic was initiated by the work
of R. E. Moore [34,]. Interval arithmetic has since been developed into a
useful tool for many problems in scientific computing and engineering. A note-
worthy example of its use is the verification of the existence of a Lorenz attractor
by W. Tucker [45]. Several extensive surveys on interval arithmetic are available;
see [1, 2, 31]. Hargreaves [27] gives a short tutorial on INTLAB and also a good
introduction to interval arithmetic.

Bibliography

[1] Götz Alefeld and Jürgen Herzberger. Introduction to Interval Computation.
Academic Press, New York, 1983. Translated from German by Jon Rokne.

[2] Götz Alefeld and Günter Mayer. Interval analysis: theory and applications. J.
Comput. Appl. Math., 121:421–464, 1985.

[3] David H. Bailey. Algorithm 719: Multiprecision translation and execution of
FORTRAN programs. ACM Trans. Math. Software, 19(3):288–319, 1993.

[4] David H. Bailey. A Fortran 90-based multiprecision system. ACM Trans. Math.
Software, 21(4):379–387, 1995.

[5] David H. Bailey, Jon M. Borwein, Peter B. Borwein, and Simon Plouffe. The
quest for pi. Notes Amer. Math. Soc., 19(1):50–57, 1975.

[6] Jesse L. Barlow and E. H. Bairess. On roundoff error distributions in floating
point and logarithmic arithmetic. Computing, 34:325–347, 1985.

[7] F. L. Bauer. Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme.
Z. Angew. Math. Mech., 46:7:409–421, 1966.

[8] Richard P. Brent. Algorithm 524: A Fortran multiple-precision arithmetic
package. ACM Trans. Math. Software, 4(1):71–81, 1978.

[9] Richard P. Brent. A Fortran multiple-precision arithmetic package. ACM
Trans. Math. Software, 4(1):57–70, 1978.

[10] Françoise Chaitin-Chatelin and Valerie Frayssé. Lectures on Finite Precision
Computations. SIAM, Philadelphia, PA, 1996.

[11] Françoise Chaitin-Chatelin and Elisabeth Traviesas-Cassan. PRECISE and the
quality of reliable numerical software. In Bo Einarsson, editor, Accuracy and
Reliability in Scientific Computing, pages 95–108. SIAM, Philadelphia, 2005.

[12] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and
S. M. Watt. Maple V Library Reference Manual. Springer-Verlag, Berlin, 1991.

[13] W. J. Cody. Implementation and testing of function software. In P. C. Messina
and A. Murli, editors, Problems and Methodologies in Mathematical Software,
pages 24–47. Springer-Verlag, Berlin, 1982.

73

74 Bibliography

[14] W. J. Cody. Algorithm 714: CELEFUNT: A portable test package for complex
elementary functions. ACM Trans. Math. Software, 14(4):121, 1993.

[15] W. J. Cody and W. Waite. Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[16] Germund Dahlquist. A short technical survey of Mulprec a multiple precision
package in matlab. Technical report, NADA, KTH, Stockholm, Sweden, 2001.

[17] James W. Demmel. Underflow and the reliability of numerical software. SIAM
J. Sci. Stat. Comput., 5(4):887–919, 1984.

[18] Alan Edelman. The mathematics of the Pentium division bug. SIAM Review,
39(1):54–67, 1997.

[19] Bo Einarsson. Accuracy and Reliability in Scientific Computing. SIAM,
Philadelphia, 2005.

[20] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard
754-1985. Reprinted in SIGPLAN Notices, 22(2):9–25, 1987.

[21] IEEE Standard for Radix-Independent Floating Point Arithmetic. ANSI/IEEE
Standard 854-1987. Technical report, IEEE Computer Society, New York, 1987.

[22] George E. Forsythe. Pitfalls in computation, or why a math book isn’t enough.
Technical Report CS 147, Computer Science Department, Stanford University,
Stanford, CA, 1970.

[23] Leslie Fox. How to get meaningless answers in scientific computation (and
what to do about it). IMA Bulletin, 7(10):296–302, 1971.

[24] Walter Gautschi. Numerical Analysis. An Introduction. Birkhäuser, Boston,
MA, 1997.

[25] David Goldberg. What every computer scientist should know about floating
point arithmetic. ACM Computing Surveys, 23:5–48, 1991.

[26] H. H. Goldstine and John von Neumann. Numerical inverting of matrices of
high order II. Proceedings Amer. Math. Soc., 2:188–202, 1951.

[27] G. I. Hargreaves. Interval analysis in MATLAB. Numer. anal. report 418,
Department of Mathematics, University of Manchester, 2002.

[28] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. F.
Rice, Jr. H. G. Thacher, and C. Witzgall. Computer Approximations. John
Wiley, New York, New York, 1968.

[29] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, second edition, 2002.

Bibliography 75

[30] W. Kahan. A survey of error analysis. In B. Dejon and P. Henrici, editors, Pro-
ceedings IFIP Congress Ljubljana, Information Processing 1971, pages 1214–
1239. North-Holland, Amsterdam, 1971.

[31] R. Kearfott. Interval computations: Introduction, uses, and resources. Euro-
math. Bulletin, 2(1):95–112, 1996.

[32] Donald E. Knuth. The Art of Computer Programming, Volume 2. Seminumer-
ical Algorithms. Addison-Wesley, Reading, MA, third edition, 1997.

[33] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Ka-
han, A. Kapur, M. C. Martin, T. Tung, and D. J. Yoo. Design, implementation
and testing of extended and mixed precision BLAS. LAPACK working note
149 Tech. Report CS-00-451, Department of Computer Science, University of
Tennessee, Knoxville, TN, 2000.

[34] Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[35] J.-M. Muller. Elementary Functions: Algorithm and Implementation.
Birkhäuser, Boston, MA, 1997.

[36] Michael L. Overton. Numerical Computing with IEEE Floating Point Arith-
metic. SIAM, Philadelphia, PA, 2001.

[37] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in Fortran; The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, UK, second edition, 1992.

[38] John R. Rice. A theory of condition. SIAM J. Numer. Anal., 3(2):287–310,
1966.

[39] Sigfried M. Rump. Fast and parallel interval arithmetic. BIT, 39(3):534–554,
1999.

[40] Sigfried M. Rump. INTLAB—INTerval LABoratory. In T. Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Pub-
lishers, Dordrecht, 1999.

[41] Robert D. Skeel. Roundoff error and the patriot missile. SIAM Review, 25:11,
1992.

[42] Irene A. Stegun and Milton Abramowitz. Pitfalls in computation. J. Soc.
Indust. Appl. Math., 4:207–219, 1956.

[43] P. H. Sterbenz. Floating Point Computation. Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[44] Lloyd N. Trefethen. The definition of numerical analysis. SIAM News, Novem-
ber 1992, 1992.

76 Bibliography

[45] W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Comput.
Math., 2(1):53–117, 2002.

[46] James H. Wilkinson. Rounding Error in Algebraic Processes. Notes on Applied
Science No. 32. Her Majesty’s Stationery Office, London, UK, 1963. Reprinted
by Dover, New York, 1994.

[47] James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press,
Oxford, 1965.

[48] James H. Wilkinson. Error analysis revisited. IMA Bull., 22:192–200, 1986.

[49] Stephen Wolfram. The Mathematica Book. Wolfram Media, Champaign, IL,
fourth edition, 1999.

Index

absolute error, vi
accuracy, vii

automatic control of, lxii–lxiv
algorithm, xlii

divide and conquer, xxxix
mathematically equivalent, xxvii
numerically equivalent, xxvii
stable, lvii
unstable, lv

arithmetic
circular, lxviii
complex, xxviii
fixed-point, xii
floating-point, xxiii–xxix
interval, lxv–lxx
multiple precision, xxi
standard model, xxiv
unnormalized floating point, lxiii

backward error
analysis, xxix

backward stability, lv
binary

number system, x
point, xi
system, x

biographical note
Kahan, xvi

BLAS, xxxi

cancellation
of errors, lxiii
of terms, xxxvi–xxxviii

circular arithmetic, lxviii
compensated summation, xxxii
complex arithmetic, xxviii
condition number, xlviii, xlix

absolute, xlix
of matrix, lii
of problem, xlii–li
relative, xlix

conversion
between number systems, xi

correct decimals, viii

double precision
simulating, xxxii

double rounding, xv

elementary functions, xix–xx
error

absolute, vi
bound, xliv
floating point rounding, xxix–xxxii
human, iv
maximal, xlvii
propagation, xliv–lxxii

general formula, xlvii
random, iii
relative, vi
rounding, iii
sources of, iii–vi
standard, xxxiv
systematic, iii
truncation, iv

error analysis
backward, liv
forward, liv
running, lxii

error bounds, vi
Euclidian norm

computing, xxxvi
experimental perturbations, lxiv
exponent, xiii

77

78 Index

overflow, xxxv
underflow, xxxv

floating point
number, xiii
representation, xiii
standard arithmetic, xv–xix

forward stability, lv
fused multiply-add, xxiv

gradual underflow, xviii
guard digits, xviii

Heron’s formula, xl
Hilbert matrix, liii

IEEE 754 standard, xv–xix
ill-conditioned

problem, l
inner product

accurate, xxxi
error analysis, xxx

input data, xlii
interval

complex, lxvii
midpoint-radius representation, lxviii

interval arithmetic
infimum-supremum representation,

lxv
midpoint-radius representation, lxvi
operational definitions, lxv

interval operations
inclusion monotonic, lxvi

INTLAB, lxxii

Jacobian matrix, li

machine epsilon, xiv
magnitude

of interval, lxv, lxxi
mantissa, xiii
matrix

ill-conditioned, liii
well-conditioned, lii

matrix multiplication
error bound, xxxi

maximal

error, xlvii
mignitude

of interval, lxv

Newton iteration
interval, lxix

number system
binary, x
floating-point, xiii
hexadecimal, x
octal, x

numerical method, xliii
numerical problem, xlii

output data, xlii

perturbation
experimental, lxiv
of linear systems, li–liv

perturbation bound
component-wise, liii

position system, ix–xi
precision, vii

double, xvi
single, xvi

problem
ill-conditioned, l
well-conditioned, l

Pythagorean sum, xxxv

radix, xiii
range reduction, xix
relative error, vi
rounding, viii

chopping, viii

scale factors (fixed point), xii
significant digits, viii
single precision, xvi
standard error, vi
subdistributivity, lxvi
summation

compensated, xxxii

tablemaker’s dilemma, ix
Toeplitz matrix, lvii
total differential, xlvi

Index 79

truncation error, iv

ulp, xv
unit roundoff, xiv

well-conditioned
problem, l

wobbling, xiv
word-length, xii
wrapping effect, lxx

