Contents

9 Matrix Eigenvalue Problems 1
9.1 Basic Properties 1
9.1.1 Introduction 1
9.1.2 Complex Matrices 2
9.1.3 Theoretical Background 3
9.1.4 Invariant Subspaces 5
Review Questions 9
Problems 10
9.2 Canonical Forms and Matrix Functions 11
9.2.1 The Schur Normal Form 11
9.2.2 Sylvester's Equation and Jordan's Canonical Form 14
9.2.3 Convergence of Matrix Power Series 18
9.2.4 Matrix Functions 21
9.2.5 Non-Negative Matrices 28
9.2.6 Finite Markov Chains 29
Review Questions 32
Problems and Computer Exercises 33
9.3 Perturbation Theory and Eigenvalue Bounds 35
9.3.1 Gerschgorin's Theorems 35
9.3.2 Perturbation Theorems 38
9.3.3 Hermitian Matrices 41
9.3.4 Rayleigh quotient and residual bounds 43
9.3.5 Residual bounds for SVD 46
Review Questions 47
Problems 47
9.4 The Power Method 49
9.4.1 The Simple Power Method 49
9.4.2 Deflation 51
9.4.3 Spectral Transformation and Inverse Iteration 52
9.4.4 Eigenvectors by Inverse Iteration 53
9.4.5 Rayleigh Quotient Iteration 55
9.4.6 Subspace Iteration 56
Review Questions 58
Problems 58
9.5 Jacobi Methods 59
9.5.1 Jacobi Methods for Real Symmetric Matrices 59
9.5.2 Jacobi Methods for Computing the SVD. 62
Review Questions 65
Problems 65
9.6 Transformation to Condensed Form 67
9.6.1 Introduction 67
9.6.2 Unitary Elementary Transformations 67
9.6.3 Reduction to Hessenberg Form 69
9.6.4 Reduction to Symmetric Tridiagonal Form 72
9.6.5 A Divide and Conquer Algorithm 74
9.6.6 Spectrum Slicing 75
Review Questions 78
Problems 78
9.7 The LR and QR Algorithms 79
9.7.1 The Basic LR and QR Algorithms 79
9.7.2 Convergence of the Basic QR Algorithm 82
9.7.3 QR Algorithm for Hessenberg Matrices 84
9.7.4 QR Algorithm for Symmetric Tridiagonal Matrices 89
9.7.5 QR-SVD algorithms for Bidiagonal Matrices 92
9.7.6 Singular Values by Spectrum Slicing 99
Review Questions 99
Problems 100
9.8 Subspace Methods for Large Eigenvalue Problems 101
9.8.1 The Rayleigh-Ritz Procedure 101
9.8.2 Subspace Iteration for Hermitian Matrices 103
9.8.3 Krylov Subspaces 105
9.8.4 The Lanczos Process 108
9.8.5 Golub-Kahan Bidiagonalization. 111
9.8.6 Arnoldi's Method. 112
Review Questions 113
Problems 113
9.9 Generalized Eigenvalue Problems 113
9.9.1 Introduction 113
9.9.2 Canonical Forms 114
9.9.3 Reduction to Standard Form 115
9.9.4 Methods for Generalized Eigenvalue Problems 117
9.9.5 The Generalized SVD. 118
9.9.6 The CS Decomposition. 120
Review Questions 121
Problems 122
Bibliography 125
Index 129

Chapter 9

Matrix Eigenvalue Problems

9.1 Basic Properties

9.1.1 Introduction

Eigenvalues and eigenvectors are a standard tool in the mathematical sciences and in scientific computing. Eigenvalues give information about the behavior of evolving systems governed by a matrix or operator. The problem of computing eigenvalues and eigenvectors of a matrix occurs in many settings in physics and engineering. Eigenvalues are useful in analyzing resonance, instability, and rates of growth or decay with applications to, e.g., vibrating systems, airplane wings, ships, buildings, bridges and molecules. Eigenvalue decompositions also play an important part in the analysis of many numerical methods. Further, singular values are closely related to an eigenvalues a symmetric matrix.

In this chapter we treat numerical methods for computing eigenvalues and eigenvectors of matrices. In the first three sections we briefly review the classical theory needed for the proper understanding of the numerical methods treated in the later sections. In particular Section 9.1 gives a brief account of basic facts of the matrix eigenvalue problem, Section 9.2 treats the classical theory of canonical forms and matrix functions. Section 9.3 is devoted to the localization of eigenvalues and perturbation results for eigenvalues and eigenvectors.

Section 9.5 treats the Jacobi methods for the real symmetric eigenvalue problem and the SVD. These methods have advantages for parallel implementation and are potentially very accurate. The power method and its modifications are treated in Section 9.4. Transformation to condensed form described in Section 9.4 often is a preliminary step in solving the eigenvalue problem. Followed by the QR algorithm this constitutes the current method of choice for computing eigenvalues and eigenvectors of small to medium size matrices, see Section 9.7. This method can also be adopted to compute singular values and singular vectors although the numerical implementation is often far from trivial, see Section 9.7.

In Section 9.8 we briefly discuss some methods for solving the eigenvalue prob-
lem for large sparse matrices. Finally, in Section 9.9 we consider the generalized eigenvalue problem $A x=\lambda B x$, and the generalized SVD.

9.1.2 Complex Matrices

In developing the theory for the matrix eigenvalue problem it often is more relevant to work with complex vectors and matrices. This is so because a real unsymmetric matrix can have complex eigenvalues and eigenvectors. We therefore introduce the vector space $\mathbf{C}^{n \times m}$ of all complex $n \times m$ matrices whose components are complex numbers.

Most concepts and operations in Section 7.2 carry over from the real to the complex case in a natural way. Addition and multiplication of vectors and matrices follow the same rules as before. The Hermitian inner product of two vectors x and y in \mathbf{C}^{n} is defined as

$$
\begin{equation*}
(x, y)=x^{H} y=\sum_{k=1}^{n} \bar{x}_{k} y_{k}, \tag{9.1.1}
\end{equation*}
$$

where $x^{H}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ and \bar{x}_{i} denotes the complex conjugate of x_{i}. Hence $(x, y)=$ $\overline{(y, x)}$, and $x \perp y$ if $x^{H} y=0$. The Euclidean length of a vector x thus becomes

$$
\|x\|_{2}=(x, x)^{1 / 2}=\sum_{k=1}^{n}\left|x_{k}\right|^{2} .
$$

The set of complex $m \times n$ matrices is denoted by $\mathbf{C}^{m \times n}$. If $A=\left(a_{i j}\right) \in \mathbf{C}^{m \times n}$ then by definition its adjoint matrix $A^{H} \in \mathbf{C}^{n \times m}$ satisfies

$$
\left(x, A^{H} y\right)=(A x, y)
$$

By using coordinate vectors for x and y it follows that $A^{H}=\bar{A}^{T}$, that is, A^{H} is the conjugate transpose of A. It is easily verified that $(A B)^{H}=B^{H} A^{H}$. In particular, if α is a scalar $\alpha^{H}=\bar{\alpha}$.

A matrix $A \in \mathbf{C}^{n \times n}$ is called self-adjoint or Hermitian if $A^{H}=A$. A Hermitian matrix has analogous properties to a real symmetric matrix. If A is Hermitian, then $\left(x^{H} A x\right)^{H}=x^{H} A x$ is real, and A is called positive definite if

$$
x^{H} A x>0, \quad \forall x \in \mathbf{C}^{n}, \quad x \neq 0 .
$$

A square matrix U is unitary if $U^{H} U=I$. From (9.1.1) we see that a unitary matrix preserves the Hermitian inner product

$$
(U x, U y)=\left(x, U^{H} U y\right)=(x, y)
$$

In particular the 2-norm is invariant under unitary transformations, $\|U x\|_{2}^{2}=\|x\|_{2}^{2}$. Hence, unitary matrices corresponds to real orthogonal matrices. Note that in every case, the new definition coincides with the old when the vectors and matrices are real.

9.1.3 Theoretical Background

Of central importance in the study of matrices $A \in \mathbf{C}^{n \times n}$ are the special vectors whose directions are not changed when multiplied by A. A complex scalar λ such that

$$
\begin{equation*}
A x=\lambda x, \quad x \neq 0 \tag{9.1.2}
\end{equation*}
$$

is called an eigenvalue of A and x is an eigenvector of A. When an eiegnvalue is known, the determination of the corresponding eigenvector(s) requires the solution of a linear homogenous system $(A-\lambda I) x=0$. Clearly, if x is an eigenvector so is αx for any scalar $\alpha \neq 0$.

It follows that λ is an eigenvalue of A if and only if the system $(A-\lambda I) x=0$ has a nontrivial solution $x \neq 0$, or equivalently if and only if the matrix $A-\lambda I$ is singular. Hence the eigenvalues satisfy the characteristic equation

$$
p_{n}(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \tag{9.1.3}\\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\vdots & \ldots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right|=0
$$

The set $\lambda(A)=\left\{\lambda_{i}\right\}_{i=1}^{n}$ of all eigenvalues of A is called the spectrum ${ }^{1}$ of A. The polynomial $p_{n}(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of the matrix A. Expanding the determinant in (9.1.3) it follows that $p(\lambda)$ has the form

$$
\begin{align*}
p_{n}(\lambda) & =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)+q(\lambda), \tag{9.1.4}\\
& =(-1)^{n}\left(\lambda^{n}-\xi_{n-1} \lambda^{n-1}-\cdots \xi_{0}\right) . \tag{9.1.5}
\end{align*}
$$

where $q(\lambda)$ has degree at most $n-2$. Thus, by the fundamental theorem of algebra the matrix A has exactly n eigenvalues $\lambda_{i}, i=1,2, \ldots n$, counting multiple roots according to their multiplicities, and we can write

$$
p(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

Using the relation between roots and coefficients of an algebraic equation we obtain

$$
\begin{equation*}
p(0)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det}(A), \tag{9.1.6}
\end{equation*}
$$

Further, using the relation between roots and coefficients of an algebraic equation we obtain

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{trace}(A) \tag{9.1.7}
\end{equation*}
$$

where trace $(A)=a_{11}+a_{22}+\cdots+a_{n n}$ is the trace of the matrix A. This relation is useful for checking the accuracy of a computed spectrum.

[^0]
Theorem 9.1.1.

Let $A \in \mathbf{C}^{n \times n}$. Then

$$
\lambda\left(A^{T}\right)=\lambda(A), \quad \lambda\left(A^{H}\right)=\bar{\lambda}(A)
$$

Proof. Since $\operatorname{det}\left(A^{T}-\lambda I\right)^{T}=\operatorname{det}(A-\lambda I)^{T}=\operatorname{det}(A-\lambda I)$ it follows that A^{T} and A have the same characteristic polynomial and thus same set of eigenvalues. For the second part note that $\operatorname{det}\left(A^{H}-\bar{\lambda} I\right)=\operatorname{det}(A-\lambda I)^{H}$ is zero if and only if $\operatorname{det}(A-\lambda I)$ is zero.

By the above theorem, if λ is an eigenvalue of A then $\bar{\lambda}$ is an eigenvalue of A^{H}, i.e., $A^{H} y=\bar{\lambda} y$ for some vector $y \neq 0$, or equivalently

$$
\begin{equation*}
y^{H} A=\lambda y^{H}, \quad y \neq 0 \tag{9.1.8}
\end{equation*}
$$

Here y is called a left eigenvector of A, and consequently if $A x=\lambda x, x$ is also called a right eigenvector of A. For a Hermitian matrix $A^{H}=A$ and thus $\bar{\lambda}=\lambda$, i.e., λ is real. In this case the left and right eigenvectors can be chosen to coincide.

Theorem 9.1.2.

Let λ_{i} and λ_{j} be two distinct eigenvalues of $A \in \mathbf{C}^{n \times n}$, and let y_{i} and x_{j} be left and right eigenvectors corresponding to λ_{i} and λ_{j} respectively. Then $y_{i}^{H} x_{j}=0$, i.e., y_{i} and x_{j} are orthogonal.

Proof. By definition we have

$$
y_{i}^{H} A=\lambda_{i} y_{i}^{H}, \quad A x_{j}=\lambda_{j} x_{j} .
$$

Multiplying the first equation with x_{j} from the right and the second with y_{i}^{H} from the left and subtracting we obtain $\left(\lambda_{i}-\lambda_{j}\right) y_{i}^{H} x_{j}=0$. Since $\lambda_{i} \neq \lambda_{j}$ the theorem follows.

Definition 9.1.3.

Denote the eigenvalues of the matrix $A \in \mathbf{C}^{n \times n}$ by $\lambda_{i} \mid, i=1: n$. The spectral radius of A is is the maximal absolute value of the eigenvalues of A

$$
\begin{equation*}
\rho(A)=\max _{i}\left|\lambda_{i}\right| . \tag{9.1.9}
\end{equation*}
$$

The spectral abscissa is the maximal real part of the eigenvalues of A

$$
\begin{equation*}
\alpha(A)=\max _{i} \Re \lambda_{i} . \tag{9.1.10}
\end{equation*}
$$

If X is any square nonsingular matrix and

$$
\begin{equation*}
\tilde{A}=X^{-1} A X, \tag{9.1.11}
\end{equation*}
$$

then \tilde{A} is said to be similar to A and (9.1.11) is called a similarity transformation of A. Similarity of matrices is an equivalence transformation, i.e., if A is similar to B and B is similar to C then A is similar to C.

Theorem 9.1.4.

If A and B are similar, then A and B have the same characteristic polynomial, and hence the same eigenvalues. Further, if $B=X^{-1} A X$ and y is an eigenvector of B corresponding to λ then $X y$ is an eigenvector of A corresponding to λ.

Proof. We have

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(X^{-1} A X-\lambda I\right)=\operatorname{det}\left(X^{-1}(A-\lambda I) X\right) \\
& =\operatorname{det}\left(X^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(X)=\operatorname{det}(A-\lambda I) .
\end{aligned}
$$

Further, from $A X=X B$ it follows that $A X y=X B y=\lambda X y$.
Let $A x_{i}=\lambda_{i} x_{i}, i=1, \ldots, n$. It is easily verified that these n equations are equivalent to the single matrix equation

$$
A X=X \Lambda, \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $X=\left(x_{1}, \ldots, x_{n}\right)$ is a matrix of right eigenvectors of A If the eigenvectors are linearly independent then X is nonsingular and we have

$$
\begin{equation*}
X^{-1} A X=\Lambda . \tag{9.1.12}
\end{equation*}
$$

This similarity transformation by X transforms A to diagonal form and A is said to be diagonalizable.

From (9.1.12) it follows that $X^{-1} A=\Lambda X^{-1}$, which shows that the rows of X^{-1} are left eigenvectors y_{i}^{H}. We can also write $A=X \Lambda X^{-1}=X \Lambda Y^{H}$, or

$$
\begin{equation*}
A=\sum_{i=1}^{n} \lambda_{i} P_{i}, \quad P_{i}=x_{i} y_{i}^{H} \tag{9.1.13}
\end{equation*}
$$

Since $Y^{H} X=I$ it follows that the left and right eigenvectors are biorthogonal, $y_{i}^{H} x_{j}=0, i \neq j$, and $y_{i}^{H} x_{i}=1$. Hence P_{i} is a projection $\left(P_{i}^{2}=P_{i}\right)$ and (9.1.13) is called the spectral decomposition of A. The decomposition (9.1.13) is essentially unique. If $\lambda_{i_{1}}$ is an eigenvalue of multiplicity m and $\lambda_{i_{1}}=\lambda_{i_{2}}=\cdots=\lambda_{i_{m}}$, then the vectors $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}$ can be chosen as any basis for the null space of $A-\lambda_{i_{1}} I$.

9.1.4 Invariant Subspaces

Suppose that for a matrix $X \in \mathbf{C}^{n \times k}, \operatorname{rank}(X)=k \leq n$, it holds that

$$
A X=X B, \quad B \in \mathbf{C}^{k \times k}
$$

Any vector $x \in \mathcal{R}(X)$ can be written $x=X z$ for some vector $z \in \mathbf{C}^{k}$. Thus $A x=A X z=X B z \in \mathcal{R}(X)$ and $\mathcal{R}(X)$ is called a right invariant subspace. If $B y=\lambda y$, it follows that

$$
A X y=X B y=\lambda X y
$$

and so any eigenvalue λ of B is also an eigenvalue of A and $X y$ a corresponding eigenvector. Note that any set of right eigenvectors spans a right invariant subspace.

Similarly, if $Y^{H} A=B Y^{H}$, where $Y \in \mathbf{C}^{n \times k}$, $\operatorname{rank}(Y)=k \leq n$, then $\mathcal{R}(Y)$ is a left invariant subspace. If $v^{H} B=\lambda v^{H}$ it follows that

$$
v^{H} Y^{H} A=v^{H} B Y^{H}=\lambda v^{H} Y^{H}
$$

and so λ is an eigenvalue of A and $Y v$ is a left eigenvector.

Definition 9.1.5.

A matrix $A \in \mathbf{R}^{n \times n}$, is said to be reducible if for some permutation matrix $P, P^{T} A P$ has the form

$$
P^{T} A P=\left(\begin{array}{cc}
B & C \tag{9.1.14}\\
0 & D
\end{array}\right)
$$

where B and C, are square submatrices, or if $n=1$ and $A=0$. Otherwise A is called irreducible.

The concept of a reducible matrix can be illustrated using some elementary notions from the theory of graphs. The directed graph of a matrix A is constructed as follows: Let P_{1}, \ldots, P_{n} be n distinct points in the plane called nodes. For each $a_{i j} \neq 0$ in A we connect node P_{i} to node P_{j} by means of directed edge from node i to node j. (Compare the definition of an undirected graph of a matrix in Def. 6.5.2.) It can be shown that a matrix A is irreducible if and only if its graph is connected in the following sense. Given any two distinct nodes P_{i} and P_{j} there exists a path $P_{i}=P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{p}}=P_{j}$ along directed edges from P_{i} to P_{j}. Note that the graph of a matrix A is the same as the graph of $P^{T} A P$, where P is a permutation matrix; only the labeling of the node changes.

Assume that a matrix A is reducible to the form (9.1.14), where $B \in \mathbf{R}^{r \times r}$, $B \in \mathbf{R}^{s \times s}(r+s=n)$. Then we have

$$
\tilde{A}\binom{I_{r}}{0}=\binom{I_{r}}{0} B, \quad\left(\begin{array}{ll}
0 & I_{s}
\end{array}\right) \tilde{A}=D\left(\begin{array}{ll}
0 & I_{s}
\end{array}\right)
$$

that is, the first r unit vectors span a right invariant subspace, and the s last unit vectors span a left invariant subspace of \tilde{A}. It follows that the spectrum of A equals the union of the spectra of B and D.

If B and D are reducible they can be reduced in the same way. Continuing in this way until the diagonal blocks are irreducible we obtain a block upper triangular matrix

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 N} \tag{9.1.15}\\
0 & A_{22} & \cdots & A_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & A_{N N}
\end{array}\right)
$$

where each diagonal block $A_{i i}$ is square.

Theorem 9.1.6.

Assume that the matrix A can be reduced by a permutation to the block upper triangular form (9.1.15). Then $\lambda(A)=\bigcup_{i=1}^{N} \lambda\left(A_{i i}\right)$, where $\lambda(A)$ denotes the
spectrum of A. In particular the eigenvalues of a triangular matrix are its diagonal elements.

Many important numerical methods for computing eigenvalues and eigenvectors of a matrix A perform a sequence of similarity transformations to transform A into a matrix of simpler form. With $A_{0}=A$ one computes

$$
A_{k}=P_{k}^{-1} A_{k-1} P_{k}, \quad k=1,2, \ldots
$$

The matrix A_{k} is similar to A and the eigenvectors x of A and y of A_{k} are related by $x=P_{1} P_{2} \cdots P_{k} y$. The eigenvalues of a triangular matrix equal its diagonal elements. Hence if the matrix A can be transformed by successive similarities to triangular form, then its eigenvalues are trivial to determine.

Let $A X_{1}=X_{1} B$, for some $X_{1} \in \mathbf{R}^{n \times p}$ of rank p, and $B \in \mathbf{R}^{p \times p}$. Then $\mathcal{R}\left(X_{1}\right)$ is a right invariant subspace of A. Let $X_{2} \in \mathbf{R}^{n \times(n-p)}$ be such that $X=\left(X_{1}, X_{2}\right)$ is invertible. Then we have

$$
X^{-1} A X=X^{-1}\left(A X_{1}, A X_{2}\right)=\left(X^{-1} X_{1} B, X^{-1} A X_{2}\right)=\left(\begin{array}{cc}
B & T_{12} \tag{9.1.16}\\
0 & T_{22}
\end{array}\right)
$$

that is, $X^{-1} A X$ is reducible. Hence, if a set of eigenvalues of A and a basis X_{1} for a corresponding right invariant are known, then we can find the remaining eigenvalues of A from T_{22}. This process is called deflation and is a powerful tool for computation of eigenvalues and eigenvectors. Note that if $X_{1}=Q_{1}$ has orthonormal columns, then $X=\left(Q_{1}, Q_{2}\right)$ in (9.1.16) can be chosen as an orthogonal matrix.

A matrix A may not have a full set of n linearly independent eigenvectors. However, it holds:

Theorem 9.1.7.

Let x_{1}, \ldots, x_{k} be eigenvectors of $A \in \mathbf{C}^{n \times n}$ corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Then the vectors x_{1}, \ldots, x_{k} are linearly independent. In particular if all the eigenvalues of a matrix A are distinct then A has a complete set of linearly independent eigenvectors and hence A is diagonalizable.

Proof. Assume that only the vectors $x_{1} \ldots, x_{p}, p<k$, are linearly independent and that $x_{p+1}=\gamma_{1} x_{1}+\cdots+\gamma_{p} x_{p}$. Then $A x_{p+1}=\gamma_{1} A x_{1}+\cdots+\gamma_{p} A x_{p}$, or

$$
\lambda_{p+1} x_{p+1}=\gamma_{1} \lambda_{1} x_{1}+\cdots+\gamma_{p} \lambda_{p} x_{p}
$$

It follows that $\sum_{i=1}^{p} \gamma_{i}\left(\lambda_{i}-\lambda_{p+1}\right) x_{i}=0$. Since $\gamma_{i} \neq 0$ for some i and $\lambda_{i}-\lambda_{p+1} \neq 0$ for all i, this contradicts the assumption of linear independence. Hence we must have $p=k$ linearly independent vectors.

Let $\lambda_{1}, \cdots, \lambda_{k}$ be the distinct zeros of $p(\lambda)$ and let σ_{i} be the multiplicity of λ_{i}, $i=1, \ldots, k$. The integer σ_{i} is called the algebraic multiplicity of the eigenvalue λ_{i} and

$$
\sigma_{1}+\sigma_{2}+\cdots+\sigma_{k}=n
$$

To every distinct eigenvalue corresponds at least one eigenvector. All the eigenvectors corresponding to the eigenvalue λ_{i} form a linear subspace $L\left(\lambda_{i}\right)$ of \mathbf{C}^{n} of dimension

$$
\begin{equation*}
\rho_{i}=n-\operatorname{rank}\left(A-\lambda_{i} I\right) . \tag{9.1.17}
\end{equation*}
$$

The integer ρ_{i} is called the geometric multiplicity of λ_{i}, and specifies the maximum number of linearly independent eigenvectors associated with λ_{i}. The eigenvectors are not in general uniquely determined.

Theorem 9.1.8.

For the geometric and algebraic multiplicity the inequality $\rho(\lambda) \leq \sigma(\lambda)$ holds.
Proof. Let $\bar{\lambda}$ be an eigenvalue with geometric multiplicity $\rho=\rho(\bar{\lambda})$ and let x_{1}, \ldots, x_{ρ} be linearly independent eigenvectors associated with $\bar{\lambda}$. If we put $X_{1}=$ $\left(x_{1}, \ldots, x_{\rho}\right)$ then we have $A X_{1}=\bar{\lambda} X_{1}$. We now let $X_{2}=\left(x_{\rho+1}, \cdots, x_{n}\right)$ consist of $n-\rho$ more vectors such that the matrix $X=\left(X_{1}, X_{2}\right)$ is nonsingular. Then it follows that the matrix $X^{-1} A X$ must have the form

$$
X^{-1} A X=\left(\begin{array}{cc}
\bar{\lambda} I & B \\
0 & C
\end{array}\right)
$$

and hence the characteristic polynomial of A, or $X^{-1} A X$ is

$$
p(\lambda)=(\bar{\lambda}-\lambda)^{\rho} \operatorname{det}(C-\lambda I)
$$

Thus the algebraic multiplicity of $\bar{\lambda}$ is at least equal to ρ.
If $\rho(\lambda)<\sigma(\lambda)$ then λ is said to be a defective eigenvalue. A matrix with at least one defective eigenvalue is defective, otherwise it is nondefective. The eigenvectors of a nondefective matrix A span the space \mathbf{C}^{n} and A is said to have a complete set of eigenvectors. A matrix is nondefective if and only if it is diagonalizable.

Example 9.1.1.

The matrix $\bar{\lambda} I$, where I is a unit matrix of dimension n has the characteristic polynomial $p(\lambda)=(\bar{\lambda}-\lambda)^{n}$ and hence $\lambda=\bar{\lambda}$ is an eigenvalue of algebraic multiplicity equal to n. Since $\operatorname{rank}(\bar{\lambda} I-\bar{\lambda} \cdot I)=0$, there are n linearly independent eigenvectors associated with this eigenvalue. Clearly any vector $x \in \mathbf{C}^{n}$ is an eigenvector.

Now consider the nth order matrix

$$
J_{n}(\bar{\lambda})=\left(\begin{array}{cccc}
\bar{\lambda} & 1 & & \tag{9.1.18}\\
& \bar{\lambda} & \ddots & \\
& & \ddots & \frac{1}{\lambda} \\
& & & \bar{\lambda}
\end{array}\right) .
$$

Also this matrix has the characteristic polynomial $p(\lambda)=(\bar{\lambda}-\lambda)^{n}$. However, since $\operatorname{rank}\left(J_{n}(\bar{\lambda})-\bar{\lambda} \cdot I\right)=n-1, J_{n}(\bar{\lambda})$ has only one right eigenvector $x=(1,0, \ldots, 0)^{T}$.

Similarly it has only one left eigenvector $y=(0, \ldots, 0,1)^{T}$, and the eigenvalue $\lambda=\bar{\lambda}$ is defective. A matrix of this form is called a Jordan block, see Theorem 9.2.8.

$$
\text { For any nonzero vector } v_{1}=v \text {, define a sequence of vectors by }
$$

$$
\begin{equation*}
v_{k+1}=A v_{k}=A^{k} v_{1} . \tag{9.1.19}
\end{equation*}
$$

Let v_{m+1} be the first of these vectors that can be expressed as a linear combination of the preceding ones. (Note that we must have $m \leq n$.) Then for some polynomial p of degree m

$$
p(\lambda)=c_{0}+c_{1} \lambda+\cdots+\lambda^{m}
$$

we have $p(A) v=0$, i.e., p annihilates v. Since p is the polynomial of minimal degree that annihilates v it is called the minimal polynomial and m the grade of v with respect to A.

Of all vectors v there is at least one for which the degree is maximal, since for any vector $m \leq n$. If v is such a vector and q its minimal polynomial, then it can be shown that $q(A) x=0$ for any vector x, and hence

$$
q(A)=\gamma_{0} I+\gamma_{1} A+\cdots+\gamma_{s-1} A^{s-1}+A^{s}=0
$$

This polynomial p is the minimal polynomial for the matrix A, see Section 9.2.2.
Consider the Kronecker product $C=A \otimes B$ of $A \in \mathbf{R}^{n \times n}$ and $B \in \mathbf{R}^{m \times m}$ as defined in Sec. 7.5.5 The eigenvalues and eigenvectors of C can be expressed in terms of the eigenvalues and eigenvectors of A and B. Assume that $A x_{i}=\lambda_{i} x_{i}$, $i=1, \ldots, n$, and $B y_{j}=\mu_{j} y_{j}, j=1, \ldots, m$. Then, using equation (7.5.26), we obtain

$$
\begin{equation*}
(A \otimes B)\left(x_{i} \otimes y_{j}\right)=\left(A x_{i}\right) \otimes\left(B y_{j}\right)=\lambda_{i} \mu_{j}\left(x_{i} \otimes y_{j}\right) \tag{9.1.20}
\end{equation*}
$$

This shows that the $n m$ eigenvalues of $A \otimes B$ are $\lambda_{i} \mu_{j}, i=1, \ldots, n, j=1, \ldots, m$, and $x_{i} \otimes y_{j}$ are the corresponding eigenvectors. If A and B are diagonalizable, $A=X^{-1} \Lambda_{1} X, B=Y^{-1} \Lambda_{2} Y$, then

$$
(A \otimes B)=\left(X^{-1} \otimes Y^{-1}\right)\left(\Lambda_{1} \otimes \Lambda_{2}\right)(X \otimes Y)
$$

and thus $A \otimes B$ is also diagonalizable.
The matrix

$$
\begin{equation*}
\left(I_{m} \otimes A\right)+\left(B \otimes I_{n}\right) \in \mathbf{R}^{n m \times n m} \tag{9.1.21}
\end{equation*}
$$

is the Kronecker sum of A and B. Since

$$
\begin{align*}
{\left[\left(I_{m} \otimes A\right)+\left(B \otimes I_{n}\right)\right]\left(y_{j} \otimes x_{i}\right) } & =y_{j} \otimes\left(A x_{i}\right)+\left(B y_{j}\right) \otimes x_{i} \tag{9.1.22}\\
& =\left(\lambda_{i}+\mu_{j}\right)\left(y_{j} \otimes x_{i}\right) .
\end{align*}
$$

the $n m$ eigenvalues of the Kronecker sum equal the sum of all pairs of eigenvalues of A and B

Review Questions

1. How are the eigenvalues and eigenvectors of A affected by a similarity transformation?
2. What is meant by a (right) invariant subspace of A ? Describe how a basis for an invariant subspace can be used to construct a similarity transformation of A to block triangular form. How does such a transformation simplify the computation of the eigenvalues of A ?
3. What is meant by the algebraic multiplicity and the geometric multiplicity of an eigenvalue of A ? When is a matrix said to be defective?

Problems

1. A matrix $A \in \mathbf{R}^{n \times n}$ is called nilpotent if $A^{k}=0$ for some $k>0$. Show that a nilpotent matrix can only have 0 as an eigenvalue.
2. Show that if λ is an eigenvalue of a unitary matrix U then $|\lambda|=1$.
3. Let $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{n \times m}$. Show that

$$
X^{-1}\left(\begin{array}{cc}
A B & 0 \\
B & 0
\end{array}\right) X=\left(\begin{array}{cc}
0 & 0 \\
B & B A
\end{array}\right), \quad X=\left(\begin{array}{cc}
I & A \\
0 & I
\end{array}\right) .
$$

Conclude that the nonzero eigenvalues of $A B \in \mathbf{R}^{m \times m}$ and $B A \in \mathbf{R}^{n \times n}$ are the same.
4. (a) Let $A=x y^{T}$, where x and y are vectors in $\mathbf{R}^{n}, n \geq 2$. Show that 0 is an eigenvalue of A with multiplicity at least $n-1$, and that the remaining eigenvalue is $\lambda=y^{T} x$.
(b) What are the eigenvalues of a Householder reflector $P=I-2 u u^{T},\|u\|_{2}=1$?
5. What are the eigenvalues of a Givens' rotation

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) ?
$$

When are the eigenvalues real?
6. An upper Hessenberg matrix is called unreduced if all its subdiagonal elements are nonzero. Show that if $H \in \mathbf{R}^{n \times n}$ is an unreduced Hessenberg matrix, then $\operatorname{rank}(H) \geq n-1$, and that therefore if H has a multiple eigenvalue it must be defective.
7. Let $A \in \mathbf{C}^{n \times n}$ be an Hermitian matrix, λ an eigenvalue of A, and z the corresponding eigenvector. Let $A=S+i K, z=x+i y$, where S, K, x, y are real. Show that λ is a double eigenvalue of the real symmetric matrix

$$
\left(\begin{array}{cc}
S & -K \\
K & S
\end{array}\right) \in \mathbf{R}^{2 n \times 2 n}
$$

and determine two corresponding eigenvectors.
8. Show that the matrix

$$
K_{n}=\left(\begin{array}{ccccc}
-a_{1} & -a_{2} & \cdots & -a_{n-1} & -a_{n} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

has the characteristic polynomial

$$
p(\lambda)=(-1)^{n}\left(\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n}\right) .
$$

K_{n} is called the companion matrix of $p(\lambda)$. Determine the eigenvectors of K_{n} corresponding to an eigenvalue λ, and show that there is only one eigenvector even when λ is a multiple eigenvalue.
Remark: The term companion matrix is sometimes used for slightly different matrices, where the coefficients of the polynomial appear, e.g., in the last row or in the last column.
9. Draw the graphs $G(A), G(B)$ and $G(C)$, where

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right), \quad C=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Show that A and C are irreducible but B is reducible.

9.2 Canonical Forms and Matrix Functions

Using similarity transformations it is possible to transform a matrix into one of several canonical forms, which reveal its eigenvalues and gives information about the eigenvectors. These canonical forms are useful also for extending analytical functions of one variable to matrix arguments.

9.2.1 The Schur Normal Form

The computationally most useful of the canonical forms is the triangular, or Schur normal form.

Theorem 9.2.1. Schur Normal Form.
Given $A \in \mathbf{C}^{n \times n}$ there exists a unitary matrix $U \in \mathbf{C}^{n \times n}$ such that

$$
\begin{equation*}
U^{H} A U=T=D+N, \tag{9.2.1}
\end{equation*}
$$

where T is upper triangular, N strictly upper triangular, $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, and $\lambda_{i}, i=1, \ldots, n$ are the eigenvalues of A. Furthermore, U can be chosen so that the eigenvalues appear in arbitrary order in D.

Proof. The proof is by induction on the order n of the matrix A. For $n=1$ the theorem is trivially true. Assume the theorem holds for all matrices of order $n-1$. We will show that it holds for any matrix $A \in \mathbf{C}^{n \times n}$.

Let λ be an arbitrary eigenvalue of A. Then, $A x=\lambda x$, for some $x \neq 0$ and we let $u_{1}=x /\|x\|_{2}$. Then we can always find $U_{2} \in \mathbf{C}^{n \times n-1}$ such that $U=\left(u_{1}, U_{2}\right)$ is a unitary matrix. Since $A U=A\left(u_{1}, U_{2}\right)=\left(\lambda u_{1}, A U_{2}\right)$ we have

$$
U^{H} A U=\binom{u_{1}^{H}}{U_{2}^{H}} A U=\left(\begin{array}{cc}
\lambda u_{1}^{H} u_{1} & u_{1}^{H} A U_{2} \\
\lambda U_{2}^{H} u_{1} & U_{2}^{H} A U_{2}
\end{array}\right)=\left(\begin{array}{cc}
\lambda & w^{H} \\
0 & B
\end{array}\right) .
$$

Here B is of order $n-1$ and by the induction hypothesis there exists a unitary matrix \tilde{U} such that $\tilde{U}^{H} B \tilde{U}=\tilde{T}$. Then

$$
\bar{U}^{H} A \bar{U}=T=\left(\begin{array}{cc}
\lambda & w^{H} \tilde{U} \\
0 & \tilde{T}
\end{array}\right), \quad \bar{U}=U\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{U}
\end{array}\right)
$$

where \bar{U} is unitary. From the above it is obvious that we can choose U to get the eigenvalues of A arbitrarily ordered on the diagonal of T.

The advantage of the Schur normal form is that it can be obtained using a numerically stable unitary transformation. The eigenvalues of A are displayed on the diagonal. The columns in $U=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ are called Schur vectors. It is easy to verify that the nested sequence of subspaces

$$
S_{k}=\operatorname{span}\left[u_{1}, \ldots, u_{k}\right], \quad k=1, \ldots, n,
$$

are invariant subspaces. However, of the Schur vectors in general only u_{1} is an eigenvector.

If the matrix A is real, we would like to restrict ourselves to real similarity transformations, since otherwise we introduce complex elements in $U^{-1} A U$. If A has complex eigenvalues, then A obviously cannot be reduced to triangular form by a real orthogonal transformation. For a real matrix A the eigenvalues occur in complex conjugate pairs, and it is possible to reduce A to block triangular form T, with 1×1 and 2×2 diagonal blocks, in which the 2×2 blocks correspond to pairs of complex conjugate eigenvalues. T is then said to be in quasi-triangular form.

Theorem 9.2.2. The Real Schur Form.
Given $A \in \mathbf{R}^{n \times n}$ there exists a real orthogonal matrix $Q \in \mathbf{R}^{n \times n}$ such that

$$
\begin{equation*}
Q^{T} A Q=T=D+N \tag{9.2.2}
\end{equation*}
$$

where T is real block upper triangular, D is block diagonal with 1×1 and 2×2 blocks, and where all the 2×2 blocks have complex conjugate eigenvalues.

Proof. Let A have the complex eigenvalue $\lambda \neq \bar{\lambda}$ corresponding to the eigenvector x. Then, since $A \bar{x}=\bar{\lambda} \bar{x}$, also $\bar{\lambda}$ is an eigenvalue with eigenvector $\bar{x} \neq x$, and $\mathcal{R}(x, \bar{x})$ is an invariant subspace of dimension 2. Let

$$
X_{1}=\left(x_{1}, x_{2}\right), \quad x_{1}=x+\bar{x}, \quad x_{2}=i(x-\bar{x})
$$

be a real basis for this invariant subspace. Then $A X_{1}=X_{1} M$ where $M \in \mathbf{R}^{2 \times 2}$ has eigenvalues λ and $\bar{\lambda}$. Let $X_{1}=Q\binom{R}{0}=Q_{1} R$ be the QR decomposition of X_{1}. Then $A Q_{1} R=Q_{1} R M$ or $A Q_{1}=Q_{1} P$, where $P=R M R^{-1} \in \mathbf{R}^{2 \times 2}$ is similar to M. Using (9.1.16) with $X=Q$, we find that

$$
Q^{T} A Q=\left(\begin{array}{cc}
P & W^{H} \\
0 & B
\end{array}\right) .
$$

where P has eigenvalues λ and $\bar{\lambda}$. An induction argument completes the proof.
We now introduce a class of matrices for which the Schur normal form is diagonal.

Definition 9.2.3.

A matrix $A \in \mathbf{C}^{\mathbf{n} \times \mathbf{n}}$ is said to be normal if

$$
\begin{equation*}
A^{H} A=A A^{H} \tag{9.2.3}
\end{equation*}
$$

If A is normal then for unitary U so is $U^{H} A U$, since

$$
\left(U^{H} A U\right)^{H} U^{H} A U=U^{H}\left(A^{H} A\right) U=U^{H}\left(A A^{H}\right) U=U^{H} A U\left(U^{H} A U\right)^{H}
$$

It follows that the upper triangular matrix T in the Schur normal form is normal,

$$
T^{H} T=T T^{H}, \quad T=\left(\begin{array}{cccc}
\lambda_{1} & t_{12} & \ldots & t_{1 n} \\
& \lambda_{2} & \ldots & t_{2 n} \\
& & \ddots & \vdots \\
& & & \lambda_{n}
\end{array}\right)
$$

Equating the $(1,1)$-element on both sides of the equation $T^{H} T=T T^{H}$ we get $\left|\lambda_{1}\right|^{2}=\left|\lambda_{1}\right|^{2}+\sum_{j=2}^{n}\left|t_{1 j}\right|^{2}$, and so $t_{1 j}=0, j=2, \ldots, n$. In the same way it can be shown that all the other nondiagonal elements in T vanishes, and so T is diagonal.

Important classes of normal matrices are Hermitian $\left(A=A^{H}\right)$, skew-Hermitian $\left(A^{H}=-A\right)$, unitary $\left(A^{-1}=A^{H}\right)$ and circulant matrices (see Problem 9.1.10). Hermitian matrices have real eigenvalues, skew-Hermitian matrices have imaginary eigenvalues, and unitary matrices have eigenvalues on the unit circle.

Theorem 9.2.4.

A matrix $A \in \mathbf{C}^{n \times n}$ is normal, $A^{H} A=A A^{H}$, if and only if A can be unitarily diagonalized, i.e., there exists a unitary matrix $U \in \mathbf{C}^{n \times n}$ such that

$$
U^{H} A U=D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)
$$

Proof. If A is normal, then it follows from the above that the matrix T in the Schur normal form is diagonal. If on the other hand A is unitarily diagonalizable then we immediately have that

$$
A^{H} A=U D^{H} D U^{H}=U D D^{H} U^{H}=A A^{H} .
$$

\square
It follows in particular that any Hermitian matrix may be decomposed into

$$
\begin{equation*}
A=U \Lambda U^{H}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{H} \tag{9.2.4}
\end{equation*}
$$

with λ_{i} real. In the special case that A is real and symmetric we can take U to be real and orthogonal, $U=Q=\left(q_{1}, \ldots, q_{n}\right)$, where q_{i} are orthonormal eigenvectors. Note that in (9.2.4) $u_{i} u_{i}^{H}$ is the unitary projection matrix that projects unitarily onto the eigenvector u_{i}. We can also write $A=\sum_{j} \lambda P_{j}$, where the sum is taken over the distinct eigenvalues of A, and P_{j} projects $\mathbf{C}^{\mathbf{n}}$ unitarily onto the eigenspace belonging to λ_{j}. (This comes closer to the formulation given in functional analysis.)

Note that although U in the Schur normal form (9.2.1) is not unique, $\|N\|_{F}$ is independent of the choice of U, and

$$
\Delta_{F}^{2}(A) \equiv\|N\|_{F}^{2}=\|A\|_{F}^{2}-\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}
$$

The quantity $\Delta_{F}(A)$ is called the departure from normality of A.

9.2.2 Sylvester's Equation and Jordan's Canonical Form

Let the matrix A have the block triangular form

$$
A=\left(\begin{array}{cc}
B & C \tag{9.2.5}\\
0 & D
\end{array}\right)
$$

where B and D are square. Suppose that we wish to reduce A to block diagonal form by a similarity transformation of the form

$$
P=\left(\begin{array}{cc}
I & Q \\
0 & I
\end{array}\right), \quad P^{-1}=\left(\begin{array}{cc}
I & -Q \\
0 & I
\end{array}\right)
$$

This gives the result

$$
P^{-1} A P=\left(\begin{array}{cc}
I & -Q \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
B & C \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I & Q \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
B & C-Q D+B Q \\
0 & D
\end{array}\right) .
$$

The result is a block diagonal matrix if and only if $B Q-Q D=-C$. This equation, which is a linear equation in the elements of Q, is called Sylvester's equation ${ }^{2}$

We will investigate the existence and uniqueness of solutions to the general Sylvester equation

$$
\begin{equation*}
A X-X B=C, \quad X \in \mathbf{R}^{n \times m} \tag{9.2.6}
\end{equation*}
$$

where $A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{m \times m}$. We prove the following result.

Theorem 9.2.5.

The matrix equation (9.2.6) has a unique solution if and only if

$$
\lambda(A) \cap \lambda(B)=\emptyset
$$

Proof. From Theorem 9.2.1 follows the existence of the Schur decompositions

$$
U_{1}^{H} A U_{1}=S, \quad U_{2}^{H} B U_{2}=T
$$

[^1]where S and T are upper triangular and U_{1} and U_{2} are unitary matrices. Using these decompositions (9.2.6) can be reduced to
$$
S Y-Y T=F, \quad Y=U_{1}^{H} X U_{2}, \quad F=U_{1}^{H} C U_{2}
$$

Expanding this equation by columns gives

$$
S\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3} \cdots
\end{array}\right)-\left(\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \cdots
\end{array}\right)\left(\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \cdots \tag{9.2.7}\\
0 & t_{22} & t_{33} \cdots \\
0 & 0 & t_{33} \cdots \\
\vdots & \vdots & \vdots
\end{array}\right)=\left(\begin{array}{lll}
f_{1} & f_{2} & f_{3} \cdots
\end{array}\right)
$$

The first column of the system (9.2.7) has the form

$$
S y_{1}-t_{11} y_{1}=\left(S-t_{11} I\right) y_{1}=d_{1}
$$

Here t_{11} is an eigenvalue of T and hence is not an eigenvalue of S. Therefore the triangular matrix $S-t_{11} I$ is not singular and we can solve for y_{1}. Now suppose that we have found y_{1}, \ldots, y_{k-1}. From the k th column of the system

$$
\left(S-t_{k k} I\right) y_{k}=d_{k}+\sum_{i=1}^{k} t_{i k} y_{i}
$$

Here the right hand side is known and, by the argument above, the triangular matrix $S-t_{k k} I$ nonsingular. Hence it can be solved for y_{k}. The proof now follows by induction.

If we have an algorithm for computing the Schur decompositions this proof gives an algorithm for solving the Sylvester equation. It involves solving m triangular equations and requires $O\left(m n^{2}\right)$ operations.

An important special case of (9.2.6) is the Lyapunov equation

$$
\begin{equation*}
A X+X A^{H}=C \tag{9.2.8}
\end{equation*}
$$

Here $B=-A^{H}$, and hence by Theorem 9.2.5 this equation has a unique solution if and only if the eigenvalues of A satisfy $\lambda_{i}+\bar{\lambda}_{j} \neq 0$ for all i and j. Further, if $C^{H}=C$ the solution X is Hermitian. In particular, if all eigenvalues of A have negative real part, then all eigenvalues of $-A^{H}$ have positive real part, and the assumption is satisfied.

We have seen that a given block triangular matrix (9.2.5) can be transformed by a similarity transformation to block diagonal form provided that B and C have disjoint spectra. The importance of this contruction is that it cann be applied recursively.

If A is not normal, then the matrix T in its Schur normal form cannot be diagonal. To transform T to a form closer to a diagonal matrix we have to use non-unitary similarities. By Theorem 9.2.1 we can order the eigenvalues so that in the Schur normal form

$$
D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

We now show how to obtain the following block diagonal form:

Theorem 9.2.6. Block Diagonal Decomposition.
Let the distinct eigenvalues of A be $\lambda_{1}, \cdots, \lambda_{k}$, and in the Schur normal form let $D=\operatorname{diag}\left(D_{1}, \ldots, D_{k}\right), \quad D_{i}=\lambda_{i} I, \quad i=1, \ldots, k$. Then there exists a nonsingular matrix Z such that

$$
Z^{-1} U^{H} A U Z=Z^{-1} T Z=\operatorname{diag}\left(\lambda_{1} I+N_{1}, \cdots, \lambda_{k} I+N_{k}\right)
$$

where $N_{i}, i=1, \ldots, k$ are strictly upper triangular. In particular, if the matrix A has n distinct eigenvalues the matrix D diagonal.

Proof. Consider first the matrix $T=\left(\begin{array}{cc}\lambda_{1} & t \\ 0 & \lambda_{2}\end{array}\right) \in \mathbf{C}^{2 \times 2}$, where $\lambda_{1} \neq \lambda_{2}$. Perform the similarity transformation

$$
M^{-1} T M=\left(\begin{array}{cc}
1 & -m \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & t \\
0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1} & m\left(\lambda_{1}-\lambda_{2}\right)+t \\
0 & \lambda_{2}
\end{array}\right)
$$

where M is an upper triangular elementary elimination matrix, see Section 7.3.5. By taking $m=t /\left(\lambda_{2}-\lambda_{1}\right)$, we can annihilate the off-diagonal element in T.

In the general case let $t_{i j}$ be an element in T outside the block diagonal. Let $M_{i j}$ be a matrix which differs from the unit matrix only in the (i, j) th element, which is equal to $m_{i j}$. Then as above we can choose $m_{i j}$ so that the element (i, j) is annihilated by the similarity transformation $M_{i j}^{-1} T M_{i j}$. Since T is upper triangular this transformation will not affect any already annihilated off-diagonal elements in T with indices $\left(i^{\prime}, j^{\prime}\right)$ if $j^{\prime}-i^{\prime}<j-i$. Hence, we can annihilate all elements $t_{i j}$ outside the block diagonal in this way, starting with the elements on the diagonal closest to the main diagonal and working outwards. For example, in a case with 3 blocks of orders $2,2,1$ the elements are eliminated in the order

$$
\left(\begin{array}{ccccc}
\times & \times & 2 & 3 & 4 \\
& \times & 1 & 2 & 3 \\
& & \times & \times & 2 \\
& & & \times & 1 \\
& & & & \times
\end{array}\right)
$$

Further details of the proof is left to the reader.
A matrix which does not have n linearly independent eigenvectors is defective and cannot be similar to a diagonal matrix. We now state without proof the following fundamental Jordan Canonical Form ${ }^{3}$ For a proof based on the block diagonal decomposition in Theorem 9.2.6, see Fletcher and Sorensen [12, 1983].

Theorem 9.2.7. Jordan Canonical Form.
If $A \in \mathbf{C}^{n \times n}$, then there is a nonsingular matrix $X \in \mathbf{C}^{n \times n}$, such that

$$
\begin{equation*}
X^{-1} A X=J=\operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right), \cdots, J_{m_{t}}\left(\lambda_{t}\right)\right), \tag{9.2.9}
\end{equation*}
$$

[^2]where
\[

J_{m_{i}}\left(\lambda_{i}\right)=\left($$
\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}
$$\right)=\lambda_{i} I+S \in \mathbf{C}^{m_{i} \times m_{i}}, \quad m_{i} \geq 1
\]

The numbers m_{1}, \ldots, m_{t} are unique and $\sum_{i=1}^{t} m_{i}=n$. To each Jordan block $J_{m_{i}}\left(\lambda_{i}\right)$ there corresponds exactly one eigenvector. Hence the number of Jordan blocks corresponding to a multiple eigenvalue λ equals the geometric multiplicity of λ.

The form (9.2.9) is called the Jordan canonical form of A, and is unique up to the ordering of the Jordan blocks. Note that the same eigenvalue may appear in several different Jordan blocks. A matrix for which this occurs is called derogatory. The Jordan canonical form has the advantage that it displays all eigenvalues and eigenvectors of A explicitly. A serious disadvantage is that the Jordan canonical form is not in general a continuous function of the elements of A. For this reason the Jordan canonical form of a nondiagonalizable matrix may be very difficult to determine numerically.

Example 9.2.1.

Consider the matrices of the form

$$
J_{m}(\lambda, \epsilon)=\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
\epsilon & & & \lambda
\end{array}\right) \in \mathbf{C}^{m \times m}
$$

The matrix $J_{m}(\lambda, 0)$ has an eigenvalue equal to λ of multiplicity m, and is in Jordan canonical form. For any $\epsilon>0$ the matrix $J_{m}(\lambda, \epsilon)$ has m distinct eigenvalues μ_{i}, $i=1, \ldots, m$, which are the roots of the equation $(\lambda-\mu)^{m}-(-1)^{m} \epsilon=0$. Hence $J_{m}(\lambda, \epsilon)$ is diagonalizable for any $\epsilon \neq 0$, and its eigenvalues λ_{i} satisfy $\left|\lambda_{i}-\lambda\right|=|\epsilon|^{1 / m}$. For example, if $m=10$ and $\epsilon=10^{-10}$, then the perturbation is of size 0.1.

If $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the matrix in (9.2.9), then

$$
A x_{1}=\lambda_{1} x_{1}, \quad A x_{i+1}=\lambda_{1} x_{i+1}+x_{i}, \quad i=1, \ldots, m_{1}-1 .
$$

The vectors $x_{2}, \ldots, x_{m_{1}}$ are called principal vectors of the matrix A. Similar relations holds for the other Jordan blocks.

The minimal polynomial of A can be read off from its Jordan canonical form. Consider a Jordan block $J_{m}(\lambda)=\lambda I+N$ of order m and put $q(z)=(z-\lambda)^{j}$. Then we have $q\left(J_{m}(\lambda)\right)=N^{j}=0$ for $j \geq m$. The minimal polynomial of a matrix A with the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ then has the form

$$
\begin{equation*}
q(z)=\left(z-\lambda_{1}\right)^{m_{1}}\left(z-\lambda_{2}\right)^{m_{2}} \cdots\left(z-\lambda_{k}\right)^{m_{k}}, \tag{9.2.10}
\end{equation*}
$$

where m_{j} is the highest dimension of any Jordan box corresponding to the eigenvalue $\lambda_{j}, j=1, \ldots, k$.

As a corollary we obtain Cayley-Hamilton theorem, which states that the characteristic polynomial $p(z)$ of a matrix A satisfies $p(A)=0$. The polynomials

$$
\pi_{i}(z)=\operatorname{det}\left(z I-J_{m_{i}}\left(\lambda_{i}\right)\right)=\left(z-\lambda_{i}\right)^{m_{i}}
$$

are called elementary divisors of A. They divide the characteristic polynomial of A. The elementary divisors of the matrix A are all linear if and only if the Jordan canonical form is diagonal.

We end with an approximation theorem due to Bellman, which sometimes makes it possible to avoid the complication of the Jordan canonical form.

Theorem 9.2.8.

Let $A \in \mathbf{C}^{n \times n}$ be a given matrix. Then for any $\epsilon>0$ there exists a matrix B with $\|A-B\|_{2} \leq \epsilon$, such that B has n distinct eigenvalues. Hence, the class of diagonalizable matrices is dense in $\mathbf{C}^{n \times n}$.

Proof. Let $X^{-1} A X=J$ be the Jordan canonical form of A. Then, by a slight extension of Example 9.2 .1 it follows that there is a matrix $J(\delta)$ with distinct eigenvalues such that $\|J-J(\delta)\|_{2}=\delta$. (Show this!) Take $B=X J(\delta) X^{-1}$. Then

$$
\|A-B\|_{2} \leq \epsilon, \quad \epsilon=\delta\|X\|_{2}\left\|X^{-1}\right\|_{2}
$$

9.2.3 Convergence of Matrix Power Series

We start with a definition of the limit of a sequence of matrices:

Definition 9.2.9.

An infinite sequence of matrices A_{1}, A_{2}, \ldots is said to converge to a matrix A, $\lim _{n \rightarrow \infty} A_{n}=A$, if

$$
\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0
$$

From the equivalence of norms in a finite dimensional vector space it follows that convergence is independent of the choice of norm. The particular choice $\|\cdot\|_{\infty}$ shows that convergence of vectors in \mathbf{R}^{n} is equivalent to convergence of the n sequences of scalars formed by the components of the vectors. By considering matrices in $\mathbf{R}^{m \times n}$ as vectors in $\mathbf{R}^{m n}$ the same conclusion holds for matrices.

An infinite sum of matrices is defined by:

$$
\sum_{k=0}^{\infty} B_{k}=\lim _{n \rightarrow \infty} S_{n}, \quad S_{n}=\sum_{k=0}^{n} B_{k}
$$

In a similar manner we can define $\lim _{z \rightarrow \infty} A(z), A^{\prime}(z)$, etc., for matrix-valued functions of a complex variable $z \in \mathbf{C}$.

Theorem 9.2.10.

If $\|\cdot\|$ is any matrix norm, and $\sum_{k=0}^{\infty}\left\|B_{k}\right\|$ is convergent, then $\sum_{k=0}^{\infty} B_{k}$ is convergent.

Proof. The proof follows from the triangle inequality $\left\|\sum_{k=0}^{n} B_{k}\right\| \leq \sum_{k=0}^{n}\left\|B_{k}\right\|$ and the Cauchy condition for convergence. (Note that the converse of this theorem is not necessarily true.)

A power series $\sum_{k=0}^{\infty} B_{k} z^{n}, z \in \mathbf{C}$, has a circle of convergence in the z-plane which is equivalent to the smallest of the circles of convergence corresponding to the series for the matrix elements. In the interior of the convergence circle, formal operations such as term-wise differentiation and integration with respect to z are valid for the element series and therefore also for matrix series.

We now investigate the convergence of matrix power series. First we prove a theorem which is also of fundamental importance for the theory of convergence of iterative methods studied in Chapter 10. We first recall the the following result:

Lemma 9.2.11. For any consistent matrix norm

$$
\begin{equation*}
\rho(A) \leq\|A\| \tag{9.2.11}
\end{equation*}
$$

where $\rho(A)=\max _{i}\left|\lambda_{i}(A)\right|$ is the spectral radius of A.
Proof. If λ is an eigenvalue of A then there is a nonzero vector x such that $\lambda x=A x$. Taking norms we get $|\lambda|\|x\| \leq\|A\|\|x\|$. Dividing with $\|x\|$ the result follows.

We now return to the question of convergence of matrix series.

Theorem 9.2.12.

If the infinite series $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ has radius of convergence r, then the matrix series $f(A)=\sum_{k=0}^{\infty} a_{k} A^{k}$ converges if $\rho<r$, where $\rho=\rho(A)$ is the spectral radius of A. If $\rho>r$, then the matrix series diverges; the case $\rho=r$ is a "questionable case".

Proof. By Theorem 9.2.10 the matrix series $\sum_{k=0}^{\infty} a_{k} A^{k}$ converges if the series $\sum_{k=0}^{\infty}\left|a_{k}\right|\left\|A^{k}\right\|$ converges. By Theorem 9.2.13 for any $\epsilon>0$ there is a matrix norm such that $\|A\|_{T}=\rho+\epsilon$. If $\rho<r$ then we can choose r_{1} such that $\rho(A) \leq r_{1}<r$, and we have

$$
\left\|A^{k}\right\|_{T} \leq\|A\|_{T}^{k} \leq(\rho+\epsilon)^{k}=O\left(r_{1}^{k}\right)
$$

Here $\sum_{k=0}^{\infty}\left|a_{k}\right| r_{1}^{k}$ converges, and hence $\sum_{k=0}^{\infty}\left|a_{k}\right|\left\|A^{k}\right\|$ converges. If $\rho>r$, let $A x=\lambda x$ with $|\lambda|=\rho$. Then $A^{k} x=\lambda^{k} x$, and since $\sum_{k=0}^{\infty} a_{k} \lambda^{k}$ diverges $\sum_{k=0}^{\infty} a_{k} A^{k}$ cannot converge.

Theorem 9.2.13.

Given a matrix $A \in \mathbf{R}^{n \times n}$ with spectral radius $\rho=\rho(A)$. Denote by $\|\cdot\|$ any l_{p}-norm, $1 \leq p \leq \infty$, and set $\|A\|_{T}=\left\|T^{-1} A T\right\|$. Then the following holds:
(a) If A has no defective eigenvalues with absolute value ρ then there exists a nonsingular matrix T such that

$$
\|A\|_{T}=\rho
$$

(b) If A has a defective eigenvalue with absolute value ρ then for every $\epsilon>0$ there exists a nonsingular matrix $T(\epsilon)$ such that

$$
\|A\|_{T(\epsilon)} \leq \rho+\epsilon
$$

In this case, the condition number $\kappa(T(\epsilon)) \rightarrow \infty$ like $\epsilon^{1-m^{*}}$ as $\epsilon \rightarrow 0$, where $m^{*}>1$ is the largest order of a Jordan block belonging to an eigenvalue λ with $|\lambda|=\rho$.

Proof. If A is diagonalizable, we can simply take T as the diagonalizing transformation. Then clearly $\|A\|_{T}=\|D\|=\rho$, where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. In the general case, we first bring A to Jordan canonical form, $X^{-1} A X=J$, where

$$
J=\operatorname{diag}\left(J_{1}\left(\lambda_{1}\right), \cdots, J_{t}\left(\lambda_{t}\right)\right), \quad J_{i}\left(\lambda_{i}\right)=\lambda_{i} I+N_{i} \in \mathbf{C}^{m_{i} \times m_{i}}, \quad m_{i} \geq 1
$$

and $J_{i}\left(\lambda_{i}\right)$ is a Jordan block. We shall find a diagonal matrix $D=\operatorname{diag}\left(D_{1}, \ldots, D_{t}\right)$, such that a similarity transformation with $T=X D, K=T^{-1} A T=D^{-1} J D$ makes K close to the diagonal of J. Note that $\|A\|_{T}=\|K\|$, and

$$
K=\operatorname{diag}\left(K_{1}, K_{2}, \ldots, K_{t}\right), \quad K_{i}=D_{i}^{-1} J_{i}\left(\lambda_{i}\right) D_{i}
$$

If $m_{i}=1$, we set $D_{i}=1$, hence $\left\|K_{i}\right\|=\left|\lambda_{i}\right|$. Otherwise we choose

$$
\begin{equation*}
D_{i}=\operatorname{diag}\left(1, \delta_{i}, \delta_{i}^{2}, \ldots, \delta_{i}^{m_{i}-1}\right), \quad \delta_{i}>0 \tag{9.2.12}
\end{equation*}
$$

Then $K_{i}=\lambda_{i} I+\delta_{i} N_{i}$, and $\|K\|=\max _{i}\left(\left\|K_{i}\right\|\right)$. (Verify this!) We have $\left\|N_{i}\right\| \leq 1$, because $N_{i} x=\left(x_{2}, x_{3}, \ldots, x_{m_{i}}, 0\right)^{T}$, so $\left\|N_{i} x\right\| \leq\|x\|$ for all vectors x. Hence,

$$
\begin{equation*}
\left\|K_{i}\right\| \leq\left|\lambda_{i}\right|+\delta_{i} \tag{9.2.13}
\end{equation*}
$$

If $m_{i}>1$ and $\left|\lambda_{i}\right|<\rho$, we choose $\delta_{i}=\rho-\left|\lambda_{i}\right|$, hence $\left\|K_{i}\right\| \leq \rho$. This proves case (a).

In case (b), $m_{i}>1$ for at least one eigenvalue with $\left|\lambda_{i}\right|=\rho$. Let $M=\{i$: $\left.\left|\lambda_{i}\right|=\rho\right\}$, and choose $\delta_{i}=\epsilon$, for $i \in M$. Then by (9.2.13) $\left\|K_{i}\right\| \leq \rho+\epsilon$, for $i \in M$, while $\left\|K_{i}\right\| \leq \rho$, for $i \notin M$. Hence $\|K\|=\max _{i}\left\|K_{i}\right\|=\rho+\epsilon$, and the first part of statement (b) now follows.

With $T(\epsilon)=X D(\epsilon)$, we have that

$$
\kappa(D(\epsilon)) / \kappa(X) \leq \kappa(T(\epsilon)) \leq \kappa(D(\epsilon)) \kappa(X)
$$

When $\left|\lambda_{i}\right|=\rho$ we have $\delta_{i}=\epsilon$, and it follows from (9.2.12) that $\kappa\left(D_{i}\right)$ grows like $\epsilon^{1-m_{i}}$. Since $\kappa(D)=\max _{i} \kappa\left(D_{i}\right)$, and for $\left|\lambda_{i}\right|<\rho$ the condition numbers of D_{i} are bounded, this proves the second part of statement (b).

Note that $1 / \kappa(T) \leq\|A\|_{T} /\|A\| \leq \kappa(T)$. For every natural number n, we have, in case (a), $\left\|A^{n}\right\|_{T} \leq\|A\|_{T}^{n}=\rho(A)^{n}$. Hence

$$
\left\|A^{n}\right\|_{p} \leq \kappa(T)\left\|A^{n}\right\|_{T} \leq \kappa(T) \rho^{n}
$$

In case (b), the same holds, if ρ, T are replaced by, respectively, $\rho+\epsilon, T(\epsilon)$. See also Problem 9.

If only statement (b) is needed, a more elementary proof can be found by a similar argument applied to the Schur canonical form instead of the Jordan canonical form. Since X is unitary in this case, one has a better control of the condition numbers, which is of particular importance in some applications to partial differential equations, where one needs to apply this kind of theorem to a family of matrices instead of just one individual matrix. This leads to the famous matrix theorems of Kreiss, see Theorems 13.8.6-13.8.7.

For some classes of matrices, an efficient (or rather efficient) norm can be found more easily than by the construction used in the proof of Theorem 9.2.13 This may have other advantages as well, e.g., a better conditioned T. Consider, for example, the weighted max-norm

$$
\|A\|_{w}=\left\|T^{-1} A T\right\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right| w_{j} / w_{i}
$$

where $T=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)>0$, and $\kappa(T)=\max w_{i} / \min w_{i}$. We then note that if we can find a positive vector w such that $|A| w \leq \alpha w$, then $\|A\|_{w} \leq \alpha$.

9.2.4 Matrix Functions

The matrix exponential $e^{A t}$, where A is a constant matrix, can be defined by the series expansion

$$
e^{A t}=I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots
$$

This series converges for all A and t since the radius of convergence of the power series $\sum_{k=0}^{\infty}\|A\|^{k} t^{k} / k!$ is infinite. The series can thus be differentiated everywhere and

$$
\frac{d}{d t}\left(e^{A t}\right)=A+A^{2} t+\frac{1}{2!} A^{3} t^{2}+\cdots=A e^{A t}
$$

Hence $y(t)=e^{A t} c \in \mathbf{R}^{n}$ solves the initial value problem for the linear system of ordinary differential equations with constant coefficients

$$
\begin{equation*}
d y(t) / d t=A y(t), \quad y(0)=c . \tag{9.2.14}
\end{equation*}
$$

Such systems occurs in many physical, biological, and economic processes.

Other functions, for example, $\sin (z), \cos (z), \log (z)$, can be similarly defined for matrix arguments from their Taylor series representation. In general, if $f(z)$ is an analytic function with Taylor expansion $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, then we define

$$
f(A)=\sum_{k=0}^{\infty} a_{k} A^{k}
$$

We now turn to the question of how to define analytic functions of matrices in general. If the matrix A is diagonalizable, $A=X \Lambda X^{-1}$, we define

$$
\begin{equation*}
f(A)=X \operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right) X^{-1}=X f(\Lambda) X^{-1} \tag{9.2.15}
\end{equation*}
$$

This expresses the matrix function $f(A)$ in terms of the function f evaluated at the spectrum of A and is often the most convenient way to compute $f(A)$.

For the case when A is not diagonalizable we first give an explicit form for the k th power of a Jordan block $J_{m}(\lambda)=\lambda I+N$. Since $N^{j}=0$ for $j \geq m$ we get using the binomial theorem

$$
J_{m}^{k}(\lambda)=(\lambda I+N)^{k}=\lambda^{k} I+\sum_{p=1}^{\min (m-1, k)}\binom{k}{p} \lambda^{k-p} N^{p}, \quad k \geq 1
$$

Since an analytic function can be represented by its Taylor series we are led to the following definition:

Definition 9.2.14.

Suppose that the analytic function $f(z)$ is regular for $z \in D \subset \mathbf{C}$, where D is a simply connected region, which contains the spectrum of A in its interior. Let

$$
A=X J X^{-1}=X \operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right), \cdots, J_{m_{t}}\left(\lambda_{t}\right)\right) X^{-1}
$$

be the Jordan canonical form of A. We then define

$$
\begin{equation*}
f(A)=X \operatorname{diag}\left(f\left(J_{m_{1}}\left(\lambda_{1}\right)\right), \cdots, f\left(J_{m_{t}}\left(\lambda_{t}\right)\right)\right) X^{-1} \tag{9.2.16}
\end{equation*}
$$

where the analytic function f of a Jordan block is

$$
\begin{equation*}
f\left(J_{m}\right)=f(\lambda) I+\sum_{p=1}^{m-1} \frac{1}{p!} f^{(p)}(\lambda) N^{p} . \tag{9.2.17}
\end{equation*}
$$

If A is diagonalizable, $A=X^{-1} \Lambda X$, then for the exponential function we have,

$$
\left\|e^{A}\right\|_{2}=\kappa(X) e^{\alpha(A)}
$$

where $\alpha(A)=\max _{i} \Re \lambda_{i}$ is the spectral abscissa of A and $\kappa(X)$ denotes the condition number of the eigenvector matrix. If A is normal, then V is orthogonal and $\kappa(V)=1$.

One can show that for every non-singular matrix T it holds

$$
\begin{equation*}
f\left(T^{-1} A T\right)=T^{-1} f(A) T \tag{9.2.18}
\end{equation*}
$$

With this definition, the theory of analytic functions of a matrix variable closely follows the theory of a complex variable. If $\lim _{n \rightarrow \infty} f_{n}(z)=f(z)$ for $z \in D$, then $\lim _{n \rightarrow \infty} f_{n}\left(J\left(\lambda_{i}\right)\right)=f\left(J\left(\lambda_{i}\right)\right)$. Hence if the spectrum of A lies in the interior of D then $\lim f_{n}(A)=f(A)$. This allows us to deal with operations involving limit processes.

The following important theorem can be obtained, which shows that Definition 9.2.14 is consistent with the more restricted definition (by a power series) given in Theorem 9.2.12.

Theorem 9.2.15.

All identities which hold for analytic functions of one complex variable z for $z \in D \subset \mathbf{C}$, where D is a simply connected region, also hold for analytic functions of one matrix variable A if the spectrum of A is contained in the interior of D. The identities also hold if A has eigenvalues on the boundary of D, provided these are not defective.

Example 9.2.2.

We have, for example,

$$
\begin{array}{rlrl}
\cos ^{2} A+\sin ^{2} A & =I, \quad \forall A ; \\
\ln (I-A) & =-\sum_{n=1}^{\infty} \frac{1}{n} A^{n}, & & \rho(A)<1 ; \\
\int_{0}^{\infty} e^{-s t} e^{A t} d t & =(s I-A)^{-1}, & \operatorname{Re}\left(\lambda_{i}\right)<\operatorname{Re}(s) ;
\end{array}
$$

Further, if $f(z)$ is analytic inside C, and if the whole spectrum of A is inside C, we have (cf. Problem 9)

$$
\frac{1}{2 \pi i} \int_{C}(z I-A)^{-1} f(z) d z=f(A)
$$

Observe also that, for two arbitrary analytic functions f and g, which satisfy the condition of the definition, $f(A) g(A)=g(A) f(A)$. However, when several noncommutative matrices are involved, one can no longer use the usual formulas for analytic functions.

Example 9.2.3.

$e^{(A+B) t}=e^{A t} e^{B t}$ for all t if and only if $B A=A B$. We have

$$
e^{A t} e^{B t}=\sum_{p=0}^{\infty} \frac{A^{p} t^{p}}{p!} \sum_{q=0}^{\infty} \frac{B^{q} t^{q}}{q!}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \sum_{p=0}^{n}\binom{n}{p} A^{p} B^{n-p} .
$$

This is in general not equivalent to

$$
e^{(A+B) t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}(A+B)^{n} .
$$

The difference between the coefficients of $t^{2} / 2$ in the two expressions is

$$
(A+B)^{2}-\left(A^{2}+2 A B+B^{2}\right)=B A-A B \neq 0, \quad \text { if } B A \neq A B
$$

Conversely, if $B A=A B$, then it follows by induction that the binomial theorem holds for $(A+B)^{n}$, and the two expressions are equal.

Because of its key role in the solution of differential equations methods for computing the matrix exponential and investigation of its qualitative behavior has been studied extensively. A wide variety of methods for computing e^{A} have been proposed; see Moler and Van Loan [35]. Consider the 2 by 2 upper triangular matrix

$$
A=\left(\begin{array}{ll}
\lambda & \alpha \\
0 & \mu
\end{array}\right)
$$

The exponential of this matrix is

$$
e^{t A}=\left\{\begin{array}{ll}
\left(\begin{array}{cc}
e^{\lambda t} & \alpha \frac{e^{\lambda t}-e^{\mu t}}{\lambda-\mu} \\
0 & e^{\mu t}
\end{array}\right), & \text { if } \lambda \neq \mu, \tag{9.2.19}\\
\left(\begin{array}{cc}
e^{\lambda t} & \alpha t e^{\lambda t} \\
0 & e^{\mu t}
\end{array}\right), & \text { if } \lambda=\mu
\end{array} .\right.
$$

When $|\lambda-\mu|$ is small, but not negligible neither of these two expressions are suitable, since severe cancellation will occur in computing the divided difference in the (1,2)element in (9.2.19). When the same type of difficulty occurs in non-triangular problems of larger size the cure is by no means easy!

Another property of $e^{A t}$ that does not occur in the scalar case is illustrated next.

Example 9.2.4. Consider the matrix

$$
A=\left(\begin{array}{cc}
-1 & 4 \\
0 & -2
\end{array}\right)
$$

Since $\max \{-1,-2\}=-1<0$ it follows that $\lim _{t \rightarrow \infty} e^{t A}=0$. In Figure 9.2.1 we have plotted $\left\|e^{t A}\right\|_{2}$ as a function of t. The curve has a hump illustrating that as t increases some of the elements in $e^{t A}$ first increase before they start to decay.

One of the best methods to compute e^{A}, the method of scaling and squaring, uses the fundamental relation

$$
e^{A}=\left(e^{A / m}\right)^{m}, \quad m=2^{s}
$$

Figure 9.2.1. $\left\|e^{t A}\right\|$ as a function of t for the matrix in Example 9.2.4.
of the exponential function. Here the exponent s is chosen so that $e^{A / m}$ can be reliably computed, e.g. from a Taylor or Padé approximation. Then $e^{A}=\left(e^{A / m}\right)^{2^{s}}$ can be formed by squaring the result s times.

Instead of the Taylor series it is advantageous to use the diagonal Padé approximation of e^{x}.

$$
\begin{equation*}
r_{m, m}(z)=\frac{P_{m, m}(z)}{Q_{m, m}(z)}=\frac{\sum_{j=0}^{m} p_{j} z^{j}}{\sum_{j=0}^{n} q_{j} z^{j}} \tag{9.2.20}
\end{equation*}
$$

which are known explicitly for all m. We have

$$
\begin{equation*}
p_{j}=\frac{(2 m-j)!m!}{(2 m)!(m-j)!j!}, \quad q_{j}=(-1)^{j} p_{j}, \quad j=0: m \tag{9.2.21}
\end{equation*}
$$

with the error

$$
\begin{equation*}
e^{z}-\frac{P_{m, m}(z)}{Q_{m, m}(z)}=(-1)^{k} \frac{(m!)^{2}}{(2 m)!(2 m+1)!} z^{2 m+1}+O\left(z^{2 m+2}\right) \tag{9.2.22}
\end{equation*}
$$

Note that $P_{m, m}(z)=Q_{m, m}(-z)$, which reflects the property that $e^{-z}=1 / e^{z}$. The coefficients satisfy the recursion

$$
\begin{equation*}
p_{0}=1, \quad p_{j+1}=\frac{m-j}{(2 m-j)(j+1)} p_{j}, \quad j=0: m-1 \tag{9.2.23}
\end{equation*}
$$

To evaluate a digonal Padé approximant of even degree m we can write

$$
\begin{aligned}
P_{2 m, 2 m}(A)= & p_{2 m} A^{2 m}+\cdots+p_{2} A^{2}+p_{0} I \\
& +A\left(p_{2 m-1} A^{2 m-2}+\cdots+p_{3} A^{2}+p_{1} I\right)=U+V
\end{aligned}
$$

This can be evaluated with $m+1$ matrix multiplications by forming $A^{2}, A^{4}, \ldots, A^{2 m}$. Then $Q_{2 m}(A)=U-V$ needs no extra matrix multiplications. For an approximation
of odd degree $2 m+1$ we write

$$
\begin{aligned}
P_{2 m+1,2 m+1}(A)= & A\left(p_{2 m+1} A^{2 m}+\cdots+p_{3} A^{2}+p_{1} I\right) \\
& +p_{2 m} A^{2 m-2}+\cdots+p_{2} A^{2}+p_{0} I=U+V .
\end{aligned}
$$

This can be evalauted with the same number of matrix multiplications and $Q_{2 m+1}(A)=$ $-U+V$. The final division $P_{k, m}(A) / Q_{m, m}(A)$ is performed by solving

$$
Q_{m, m}(A) r_{m, m}(A)=P_{m, m}(A)
$$

for $r_{m, m}(A)$ using Gaussian elimination.
The function expm in Matlab uses a scaling such that $2^{-s}\|A\|<1 / 2$ and a diagonal Padé approximant of degree $2 m=6$

```
    P暞(z)=1+\frac{1}{2}z+\frac{5}{44}\mp@subsup{z}{}{2}+\frac{1}{66}\mp@subsup{z}{}{3}+\frac{1}{792}\mp@subsup{z}{}{4}+\frac{1}{15840}\mp@subsup{z}{}{5}+\frac{1}{665280}\mp@subsup{z}{}{6}.
function E = expmv(A);
% EXPMV computes the exponential
% of the matrix A
% Compute scaling parameter
[f,e] = log2(norm(A,'inf'));
s = max (0, e+1);
A = A/2^s;
X = A;
d = 2; c = 1/d;
E = eye(size(A)) + c*A;
D = eye(size(A)) - c*A;
m = 8; p = 1;
for k = 2:m
    d = d*(k* (2*m-k+1))/(m-k+1)
    c = 1/d;
    X = A*X;
    cX = c*X;
    E = E + cX;
    if p, D = D + c*X;
    else, D = D - c*X; end
    p = ~
end
E = D\E;
for k = 1:s, E = E*E; end
```

It can be shown $\left([35\right.$, Appendix A] $)$ that then $r_{m m}\left(2^{-s} A\right)^{2^{s}}=e^{A+E}$, where

$$
\frac{\|E\|}{\|A\|}<2^{3}\left(2^{-s}\|A\|\right)^{2 m} \frac{(m!)^{2}}{(2 m)!(2 m+1)!}
$$

For s and m chosen as in Matlab this gives $\|E\| /\|A\|<3.4 \cdot 10^{-16}$, which is close to the unit roundoff in IEEE double precision $2^{-53}=1.11 \cdot 10^{-16}$. Note that
this backward error result does not guarantee an accurate result. If the problem is inherently sensitive to perturbations the error can be large.

The analysis does not take roundoff errors in the squaring phase into consideration. This is the weak point of this approach. We have

$$
\left\|A^{2}-f l\left(A^{2}\right)\right\| \leq \gamma_{n}\|A\|^{2}, \quad \gamma_{n}=\frac{n u}{1-n u}
$$

but since possibly $\left\|A^{2}\right\| \ll\|A\|^{2}$ this is not satisfactory and shows the danger in matrix squaring. If a higher degree Padé approximation is chosen then the number of squarings can be reduced. Choices suggested in the literature (N. J. Higham [25]) are $m=8$, with $2^{-s}\|A\|<1.5$ and $m=13$, with $2^{-s}\|A\|<5.4$.

Given a square matrix $A \in \mathbf{C}^{n \times n}$ a matrix X such that

$$
\begin{equation*}
X^{2}=A \tag{9.2.24}
\end{equation*}
$$

is called a square root of A and denoted by $X=A^{1 / 2}$. Unlike a square root of a scalar, the square root of a matrix may not exist. For example, it is easy to verify that the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

has no square root. A sufficient condition for A to have a square root is that it has at least $n-1$ nonzero eigenvalues. We assume in the following that this condition is satisfied. If A is nonsingular and has s distinct eigenvalues then it has precisely 2^{s} square roots that are expressible as polynomials in the matrix A. If some eigenvalues appear in more than one Jordan block then there are infinitely many additional square roots, none of which can be expressed as a polynomial in A. For example, any Householder matrix is a square root of the identity matrix.

There is a principal square root of particular interest, namely the one whose eigenvalues lie in the right half plane. To make this uniquely defined we map any eigenvalue on the negative real axis to the positive imaginary axis. The principal square root, when it exists, is a polynomial in the original matrix. When A is symmetric positive definite the principal square root is the unique symmetric positive definite square root.

To compute the principal square root we first determine the Schur decomposition

$$
A=Q S Q^{H}
$$

where Q is unitary and S upper triangular. If U is an upper triangular square root of S, then $X=Q U Q^{H}$ is a square root of A. If A is a normal matrix then $S=\operatorname{diag}\left(\lambda_{i}\right)$ and we can just take $U=\operatorname{diag}\left(\lambda_{i}^{1 / 2}\right)$. Otherwise, from the relation $S=U^{2}$ we get

$$
\begin{equation*}
s_{i j}=\sum_{k=i}^{j} u_{i k} u_{k j}, \quad i \leq j \tag{9.2.25}
\end{equation*}
$$

This gives a recurrence relation for determining the elements in U. For the diagonal elements in U we have

$$
\begin{equation*}
u_{i i}=s_{i i}^{1 / 2}, \quad i=1: n \tag{9.2.26}
\end{equation*}
$$

Further

$$
\begin{equation*}
u_{i j}=\left(s_{i j}-\sum_{k=i+1}^{j-1} u_{i k} u_{k j}\right) /\left(u_{i i}+u_{j j}\right) . \quad i<j \tag{9.2.27}
\end{equation*}
$$

Hence, the elements in U can be determined computed from (9.2.27), for example, one diagonal at a time. Since whenever $s_{i i}=s_{j j}$ we take $u_{i i}=u_{j j}$ this recursion does not break down. (Recall we assumed that at most one diagonal element of S is zero.)

If we let \bar{U} be the computed square root of S then it can be shown that

$$
\bar{U}^{2}=S+E, \quad\|E\| \leq c(n) u\left(\|S\|+\|U\|^{2}\right)
$$

where u is the unit roundoff and $c(n)$ a small constant epending on n. If we define

$$
\alpha=\left\|A^{1 / 2}\right\|^{2} /\|A\|
$$

then we have

$$
\|E\| \leq c(n) u(1+\alpha)\|S\|
$$

To study the conditioning of the square root we let \tilde{X} be an approximation to the square root of A and look for a correction E such that $X=\tilde{X}+E$. Expanding $(\tilde{X}+E)^{2}=A$ and neglecting the term E^{2} we get

$$
\tilde{X} E+E \tilde{X}=A-\tilde{X}^{2}
$$

We remark that for real matrices an analogue algorithm can be developed, which uses the real Schur decomposition and only exploys real arithmetic.

9.2.5 Non-Negative Matrices

Non-negative matrices arise in many applications and play an important role in, e.g., queuing theory, stochastic processes, and input-output analysis.

Definition 9.2.16. A matrix $A \in \mathbf{R}^{n \times n}$ is called non-negative if $a_{i j} \geq 0$ for each i and j and positive if $a_{i j}>0$ for $i, j=1: n$. Similarly, a vector $x \in \mathbf{R}^{n}$ is called non-negative if $x_{i} \geq 0 i=1: n$ and positive if $x_{i}>0 i=1: n$.

Theorem 9.2.17. Let $A \in \mathbf{R}^{n \times n}$ be a square nonnegative matrix and let $s=A e$, $e=\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right)^{T}$ be the vector of row sums of A. Then

$$
\begin{equation*}
\min _{i} s_{i} \leq \rho(A) \leq \max _{i} s_{i}=\|A\|_{1} \tag{9.2.28}
\end{equation*}
$$

For the class of nonnegative and irreducible matrices (see (Def.9.1.5)) the following classical theorem holds.

Theorem 9.2.18. (Perron-Frobenius Theorem)

If $A>0$ then $r=\rho(A)$ is a simple eigenvalue and there are no other eigenvalue of modulus $\rho(A)$.

If $A \geq 0$ is irreducible then $\rho(A)$ is a simple eigenvalue and
(i) A has a positive eigenvector x corresponding to the eigenvalue $\rho(A)$ and any nonnegative eigenvector of A is a multiple of x;
(ii) The eigenvalues of modulus $\rho(A)$ are all simple. If there are m eigenvalues of modulus ρ, they must be of the form

$$
\lambda_{k}=\rho e^{\frac{2 k \pi i}{m}}, \quad k=0: m-1 .
$$

(iii) $\rho(A)$ increases when any entry of A increases.

Proof. See, e.g., Gantmacher [15, 1959], Vol. II or [4, pp. 27,32]. A simpler proof of some of these results is found in Strang [46, 1988, [p.271].

Perron ${ }^{4}$ (1907) proved the first part of this theorem for $A>0$. Later Frobenius (1912) extended most of Perron's result to the class of nonnegative irreducible matrices.

9.2.6 Finite Markov Chains

A Markov chain ${ }^{5}$ is a probabilistic process in which the future development is completely determined by the present state and not at all in the way it arose. Markov chains serve as models for describing systems that can be in a number of different states $s_{1}, s_{2}, s_{3}, \ldots$. At each time step the system moves from state s_{i} to state s_{j} with probability $q_{i j}$. Such processes have many applications in the physical, biological and social sciences. The Markov chain is finite if the number of states is finite.

Definition 9.2.19. A matrix $Q \in \mathbf{R}^{n \times n}$ is called row stochastic matrix if it satisfies

$$
\begin{equation*}
q_{i j} \geq 0, \quad \sum_{1 \leq j \leq n} q_{i j}=1, \quad i, j=1: n \tag{9.2.29}
\end{equation*}
$$

It is called doubly stochastic if in addition

$$
\begin{equation*}
\sum_{1 \leq i \leq n} q_{i j}=1 \tag{9.2.30}
\end{equation*}
$$

[^3]In a finite Markov chain there are a finite number of states $s_{i}, i=1: n$. The nonnegative matrix Q with elements equal to the transition probabilities $q_{i j}$ is a row stochastic matrix. From (9.2.29) it follows that

$$
Q e=e, \quad e=\left(\begin{array}{llll}
1 & 1 & \ldots & 1 \tag{9.2.31}
\end{array}\right)^{T},
$$

i.e. e is a right eigenvector of Q corresponding to the eigenvalue $\lambda=1$. From Theorem 9.2 .17 it follows that $\rho(Q)=1$.

The vector $p=\left(\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{n}\end{array}\right)^{T}$, where $p_{i} \geq 0, e^{T} p=1$ is the probability that the system is at state i, is called the state vector of the Markov chain. Let p^{k} denote the state vector at time step k. Then $p^{(k+1)}=Q^{T} p^{k}$, and

$$
p^{k}=\left(Q^{k}\right)^{T} p^{0}, \quad k=1,2, \ldots
$$

An important problem is to find the stationary distribution p of a Markov chain. A state vector p of a Markov chain is said to be stationary if

$$
\begin{equation*}
Q^{T} p=p, \quad e^{T} p=1 \tag{9.2.32}
\end{equation*}
$$

Hence p is a left eigenvector of Q corresponding to the eigenvalue $\lambda=1=\rho(Q)$. It follows that p solves the singular homogeneous linear system

$$
\begin{equation*}
\left(I-Q^{T}\right) p=0 . \tag{9.2.33}
\end{equation*}
$$

From the Perron-Frobenius Theorem it follows that if Q is irreducible then $\lambda=1$ is a simple eigenvalue of Q and there is a unique eigenvector p satisfying (9.2.32). If $Q>0$, then there is no other eigenvalue with modulus $\rho(Q)$ and we have the following result:

Theorem 9.2.20. Assume that a Markov chain has a positive transition matrix. Then, independent of the initial state vector,

$$
\lim _{k \rightarrow \infty} p^{k}=p
$$

where p satisfies (9.2.32).
If Q is not positive then the Markov chain may not converge to a stationary state.

Example 9.2.5. Consider a Markov chain with two states for which state 2 is always transformed into state 1 and state 2 into state 1 . The corresponding transition matrix

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

with two eigenvalues of modolus $\rho(Q), \lambda_{1}=1$ and $\lambda_{2}=-1$. Here Q is symmetric and its left eigenvalue equals $p=(0.50 .5)^{T}$. However, for any initial state different from p the state will oscillate and not converge.

This example can be generalized by considering a Markov chain with m states and taking Q equal to the permutation matrix corresponding to a cyclic shift. Then Q has m eigenvalues on the unit circle in the complex plane.

The theory of Markov chains for general reducible nonnegative transition matrices Q is much more complicated. It is then neccessary to classify the states. We say that a state s_{i} has access to a state s_{j} if it is possible to move from state s_{i} to s_{j} in a finite number of steps. If also s_{j} has access to $s_{i} s_{i}$ and s_{j} are said to communicate. This is an equivalence relation on the set of states and partitions the states into classes. If a class of states has access to no other class it is called final. If a final class contains a single state then the state is called absorbing.

Suppose that Q has been permuted to its block triangular form

$$
Q=\left(\begin{array}{cccc}
Q_{11} & 0 & \ldots & 0 \tag{9.2.34}\\
Q_{21} & Q_{22} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
Q_{s 1} & Q_{s 2} & \ldots & Q_{s s}
\end{array}\right)
$$

where the diagonal blocks $Q_{i i}$ are square and irreducible. Then these blocks correspond to the classes associated with the corresponding Markov chain. The class associated with $Q_{i i}$ is final if and only if $Q_{i j}=0, j=1: i-1$. If the matrix Q is irreducible then the corresponding matrix chain contains a single class of states.

Example 9.2.6. Suppose there is an epidemic in which every month 10% of those who are well become sick and of those who are sick 20% dies, and the rest become well. This can be modeled by the Markov process with three states dead, sick, well, and transition matrix

$$
Q=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.1 & 0 & 0.9 \\
0 & 0.2 & 0.8
\end{array}\right)
$$

Then the left eigenvector is $p=e_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$, i.e. in the stationary distribution all are dead. Clearly the class dead is absorbing!

We now describe a way to force a Markov chain to become irreducible.

Example 9.2.7 (Eldén).

Let $Q \in \mathbf{R}^{n \times n}$ be a row stohastic matrix and set

$$
P=\alpha Q+(1-\alpha) \frac{1}{n} e e^{T}, \quad \alpha>0
$$

where e is a vector of all ones. Then $P>0$ and since $e^{T} e=n$ we have $P e=$ $(1-\alpha) e+\alpha e=1$, so P is row stochastic. From the Perron-Frobenius Theorem it follows that there is no other eigenvalue of P with modulus 1

We now show that if the eigenvalues of Q equal $1, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ then the eigenvalues of P are $1, \alpha \lambda_{2}, \alpha \lambda_{3}, \ldots, \alpha \lambda_{n}$.

Proceeding as in the proof of the Schur normal form (Theorem 9.2.1) we define the orthogonal matrix $U=\left(u_{1} U_{2}\right)$, where $u_{1}=e / \sqrt{n}$. Then

$$
\begin{aligned}
U^{T} Q U & =U^{T}\left(\begin{array}{ll}
Q^{T} u_{1} & \left.Q^{T} U_{2}\right)=U^{T}\left(\begin{array}{cc}
u_{1} & Q^{T} U_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1}^{T} u_{1} & u_{1}^{T} Q^{T} U_{2} \\
U_{2}^{T} u_{1} & U_{2}^{T} Q^{T} U_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & v^{T} \\
0 & T
\end{array}\right) .
\end{array} . .\right.
\end{aligned}
$$

This is a similarity transformation so T has eigenvalues $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$. Further $U^{T} e=\sqrt{n} e_{1}$ so that $U^{T} e e^{T} U=n e_{1} e_{1}^{T}$, and we obtain

$$
\begin{aligned}
U^{T} P U & =U^{T}\left(\alpha Q+(1-\alpha) \frac{1}{n} e e^{T}\right) U \\
& =\alpha\left(\begin{array}{cc}
1 & v^{T} \\
0 & T
\end{array}\right)+(1-\alpha)\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & \alpha v^{T} \\
0 & \alpha T
\end{array}\right) .
\end{aligned}
$$

The result now follows.

Review Questions

1. What is the Schur normal form of a matrix $A \in \mathbf{C}^{n \times n}$?
(b)What is meant by a normal matrix? How does the Schur form simplify for a normal matrix?
2. How can the class of matrices which are diagonalizable by unitary transformations be characterized?
3. What is meant by a defective eigenvalue? Give a simple example of a matrix with a defective eigenvalue.
4. Define the matrix function e^{A}. Show how this can be used to express the solution to the initial value problem $y^{\prime}(t)=A y(t), y(0)=c$?
5. What can be said about the behavior of $\left\|A^{k}\right\|, k \gg 1$, in terms of the spectral radius and the order of the Jordan blocks of A ? (See Problem 8.)
6. (a) Given a square matrix A. Under what condition does there exist a vector norm, such that the corresponding operator norm $\|A\|$ equals the spectral radius? If A is diagonalizable, mention a norm that has this property.
(b) What can you say about norms that come close to the spectral radius, when the above condition is not satisfied? What sets the limit to their usefulness?
7. Show that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln \left\|e^{A t}\right\|=\max _{\lambda \in \lambda(A)} \operatorname{Re}(\lambda), \quad \lim _{t \rightarrow 0} \frac{1}{t} \ln \left\|e^{A t}\right\|=\mu(A)
$$

8. Prove the Cayley-Hamilton theorem for a diagonalizable matrix. Then generalize to an arbitrary matrix, either as in the text or by using Bellman's approximation theorem, (Theorem 9.2.5).
9. Give an example of a matrix, for which the minimal polynomial has a lower degree than the characteristic polynomial. Is the characteristic polynomial always divisible by the minimal polynomial?
10. Under what conditions can identities which hold for analytic functions of complex variable(s) be generalized to analytic functions of matrices?
11. (a) Show that any permutation matrix is doubly stochastic.
(b) What are the eigenvalues of matrix

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
= & 0 & 1 \\
1 & 0 & 0
\end{array}\right) ?
$$

12. Suppose that P and Q are row stochastic matrices.
(a) Show that $\alpha P+(1-\alpha Q)$ is a row stochastic matrix.
(b) Show that $P Q$ is a row stochastic matrix.

Problems and Computer Exercises

1. Find a similarity transformation $X^{-1} A X$ that diagonalizes the matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
0 & 1+\epsilon
\end{array}\right), \quad \epsilon>0
$$

How does the transformation X behave as ϵ tends to zero?
2. Show that the Sylvester equation (9.2.6) can be written as the linear system

$$
\begin{equation*}
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(X)=\operatorname{vec}(C) \tag{9.2.35}
\end{equation*}
$$

where \otimes denotes the Kronecker product and $\operatorname{vec}(X)$ is the column vector obtained by stacking the column of X on top of each other.
3. (a) Let $A \in \mathbf{R}^{n \times n}$, and consider the matrix polynomial

$$
p(A)=a_{0} A^{n}+a_{1} A^{n-1}+\cdots+a_{n} I \in \mathbf{R}^{n \times n}
$$

Show that if $A x=\lambda x$ then $p(\lambda)$ is an eigenvalue and x an associated eigenvector of $p(A)$.
(b) Show that the same is true in general for an analytic function $f(A)$. Verify (9.2.18). Also construct an example, where $p(A)$ has other eigenvectors in addition to those of A.
4. Show that the series expansion

$$
(I-A)^{-1}=I+A+A^{2}+A^{3}+\ldots
$$

converges if $\rho(A)<1$.
5. (a) Let $\|\cdot\|$ be a consistent matrix norm, and ρ denote the spectral radius. Show that

$$
\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}=\rho(A)
$$

(b) Show that

$$
\lim _{t \rightarrow \infty} \frac{\ln \left\|e^{A t}\right\|}{t}=\max _{\lambda \in \lambda(A)} \Re(\lambda)
$$

Hint: Assume, without loss of generality, that A is in its Jordan canonical form.
6. Show that the eigenvalues λ_{i} of a matrix A satisfy the inequalities

$$
\sigma_{\min }(A) \leq \min _{i}\left|\lambda_{i}\right| \leq \max _{i}\left|\lambda_{i}\right| \sigma_{\max }(A)
$$

Hint: Use the fact that the singular values of A and its Schur decomposition $Q^{T} A Q=\operatorname{diag}\left(\lambda_{i}\right)+N$ are the same.
7. Show that Sylvester's equation (9.2.6) can be written as an equation in standard matrix-vector form,

$$
\left((I \otimes A)+\left(-B^{T} \otimes I\right)\right) x=c
$$

where the vectors $x, c \in \mathbf{R}^{n m}$ are obtained from $X=\left(x_{1}, \ldots, x_{m}\right)$ and $C=$ $\left(c_{1}, \ldots, c_{m}\right)$ by

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right), \quad c=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right)
$$

Then use (9.1.19) to give an independent proof that Sylvester's equation has a unique solution if and only if $\lambda_{i}-\mu_{j} \neq 0, i=1, \ldots, n, j=1, \ldots, m$.
8. Show that

$$
e^{A} \otimes e^{B}=e^{B \oplus A}
$$

where \oplus denotes the Kronecker sum.
9. (a) Show that if $A=\left(\begin{array}{cc}\lambda_{1} & 1 \\ 0 & \lambda_{2}\end{array}\right)$ and $\lambda_{1} \neq \lambda_{2}$ then

$$
f(A)=\left(\begin{array}{cc}
f\left(\lambda_{1}\right) & \frac{f\left(\lambda_{1}\right)-f\left(\lambda_{2}\right)}{\lambda_{1}-\lambda_{2}} \\
0 & f\left(\lambda_{2}\right)
\end{array}\right)
$$

Comment on the numerical use of this expression when $\lambda_{2} \rightarrow \lambda_{1}$.
(b) For $A=\left(\begin{array}{cc}0.5 & 1 \\ 0 & 0.6\end{array}\right)$, show that $\ln (A)=\left(\begin{array}{cc}-0.6931 & 1.8232 \\ 0 & 0.5108\end{array}\right)$.
10. (a) Compute e^{A}, where

$$
A=\left(\begin{array}{ll}
-49 & 24 \\
-64 & 31
\end{array}\right)
$$

using the method of scaling and squaring. Scale the matrix so that $\left\|A / 2^{s}\right\|_{\infty}<$ $1 / 2$ and approximate the exponential of the scaled matrix by a Pade approximation of order $(4,4)$.
(b) Compute the eigendecomposition $A=X \Lambda X^{-1}$ and obtain $e^{A}=X e^{\Lambda} X^{-1}$. Compare the result with that obtained in (a).
11. Show that an analytic function of the matrix A can be computed by Newton's interpolation formula, i.e.,

$$
f(A)=f\left(\lambda_{1}\right) I+\sum_{j=1}^{n^{*}} f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{j} I\right)
$$

where $\lambda_{j}, j=1,2, \ldots, n^{*}$ are the distinct eigenvalues of A, each counted with the same multiplicity as in the minimal polynomial. Thus, n^{*} is the degree of the minimal polynomial of A.
12. We use the notation of Theorem 9.2.13. For a given n, show by an appropriate choice of ϵ that $\left\|A^{n}\right\|_{p} \leq C n^{m^{*}-1} \rho^{n}$, where C is independent of n. Then derive the same result from the Jordan Canonical form.
Hint: See the comment after Theorem 9.2.13.
13. Let C be a closed curve in the complex plane, and consider the function,

$$
\phi_{C}(A)=\frac{1}{2 \pi i} \int_{C}(z I-A)^{-1} d z
$$

If the whole spectrum of A is inside C then, by Example 9.2.2, $\phi_{C}(A)=I$. What is $\phi_{C}(A)$, when only part of the spectrum (or none of it) is inside C ? Is it generally true that $\phi_{C}(A)^{2}=\phi_{C}(A)$?
Hint: First consider the case, when A is a Jordan block.

9.3 Perturbation Theory and Eigenvalue Bounds

Methods for computing eigenvalues and eigenvectors are subject to roundoff errors. The best we can demand of an algorithm in general is that it yields approximate eigenvalues of a matrix A that are the exact eigenvalues of a slightly perturbed matrix $A+E$. In order to estimate the error in the computed result we need to know the effects of the perturbation E on the eigenvalues and eigenvectors of A. Such results are derived in this section.

9.3.1 Gerschgorin's Theorems

In 1931 the Russian mathematician published a seminal paper [17] on how to obtain estimates of all eigenvalues of a complex matrix. His results can be used both to locate eigenvalues and to derive perturbation results.

Theorem 9.3.1.

All the eigenvalues of the matrix $A \in \mathbf{C}^{n \times n}$ lie in the union of the Gerschgorin disks in the complex plane

$$
\begin{equation*}
\mathcal{D}_{i}=\left\{z| | z-a_{i i} \mid \leq r_{i}\right\}, \quad r_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n \tag{9.3.1}
\end{equation*}
$$

Proof. If λ is an eigenvalue there is an eigenvector $x \neq 0$ such that $A x=\lambda x$, or

$$
\left(\lambda-a_{i i}\right) x_{i}=\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n .
$$

Choose i so that $\left|x_{i}\right|=\|x\|_{\infty}$. Then

$$
\begin{equation*}
\left|\lambda-a_{i i}\right| \leq \sum_{j=1, j \neq i}^{n} \frac{\left|a_{i j}\right|\left|x_{j}\right|}{\left|x_{i}\right|} \leq r_{i} . \tag{9.3.2}
\end{equation*}
$$

\square

The Gerschgorin theorem is very useful for getting crude estimates for eigenvalues of matrices, and can also be used to get accurate estimates for the eigenvalues of a nearly diagonal matrix. Since A and A^{T} have the same eigenvalues we can, in the non-Hermitian case, obtain more information about the location of the eigenvalues simply by applying the theorem also to A^{T}.

From (9.3.2) it follows that if the i th component of the eigenvector is maximal, then λ lies in the i th disk. Otherwise the Gerschgorin theorem does not say in which disks the eigenvalues lie. Sometimes it is possible to decide this as the following theorem shows.

Theorem 9.3.2.

If the union \mathcal{M} of k Gerschgorin disks \mathcal{D}_{i} is disjoint from the remaining disks, then \mathcal{M} contains precisely k eigenvalues of A.

Proof. Consider for $t \in[0,1]$ the family of matrices

$$
A(t)=t A+(1-t) D_{A}, \quad D_{A}=\operatorname{diag}\left(a_{i i}\right)
$$

The coefficients in the characteristic polynomial are continuous functions of t, and hence also the eigenvalues $\lambda(t)$ of $A(t)$ are continuous functions of t. Since $A(0)=$ D_{A} and $A(1)=A$ we have $\lambda_{i}(0)=a_{i i}$ and $\lambda_{i}(1)=\lambda_{i}$. For $t=0$ there are exactly k eigenvalues in \mathcal{M}. For reasons of continuity an eigenvalue $\lambda_{i}(t)$ cannot jump to a subset that does not have a continuous connection with $a_{i i}$ for $t=1$. Therefore also k eigenvalues of $A=A(1)$ lie in \mathcal{M}.

Example 9.3.1.

The matrix

$$
A=\left(\begin{array}{ccc}
2 & -0.1 & 0.05 \\
0.1 & 1 & -0.2 \\
0.05 & -0.1 & 1
\end{array}\right)
$$

with eigenvalues $\lambda_{1}=0.8634, \lambda_{2}=1.1438, \lambda_{3}=1.9928$, has the Gerschgorin disks

$$
\mathcal{D}_{1}=\{z| | z-2 \mid \leq 0.15\} ; \quad \mathcal{D}_{2}=\{z| | z-1 \mid \leq 0.3\} ; \quad \mathcal{D}_{3}=\{z| | z-1 \mid \leq 0.15\}
$$

Since the disk \mathcal{D}_{1} is disjoint from the rest of the disks, it must contain precisely one eigenvalue of A. The remaining two eigenvalues must lie in $\mathcal{D}_{2} \cup \mathcal{D}_{3}=\mathcal{D}_{2}$.

There is another useful sharpening of Gerschgorin's Theorem in case the ma$\operatorname{trix} A$ is irreducible, cf. Def. 9.1.5.

Theorem 9.3.3.

If A is irreducible then each eigenvalue λ lies in the interior of the union of the Gerschgorin disks, unless it lies on the boundary of all Gerschgorin disks.

Proof. If λ lies on the boundary of the union of the Gerschgorin disks, then we have

$$
\begin{equation*}
\left|\lambda-a_{i i}\right| \geq r_{i}, \quad \forall i \tag{9.3.3}
\end{equation*}
$$

Let x be a corresponding eigenvector and assume that $\left|x_{i_{1}}\right|=\|x\|_{\infty}$. Then from the proof of Theorem 9.3 .1 and (9.3.3) it follows that $\left|\lambda-a_{i_{1} i_{1}}\right|=r_{i_{1}}$. But (9.3.2) implies that equality can only hold here if for any $a_{i_{1} j} \neq 0$ it holds that $\left|x_{j}\right|=\|x\|_{\infty}$. If we assume that $a_{i_{1}, i_{2}} \neq 0$ then it follows that $\left|\lambda-a_{i_{2} i_{2}}\right|=r_{i_{2}}$. But since A is irreducible for any $j \neq i$ there is a path $i=i_{1}, i_{2}, \ldots, i_{p}=j$. It follows that λ must lie on the boundary of all Gerschgorin disks.

Example 9.3.2. Consider the real, symmetric matrix

$$
A=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathbf{R}^{n \times n}
$$

Its Gerschgorin disks are

$$
|z-2| \leq 2, \quad i=2, \ldots, n-1, \quad|z-2| \leq 1, \quad i=1, n
$$

and it follows that all eigenvalues of A satisfy $\lambda \geq 0$. Since zero is on the boundary of the union of these disks, but not on the boundary of all disks, zero cannot be an eigenvalue of A. Hence all eigenvalues are strictly positive and A is positive definite.

9.3.2 Perturbation Theorems

In the rest of this section we consider the sensitivity of eigenvalue and eigenvectors to perturbations.

Theorem 9.3.4. (Bauer-Fike.)
Let the matrix $A \in \mathbf{C}^{n \times n}$ be diagonalizable, $X^{-1} A X=D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, and let μ be an eigenvalue to $A+E$. Then for any p-norm

$$
\begin{equation*}
\min _{1 \leq i \leq n}\left|\mu-\lambda_{i}\right| \leq \kappa_{p}(X)\|E\|_{p} \tag{9.3.4}
\end{equation*}
$$

where $\kappa_{p}(X)=\left\|X^{-1}\right\|_{p}\|X\|_{p}$ is the condition number of the eigenvector matrix.
Proof. We can assume that μ is not an eigenvalue of A, since otherwise (9.3.4) holds trivially. Since μ is an eigenvalue of $A+E$ the matrix $A+E-\mu I$ is singular and so is also

$$
X^{-1}(A+E-\mu I) X=(D-\mu I)+X^{-1} E X
$$

Then there is a vector $z \neq 0$ such that

$$
(D-\mu I) z=-X^{-1} E X z .
$$

Solving for z and taking norms we obtain

$$
\|z\|_{p} \leq \kappa_{p}(X)\left\|(D-\mu I)^{-1}\right\|_{p}\|E\|_{p}\|z\|_{p}
$$

The theorem follows by dividing by $\|z\|_{p}$ and using the fact that for any p-norm $\left\|(D-\mu I)^{-1}\right\|_{p}=1 / \min _{1 \leq i \leq n}\left|\lambda_{i}-\mu\right|$.

The Bauer-Fike theorem shows that $\kappa_{p}(X)$ is an upper bound for the condition number of the eigenvalues of a diagonalizable matrix A. In particular if A is normal we know from the Schur Canonical Form (Theorem 9.2.1) that we can take $X=U$ to be a unitary matrix. Then we have $\kappa_{2}(X)=1$, which shows the important result that the eigenvalues of a normal matrix are perfectly conditioned, also if they have multiplicity greater than one. On the other hand, for a matrix A which is close to a defective matrix the eigenvalues can be very ill-conditioned, see Example 9.2.1, and the following example.

Example 9.3.3.

Consider the matrix $A=\left(\begin{array}{ll}1 & 1 \\ \epsilon & 1\end{array}\right), 0<\epsilon$ with eigenvector matrix

$$
X=\left(\begin{array}{cc}
1 & 1 \\
\sqrt{\epsilon} & -\sqrt{\epsilon}
\end{array}\right), \quad X^{-1}=\frac{0.5}{\sqrt{\epsilon}}\left(\begin{array}{cc}
\sqrt{\epsilon} & 1 \\
\sqrt{\epsilon} & -1
\end{array}\right) .
$$

If $\epsilon \ll 1$ then

$$
\kappa_{\infty}(X)=\left\|X^{-1}\right\|_{\infty}\|X\|_{\infty}=\frac{1}{\sqrt{\epsilon}}+1 \gg 1
$$

Note that in the limit when $\epsilon \rightarrow 0$ the matrix A is not diagonalizable.
In general a matrix may have a mixture of well-conditioned and ill-conditioned eigenvalues. Therefore it is useful to have perturbation estimates for the individual eigenvalues of a matrix A. We now derive first order estimates for simple eigenvalues and corresponding eigenvectors.

Theorem 9.3.5.

Let λ_{j} be a simple eigenvalue of A and let x_{j} and y_{j} be the corresponding right and left eigenvector of A,

$$
A x_{j}=\lambda_{j} x_{j}, \quad y_{j}^{H} A=\lambda_{j} y_{j}^{H}
$$

Then for sufficiently small ϵ the matrix $A+\epsilon E$ has a simple eigenvalue $\lambda_{j}(\epsilon)$ such that,

$$
\begin{equation*}
\lambda_{j}(\epsilon)=\lambda_{j}+\epsilon \frac{y_{j}^{H} E x_{j}}{y_{j}^{H} x_{j}}+O\left(\epsilon^{2}\right) \tag{9.3.5}
\end{equation*}
$$

Proof. Since λ_{j} is a simple eigenvalue there is a $\delta>0$ such that the disk $\mathcal{D}=$ $\left\{\mu \|\left|\mu-\lambda_{j}\right|<\delta\right\}$ does not contain any eigenvalues of A other than λ_{j}. Then using Theorem 9.3 .2 it follows that for sufficiently small values of ϵ the matrix $A+\epsilon E$ has a simple eigenvalue $\lambda_{j}(\epsilon)$ in \mathcal{D}. If we denote a corresponding eigenvector $x_{j}(\epsilon)$ then

$$
(A+\epsilon E) x_{j}(\epsilon)=\lambda_{j}(\epsilon) x_{j}(\epsilon) .
$$

Using results from function theory, it can be shown that $\lambda_{j}(\epsilon)$ and $x_{j}(\epsilon)$ are analytic functions of ϵ for $\epsilon<\epsilon_{0}$. Differentiating with respect to ϵ and putting $\epsilon=0$ we get

$$
\begin{equation*}
\left(A-\lambda_{j} I\right) x_{j}^{\prime}(0)+E x_{j}=\lambda_{j}^{\prime}(0) x_{j} \tag{9.3.6}
\end{equation*}
$$

Since $y_{j}^{H}\left(A-\lambda_{j} I\right)=0$ we can eliminate $x_{j}^{\prime}(0)$ by multiplying this equation with y_{j}^{H} and solve for $\lambda_{j}^{\prime}(0)=y_{j}^{H} E x_{j} / y_{j}^{H} x_{j}$.

If $\|E\|_{2}=1$ we have $\left|y_{j}^{H} E x_{j}\right| \leq\left\|x_{j}\right\|_{2}\left\|y_{j}\right\|_{2}$ and E can always be chosen so that equality holds. If we also normalize so that $\left\|x_{j}\right\|_{2}=\left\|y_{j}\right\|_{2}=1$, then $1 / s\left(\lambda_{j}\right)$, where

$$
\begin{equation*}
s\left(\lambda_{j}\right)=\left|y_{j}^{H} x_{j}\right| \tag{9.3.7}
\end{equation*}
$$

can be taken as the condition number of the simple eigenvalue λ_{j}. Note that $s\left(\lambda_{j}\right)=$ $\cos \theta\left(x_{j}, y_{j}\right)$, where $\theta\left(x_{j}, y_{j}\right)$ is the acute angle between the left and right eigenvector corresponding to λ_{j}. If A is a normal matrix we get $s\left(\lambda_{j}\right)=1$.

The above theorem shows that for perturbations in A of order ϵ, a simple eigenvalue λ of A will be perturbed by an amount approximately equal to $\epsilon / s(\lambda)$. If λ is a defective eigenvalue, then there is no similar result. Indeed, if the largest Jordan block corresponding to λ is of order k, then perturbations to λ of order $\epsilon^{1 / k}$ can be expected. Note that for a Jordan box we have $x=e_{1}$ and $y=e_{m}$ and so $s(\lambda)=0$ in (9.3.7).

Example 9.3.4.

Consider the perturbed diagonal matrix

$$
A+\epsilon E=\left(\begin{array}{ccc}
1 & \epsilon & 2 \epsilon \\
\epsilon & 2 & \epsilon \\
\epsilon & 2 \epsilon & 2
\end{array}\right)
$$

Here A is diagonal with left and right eigenvector equal to $x_{i}=y_{i}=e_{i}$. Thus $y_{i}^{H} E x_{i}=e_{i i}=0$ and the first order term in the perturbation of the simple eigenvalues are zero. For $\epsilon=10^{-3}$ the eigenvalues of $A+E$ are

$$
0.999997, \quad 1.998586, \quad 2.001417 .
$$

Hence the perturbation in the simple eigenvalue λ_{1} is of order 10^{-6}. Note that the Bauer-Fike theorem would predict perturbations of order 10^{-3} for all three eigenvalues.

We now consider the perturbation of an eigenvector x_{j} corresponding to a simple eigenvalue λ_{j}. Assume that the matrix A is diagonalizable and that x_{1}, \ldots, x_{n} are linearly independent eigenvectors. Then we can write

$$
x_{j}(\epsilon)=x_{j}+\epsilon x_{j}^{\prime}(0)+O\left(\epsilon^{2}\right), \quad x_{j}^{\prime}(0)=\sum_{k \neq j} c_{k j} x_{k},
$$

where we have normalized $x_{j}(\epsilon)$ to have unit component along x_{j}. Substituting the expansion of $x_{j}^{\prime}(0)$ into (9.3.6) we get

$$
\sum_{k \neq j} c_{k j}\left(\lambda_{k}-\lambda_{j}\right) x_{k}+E x_{j}=\lambda_{j}^{\prime}(0) x_{j} .
$$

Multiplying by y_{i}^{H} and using $y_{i}^{H} x_{j}=0, i \neq j$, we obtain

$$
\begin{equation*}
c_{i j}=\frac{y_{i}^{H} E x_{j}}{\left(\lambda_{j}-\lambda_{i}\right) y_{i}^{H} x_{i}}, \quad i \neq j . \tag{9.3.8}
\end{equation*}
$$

Hence, the sensitivity of the eigenvectors also depend on the separation $\delta_{j}=$ $\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|$ between λ_{j} and the rest of the eigenvalues of A. If several eigenvectors corresponds to a multiple eigenvalue these are not uniquely determined, which is consistent with this result. Note that even if the individual eigenvectors are sensitive to perturbations it may be that an invariant subspace containing these eigenvectors is well determined.

To measure the accuracy of computed invariant subspaces we need to introduce the largest angle between two subspaces.

Definition 9.3.6. Let \mathcal{X} and $\mathcal{Y}=\mathcal{R}(Y)$ be two subspaces of \mathbf{C}^{n} of dimension k. Define the largest angle between these subspaces to be

$$
\begin{equation*}
\theta_{\max }(\mathcal{X}, \mathcal{Y})=\max _{\substack{x \in \mathcal{X} \\\|x\|_{2}=1 \\\|y\|_{2}=1}} \min _{\substack{y \in \mathcal{Y}\\}} \theta(x, y) . \tag{9.3.9}
\end{equation*}
$$

where $\theta(x, y)$ is the acute angle between x and y.
The quantity $\sin \theta_{\max }(\mathcal{X}, \mathcal{Y})$ defines a distance between the two subspaces \mathcal{X} and \mathcal{Y}. If X and Y are orthonormal matrices such that $\mathcal{X}=\mathcal{R}(X)$ and $\mathcal{Y}=\mathcal{R}(Y)$, then it can be shown (see Golub and Van Loan [21]) that

$$
\begin{equation*}
\theta(\mathcal{X}, \mathcal{Y})=\arccos \sigma_{\min }\left(X^{H} Y\right) \tag{9.3.10}
\end{equation*}
$$

9.3.3 Hermitian Matrices

We have seen that the eigenvalues of Hermitian, and real symmetric matrices are all real, and from Theorem 9.3.5 it follows that these eigenvalues are perfectly conditioned. For this class of matrices it is possible to get more informative perturbation bounds, than those given above. In this section we give several classical theorems. They are all related to each other, and the interlace theorem dates back to Cauchy, 1829. We assume in the following that the eigenvalues of A have been ordered in decreasing order $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.

In the particular case of a Hermitian matrix the extreme eigenvalues λ_{1} and λ_{n} can be characterized by

$$
\lambda_{1}=\max _{\substack{x \in C n \\ x \neq 0}} \rho(x), \quad \lambda_{n}=\min _{\substack{x \in C C^{n} \\ x \neq 0}} \rho(x) .
$$

The following theorem gives an important extremal characterization also of the intermediate eigenvalues of a Hermitian matrix.

Theorem 9.3.7. Fischer's Theorem.
Let the Hermitian matrix A have eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ ordered so that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then

$$
\begin{align*}
\lambda_{i} & =\max _{\operatorname{dim}(\mathcal{S})=i} \min _{\substack{x \in \mathcal{S} \\
x \neq 0}} \frac{x^{H} A x}{x^{H} x} \tag{9.3.11}\\
& =\min _{\operatorname{dim}(\mathcal{S})=n-i+1} \max _{\substack{x \in \mathcal{S} \\
x \neq 0}} \frac{x^{H} A x}{x^{H} x} . \tag{9.3.12}
\end{align*}
$$

where \mathcal{S} denotes a subspace of \mathbf{C}^{n}.
Proof. See Stewart [43, 1973, p. 314].
The formulas (9.3.11) and (9.3.12) are called the max-min and the min-max characterization, respectively. They can be used to establish an important relation between the eigenvalues of two Hermitian matrices A and B, and their sum $C=$ $A+B$.

Theorem 9.3.8.

Let $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}, \beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$, and $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}$ be the eigenvalues of the Hermitian matrices A, B, and $C=A+B$. Then

$$
\begin{equation*}
\alpha_{i}+\beta_{1} \geq \gamma_{i} \geq \alpha_{i}+\beta_{n}, \quad i=1,2, \ldots, n \tag{9.3.13}
\end{equation*}
$$

Proof. Let $x_{1}, x_{2}, \ldots, x_{n}$ be an orthonormal system of eigenvectors of A corresponding to $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$, and let \mathcal{S} be the subspace of \mathbf{C}^{n} spanned by x_{1}, \ldots, x_{i}. Then by Fischer's theorem

$$
\gamma_{i} \geq \min _{\substack{x \in \mathcal{S} \\ x \neq 0}} \frac{x^{H} C x}{x^{H} x} \geq \min _{\substack{x \in \mathcal{S} \\ x \neq 0}} \frac{x^{H} A x}{x^{H} x}+\min _{\substack{x \in \mathcal{S} \\ x \neq 0}} \frac{x^{H} B x}{x^{H} x}=\alpha_{i}+\min _{\substack{x \in \mathcal{S} \\ x \neq 0}} \frac{x^{H} B x}{x^{H} x} \geq \alpha_{i}+\beta_{n} .
$$

This is the last inequality of (9.3.12). The first equality follows by applying this result to $A=C+(-B)$.

The theorem implies that when B is added to A all of its eigenvalues are changed by an amount which lies between the smallest and greatest eigenvalues of B. If the matrix $\operatorname{rank}(B)<n$, the result can be sharpened, see Parlett [38, Section 10-3]. An important case is when $B= \pm z z^{T}$ is a rank one matrix. Then B has only one nonzero eigenvalue equal to $\rho= \pm\|z\|_{2}^{2}$. In this case the perturbed eigenvalues will satisfy the relations

$$
\begin{equation*}
\lambda_{i}^{\prime}-\lambda_{i}=m_{i} \rho, \quad 0 \leq m_{i}, \quad \sum m_{i}=1 \tag{9.3.14}
\end{equation*}
$$

Hence all eigenvalues are shifted by an amount which lies between zero and ρ.
An important application is to get bounds for the eigenvalues λ_{i}^{\prime} of $A+E$, where A and E are Hermitian matrices. Usually the eigenvalues of E are not known, but from

$$
\max \left\{\left|\lambda_{1}(E)\right|,\left|\lambda_{n}(E)\right|\right\}=\rho(E)=\|E\|_{2}
$$

it follows that

$$
\begin{equation*}
\left|\lambda_{i}-\lambda_{i}^{\prime}\right| \leq\|E\|_{2} \tag{9.3.15}
\end{equation*}
$$

Note that this result also holds for large perturbations.
A related result is the Wielandt-Hoffman theorem which states that

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{n}\left|\lambda_{i}-\lambda_{i}^{\prime}\right|^{2}} \leq\|E\|_{F} \tag{9.3.16}
\end{equation*}
$$

An elementary proof of this result is given by Wilkinson [52, Section 2.48].
Another important result that follows from Fischer's Theorem is the following theorem, due to Cauchy, which relates the eigenvalues of a principal submatrix to the eigenvalues of the original matrix.

Theorem 9.3.9. Interlacing Property.
Let A_{n-1} be a principal submatrix of order $n-1$ of a Hermitian matrix $A_{n} \in \mathbf{C}^{n \times n}$, Then, the eigenvalues of $A_{n-1}, \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}$ interlace the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ of A_{n}, that is

$$
\begin{equation*}
\lambda_{i} \geq \mu_{i} \geq \lambda_{i+1}, \quad i=1, \ldots, n-1 . \tag{9.3.17}
\end{equation*}
$$

Proof. Without loss of generality we assume that A_{n-1} is the leading principal submatrix of A,

$$
A_{n}=\left(\begin{array}{cc}
A_{n-1} & a^{H} \\
a & \alpha
\end{array}\right)
$$

Consider the subspace of vectors $\mathcal{S}^{\prime}=\left\{x \in \mathbf{C}^{n}, x \perp e_{n}\right\}$. Then with $x \in \mathcal{S}^{\prime}$ we have $x^{H} A_{n} x=\left(x^{\prime}\right)^{H} A_{n-1} x^{\prime}$, where $x^{H}=\left(\left(x^{\prime}\right)^{H}, 0\right)$. Using the minimax characterization (9.3.11) of the eigenvalue λ_{i} it follows that

$$
\lambda_{i}=\max _{\operatorname{dim}(\mathcal{S})=i} \min _{\substack{x \in \mathcal{S} \\ x \neq 0}} \frac{x^{H} A_{n} x}{x^{H} x} \geq \max _{\substack{\text { dim }(\mathcal{S})=i \\ \mathcal{S} \perp e_{n}}} \min _{\substack{x \in \mathcal{S} \\ x \neq 0}} \frac{x^{H} A_{n} x}{x^{H} x}=\mu_{i} .
$$

The proof of the second inequality $\mu_{i} \geq \lambda_{i+1}$ is obtained by a similar argument applied to $-A_{n}$.

Since any principal submatrix of a Hermitian matrix also is Hermitian, this theorem can be used recursively to get relations between the eigenvalues of A_{n-1} and A_{n-2}, A_{n-2} and A_{n-3}, etc.

9.3.4 Rayleigh quotient and residual bounds

We make the following definition.
Definition 9.3.10.
The Rayleigh quotient of a nonzero vector $x \in \mathbf{C}^{n}$ is the (complex) scalar

$$
\begin{equation*}
\rho(x)=\rho(A, x)=\frac{x^{H} A x}{x^{H} x} . \tag{9.3.18}
\end{equation*}
$$

The Rayleigh quotient plays an important role in the computation of eigenvalues and eigenvectors. The Rayleigh quotient is a homogeneous function of x, $\rho(\alpha x)=\rho(x)$ for all scalar $\alpha \neq 0$.

Definition 9.3.11.

The field of values of a matrix A is the set of all possible Rayleigh quotients

$$
F(A)=\left\{\rho(A, x) \mid x \in C^{n}\right\}
$$

For any unitary matrix U we have $F\left(U^{H} A U\right)=F(A)$. From the Schur canonical form it follows that there is no restriction in assuming A to be upper triangular, and, if normal, then diagonal. Hence for a normal matrix A

$$
\rho(x)=\sum_{i=1}^{n} \lambda_{i}\left|\xi_{i}\right|^{2} / \sum_{i=1}^{n}\left|\xi_{i}\right|^{2},
$$

that is any point in $F(A)$ is a weighted mean of the eigenvalues of A. Thus for a normal matrix the field of values coincides with the convex hull of the eigenvalues. In the special case of a Hermitian matrix the field of values equals the segment [λ_{1}, λ_{n}] of the real axis.

In general the field of values of a matrix A may contain complex values even if its eigenvalues are real. However, the field of values will always contain the convex hull of the eigenvalues.

Let x and A be given and consider the problem

$$
\min _{\mu}\|A x-\mu x\|_{2}^{2}
$$

This is a linear least squares problem for the unknown μ. The normal equations are $x^{H} x \mu=x^{H} A x$. Hence the minimum is attained for $\rho(x)$, the Rayleigh quotient of x.

When A is Hermitian the gradient of $\frac{1}{2} \rho(x)$ is

$$
\frac{1}{2} \nabla \rho(x)=\frac{A x}{x^{H} x}-\frac{x^{H} A x}{\left(x^{H} x\right)^{2}} x=\frac{1}{x^{H} x}(A x-\rho x)
$$

and hence the Rayleigh quotient $\rho(x)$ is stationary if and only if x is an eigenvector of A.

Suppose we have computed by some method an approximate eigenvalue/eigenvector pair (σ, v) to a matrix A. In the following we derive some error bounds depending on the residual vector

$$
r=A v-\sigma v
$$

Since $r=0$ if (σ, v) are an exact eigenpair it is reasonable to assume that the size of the residual r measures the accuracy of v and σ. We show a simple backward error bound:

Theorem 9.3.12.

Let $\bar{\lambda}$ and $\bar{x},\|\bar{x}\|_{2}=1$, be a given approximate eigenpair of $A \in \mathbf{C}^{n \times n}$, and $r=A \bar{x}-\bar{\lambda} \bar{x}$ be the corresponding residual vector. Then $\bar{\lambda}$ and \bar{x} is an exact eigenpair of the matrix $A+E$, where

$$
\begin{equation*}
E=-r \bar{x}^{H}, \quad\|E\|_{2}=\|r\|_{2} \tag{9.3.19}
\end{equation*}
$$

Proof. We have $(A+E) \bar{x}=\left(A-r \bar{x}^{H} / \bar{x}^{H} \bar{x}\right) \bar{x}=A \bar{x}-r=\bar{\lambda} \bar{x}$.
It follows that given an approximate eigenvector \bar{x} a good eigenvalue approximation is the Rayleigh quotient $\rho(\bar{x})$, since this choice minimizes the error bound in Theorem 9.3.12.

By combining Theorems 9.3.4 and 9.3.12 we obtain for a Hermitian matrix A the very useful a posteriori error bound

Corollary 9.3.13. Let A be a Hermitian matrix. For any $\bar{\lambda}$ and any unit vector \bar{x} there is an eigenvalue of λ of A such that

$$
\begin{equation*}
|\lambda-\bar{\lambda}| \leq\|r\|_{2}, \quad r=A \bar{x}-\bar{\lambda} \bar{x} \tag{9.3.20}
\end{equation*}
$$

For a fixed \bar{x}, the error bound is minimized by taking $\bar{\lambda}=\bar{x}^{T} A \bar{x}$.

This shows that $(\bar{\lambda}, \bar{x})\left(\|\bar{x}\|_{2}=1\right)$ is a numerically acceptable eigenpair of the Hermitian matrix A if $\|A \bar{x}-\lambda \bar{x}\|_{2}$ is of order machine precision.

For a Hermitian matrix A, the Rayleigh quotient $\rho(x)$ may be a far more accurate approximate eigenvalue than x is an approximate eigenvector. The following theorem shows that if an eigenvector is known to precision ϵ, the Rayleigh quotient approximates the corresponding eigenvalue to precision ϵ^{2}.

Theorem 9.3.14.

Let the Hermitian matrix A have eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and orthonormal eigenvectors x_{1}, \ldots, x_{n}. If the vector $x=\sum_{i=1}^{n} \xi_{i} x_{i}$, satisfies

$$
\begin{equation*}
\left\|x-\xi_{1} x_{1}\right\|_{2} \leq \epsilon\|x\|_{2} \tag{9.3.21}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\rho(x)-\lambda_{1}\right| \leq 2\|A\|_{2} \epsilon^{2} . \tag{9.3.22}
\end{equation*}
$$

Proof. Writing $A x=\sum_{i=1}^{n} \xi_{i} \lambda_{i} x_{i}$, the Rayleigh quotient becomes

$$
\rho(x)=\sum_{i=1}^{n}\left|\xi_{i}\right|^{2} \lambda_{i} / \sum_{i=1}^{n}\left|\xi_{i}\right|^{2}=\lambda_{1}+\sum_{i=2}^{n}\left|\xi_{i}\right|^{2}\left(\lambda_{i}-\lambda_{1}\right) / \sum_{i=1}^{n}\left|\xi_{i}\right|^{2} .
$$

Using (9.3.21) we get $\left|\rho(x)-\lambda_{1}\right| \leq \max _{i}\left|\lambda_{i}-\lambda_{1}\right| \epsilon^{2}$. Since the matrix A is Hermitian we have $\left|\lambda_{i}\right| \leq \sigma_{1}(A)=\|A\|_{2}, i=1, \ldots, n$, and the theorem follows.

Stronger error bounds can be obtained if $\sigma=\rho(v)$ is known to be well separated from all eigenvalues except λ.

Theorem 9.3.15.

Let A be a Hermitian matrix with eigenvalues $\lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}, x$ a unit vector and $\rho(x)$ its Rayleigh quotient. Let $A z=\lambda_{\rho} z$, where λ_{ρ} is the eigenvalue of A closest to $\rho(x)$. Define

$$
\begin{equation*}
\operatorname{gap}(\rho)=\min _{\lambda \in \lambda(A)}|\lambda-\rho|, \quad \lambda \neq \lambda_{\rho} \tag{9.3.23}
\end{equation*}
$$

Then it holds that

$$
\begin{align*}
\left|\lambda_{\rho}-\rho(x)\right| & \leq\|A x-x \rho\|_{2}^{2} / \operatorname{gap}(\rho), \tag{9.3.24}\\
\sin \theta(x, z) & \leq\|A x-x \rho\|_{2} / \operatorname{gap}(\rho) . \tag{9.3.25}
\end{align*}
$$

Proof. See Parlett [38, Section 11.7].
Example 9.3.5.
With $x=(1,0)^{T}$ and

$$
A=\left(\begin{array}{ll}
1 & \epsilon \\
\epsilon & 0
\end{array}\right), \text { we get } \rho=1, \quad A x-x \rho=\binom{0}{\epsilon} .
$$

From Corollary 9.3.13 we get $|\lambda-1| \leq \epsilon$, whereas Theorem 9.3.15 gives the improved bound $|\lambda-1| \leq \epsilon^{2} /\left(1-\epsilon^{2}\right)$.

Often $\operatorname{gap}(\sigma)$ is not known and the bounds in Theorem 9.3.15 are only theoretical. In some methods, e.g., the method of spectrum slicing (see Section 9.4.4) an interval around σ can be determined which contain no eigenvalues of A.

9.3.5 Residual bounds for SVD

The singular values of a matrix $A \in \mathbf{R}^{m \times n}$ equal the positive square roots of the eigenvalues of the symmetric matrix $A^{T} A$ and $A A^{T}$. Another very useful relationship between the SVD of $A=U \Sigma V^{T}$ and a symmetric eigenvalue was given in Theorem 7.3.2. If A is square, then ${ }^{6}$

$$
C=\left(\begin{array}{cc}
0 & A \tag{9.3.26}\\
A^{T} & 0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
U & U \\
V & -V
\end{array}\right)\left(\begin{array}{cc}
\Sigma & 0 \\
0 & -\Sigma
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
U & U \\
V & -V
\end{array}\right)^{T}
$$

Using these relationships the theory developed for the symmetric (Hermitian) eigenvalue problem in Secs. 9.3.3-9.3.4 applies also to the singular value decomposition. For example, Theorems 8.3.3-8.3.5 are straightforward applications of Theorems 9.3.7-9.3.9.

We now consider applications of the Rayleigh quotient and residual error bounds given in Section 9.3.4. If u, v are unit vectors the Rayleigh quotient of C is

$$
\rho(u, v)=\frac{1}{\sqrt{2}}\left(u^{T}, v^{T}\right)\left(\begin{array}{cc}
0 & A \tag{9.3.27}\\
A^{T} & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{u}{v}=u^{T} A v
$$

From Corollary 9.3.13 we obtain the following error bound.
Theorem 9.3.16. For any scalar α and unit vectors u, v there is a singular value σ of A such that

$$
\begin{equation*}
|\sigma-\alpha| \leq \frac{1}{\sqrt{2}}\left\|\binom{A v-u \alpha}{A^{T} u-v \alpha}\right\|_{2} \tag{9.3.28}
\end{equation*}
$$

For fixed u, v this error bound is minimized by taking $\alpha=u^{T} A v$.
The following theorem is an application to Theorem 9.3.15.

Theorem 9.3.17.

Let A have singular values $\sigma_{i}, i=1, \ldots, n$. Let u and v be unit vectors, $\rho=u^{T} A v$ the corresponding Rayleigh quotient, and

$$
\delta=\frac{1}{\sqrt{2}}\left\|\binom{A v-u \rho}{A^{T} u-v \rho}\right\|_{2}
$$

[^4]the residual norm. If σ_{s} is the closest singular value to ρ and $A u_{s}=\sigma_{s} v_{s}$, then
\[

$$
\begin{align*}
\left|\sigma_{s}-\rho(x)\right| & \leq \delta^{2} / \operatorname{gap}(\rho), \tag{9.3.29}\\
\max \left\{\sin \theta\left(u_{s}, u\right), \sin \theta\left(v_{s}, v\right)\right\} & \leq \delta / \operatorname{gap}(\rho) . \tag{9.3.30}
\end{align*}
$$
\]

where

$$
\begin{equation*}
\operatorname{gap}(\rho)=\min _{i \neq s}\left|\sigma_{i}-\rho\right| . \tag{9.3.31}
\end{equation*}
$$

Review Questions

1. State Gerschgorin's Theorem, and discuss how it can be sharpened.
2. Discuss the sensitivity to perturbations of eigenvalues and eigenvectors of a Hermitian matrix A.
3. Suppose that $(\bar{\lambda}, \bar{x})$ is an approximate eigenpair of A. Give a backward error bound. What can you say of the error in $\bar{\lambda}$ if A is Hermitian?
4. (a) Tell the minimax and maximin properties of the eigenvalues (of what kind of matrices?), and the related properties of the singular values (of what kind of matrices?).
(b) Show how the theorems in (a) can be used for deriving an interlacing property for the eigenvalues of a matrix in $\mathbf{R}^{n \times n}$ (of what kind?) and the eigenvalues of its principal submatrix in $\mathbf{R}^{(n-1) \times(n-1)}$.

Problems

1. An important problem is to decide if all the eigenvalues of a matrix A have negative real part. Such a matrix is called stable. Show that if

$$
\operatorname{Re}\left(a_{i i}\right)+r_{i} \leq 0, \quad \forall i,
$$

and $\operatorname{Re}\left(a_{i i}\right)+r_{i}<0$ for at least one i, then the matrix A is stable if A is irreducible.
2. Suppose that the matrix A is real, and all Gerschgorin discs of A are distinct. Show that from Theorem 9.3.2 it follows that all eigenvalues of A are real.
3. Show that all eigenvalues to a matrix A lie in the union of the disks

$$
\left|z-a_{i i}\right| \leq \frac{1}{d_{i}} \sum_{j=1, j \neq i}^{n} d_{j}\left|a_{i j}\right|, \quad i=1,2, \ldots, n
$$

where $d_{i}, i=1,2, \ldots, n$ are given positive scale factors.
Hint: Use the fact that the eigenvalues are invariant under similarity transformations.
4. Let $A \in \mathbf{C}^{n \times n}$, and assume that $\epsilon=\max _{i \neq j}\left|a_{i j}\right|$ is small. Choose the diagonal matrix $D=\operatorname{diag}(\mu, 1, \ldots, 1)$ so that the first Gerschgorin disk of $D A D^{-1}$ is as small as possible, without overlapping the other disks. Show that if the diagonal elements of A are distinct then

$$
\mu=\frac{\epsilon}{\delta}+O\left(\epsilon^{2}\right), \quad \delta=\min _{i \neq 1}\left|a_{i i}-a_{11}\right|,
$$

and hence the first Gerschgorin disk is given by

$$
\left|\lambda-a_{11}\right| \leq r_{1}, \quad r_{1} \leq(n-1) \epsilon^{2} / \delta+O\left(\epsilon^{3}\right)
$$

5. Compute the eigenvalues of B and A, where

$$
B=\left(\begin{array}{cc}
0 & \epsilon \\
\epsilon & 0
\end{array}\right), \quad A=\left(\begin{array}{ccc}
0 & \epsilon & 0 \\
\epsilon & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Show that they interlace.
6. Use a suitable diagonal similarity and Gerschgorin's theorem to show that the eigenvalues of the tridiagonal matrix

$$
T=\left(\begin{array}{ccccc}
a & b_{2} & & & \\
c_{2} & a & b_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & c_{n-1} & a & b_{n} \\
& & & c_{n} & a
\end{array}\right)
$$

satisfy the inequality

$$
|\lambda-a|<2 \sqrt{\max _{i}\left|b_{i}\right| \max _{i}\left|c_{i}\right|} .
$$

7. Let A and B be square Hermitian matrices and

$$
H=\left(\begin{array}{cc}
A & C \\
C^{H} & B
\end{array}\right)
$$

Show that for every eigenvalue $\lambda(B)$ of B there is an eigenvalue $\lambda(H)$ of H such that

$$
|\lambda(H)-\lambda(B)| \leq\left(\left\|C^{H} C\right\|_{2}\right)^{1 / 2}
$$

Hint: Use the estimate (9.3.20).
8. (a) Let $D=\operatorname{diag}\left(d_{i}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)^{T}$. Show that if $\lambda \neq d_{i}, i=1, \ldots, n$, then

$$
\operatorname{det}\left(D+\mu z z^{T}-\lambda I\right)=\operatorname{det}\left((D-\lambda I)\left(I+(D-\lambda I)^{-1} \mu z z^{T}\right)\right)
$$

Using the identity $\operatorname{det}\left(I+x y^{T}\right)=1+y^{T} x$ conclude that the eigenvalues λ of $D+\mu z z^{T}$ are the roots of the secular equation

$$
f(\lambda)=1+\mu \sum_{i=1}^{n} \frac{z_{i}^{2}}{d_{i}-\lambda}=0 .
$$

(b) Show by means of Fischer's Theorem 9.3.8 that the eigenvalues λ_{i} interlace the elements d_{i} so that if, for example, $\mu \geq 0$ then

$$
d_{1} \leq \lambda_{1} \leq d_{2} \leq \lambda_{2} \leq \cdots \leq d_{n} \leq \lambda_{n}
$$

9.4 The Power Method

9.4.1 The Simple Power Method

One of the oldest methods for computing eigenvalues and eigenvectors of a matrix is the power method. For a long time the power method was the only alternative for finding the eigenvalues of a general non-Hermitian matrix. It is still one of the few practical methods when the matrix A is very large and sparse. Although it is otherwise no longer much used in its basic form for computing eigenvalues it is central to the convergence analysis of many currently used algorithms. A variant of the power method is also a standard method for computing eigenvectors when an accurate approximation to the corresponding eigenvalue is known.

Let $A \in \mathbf{R}^{n \times n}$ and $q_{0} \neq 0$ be a given starting vector. In the power method the sequence of vectors q_{1}, q_{2}, \ldots is formed, where

$$
q_{k}=A q_{k-1}, \quad k=1,2, \ldots
$$

It follows that $q_{k}=A^{k} q_{0}$, which explains the name of the method. Note that in general it would be much more costly to form the matrix A^{k}, than to perform the above sequence of matrix vector multiplications.

We assume in the following that the eigenvalues are ordered so that

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

To simplify the analysis of the power method assume that the matrix A is diagonalizable. Then the initial vector q_{0} can be expanded along the eigenvectors x_{i} of $A, q_{0}=\sum_{j=1}^{n} \alpha_{j} x_{j}$, and we have

$$
q_{k}=\sum_{j=1}^{n} \lambda_{j}^{k} \alpha_{j} x_{j}=\lambda_{1}^{k}\left(\alpha_{1} x_{1}+\sum_{j=2}^{n}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \alpha_{j} x_{j}\right), \quad k=1,2, \cdots
$$

If λ_{1} is a unique eigenvalue of maximum magnitude, $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, we say that λ_{1} is a dominant eigenvalue. If $\alpha_{1} \neq 0$, then

$$
\begin{equation*}
\frac{1}{\lambda_{1}^{k}} q_{k}=\alpha_{1} x_{1}+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right), \tag{9.4.1}
\end{equation*}
$$

and up to a factor λ_{1}^{k} the vector q_{k} will converge to a limit vector which is an eigenvector associated with the dominating eigenvalue λ_{1}. The rate of convergence is linear and equals $\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$. One can show that this result holds also when A is not diagonalizable by writing q_{0} as a linear combination of the vectors associated with the Jordan (or Schur) canonical form of A, see Theorem 9.2.7 (9.2.1).

In practice the vectors q_{k} have to be normalized in order to avoid overflow or underflow. Hence we modify the initial recursion as follows. Assume that $\left\|q_{0}\right\|=1$, and compute

$$
\begin{equation*}
\hat{q}_{k}=A q_{k-1}, \quad \mu_{k}=\left\|\hat{q}_{k}\right\|, \quad q_{k}=\hat{q}_{k} / \mu_{k}, \quad k=1,2, \ldots \tag{9.4.2}
\end{equation*}
$$

Then we have

$$
q_{k}=\frac{1}{\gamma_{k}} A^{k} q_{0}, \quad \gamma_{k}=\mu_{1} \cdots \mu_{k}
$$

and under the assumptions above q_{k} converges to a normalized eigenvector x_{1}. From equations (9.4.1) and (9.4.2) it follows that

$$
\begin{equation*}
\hat{q}_{k}=\lambda_{1} q_{k-1}+O\left(\left|\lambda_{2} / \lambda_{1}\right|^{k}\right), \quad \lim _{k \rightarrow \infty} \mu_{k}=\left|\lambda_{1}\right| . \tag{9.4.3}
\end{equation*}
$$

An approximation to λ_{1} can also be obtained from the ratio of elements in the two vectors \hat{q}_{k} and q_{k-1}. The convergence, which is slow when $\left|\lambda_{2}\right| \approx\left|\lambda_{1}\right|$, can be accelerated by Aitken extrapolation.

If the matrix A is real symmetric (or Hermitian) its eigenvalues are real and the eigenvectors can be chosen so that $X=\left(x_{1}, \ldots, x_{n}\right)$ is real and orthogonal. Using (9.4.1) one can show that the Rayleigh quotient converges twice as fast as μ_{k},

$$
\begin{equation*}
\lambda_{1}=\rho\left(q_{k-1}\right)+O\left(\left|\lambda_{2} / \lambda_{1}\right|^{2 k}\right), \quad \rho\left(q_{k-1}\right)=q_{k-1}^{T} A q_{k-1}=q_{k-1}^{T} \hat{q}_{k} . \tag{9.4.4}
\end{equation*}
$$

Example 9.4.1.

The eigenvalues of the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 4
\end{array}\right)
$$

are (4.732051, 3, 1.267949), correct to 6 decimals. If we take $q_{0}=(1,1,1)^{T}$ then we obtain the Rayleigh quotients ρ_{k} and errors $e_{k}=\lambda_{1}-\rho_{k}$ given in the table below:

k	ρ_{k}	e_{k}	e_{k} / e_{k-1}
1	4.333333	0.398718	
2	4.627119	0.104932	0.263
3	4.694118	0.037933	0.361
4	4.717023	0.015027	0.396
5	4.729620	0.006041	0.402

The ratios of successive errors converge to $\left(\lambda_{2} / \lambda_{1}\right)^{2}=0.4019$.
The convergence of the power method depends on the assumption that $\alpha_{1} \neq 0$, and hence we only can prove convergence for almost all starting vectors. Even when $\alpha_{1}=0$, rounding errors will tend to introduce a small component along x_{1} in $A q_{0}$,
and therefore the method converges in practice also in this case. Convergence of the power method can also be shown under the weaker assumption that $\lambda_{1}=\lambda_{2}=$ $\cdots=\lambda_{r}$, and

$$
\left|\lambda_{r}\right|>\left|\lambda_{r+1}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

However, an inherent weakness in this case is that the limit vector will depend on the expansion of q_{0} along x_{1}, \cdots, x_{r}, and q_{k} will converge to one particular vector in the invariant subspace $\operatorname{span}\left[x_{1}, \ldots, x_{r}\right]$. To determine the whole dominating invariant subspace we will have to perform the power method with $p \geq r$ linearly independent starting vectors, see Section 9.4.6.

An attractive feature of the power method is that the matrix A is not explicitly needed. It suffices to be able to form the matrix times vector product $A y$ for any given vector y. If the matrix A is sparse the cost of one iteration step is proportional to the number of nonzero elements in A.

9.4.2 Deflation

The simple power method can be used for computing several eigenvalues and the associated eigenvectors by combining it with deflation. By that we mean a method that given an eigenvector x_{1} and the corresponding eigenvalue λ_{1} computes a matrix A_{1} such that $\lambda(A)=\lambda_{1} \cup \lambda\left(A_{1}\right)$. A way to construct such a matrix A_{1} in a stable way was indicated in Section 9.1, see (9.1.16). However, this method has the drawback that even if A is sparse the matrix A_{1} will in general be dense.

The following simple method for deflation is due to Hotelling. Suppose an eigenpair $\left(\lambda_{1}, x_{1}\right),\left\|x_{1}\right\|_{2}=1$, of a symmetric matrix A is known. If we define $A_{1}=A-\lambda_{1} x_{1} x_{1}^{H}$, then from the orthogonality of the eigenvectors x_{i} we have

$$
A_{1} x_{i}=A x_{i}-\lambda_{1} x_{1}\left(x_{1}^{T} x_{i}\right)= \begin{cases}0, & \text { if } i=1 \\ \lambda_{i} x_{i}, & \text { if } i \neq 1\end{cases}
$$

Hence the eigenvalues of A_{1} are $0, \lambda_{2}, \ldots, \lambda_{n}$ with corresponding eigenvectors equal to $x_{1}, x_{2}, \ldots, x_{n}$. The power method can now be applied to A_{1} to determine the dominating eigenvalue of A_{1}. Note that $A_{1}=A-\lambda_{1} x_{1} x_{1}^{T}=\left(I-x_{1} x_{1}^{T}\right) A=P_{1} A$, where P_{1} is an orthogonal projection.

When A is unsymmetric there is a corresponding deflation technique. Here it is necessary to have the left eigenvector y_{1}^{T} as well as the right x_{1}. If these are normalized so that $y_{1}^{T} x_{1}=1$, then we define A_{1} by $A_{1}=A-\lambda_{1} x_{1} y_{1}^{T}$. From the biorthogonality of the x_{i} and y_{i} we have

$$
A_{1} x_{i}=A x_{i}-\lambda_{1} x_{1}\left(y_{1}^{T} x_{i}\right)= \begin{cases}0, & \text { if } i=1 \\ \lambda_{i} x_{i}, & \text { if } i \neq 1\end{cases}
$$

In practice an important advantage of this scheme is that it is not necessary to form the matrix A_{1} explicitly. The power method, as well as many other methods, only requires that an operation of the form $y=A_{1} x$ can be performed. This operation can be performed as

$$
A_{1} x=A x-\lambda_{1} x_{1}\left(y_{1}^{T} x\right)=A x-\tau x_{1}, \quad \tau=\lambda_{1}\left(y_{1}^{T} x\right)
$$

Hence it suffices to have the vectors x_{1}, y_{1} available as well as a procedure for computing $A x$ for a given vector x. Obviously this deflation procedure can be performed repeatedly, to obtain A_{2}, A_{3}, \ldots.

This deflation procedure has to be used with caution, since errors will accumulate. This can be disastrous in the nonsymmetric case, when the eigenvalues may be badly conditioned.

9.4.3 Spectral Transformation and Inverse Iteration

The simple power method has the drawback that convergence may be arbitrarily slow or may not happen at all. To overcome this difficulty we can use a spectral transformation, which we now describe. Let $p(x)$ and $q(x)$ be two polynomials such that $q(A)$ is nonsingular and define $r(A)=(q(A))^{-1} p(A)$. Then if A has an eigenvalue λ with corresponding eigenvector x it follows that $r(\lambda)$ is an eigenvalue of $r(A)$ with the same eigenvector x.

As a simple application of this assume that A is nonsingular and take $r(x)=$ $1 / x$. Then the matrix $r(A)=A^{-1}$ has eigenvalues equal to $1 / \lambda_{i}$. Hence from (9.4.3) it follows that if the eigenvalues of A satisfy

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and the power method is applied to A^{-1}, then q_{k} will converge to the eigenvector x_{n} of A corresponding to λ_{n}. This is called inverse iteration, and was introduced by H. Wielandt in 1944.

Inverse iteration can also be applied to the matrix $A-\mu I$, where μ is a chosen shift of the spectrum. The eigenvalues of $(A-\mu I)^{-1}$ equal

$$
\begin{equation*}
\mu_{j}=\left(\lambda_{j}-\mu\right)^{-1} \tag{9.4.5}
\end{equation*}
$$

and the iteration can be written

$$
\begin{equation*}
(A-\mu I) \hat{q}_{k}=q_{k-1}, \quad q_{k}=\hat{q}_{k} /\left\|\hat{q}_{k}\right\|_{2}, \quad k=1,2, \ldots \tag{9.4.6}
\end{equation*}
$$

Note that there is no need to explicitly invert $A-\mu I$. Instead we compute a triangular factorization of $A-\mu I$, and in each step of (9.4.6) solve two triangular systems

$$
L\left(U \hat{q}_{k}\right)=P q_{k-1}, \quad P(A-\mu I)=L U .
$$

For a dense matrix A one step of the iteration (9.4.5) is therefore no more costly than one step of the simple power method. However, if the matrix is sparse the total number of nonzero elements in L and U may be much larger than in A. Note that if A is positive definite (or diagonally dominant) this property is in general not shared by the shifted matrix $(A-\mu I)$. Hence in general partial pivoting must be employed.

If μ is chosen sufficiently close to an eigenvalue λ_{i}, so that $\left|\lambda_{i}-\mu\right| \ll\left|\lambda_{j}-\mu\right|$, $\lambda_{i} \neq \lambda_{j}$ then $\left(\lambda_{i}-\mu\right)^{-1}$ is a dominating eigenvalue of B,

$$
\begin{equation*}
\left|\lambda_{i}-\mu\right|^{-1} \gg\left|\lambda_{j}-\mu\right|^{-1}, \quad \lambda_{i} \neq \lambda_{j} \tag{9.4.7}
\end{equation*}
$$

Then q_{k} will converge fast to the eigenvector x_{i}, and an approximation $\bar{\lambda}_{i}$ to the eigenvalue λ_{i} of A is obtained from the Rayleigh quotient

$$
\frac{1}{\lambda_{i}-\mu} \approx q_{k-1}^{T}(A-\mu I)^{-1} q_{k-1}=q_{k-1}^{T} \hat{q}_{k},
$$

where $\hat{q_{k}}$ satisfies $(A-\mu I) \hat{q_{k}}=q_{k-1}$. Thus

$$
\begin{equation*}
\bar{\lambda}_{i}=\mu+1 /\left(q_{k-1}^{T} \hat{q}_{k}\right) . \tag{9.4.8}
\end{equation*}
$$

An a posteriori bound for the error in the approximate eigenvalue $\bar{\lambda}_{i}$ of A can be obtained from the residual corresponding to $\left(\bar{\lambda}_{i}, \hat{q}_{k}\right)$, which equals

$$
r_{k}=A \hat{q}_{k}-\left(\mu+1 /\left(q_{k-1}^{T} \hat{q}_{k}\right)\right) \hat{q}_{k}=q_{k-1}-\hat{q_{k}} /\left(q_{k-1}^{T} \hat{q}_{k}\right)
$$

Then, by Theorem 9.3.12, $\left(\bar{\lambda}_{i}, \hat{q}_{k}\right)$ is an exact eigenpair of a matrix $A+E$, where $\|E\|_{2} \leq\left\|r_{k}\right\|_{2} /\left\|\hat{q}_{k}\right\|_{2}$. If A is real symmetric then the error in the approximative eigenvalue $\hat{\lambda}_{i}$ of A is bounded by $\left\|r_{k}\right\|_{2} /\left\|\hat{q}_{k}\right\|_{2}$.

9.4.4 Eigenvectors by Inverse Iteration

After extensive developments by Wilkinson and others inverse iteration has become the method of choice for computing the associated eigenvector to an eigenvalue λ_{i}, for which an accurate approximation already is known. Often just one step of inverse iteration suffices.

Inverse iteration will in general converge faster the closer μ is to λ_{i}. However, if μ equals λ_{i} up to machine precision then $A-\mu I$ in (9.4.6) is numerically singular. It was long believed that inverse iteration was doomed to failure when μ was chosen too close to an eigenvalue. Fortunately this is not the case!

If Gaussian elimination with partial pivoting is used the computed factorization of $(A-\mu I)$ will satisfy

$$
P(A+E-\mu I)=\bar{L} \bar{U},
$$

where $\|E\|_{2} /\|A\|_{2}=f(n) O(u)$, and u is the unit roundoff and $f(n)$ a modest function of n (see Theorem 6.6.5). Since the rounding errors in the solution of the triangular systems usually are negligible the computed q_{k} will nearly satisfy

$$
(A+E-\mu I) \hat{q}_{k}=q_{k-1}
$$

This shows that the inverse power method will give an approximation to an eigenvector of a slightly perturbed matrix $A+E$, independent of the ill-conditioning of $(A-\mu I)$.

To decide when a computed vector is a numerically acceptable eigenvector corresponding to an approximate eigenvalue we can apply the simple a posteriori error bound in Theorem 9.3 .12 to inverse iteration. By (9.4.6) q_{k-1} is the residual vector corresponding to the approximate eigenpair $\left(\mu, \hat{q}_{k}\right)$. Hence, where u is the unit roundoff, \hat{q}_{k} is a numerically acceptable eigenvector if

$$
\begin{equation*}
\left\|q_{k-1}\right\|_{2} /\left\|\hat{q}_{k}\right\|_{2} \leq u\|A\|_{2} \tag{9.4.9}
\end{equation*}
$$

Example 9.4.2.

The matrix $A=\left(\begin{array}{cc}1 & 1 \\ 0.1 & 1.1\end{array}\right)$ has a simple eigenvalue $\lambda_{1}=0.7298438$ and the corresponding normalized eigenvector is $x_{1}=(0.9653911,-0.2608064)^{T}$. We take $\mu=0.7298$ to be an approximation to λ_{1}, and perform one step of inverse iteration, starting with $q_{0}=(1,0)^{T}$ we get

$$
A-\mu I=L U=\left(\begin{array}{cc}
1 & 0 \\
0.37009623 & 1
\end{array}\right)\left(\begin{array}{cc}
0.2702 & 1 \\
0 & 0.0001038
\end{array}\right)
$$

and $\hat{q}_{1}=10^{4}(1.3202568,-0.3566334)^{T}, q_{1}=(0.9653989,-0.2607777)^{T}$, which agrees with the correct eigenvector to more than four decimals. From the backward error bound it follows that 0.7298 and q_{1} is an exact eigenpair to a matrix $A+E$, where $\|E\|_{2} \leq 1 /\left\|\hat{q}_{1}\right\|_{2}=0.73122 \cdot 10^{-4}$.

Inverse iteration is a useful algorithm for calculation of specified eigenvectors corresponding to well separated eigenvalues for dense matrices. In order to save work in the triangular factorizations the matrix is usually first reduced to Hessenberg or real tridiagonal form, by the methods described in Section 9.6.

It is quite tricky to develop inverse iteration into a reliable algorithm in case the eigenvalues are not well separated. When A is symmetric and eigenvectors corresponding to multiple or very close eigenvalues are required, special steps have to be taken to ensure orthogonality of the eigenvectors. In the nonsymmetric case the situation can be worse in particular if the eigenvalue is defective or very illconditioned. Then, unless a suitable initial vector is used inverse iteration may not produce a numerically acceptable eigenvector. Often a random vector with elements from a uniform distribution in $[-1,1]$ will work.

Example 9.4.3.

The matrix

$$
A=\left(\begin{array}{cc}
1+\epsilon & 1 \\
\epsilon & 1+\epsilon
\end{array}\right)
$$

has eigenvalues $\lambda=(1+\epsilon) \pm \sqrt{\epsilon}$. Assume that $|\epsilon| \approx u$, where u is the machine precision. Then the eigenpair $\lambda=1, x=(1,0)^{T}$ is a numerically acceptable eigenpair of A, since it is exact for the matrix $A+E$, where

$$
E=-\left(\begin{array}{cc}
\epsilon & 0 \\
\epsilon & \epsilon
\end{array}\right), \quad\|E\|_{2}<\sqrt{3} u .
$$

If we perform one step of inverse iteration starting from the acceptable eigenvector $q_{0}=(1,0)^{T}$ then we get

$$
\hat{q}_{1}=\frac{1}{1-\epsilon}\binom{-1}{1}
$$

No growth occurred and it can be shown that $\left(1, q_{1}\right)$ is not an acceptable eigenpair of A. If we carry out one more step of inverse iteration we will again get an acceptable eigenvector!

Equation (9.3.19) gives an expression for the backward error E of the computed eigenpair. An error bound can then be obtained by applying the perturbation analysis of Section 9.3. In the Hermitian case the eigenvalues are perfectly conditioned, and the error bound equals $\|E\|_{2}$. In general the sensitivity of an eigenvalue λ is determined by $1 / s(\lambda)=1 /\left|y^{H} x\right|$, where x and y are right and left unit eigenvector corresponding to λ, see Section 9.3.2. If the power method is applied also to A^{H} (or in inverse iteration to $\left(A^{H}-\mu I\right)^{-1}$) we can generate an approximation to y and hence estimate $s(\lambda)$.

9.4.5 Rayleigh Quotient Iteration

A natural variation of the inverse power method is to vary the shift μ in each iteration. The previous analysis suggests choosing a shift equal to the Rayleigh quotient of the current eigenvector approximation. This leads to the Rayleigh Quotient Iteration (RQI):

Let $q_{0},\left\|q_{0}\right\|_{2}=1$, be a given starting vector, and for $k=1,2, \ldots$ compute

$$
\begin{equation*}
\left(A-\rho\left(q_{k-1}\right) I\right) \hat{q}_{k}=q_{k-1}, \quad \rho\left(q_{k-1}\right)=q_{k-1}^{T} A q_{k-1} \tag{9.4.10}
\end{equation*}
$$

and set $q_{k}=\hat{q}_{k} /\left\|\hat{q}_{k}\right\|_{2}$. Here $\rho\left(q_{k-1}\right)$ is the Rayleigh quotient of q_{k-1}.
RQI can be used to improve a given approximate eigenvector. It can also be used to find an eigenvector of A starting from any unit vector q_{0}, but then we cannot say to which eigenvector $\left\{q_{k}\right\}$ will converge. There is also a possibility that some unfortunate choice of starting vector will lead to endless cycling. However, it can be shown that such cycles are unstable under perturbations so this will not occur in practice.

In the RQI a new triangular factorization must be computed of the matrix $A-\rho\left(q_{k-1}\right) I$ for each iteration step, which makes this algorithm much more expensive than ordinary inverse iteration. However, if the matrix A is, for example, of Hessenberg (or tridiagonal) form the extra cost is small. If the RQI converges towards an eigenvector corresponding to a simple eigenvalue then it can be shown that convergence is quadratic. More precisely, it can be shown that

$$
\eta_{k} \leq c_{k} \eta_{k-1}^{2}, \quad \eta_{k}=\left\|A q_{k}-\rho\left(q_{k}\right) q_{k}\right\|_{2}
$$

where c_{k} changes only slowly, see Stewart [43, 1973, Section 7.2].
If the matrix A is real and symmetric (or Hermitian), then the situation is even more satisfactory because of the result in Theorem 9.3.14. This theorem says that if an eigenvector is known to precision ϵ, the Rayleigh quotient approximates the corresponding eigenvalue to precision ϵ^{2}. This leads to cubic convergence for the RQI for real symmetric (or Hermitian) matrices. Also, in this case it is no longer necessary to assume that the iteration converges to an eigenvector corresponding to a simple eigenvalue. Indeed, it can be shown that the for Hermitian matrices RQI has global convergence, i.e., it converges from any starting vector q_{0}. A key fact in the proof is that the norm of the residuals always decrease, $\eta_{k+1} \leq \eta_{k}$, for all k, see Parlett [38, Section 4.8].

9.4.6 Subspace Iteration

A natural generalization of the power method is to iterate simultaneously with several vectors. Let $Z_{0}=S=\left(s_{1}, \ldots, s_{p}\right) \in \mathbf{R}^{n \times p}$, be an initial matrix of rank $p>1$. If we compute a sequence of matrices $\left\{Z_{k}\right\}$, from

$$
\begin{equation*}
Z_{k}=A Z_{k-1}, \quad k=1,2, \ldots, \tag{9.4.11}
\end{equation*}
$$

then it holds

$$
\begin{equation*}
Z_{k}=A^{k} S=\left(A^{k} s_{1}, \ldots, A^{k} s_{p}\right) \tag{9.4.12}
\end{equation*}
$$

In applications A is often a very large sparse matrix and $p \ll n$.
At first it is not clear that we gain much by iterating with several vectors. If A has a dominant eigenvalue λ_{1} all the columns of Z_{k} will converge to a scalar multiple of the dominant eigenvector x_{1}. Hence Z_{k} will be close to a matrix of numerical rank one.

We first note that we are really computing a sequence of subspaces. If $\mathcal{S}=$ $\operatorname{span}(S)$ the iteration produces the subspaces $A^{k} \mathcal{S}=\operatorname{span}\left(A^{k} S\right)$. Hence the problem is that the basis $A^{k} s_{1}, \ldots, A^{k} s_{p}$ of this subspace becomes more and more illconditioned. This can be avoided by be maintaining orthogonality between the columns as follows: Starting with a matrix Q_{0} with orthogonal columns we compute

$$
\begin{equation*}
Z_{k}=A Q_{k-1}=Q_{k} R_{k}, \quad k=1,2, \ldots, \tag{9.4.13}
\end{equation*}
$$

where $Q_{k} R_{k}$ is the $Q R$ decomposition of Z_{k}. Here Q_{k} can be computed, e.g., by Gram-Schmidt orthogonalization of Z_{k}. The iteration (9.4.13) is also called orthogonal iteration. Note that R_{k} plays the rule of a normalizing matrix. We have $Q_{1}=Z_{1} R_{1}^{-1}=A Q_{0} R_{1}^{-1}$. Similarly it can be shown by induction that

$$
\begin{equation*}
Q_{k}=A^{k} Q_{0}\left(R_{k} \cdots R_{1}\right)^{-1} \tag{9.4.14}
\end{equation*}
$$

It is important to note that if $Z_{0}=Q_{0}$, then both iterations (9.4.11) and (9.4.13) will generate the same sequence of subspaces. $\mathcal{R}\left(A^{k} Q_{0}\right)=\mathcal{R}\left(Q_{k}\right)$. However, in orthogonal iteration an orthogonal bases for the subspace is calculated at each iteration. (Since the iteration (9.4.11) is less costly it is sometimes preferable to perform the orthogonalization in (9.4.13) only occasionally when needed.)

The method of orthogonal iteration overcomes several of the disadvantages of the power method. In particular it allows us to determine a dominant invariant subspace of a multiple eigenvalue.

Assume that the eigenvalues of A satisfy

$$
\begin{equation*}
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right| \geq \cdots \geq\left|\lambda_{n}\right| \tag{9.4.15}
\end{equation*}
$$

and let

$$
\binom{U_{1}^{H}}{U_{2}^{H}} A\left(U_{1} U_{2}\right)=\left(\begin{array}{cc}
T_{11} & T_{12} \tag{9.4.16}\\
0 & T_{22}
\end{array}\right),
$$

be a Schur decomposition of A, where

$$
\operatorname{diag}\left(T_{11}\right)=\left(\lambda_{1}, \cdots, \lambda_{p}\right)^{H}
$$

Then the subspace $\mathcal{U}_{1}=\mathcal{R}\left(U_{1}\right)$ is a dominant invariant subspace of A. It can be shown that almost always the subspaces $\mathcal{R}\left(Q_{k}\right)$ in orthogonal iteration (9.4.13) converge to \mathcal{U}_{1} when $k \rightarrow \infty$.

Theorem 9.4.1.

Let $\mathcal{U}_{1}=\mathcal{R}\left(U_{1}\right)$ be a dominant invariant subspace of A defined in (9.4.16). Let \mathcal{S} be a p-dimensional subspace of \mathbf{C}^{n} such that $\mathcal{S} \cap \mathcal{U}_{1}^{\perp}=\{0\}$. Then there exists a constant C such that

$$
\theta_{\max }\left(A^{k} \mathcal{S}, \mathcal{U}_{1}\right) \leq C\left|\lambda_{p+1} / \lambda_{p}\right|^{k}
$$

where $\theta_{\max }(\mathcal{X}, \mathcal{Y})$ denotes the largest angle between the two subspaces (see Definition 9.3.6).

Proof. See Golub and Van Loan [21, pp. 333].
If we perform subspace iteration on p vectors, we are simultaneously performing subspace iteration on a nested sequence of subspaces

$$
\operatorname{span}\left(s_{1}\right), \quad \operatorname{span}\left(s_{1}, s_{2}\right), \ldots, \quad \operatorname{span}\left(s_{1}, s_{2}, \ldots, s_{p}\right)
$$

This is also true for orthogonal iteration since this property is not changed by the orthogonalization procedure. Hence Theorem 9.4.1 shows that whenever $\left|\lambda_{q+1} / \lambda_{q}\right|$ is small for some $q \leq p$, the convergence to the corresponding dominant invariant subspace of dimension q will be fast.

We now show that there is a duality between direct and inverse subspace iteration.

Lemma 9.4.2. (Watkins [1982])
Let \mathcal{S} and \mathcal{S}^{\perp} be orthogonal complementary subspaces of \mathbf{C}^{n}. Then for all integers k the spaces $A^{k} \mathcal{S}$ and $\left(A^{H}\right)^{-k} \mathcal{S}^{\perp}$ are also orthogonal.

Proof. Let $x \perp y \in \mathbf{C}^{n}$. Then $\left(A^{k} x\right)^{H}\left(A^{H}\right)^{-k} y=x^{H} y=0$ and thus $A^{k} x \perp$ $\left(A^{H}\right)^{-k} y$.

This duality property means that the two sequences

$$
S, A S, A^{2} S, \ldots, \quad S^{\perp},\left(A^{H}\right)^{-1} S^{\perp},\left(A^{H}\right)^{-2} S^{\perp}, \ldots
$$

are equivalent in that they yield orthogonal complements! This result will be important in Section 9.7.1 for the understanding of the QR algorithm.

Approximations to eigenvalues of A can be obtained from eigenvalues of the sequence of matrices

$$
\begin{equation*}
B_{k}=Q_{k}^{T} A Q_{k}=Q_{k}^{T} Z_{k+1} \in \mathbf{R}^{p \times p} \tag{9.4.17}
\end{equation*}
$$

Note that B_{k} is a generalized Rayleigh quotient, see Section 9.8.1-9.8.2. Finally, both direct and inverse orthogonal iteration can be performed using a sequence of shifted matrices $A-\mu_{k} I, k=0,1,2, \ldots$..

Review Questions

1. Describe the power method and its variants. Name at least one important application of the shifted inverse power method.
2. If the Rayleigh Quotient Iteration converges to a simple eigenvalue of a general matrix A, what is the asymptotic rate of convergence? If A is Hermitian, what can you say then?
3. Describe how the power method can be generalized to simultaneously iterating with several starting vector.

Problems

1. Let $A \in \mathbf{R}^{n \times n}$ be a symmetric matrix with eigenvalues satisfying $\lambda_{1}>\lambda_{2} \geq \cdots \geq$ $\lambda_{n-1}>\lambda_{n}$. Show that the choice $\mu=\left(\lambda_{2}+\lambda_{n}\right) / 2$ gives fastest convergence towards the eigenvector corresponding to λ_{1} in the power method applied to $A-\mu I$. What is this rate of convergence?
2. The matrix A has one real eigenvalue $\lambda=\lambda_{1}$ and another $\lambda=-\lambda_{1}$. All remaining eigenvalues satisfy $|\lambda|<\left|\lambda_{1}\right|$. Generalize the simple power method so that it can be used for this case.
3. (a) Compute the residual vector corresponding to the last eigenpair obtained in Example 9.4.1, and give the corresponding backward error estimate.
(b) Perform Aitken extrapolation on the Rayleigh quotient approximations in Example 9.4.1 to compute an improved estimate of λ_{1}.
4. The symmetric matrix

$$
A=\left(\begin{array}{cccc}
14 & 7 & 6 & 9 \\
7 & 9 & 4 & 6 \\
6 & 4 & 9 & 7 \\
9 & 6 & 7 & 15
\end{array}\right)
$$

has an eigenvalue $\lambda \approx 4$. Compute an improved estimate of λ with one step of inverse iteration using the factorization $A-4 I=L D L^{T}$.
5. For a symmetric matrix $A \in \mathbf{R}^{n \times n}$ it holds that $\sigma_{i}=\left|\lambda_{i}\right|, i=1, \ldots, n$. Compute with inverse iteration using the starting vector $x=(1,-2,1)^{T}$ the smallest singular value of the matrix

$$
A=\left(\begin{array}{lll}
1 / 5 & 1 / 6 & 1 / 7 \\
1 / 6 & 1 / 7 & 1 / 8 \\
1 / 7 & 1 / 8 & 1 / 9
\end{array}\right)
$$

with at least two significant digits.
6. The matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
\epsilon & 1+\epsilon
\end{array}\right)
$$

has two simple eigenvalues close to 1 if $\epsilon>0$. For $\epsilon=10^{-3}$ and $\epsilon=10^{-6}$ first compute the smallest eigenvalue to six decimals, and then perform inverse iteration to determine the corresponding eigenvectors. Try as starting vectors both $x=(1,0)^{T}$ and $x=(0,1)^{T}$.

9.5 Jacobi Methods

9.5.1 Jacobi Methods for Real Symmetric Matrices

Jacobi's ${ }^{7}$ method is one of the oldest methods for solving the eigenvalue problem for real symmetric (or Hermitian) matrices. It is at least three times slower than the QR algorithm, to be described in the next section. However, Jacobi's method is easily parallelized and there are problems, for which it should be prefered.

Jacobi's method is an efficient method when one has to solve eigenvalue problems for a sequence of matrices, differing only slightly from each other, or, equivalently, for computing eigenvalues of a nearly diagonal matrix. Jacobi's method, with a proper stopping criterion, can be shown to compute all eigenvalues of symmetric positive definite matrices with uniformly better relative accuracy, than any algorithms which first reduces the matrix to tridiagonal form. Note that, although the QR algorithm is backward stable (see Section 9.7), high relative accuracy can only be guaranteed for the larger eigenvalues (those near $\|A\|$ in magnitude).

The Jacobi method solves the eigenvalue problem for $A \in \mathbf{R}^{n \times n}$ by employing a sequence of similarity transformations

$$
\begin{equation*}
A_{0}=A, \quad A_{k+1}=J_{k}^{T} A_{k} J_{k} \tag{9.5.1}
\end{equation*}
$$

such that the sequence of matrices $A_{k}, k=1,2, \ldots$ tends to a diagonal form. For each k, J_{k} is chosen as a plane rotations $J_{k}=G_{p q}(\theta)$, defined by a pair of indices (p, q), $p<q$, called the pivot pair. The angle θ is chosen so that the off-diagonal elements $a_{p q}=a_{q p}$ are reduced to zero, i.e. by solving a 2×2 subproblems. We note that only the entries in rows and columns p and q of A will change, and since symmetry is preserved only the upper triangular part of each A needs to be computed.

To construct the Jacobi transformation J_{k} we consider the symmetric 2×2 eigenvalue problem for the principal submatrix $A_{p q}$ formed by rows and columns p and q. For simplicity of notation we rename $A_{k+1}=A^{\prime}$ and $A_{k}=A$. Hence we want to determine $c=\cos \theta, s=\sin \theta$ so that

$$
\left(\begin{array}{cc}
l_{p} & 0 \tag{9.5.2}\\
0 & l_{q}
\end{array}\right)=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)^{T}\left(\begin{array}{cc}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right) .
$$

Equating the off-diagonal elements we obtain (as $a_{p q}=a_{q p}$)

$$
\begin{equation*}
0=\left(a_{p p}-a_{q q}\right) c s+a_{p q}\left(c^{2}-s^{2}\right) \tag{9.5.3}
\end{equation*}
$$

which shows that the angle θ satisfies

$$
\begin{equation*}
\tau \equiv \cot 2 \theta=\left(a_{q q}-a_{p p}\right) /\left(2 a_{p q}\right), \quad a_{p q} \neq 0 \tag{9.5.4}
\end{equation*}
$$

The two diagonal elements $a_{p p}$ and $a_{q q}$ are transformed as follows,

$$
\begin{aligned}
& a_{p p}^{\prime}=c^{2} a_{p p}-2 c s a_{p q}+s^{2} a_{q q}=a_{p p}-t a_{p q} \\
& a_{q q}^{\prime}=s^{2} a_{p p}+2 c s a_{p q}+c^{2} a_{q q}=a_{q q}+t a_{p q}
\end{aligned}
$$

[^5]where $t=\tan \theta$. We call this a Jacobi transformation. The following stopping criterion should be used:
\[

$$
\begin{equation*}
\text { if }\left|a_{i j}\right| \leq \operatorname{tol}\left(a_{i i} a_{j j}\right)^{1 / 2} \text {, set } a_{i j}=0, \tag{9.5.5}
\end{equation*}
$$

\]

where tol is the relative accuracy desired.
A stable way to perform a Jacobi transformation is to first compute $t=\tan \theta$ as the root of smallest modulus to the quadratic equation $t^{2}+2 \tau t-1=0$. This choice ensures that $|\theta|<\pi / 4$, and can be shown to minimize the difference $\left\|A^{\prime}-A\right\|_{F}$. In particular this will prevent the exchange of the two diagonal elements $a_{p p}$ and $a_{q q}$, when $a_{p q}$ is small, which is critical for the convergence of the Jacobi method. The transformation (9.5.2) is best computed by the following algorithm.

Algorithm 9.5.1

Jacobi transformation matrix $\left(a_{p q} \neq 0\right)$:

$$
\begin{aligned}
& {\left[c, s, l_{p}, l_{q}\right]=\operatorname{jacobi}\left(a_{p p}, a_{p q}, a_{q q}\right)} \\
& \quad \tau=\left(a_{q q}-a_{p p}\right) /\left(2 a_{p q}\right) \\
& \quad t=\operatorname{sign}(\tau) /\left(|\tau|+\sqrt{1+\tau^{2}}\right) \\
& \quad c=1 / \sqrt{1+t^{2}} ; \quad s=t \cdot c \\
& \quad l_{p}=a_{p p}-t a_{p q} ; \\
& \quad l_{q}=a_{q q}+t a_{p q} ; \\
& \quad \text { end }
\end{aligned}
$$

The computed transformation is applied also to the remaining elements in rows and columns p and q of the full matrix A. These are transformed for $j \neq p, q$ according to

$$
\begin{aligned}
a_{j p}^{\prime} & =a_{p j}^{\prime}=c a_{p j}-s a_{q j}=a_{p j}-s\left(a_{q j}+r a_{p j}\right), \\
a_{j q}^{\prime} & =a_{q j}^{\prime}=s a_{p j}+c a_{q j}=a_{q j}+s\left(a_{p j}-r a_{q j}\right) .
\end{aligned}
$$

where $r=s /(1+c)=\tan (\theta / 2)$. (The formulas are written in a form, due to Rutishauser [40, 1971], which reduces roundoff errors.)

If symmetry is exploited, then one Jacobi transformation takes about $4 n$ flops. Note that an off-diagonal element made zero at one step will in general become nonzero at some later stage. The Jacobi method will also destroy the band structure if A is a banded matrix.

The convergence of the Jacobi method depends on the fact that in each step the quantity

$$
S(A)=\sum_{i \neq j} a_{i j}^{2}=\|A-D\|_{F}^{2},
$$

i.e., the Frobenius norm of the off-diagonal elements is reduced. To see this, we note that the Frobenius norm of a matrix is invariant under multiplication from left
or right with an orthogonal matrix. Therefore, since $a_{p q}^{\prime}=0$ we have

$$
\left(a_{p p}^{\prime}\right)^{2}+\left(a_{q q}^{\prime}\right)^{2}=a_{p p}^{2}+a_{q q}^{2}+2 a_{p q}^{2} .
$$

We also have that $\left\|A^{\prime}\right\|_{F}^{2}=\|A\|_{F}^{2}$, and it follows that

$$
S\left(A^{\prime}\right)=\left\|A^{\prime}\right\|_{F}^{2}-\sum_{i=1}^{n}\left(a_{i i}^{\prime}\right)^{2}=S(A)-2 a_{p q}^{2}
$$

There are various strategies for choosing the order in which the off-diagonal elements are annihilated. Since $S\left(A^{\prime}\right)$ is reduced by $2 a_{p q}^{2}$, the optimal choice is to annihilate the off-diagonal element of largest magnitude. This is done in the classical Jacobi method. Then since

$$
2 a_{p q}^{2} \geq S\left(A_{k}\right) / N, \quad N=n(n-1) / 2
$$

we have $S\left(A_{k+1}\right) \leq(1-1 / N) S\left(A_{k}\right)$. This shows that for the classical Jacobi method A_{k+1} converges at least linearly with rate $(1-1 / N)$ to a diagonal matrix. In fact it has been shown that ultimately the rate of convergence is quadratic, so that for k large enough, we have $S\left(A_{k+1}\right)<c S\left(A_{k}\right)^{2}$ for some constant c. The iterations are repeated until $S\left(A_{k}\right)<\delta\|A\|_{F}$, where δ is a tolerance, which can be chosen equal to the unit roundoff u. From the Bauer-Fike Theorem 9.3.4 it then follows that the diagonal elements of A_{k} then approximate the eigenvalues of A with an error less than $\delta\|A\|_{F}$.

In the Classical Jacobi method a large amount of effort must be spent on searching for the largest off-diagonal element. Even though it is possible to reduce this time by taking advantage of the fact that only two rows and columns are changed at each step, the Classical Jacobi method is almost never used. In a cyclic Jacobi method, the $N=\frac{1}{2} n(n-1)$ off-diagonal elements are instead annihilated in some predetermined order, each element being rotated exactly once in any sequence of N rotations called a sweep. Convergence of any cyclic Jacobi method can be guaranteed if any rotation (p, q) is omitted for which $\left|a_{p q}\right|$ is smaller than some threshold; see Forsythe and Henrici [13, 1960]. To ensure a good rate of convergence this threshold tolerance should be successively decreased after each sweep.

For sequential computers the most popular cyclic ordering is the row-wise scheme, i.e., the rotations are performed in the order

$$
\begin{array}{cccc}
(1,2), & (1,3), & \cdots & (1, n) \\
& (2,3), & \cdots & (2, n) \tag{9.5.6}\\
& & \cdots & \cdots \\
& & & (n-1, n)
\end{array}
$$

which is cyclically repeated. About $2 n^{3}$ flops per sweep is required. In practice, with the cyclic Jacobi method not more than about 5 sweeps are needed to obtain eigenvalues of more than single precision accuracy even when n is large. The number of sweeps grows approximately as $\mathrm{O}(\log n)$, and about $10 n^{3}$ flops are needed to
compute all the eigenvalues of A. This is about $3-5$ times more than for the QR algorithm.

An orthogonal system of eigenvectors of A can easily be obtained in the Jacobi method by computing the product of all the transformations

$$
X_{k}=J_{1} J_{2} \cdots J_{k}
$$

Then $\lim _{k \rightarrow \infty} X_{k}=X$. If we put $X_{0}=I$, then we recursively compute

$$
\begin{equation*}
X_{k}=X_{k-1} J_{k}, \quad k=1,2, \ldots \tag{9.5.7}
\end{equation*}
$$

In each transformation the two columns (p, q) of X_{k-1} is rotated, which requires $4 n$ flop. Hence in each sweep an additional $2 n$ flops is needed, which doubles the operation count for the method.

The Jacobi method is very suitable for parallel computation since several noninteracting rotations, $\left(p_{i}, q_{i}\right)$ and $\left(p_{j}, q_{j}\right)$, where p_{i}, q_{i} are distinct from p_{j}, q_{j}, can be performed simultaneously. If n is even the $n / 2$ Jacobi transformations can be performed simultaneously. A sweep needs at least $n-1$ such parallel steps. Several parallel schemes which uses this minimum number of steps have been constructed. These can be illustrated in the $n=8$ case by

$$
\begin{array}{llll}
(1,2), & (3,4), & (5,6), & (7,8) \\
(1,4), & (2,6), & (3,8), & (5,7) \\
(1,6), & (4,8), & (2,7), & (3,5) \\
(p, q)=(1,8), & (6,7), & (4,5), & (2,3) . \\
(1,7), & (8,5), & (6,3), & (4,2) \\
(1,5), & (7,3), & (8,2), & (6,4) \\
(1,3), & (5,2), & (7,4), & (8,6)
\end{array}
$$

The rotations associated with each row of the above can be calculated simultaneously. First the transformations are constructed in parallel; then the transformations from the left are applied in parallel, and finally the transformations from the right.

9.5.2 Jacobi Methods for Computing the SVD.

Several Jacobi-type methods for computing the SVD $A=U \Sigma V^{T}$ of a matrix were developed in the 1950's. The shortcomings of some of these algorithms have been removed, and as for the real symmetric eigenproblem, there are cases for which Jacobi's method is to be preferred over the QR-algorithm for the SVD. In particular, it computes the smaller singular values more accurately than any algorithm based on a preliminary bidiagonal reduction.

There are two different ways to generalize the Jacobi method for the SVD problem. We assume that $A \in \mathbf{R}^{n \times n}$ is a square nonsymmetric matrix. This is no restriction, sincer we can first compute QR factorization

$$
A=Q\binom{R}{0}
$$

and then apply the Jacobi-SVD method to R. In the two-sided Jacobi-SVD algorithm for the SVD of A (Kogbetliantz [29]) the elementary step consists of two-sided Givens transformations

$$
\begin{equation*}
A^{\prime}=J_{p q}(\phi) A J_{p q}^{T}(\psi) \tag{9.5.8}
\end{equation*}
$$

where $J_{p q}(\phi)$ and $J_{p q}(\psi)$ are determined so that $a_{p q}^{\prime}=a_{q p}^{\prime}=0$. Note that only rows and columns p and q in A are affected by the transformation. The rotations $J_{p q}(\phi)$ and $J_{p q}(\psi)$ are determined by computing the SVD of a 2×2 submatrix

$$
A=\left(\begin{array}{cc}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right), \quad a_{p p} \geq 0, \quad a_{q q} \geq 0
$$

The assumption of nonnegative diagonal elements is no restriction, since we can change the sign of these by premultiplication with an orthogonal matrix diag $(\pm 1, \pm 1)$.

Since the Frobenius norm is invariant under orthogonal transformations it follows that

$$
S\left(A^{\prime}\right)=S(A)-\left(a_{p q}^{2}+a_{q p}^{2}\right), \quad S(A)=\|A-D\|_{F}^{2}
$$

This relation is the basis for a proof that the matrices generated by Kogbetliantz's method converge to a diagonal matrix containing the singular values of A. Orthogonal systems of left and right singular vectors can be obtained by accumulating the product of all the transformations.

The rotation angles can be determined as follows: First a Givens transformation is applied to the left to transform it into an upper triangular 2×2 matrix. If $r_{12} \neq 0$, then we set

$$
\left(\begin{array}{cc}
\cos \phi & \sin \phi \tag{9.5.9}\\
-\sin \phi & \cos \phi
\end{array}\right)^{T}\left(\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right)\left(\begin{array}{cc}
\cos \psi & \sin \psi \\
-\sin \psi & \cos \psi
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)
$$

where the rotation angles are determined by the formula

$$
\begin{align*}
& \tan 2 \psi=\frac{2 r_{11} r_{12}}{r_{22}^{2}-r_{11}^{2}+r_{12}^{2}} \tag{9.5.10}\\
& \tan \phi=\frac{r_{12}+r_{11} \tan \psi}{r_{22}}=\frac{r_{22} \tan \psi}{r_{11}-r_{12} \tan \psi} \tag{9.5.11}
\end{align*}
$$

For stability reasons, in the latter formula, the quotients of absolutely larger numbers are always taken An alternative algorithm for the SVD of 2×2 upper triangular matrix, which always gives high relative accuracy in the singular values and vectors, has been developed by Demmel and Kahan; see Problem 5.

At first a drawback of the above algorithm seems to be that it works all the time on a full $m \times n$ unsymmetric matrix. However, if a proper cyclig rotation strategy is used, then at each step the matrix will be essentially triangular. If the column cyclic strategy

$$
(1,2),(1,3),(2,3), \ldots,(1, n), \ldots,(n-1, n)
$$

is used an upper triangular matrix will be successievly transformed into a lower triangular matrix. The next sweep will transform it back to an upper triangular matrix. During the whole process the matrix can be stored in an upper triangular array. The initial QR factorization also cures some global convergence problems present in the twosided Jacobi-SVD method.

In the one-sided Jacobi-SVD algorithm Givens transformations are used to find an orthogonal matrix V such that the matrix $A V$ has orthogonal columns. Then $A V=U \Sigma$ and the SVD of A is readily obtained. The columns can be explicitly interchanged so that the final columns of $A V$ appear in order of decreasing norm. The basic step rotates two columns:

$$
\left(\hat{a}_{p}, \hat{a}_{q}\right)=\left(a_{p}, a_{q}\right)\left(\begin{array}{cc}
c & s \tag{9.5.12}\\
-s & c
\end{array}\right), \quad p<q .
$$

The parameters c, s are determined so that the rotated columns are orthogonal, or equivalently so that

$$
\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)^{T}\left(\begin{array}{cc}
\left\|a_{p}\right\|_{2}^{2} & a_{p}^{T} a_{q} \\
a_{q}^{T} a_{p} & \left\|a_{q}\right\|_{2}^{2}
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)^{T}
$$

is diagonal. This 2×2 symmetric eigenproblem can be solved by a Jacobi transformation. To determine the rotation it is better to first compute the QR factorization

$$
\left(a_{p}, a_{q}\right)=\left(q_{1}, q_{2}\right)\left(\begin{array}{cc}
r_{p p} & r_{p q} \\
0 & r_{q q}
\end{array}\right) \equiv Q R .
$$

If now the 2×2 SVD $R=U \Sigma V^{T}$ is computed, using one of the algorithm given below, then since $R V=U \Sigma$

$$
\left(a_{p}, a_{q}\right) V=\left(q_{1}, q_{2}\right) U \Sigma
$$

will have orthogonal columns. It follows that V is the desired rotation in (9.5.12).
Clearly, the one-sided algorithm is mathematically equivalent to applying Jacobi's method to diagonalize $C=A^{T} A$, and hence its convergence properties are the same. Convergence of Jacobi's method is related to the fact that in each step the sum of squares of the off-diagonal elements

$$
S(C)=\sum_{i \neq j} c_{i j}^{2}, \quad C=A^{T} A
$$

is reduced. Hence the rate of convergence is ultimately quadratic, also for multiple singular values. Note that the one-sided Jacobi SVD will by construction have U orthogonal to working accuracy, but loss of orthogonality in V may occur. Therefore the columns of V should be reorthogonalized using a Gram-Schmidt process at the end.

The one-sided method can be applied to a general real (or complex) matrix $A \in \mathbf{R}^{m \times n}, m \geq n$, but an intial QR factorization should performed to speed up convergence. If this is performed with row and column pivoting, then high
relative accuracy can be achieved for matrices A that are diagonal scalings of a well-conditioned matrix, that is which can be decomposed as

$$
A=D_{1} B D_{2}
$$

where D_{1}, D_{2} are diagonal and B well-conditioned. It has been domonstrated that if presorting the rows after decreasing norm $\left\|a_{i,:}\right\|_{\infty}$ and then using column pivoting only gives equally good results. By a careful choice of the rotation sequence the esential triangularity of the matrix can be preserved during the Jacobi iterations.

In a cyclic Jacobi method, the off-diagonal elements are annihilated in some predetermined order, each element being rotated exactly once in any sequence of $N=n(n-1) / 2$ rotations called a sweep. Parallel implementations can take advantage of the fact that noninteracting rotations, $\left(p_{i}, q_{i}\right)$ and $\left(p_{j}, q_{j}\right)$, where p_{i}, q_{i} and p_{j}, q_{j} are distinct, can be performed simultaneously. If n is even $n / 2$ transformations can be performed simultaneously, and a sweep needs at least $n-1$ such parallel steps. In practice, with the cyclic Jacobi method not more than about five sweeps are needed to obtain singular values of more than single precision accuracy even when n is large. The number of sweeps grows approximately as $O(\log n)$.

The alternative algorithm for the SVD of 2×2 upper triangular matrix below always gives high relative accuracy in the singular values and vectors, has been developed by Demmel and Kahan, and is based on the relations in Problem 5.

Review Questions

1. What is the asymptotic speed of convergence for the classical Jacobi method? Discuss the advantages and drawbacks of Jacobi methods compared to the QR algorithm.
2. There are two different Jacobi-type methods for computing the SVD were developed. What are they called? What 2×2 subproblems are they based on?

Problems

1. Implement Jacobi's algorithm, using the stopping criterion (9.5.5) with tol $=$ 10^{-12}. Use it to compute the eigenvalues of

$$
A=\left(\begin{array}{ccc}
-0.442 & -0.607 & -1.075 \\
-0.607 & 0.806 & 0.455 \\
-1.075 & 0.455 & -1.069
\end{array}\right)
$$

How many Jacobi steps are used?
2. Suppose the matrix

$$
\tilde{A}=\left(\begin{array}{ccc}
1 & 10^{-2} & 10^{-4} \\
10^{-2} & 2 & 10^{-2} \\
10^{-4} & 10^{-2} & 4
\end{array}\right)
$$

has been obtained at a certain step of the Jacobi algorithm. Estimate the eigenvalues of \tilde{A} as accurately as possible using the Gerschgorin circles with a suitable diagonal transformation, see Problem 9.3.3.
3. Jacobi-type methods can also be constructed for Hermitian matrices using elementary unitary rotations of the form

$$
U=\left(\begin{array}{cc}
\cos \theta & \alpha \sin \theta \\
-\bar{\alpha} \sin \theta & \cos \theta
\end{array}\right), \quad|\alpha|=1
$$

Show that if we take $\alpha=a_{p q} /\left|a_{p q}\right|$ then equation (9.5.4) for the angle θ becomes

$$
\tau=\cot 2 \theta=\left(a_{p p}-a_{q q}\right) /\left(2\left|a_{p q}\right|\right), \quad\left|a_{p q}\right| \neq 0
$$

(Note that the diagonal elements $a_{p p}$ and $a_{q q}$ of a Hermitian matrix are real.)
4. Let $A \in \mathbf{C}^{2 \times 2}$ be a given matrix, and U a unitary matrix of the form in Problem 3. Determine U so that the matrix $B=U^{-1} A U$ becomes upper triangular, that is, the Schur Canonical Form of A. Use this result to compute the eigenvalues of

$$
A=\left(\begin{array}{cc}
9 & 10 \\
-2 & 5
\end{array}\right)
$$

Outline a Jacobi-type method to compute the Schur Canonical form of a general matrix A.
5. Consider the SVD of an upper triangular 2×2 matrix (9.5.9). where $\sigma_{1} \geq \sigma_{2}$. (a) Show that the singular values satisfy

$$
\sigma_{1} \sigma_{2}=\left|r_{11} r_{22}\right|, \quad \sigma_{1}^{2}+\sigma_{2}^{2}=r_{11}^{2}+r_{22}^{2}+r_{12}^{2}
$$

Deduce that

$$
\begin{equation*}
\sigma_{1,2}=\frac{1}{2}\left|\sqrt{\left(r_{11}+r_{22}\right)^{2}+r_{12}^{2}} \pm \sqrt{\left(r_{11}-r_{22}\right)^{2}+r_{12}^{2}}\right| \tag{9.5.13}
\end{equation*}
$$

of which the larger is σ_{1} and the smaller $\sigma_{2}=\left|r_{11} r_{22}\right| / \sigma_{1}$.
(b) Show that for the right singular vector $\left(s_{v}, c_{v}\right)$ is parallel to $\left(r_{11}^{2}-\sigma_{1}^{2}, r_{11} r_{12}\right)$. The left singular vectors then are obtained from

$$
\left(c_{u}, s_{u}\right)=\left(r_{11} c_{v}-r_{12} s_{v}, r_{22} s_{v}\right) / \sigma_{1}
$$

SVD of 2×2 upper triangular matrix (9.5.9) with $\left|r_{11}\right| \geq\left|r_{22}\right|$:

$$
\begin{aligned}
& {\left[c_{u}, s_{u}, c_{v}, s_{v}, \sigma_{1}, \sigma_{2}\right]=\operatorname{svd}\left(r_{11}, r_{12}, r_{22}\right)} \\
& \quad l=\left(\left|r_{11}\right|-\left|r_{22}\right|\right) /\left|r_{11}\right| ; \\
& \quad m=r_{12} / r_{11} ; \quad t=2-l ; \\
& \quad s=\sqrt{t^{2}+m^{2}} ; \quad r=\sqrt{l^{2}+m^{2}} ; \\
& \quad a=0.5(s+r) ; \\
& \sigma_{1}=\left|r_{11}\right| a ; \quad \sigma_{2}=\left|r_{22}\right| / a \\
& t=(1+a)(m /(s+t)+m /(r+l)) \\
& \quad l=\sqrt{t^{2}+4} ; \\
& c_{v}=2 / l ; \quad s_{v}=-t / l ; \\
& c_{u}=\left(c_{v}-s_{v} m\right) / a ; \quad s_{u}=s_{v}\left(r_{22} / r_{11}\right) / a \\
& \text { end }
\end{aligned}
$$

6. Show that if Kogbetliantz's method is applied to a triangular matrix then after one sweep of the row cyclic algorithm (9.5.6) an upper (lower) triangular matrix becomes lower (upper) triangular.

9.6 Transformation to Condensed Form

9.6.1 Introduction

By Theorem 9.2.1 any matrix can be reduced to upper triangular form, the Schur canonical form, by a unitary similarity transformation. For a normal matrix this triangular form must necessarily be diagonal. In both cases we can read off the eigenvalues from the diagonal. The construction of the similarity transformation depended on the knowledge of successive eigenpairs, and this transformation can therefore in general not be realized by a finite process.

It is, however, possible to reduce a matrix to upper Hessenberg form, which is close to triangular, by a finite number of elementary similarity transformations. In the symmetric case, a symmetric tridiagonal form is obtained. In several algorithms for finding the eigenvalues and eigenvectors of a matrix the work is greatly reduced if this transformation is first carried out.

9.6.2 Unitary Elementary Transformations

For transformation of complex matrices to condensed form we need to consider unitary Givens and Householder transformations. To generalize Givens rotations to the complex case, we consider matrices of the form

$$
G=\left(\begin{array}{cc}
\bar{c} & \bar{s} \\
-s & c
\end{array}\right), \quad c=e^{i \gamma} \cos \theta, \quad s=e^{i \delta} \sin \theta
$$

It is easily verified that the matrix $G^{H}=G$, i.e., G is unitary, and that $G^{-1}=G^{H}$ is itself a plane rotation Given a complex vector $\left(x_{1} x_{2}\right)^{T} \in \mathbf{C}^{2}$ we now want to
determine c and s so that

$$
\begin{equation*}
G\binom{x_{1}}{x_{2}}=\binom{\sigma}{0}, \quad \sigma^{2}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2} \tag{9.6.1}
\end{equation*}
$$

Further, (9.6.1) holds provided that

$$
c=x_{1} / \sigma, \quad s=x_{2} / \sigma
$$

The following algorithm generalizes Algorithm 7.4.2 to the complex case:

Algorithm 9.6.1

Given $x=\left(x_{1}, x_{2}\right)^{T} \neq 0$ construct c, s, and real σ in a complex Givens rotation such that $G x=\sigma(1,0)^{T}$:

$$
\begin{aligned}
& {[c, s, \sigma]=\operatorname{givrot}\left(x_{1}, x_{2}\right)} \\
& \text { if }\left|x_{1}\right|>\left|x_{2}\right| \\
& t=x_{2} / x_{1} ; \quad u=\sqrt{1+|t|^{2}} ; \\
& c=\left(x_{1} /\left|x_{1}\right|\right) / u ; \quad s=t c ; \quad \sigma=x_{1} / c ; \\
& \text { else } \\
& t=x_{1} / x_{2} ; \quad u=\sqrt{1+|t|^{2}} ; \\
& s=\left(x_{2} /\left|x_{2}\right|\right) / u ; \quad c=t s ; \quad \sigma=x_{2} / s ; \\
& \text { end }
\end{aligned}
$$

Householder transformations can also be generalized to the complex case. We consider unitary Householder transformations of the form

$$
\begin{equation*}
P=I-\frac{1}{\gamma} u u^{H}, \quad \gamma=\frac{1}{2} u^{H} u, \quad u \in \mathbf{C}^{n} . \tag{9.6.2}
\end{equation*}
$$

It is easy to check that P is Hermitian, $P^{H}=P$, and unitary, $P^{-1}=P$. Given a vector $x \in \mathbf{C}^{n}$ we want to determine u such that $P x=k e_{1},|k|=\sigma=\|x\|_{2}$. It is easily verified that if $x_{1}=e^{i \alpha_{1}}\left|x_{1}\right|$ then u and γ are given by

$$
\begin{equation*}
u=x+k e_{1}, \quad k=\sigma e^{i \alpha_{1}} \tag{9.6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{1}{2}\left(\sigma^{2}+2|k|\left|x_{1}\right|+|k|^{2}\right)=\sigma\left(\sigma+\left|x_{1}\right|\right) . \tag{9.6.4}
\end{equation*}
$$

Note that u differs from x only in its first component.

9.6.3 Reduction to Hessenberg Form

We now show how to reduce a matrix $A \in \mathbf{R}^{n \times n}$ to Hessenberg form by an orthogonal similarity,

$$
Q^{T} A Q=H=\left(\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & h_{1, n-1} & h_{1 n} \\
h_{21} & h_{22} & \cdots & h_{2, n-1} & h_{2 n} \\
& h_{32} & \ddots & \vdots & \vdots \\
& & \ddots & \ddots & \vdots \\
& & & h_{n, n-1} & h_{n n}
\end{array}\right)
$$

The orthogonal matrix Q will be constructed as a product of $n-2$ Householder transformations $Q=P_{1} P_{2} \cdots P_{n-2}$, where

$$
\begin{equation*}
P_{k}=I-\frac{1}{\gamma_{k}} u_{k} u_{k}^{T}, \quad \gamma_{k}=\frac{1}{2}\left\|u_{k}\right\|_{2}^{2} \tag{9.6.5}
\end{equation*}
$$

(cf. the Householder QR decomposition in Section 8.4.3). Note that P_{k} is completely specified by u_{k} and γ_{k}, and that products of the form $P A$ and $A P$, can each be computed in $2 n^{2}$ flops by

$$
P A=A-u_{k}\left(A^{T} u_{k}\right)^{T} / \gamma_{k}, \quad A P=A-\left(A u_{k}\right) u_{k}^{T} / \gamma_{k} .
$$

We compute $A=A^{(1)}, A^{(2)}, \ldots, A^{(n-1)}=H$, where $A^{(k+1)}=P_{k} A^{(k)} P_{k}$. In the first step, $k=1$,

$$
A^{(2)}=P_{1} A P_{1}=\left(\begin{array}{ccccc}
h_{11} & h_{12} & \tilde{a}_{13} & \ldots & \tilde{a}_{1 n} \\
h_{21} & h_{22} & \tilde{a}_{23} & \ldots & \tilde{a}_{2 n} \\
0 & \tilde{a}_{32} & \tilde{a}_{33} & \ldots & \tilde{a}_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & \tilde{a}_{n 2} & \tilde{a}_{n 3} & \ldots & \tilde{a}_{n n}
\end{array}\right)
$$

where P_{1} is chosen so that $P_{1} A$ has zeros in the first column in the positions shown above. These zeros are not destroyed by the post-multiplication $\left(P_{1} A\right) P_{1}$, which only affects the $n-1$ last columns. All later steps are similar. After $(k-1)$ steps we have computed

$$
A^{(k)}=\left(\begin{array}{ccc}
H_{11} & h_{12} & \tilde{A}_{13} \tag{9.6.6}\\
0 & a_{22} & \tilde{A}_{23}
\end{array}\right),
$$

where $\left(\begin{array}{ll}H_{11} & h_{12}\end{array}\right) \in \mathbf{R}^{k \times k}$ is part of the final Hessenberg matrix. P_{k} is chosen to zero all elements but the first in a_{22}. After $n-2$ steps we have the required form

$$
\begin{equation*}
Q^{T} A Q=A^{(n-1)}=H, \quad Q=P_{1} P_{2} \cdots P_{n-2} \tag{9.6.7}
\end{equation*}
$$

A simple operation count shows that this reduction requires $5 n^{3} / 3$ flops. Note that the transformation matrix Q is not explicitly computed, only the vectors defining the Householder transformations $P_{1}, P_{2}, \ldots, P_{n-2}$ are saved. These vectors can conveniently overwrite the corresponding elements in the matrix A using also two extra rows appended to A.

The Hessenberg decomposition $Q^{T} A Q=H$ is not unique. The following important theorem states that it is uniquely determined once the first column in Q is specified, provided that H has no zero subdiagonal element. A Hessenberg matrix with this property is said to be unreduced.

Theorem 9.6.1. Implicit Q Theorem.
Given $A, H, Q \in \mathbf{R}^{n \times n}$, where $Q=\left(q_{1}, \ldots, q_{n}\right)$ is orthogonal and $H=Q^{T} A Q$ is upper Hessenberg with positive subdiagonal elements. Then H and Q are uniquely determined by the first column q_{1} in Q.

Proof. Assume we have already computed q_{1}, \ldots, q_{k} and the first $k-1$ columns in H. (Since q_{1} is known this assumption is valid for $k=1$.) Equating the k th columns in $\left(q_{1}, q_{2}, \ldots, q_{n}\right) H=A\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ we obtain

$$
h_{1, k} q_{1}+\cdots+h_{k, k} q_{k}+h_{k+1, k} q_{k+1}=A q_{k}
$$

Multiplying this by q_{i}^{T} and using the orthogonality of Q, we obtain

$$
h_{i k}=q_{i}^{T} A q_{k}, \quad i=1, \ldots, k
$$

Since H is unreduced $h_{k+1, k} \neq 0$, and therefore q_{k+1} and $h_{k+1, k}$ are determined (up to a factor of ± 1) by

$$
q_{k+1}=h_{k+1, k}^{-1}\left(A q_{k}-\sum_{i=1}^{k} h_{i k} q_{i}\right)
$$

and the condition that $\left\|q_{k+1}\right\|_{2}=1$.
The reduction by Householder transformations is stable in the sense that the computed \bar{H} can be shown to be the exact result of an orthogonal similarity transformation of a matrix $A+E$, where

$$
\begin{equation*}
\|E\|_{F} \leq c n^{2} u\|A\|_{F} \tag{9.6.8}
\end{equation*}
$$

and c is a constant of order unity. Moreover if we use the information stored to generate the product $U=P_{1} P_{2} \cdots P_{n-2}$ then the computed result is close to the matrix U that reduces $A+E$. This will guarantee that the eigenvalues and transformed eigenvectors of \bar{H} are accurate approximations to those of a matrix close to A. However, it should be noted that this does not imply that the computed \bar{H} will be close to the matrix H corresponding to the exact reduction of A. Even the same algorithm run on two computers with different floating point arithmetic may produce very different matrices \bar{H}. Behavior of this kind, named irrelevant instability by B. N. Parlett, unfortunately continue to cause much unnecessary concern! The backward stability of the reduction ensures that each matrix will be similar to A to working precision and will yield approximate eigenvalues to as much absolute accuracy as is warranted.

The reduction to Hessenberg form can also be achieved by using elementary elimination matrices as introduced in Section 7.3.5. These are lower triangular matrices of the form

$$
L_{j}=I+m_{j} e_{j}^{T}, \quad m_{j}=\left(0, \ldots, 0, m_{j+1, j}, \ldots, m_{n, j}\right)^{T}
$$

Only the elements below the main diagonal in the j th column differ from the unit matrix. If a matrix A is premultiplied by L_{j} we get

$$
L_{j} A=\left(I+m_{j} e_{j}^{T}\right) A=A+m_{j}\left(e_{j}^{T} A\right)=A+m_{j} a_{j}^{T}
$$

i.e., multiples of the row a_{j}^{T} are added to the last $n-j$ rows of A. We complete the similarity transformation $L_{j} A L_{j}^{-1}=\tilde{A} L_{j}^{-1}$ by postmultiplying

$$
\tilde{A} L_{j}^{-1}=\tilde{A}\left(I-m_{j} e_{j}^{T}\right)=\tilde{A}-\left(\tilde{A} m_{j}\right) e_{j}^{T}
$$

In this operation a linear combination $\tilde{A} m_{j}$ of the last $n-j$ columns is subtracted from the j th column of \tilde{A}.

If the pivot element $a_{21} \neq 0$, then we can eliminate the last $n-2$ elements in the first column of A by the transformation $L_{2} A$, where

$$
m_{2}=-\left(0,0, a_{31} / a_{21}, \ldots, a_{n 1} / a_{21}\right)^{T}
$$

These zeros are not affected by the postmultiplication $\left(L_{2} A\right) L_{2}^{-1}$, which only affects the elements in the last $n-1$ columns. Hence, if all pivot elements are nonzero we can complete the transformation to Hessenberg form. The vectors $m_{j}, j=2, \ldots, n-1$ can overwrite the corresponding elements of A. The reduction may be unstable if some pivot elements are small. Therefore, in practice this algorithm has to be modified by the introduction of partial pivoting, in obvious analogy to Gaussian elimination. With this modification the stability of the reduction is usually as good as for the one using Householder reflections. The backward error bound will contain a growth ratio g_{n}, see Section 7.6.6, but a big growth rarely occurs in practice. The operation count for this reduction can be shown to be $n^{3} / 3+n^{3} / 2=5 n^{3} / 6$ flops, or half that for the orthogonal reduction. Because of this reduction by elementary elimination matrices is often the preferred method.

The similarity reduction of a nonsymmetric matrix to tridiagonal form has also been considered. This reduction is of interest also because of its relation to Lanczos bi-orthogonalization and the bi-conjugate gradient method; see Secs. 10.5.2-10.5.3. As shown by Wilkinson [52, pp. 388-405], this reduction can be performed in two steps: first an orthogonal similarity is used to reduce A to lower Hessenberg form; second the appropriate elements in the lower triangular half are zeroed column by column using a sequence of similarity transformations by elementary elimination matrices of the form in (6.3.15).

$$
H:=\left(I-m_{j} e_{j}^{T}\right) H\left(I+m_{j} e_{j}^{T}\right), \quad j=1, \ldots, n-1
$$

In this step row pivoting can not be used, since this would destroy the lower Hessenberg structure. As a consequence, the reduction will fail if a zero pivot element is encountered. In this case one must restart the reduction from the beginning.

By (9.6.8) computed eigenvalues will usually have errors at least of order $u\|A\|_{F}$. Therefore it is desirable to precede the eigenvalue calculation by a diagonal similarity transformation $\tilde{A}=D^{-1} A D$ which reduces the Frobenius norm. (Note that only the off-diagonal elements are effected by such a transformation.) This can be achieved by balancing the matrix A. We say that a matrix \tilde{A} is balanced for some norm l_{p}-norm if $\left\|\tilde{a}_{i}\right\|_{p}=\left\|\tilde{a}^{i}\right\|_{p}, i=1, \ldots, n$ where \tilde{a}_{i} and \tilde{a}^{i} denote respectively the i th column and i th row of \tilde{A}. There are classes of matrices which do not need balancing; for example normal matrices are already balanced for $p=2$.

An iterative algorithm has been given by Osborne that for any (real or complex) irreducible matrix A and $p=2$ converges to a balanced matrix \tilde{A}. For a discussion and an implementation see Contribution II/11 in [53].

9.6.4 Reduction to Symmetric Tridiagonal Form

If we carry out the orthogonal reduction to Hessenberg form for a real symmetric matrix A, then

$$
H^{T}=\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T} Q=H
$$

It follows that H is a real symmetric tridiagonal matrix, which we write

$$
Q^{T} A Q=T=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \tag{9.6.9}\\
\beta_{2} & \alpha_{2} & \beta_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & \beta_{n-1} & \alpha_{n-1} & \beta_{n} \\
\beta_{n} & \alpha_{n}
\end{array}\right) \text {. }
$$

If elementary elimination matrices are used for the reduction symmetry is not preserved. Hence in this case the orthogonal reduction is clearly superior. A similar remark applies to the case of the unitary reduction of a Hermitian matrix to Hermitian tridiagonal form.

In the k th step of the orthogonal reduction of a real symmetric matrix we compute $A^{(k+1)}=P_{k} A^{(k)} P_{k}$, where P_{k} is again chosen to zero the last $n-k-1$ elements in the k th column. By symmetry the corresponding elements in the k th row will be zeroed by the post-multiplication P_{k}.

It is important to take advantage of symmetry to save storage and operations. Since the intermediate matrix $P_{k} A^{(k)}$ is not symmetric, this means that we must compute $P_{k} A^{(k)} P_{k}$ directly. Dropping the subscripts k we can write

$$
\begin{align*}
P A P & =\left(I-\frac{1}{\gamma} u u^{T}\right) A\left(I-\frac{1}{\gamma} u u^{T}\right) \tag{9.6.10}\\
& =A-u p^{T}-p u^{T}+u^{T} p u u^{T} / \gamma \tag{9.6.11}\\
& =A-u q^{T}-q u^{T},
\end{align*}
$$

where

$$
\begin{equation*}
p=A u / \gamma, \quad q=p-\beta u, \quad \beta=u^{T} p /(2 \gamma) \tag{9.6.12}
\end{equation*}
$$

If the transformations are carried out in this fashion the operation count for the reduction to tridiagonal form is reduced to about $2 n^{3} / 3$ flops, and we only need to store, say, the lower halves of the matrices.

The orthogonal reduction to tridiagonal form has the same stability property as the corresponding algorithm for the unsymmetric case, i.e., the computed tridiagonal matrix is the exact result for a matrix $A+E$, where E satisfies (9.6.8). Hence the eigenvalues of T will differ from the eigenvalues of A by at most $c n^{2} u\|A\|_{F}$.

There is a class of symmetric matrices for which small eigenvalues are determined with a very small error compared to $\|A\|_{F}$. This is the class of scaled diagonally dominant matrices, see Barlow and Demmel [3, 1990]. A symmetric scaled diagonally dominant (s.d.d) matrix is a matrix of the form $D A D$, where A is symmetric and diagonally dominant in the usual sense, and D is an arbitrary diagonal matrix. An example of a s.d.d. matrix is the graded matrix

$$
A_{0}=\left(\begin{array}{ccc}
1 & 10^{-4} & \\
10^{-4} & 10^{-4} & 10^{-8} \\
& 10^{-8} & 10^{-8}
\end{array}\right)
$$

whose elements decrease progressively in size as one proceeds diagonally from top to bottom. However, the matrix

$$
A_{1}=\left(\begin{array}{ccc}
10^{-6} & 10^{-2} & \\
10^{-2} & 1 & 10^{-2} \\
& 10^{-2} & 10^{-6}
\end{array}\right)
$$

is neither diagonally dominant or graded in the usual sense.
The matrix A_{0} has an eigenvalue λ of magnitude 10^{-8}, which is quite insensitive to small relative perturbations in the elements of the matrix. If the Householder reduction is performed starting from the top row of A as described here it is important that the matrix is presented so that the larger elements of A occur in the top left-hand corner. Then the errors in the orthogonal reduction will correspond to small relative errors in the elements of A, and the small eigenvalues of A will not be destroyed. ${ }^{8}$

A similar algorithm can be used to transform a Hermitian matrix into a tridiagonal Hermitian matrix using the complex Householder transformation introduced in Section 9.6.2. With $U=P_{1} P_{2} \cdots P_{n-2}$ we obtain $T=U^{H} A U$, where T is Hermitian and therefore has positive real diagonal elements. By a diagonal similarity $D T D^{-1}, D=\operatorname{diag}\left(e^{i \phi_{1}}, e^{i \phi_{2}}, \ldots, e^{i \phi_{n}}\right)$ it is possible to further transform T so that the off-diagonal elements are real and nonnegative.

If the orthogonal reduction to tridiagonal form is carried out for a symmetric banded matrix A, then the banded structure will be destroyed. By annihilating pairs of elements using Givens rotations in an ingenious order it is possible to perform the reduction without increasing the bandwidth. However, it will then take several rotation to eliminate a single element. This algorithm is described in Parlett [38, Section 10.5.1], see also Contribution II/8 in Wilkinson and Reinsch [53]. An

[^6]operation count shows that the standard reduction is slower if the bandwidth is less than $n / 6$. Note that the reduction of storage is often equally important!

9.6.5 A Divide and Conquer Algorithm

The basic idea in the divide and conquer algorithm for the symmetric tridiagonal eigenproblem is to divide the tridiagonal matrix (9.7.30) into two smaller symmetric tridiagonal matrices S and T_{2} as follows.

$$
T=\left(\begin{array}{ccc}
T_{1} & \beta_{k+1} e_{k} & 0 \tag{9.6.13}\\
\beta_{k+1} e_{k}^{T} & \alpha_{k+1} & \beta_{k+2} e_{1}^{T} \\
0 & \beta_{k+2} e_{1} & T_{2}
\end{array}\right)=P\left(\begin{array}{ccc}
\alpha_{k+1} & \beta_{k+1} e_{k}^{T} & \beta_{k+2} e_{1}^{T} \\
\beta_{k+1} e_{k} & T_{1} & 0 \\
\beta_{k+2} e_{1} & 0 & T_{2}
\end{array}\right) P^{T} .
$$

Here e_{j} is the j th unit vector of appropriate dimension and P is a permutation matrix permuting block rows and columns 1 and 2. T_{1} and T_{2} are $k \times k$ and $(n-k-1) \times(n-k-1)$ symmetric tridiagonal matrices and are principle submatrices of T.

Suppose now that the eigendecompositions of $T_{i}=Q_{i} D_{i} Q_{i}^{T}, i=1,2$ are known. Substituting into (9.6.13) we get

$$
T=P\left(\begin{array}{ccc}
\alpha_{k+1} & \beta_{k+1} e_{k}^{T} & \beta_{k+2} e_{1}^{T} \tag{9.6.14}\\
\beta_{k+1} e_{k} & Q_{1} D_{1} Q_{1}^{T} & 0 \\
\beta_{k+2} e_{1} & 0 & Q_{2} D_{2} Q_{2}^{T}
\end{array}\right) P^{T}=Q H Q^{T}
$$

where

$$
H=\left(\begin{array}{ccc}
\alpha_{k+1} & \beta_{k+1} l_{1}^{T} & \beta_{k+2} f_{2}^{T} \\
\beta_{k+1} l_{1} & D_{1} & 0 \\
\beta_{k+2} f_{2} & 0 & D_{2}
\end{array}\right), \quad Q=P\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & Q_{1} & 0 \\
0 & 0 & Q_{2}
\end{array}\right)
$$

and $l_{1}=Q_{1}^{T} e_{k}, f_{2}=Q_{2}^{T} e_{1}$. Hence the matrix T is reduced to H by an orthogonal similarity transformation Q. The matrix H has the form

$$
H=\left(\begin{array}{cc}
\alpha & z^{T} \\
z & D
\end{array}\right), \quad D=\operatorname{diag}\left(d_{2}, \ldots, d_{n}\right)
$$

where $z=\left(z_{2}, \ldots, z_{n}\right)^{T}$ is a vector. Such a matrix is called a symmetric arrowhead matrix. We assume that $d_{2} \geq d_{3} \geq \cdots \geq d_{n}$, which can be achieved by a symmetric permutation.

The eigenvalue problem for symmetric arrowhead matrices has been discussed in detail in Wilkinson [52, pp. 95-96]. In particular, if we assume that the elements d_{i} are distinct, $d_{2}>d_{3}>\cdots>d_{n}$, and that $z_{i}>0, i=2, \ldots, n$, then the eigenvalues and eigenvectors of H are characterized by the following lemma (cf. Problem 9.3.8).

Lemma 9.6.2.

The eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ of H satisfy the secular equation

$$
\begin{equation*}
f(\lambda)=\lambda-\alpha+\sum_{j=2}^{n} \frac{z_{j}^{2}}{d_{j}-\lambda}=0 \tag{9.6.15}
\end{equation*}
$$

and the interlacing property $\lambda_{1}>d_{2}>\lambda_{2}>\cdots>d_{n}>\lambda_{n}$. For each eigenvalue λ_{i} of H, a corresponding (unnormalized) eigenvector is given by

$$
\begin{equation*}
u_{i}=\left(-1, \frac{z_{2}}{d_{2}-\lambda_{i}}, \ldots, \frac{z_{n}}{d_{n}-\lambda_{i}}\right)^{T} \tag{9.6.16}
\end{equation*}
$$

Hence simple roots of the secular equation are isolated in an interval $\left(d_{i}, d_{i+1}\right)$ where $f(\lambda)$ is monotonic and smooth. A zerofinder based on rational interpolation can be constructed which gets guaranteed quadratic convergence.

We make the following observations:

- If $d_{i}=d_{i+1}$ for some $i, 2 \leq i \leq n-1$, then it can be shown that one eigenvalue of H equals d_{i}, and the degree of the secular equation may be reduced by one.
- If $z_{i}=0$, then one eigenvalue equals d_{i}, and again the degree of the secular equation is decreased by one.

The splitting in (9.6.13) can be applied recursively to T_{1} and T_{2}, i.e., we can repeat the splitting on each T_{1} and T_{2}, etc., until the original tridiagonal matrix T has been reduced to a desired number of small subproblems. Then the relations in Lemma 9.6.2 may be applied from the bottom up to glue the eigensystems together.

In practice the formula for the eigenvectors in Lemma 9.6.2 cannot be used directly. The reason for this is that we can only compute an approximation $\hat{\lambda}_{i}$ to λ_{i}. Even if $\hat{\lambda}_{i}$ is very close to λ_{i}, the approximate ratio $z_{j} /\left(d_{j}-\hat{\lambda}_{i}\right)$ can be very different from the corresponding exact ratio. These errors may lead to computed eigenvectors of T which are numerically not orthogonal. Fortunately an ingenious solution to this problem has been found, which involves modifying the vector z rather than increasing the accuracy of the $\hat{\lambda}_{i}$, see Gu and Eisenstat [22, 1975]. The resulting algorithm seems to outperform the QR algorithm even on single processor computers.

9.6.6 Spectrum Slicing

Sylvester's law of inertia (see Theorem 7.3.8) leads to a simple and important method called spectrum slicing for counting the eigenvalues greater than a given real number τ of a Hermitian matrix A. In the following we treat the real symmetric case, but everything goes through also for general Hermitian matrices. The following theorem is a direct consequence of Sylvester's Law of Inertia.

Theorem 9.6.3.

Assume that symmetric Gaussian elimination can be carried through for $A-\tau I$ yielding the factorization (cf. (6.4.5))

$$
\begin{equation*}
A-\tau I=L D L^{T}, \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \tag{9.6.17}
\end{equation*}
$$

where L is a unit lower triangular matrix. Then $A-\tau I$ is congruent to D, and hence the number of eigenvalues of A greater than τ equals the number of positive elements $\pi(D)$ in the sequence d_{1}, \ldots, d_{n}.

Example 9.6.1.

The $L D L^{T}$ factorization

$$
A-1 \cdot I=\left(\begin{array}{ccc}
1 & 2 & \\
2 & 2 & -4 \\
& -4 & -6
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
2 & 1 & \\
& 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& -2 & \\
& & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & \\
& 1 & 2 \\
& & 1
\end{array}\right) .
$$

shows that the matrix A has two eigenvalues greater than 1 .
The $L D L^{T}$ factorization may fail to exist if $A-\tau I$ is not positive definite. This will happen for example if we choose the shift $\tau=2$ for the matrix in Example 9.6.1. Then $a_{11}-\tau=0$, and the first step in the factorization cannot be carried out. A closer analysis shows that the factorization will fail if, and only if, τ equals an eigenvalue to one or more of the $n-1$ leading principal submatrices of A. If τ is chosen in a small interval around each of these values, big growth of elements occurs and the factorization may give the wrong count. In such cases one should perturb τ by a small amount and restart the factorization from the beginning.

For the special case when A is a symmetric tridiagonal matrix the procedure outlined above becomes particularly efficient and reliable. Here the factorization is $T-\tau I=L D L^{T}$, where L is unit lower bidiagonal and $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. The remarkable fact is that if we only take care to avoid over/underflow then element growth will not affect the accuracy of the slice.

Algorithm 9.6.2

Tridiagonal Spectrum Slicing Let T be the tridiagonal matrix (9.6.9). Then the number π of eigenvalues greater than a given number τ is generated by the following algorithm:

$$
\begin{aligned}
& d_{1}:=\alpha_{1}-\tau ; \\
& \pi:=\text { if } d_{1}>0 \text { then } 1 \text { else } 0 ; \\
& \text { for } k=2: n \\
& \quad d_{k}:=\left(\alpha_{k}-\beta_{k}\left(\beta_{k} / d_{k-1}\right)\right)-\tau ; \\
& \quad \text { if }\left|d_{k}\right|<\sqrt{\omega} \text { then } d_{k}:=\sqrt{\omega} \\
& \quad \text { if } d_{k}>0 \text { then } \pi:=\pi+1 \\
& \text { end }
\end{aligned}
$$

Here, to prevent breakdown of the recursion, a small $\left|d_{k}\right|$ is replaced by $\sqrt{\omega}$ where ω is the underflow threshold. The recursion uses only $2 n$ flops, and it is not necessary to store the elements d_{k}. The number of multiplications can be halved by computing initially β_{k}^{2}, which however may cause unnecessary over/underflow. Assuming that no over/underflow occurs Algorithm 9.6.6 is backward stable. A round-off error analysis shows that the computed values \bar{d}_{k} satisfy exactly (let $\beta_{1}=$ $0)$

$$
\bar{d}_{k}=f l\left(\left(\alpha_{k}-\beta_{k}\left(\beta_{k} / \bar{d}_{k-1}\right)\right)-\tau\right)
$$

$$
\begin{align*}
& =\left(\left(\alpha_{k}-\frac{\beta_{k}^{2}}{\bar{d}_{k-1}}\left(1+\epsilon_{1 k}\right)\left(1+\epsilon_{2 k}\right)\right)\left(1+\epsilon_{3 k}\right)-\tau\right)\left(1+\epsilon_{4 k}\right) \tag{9.6.18}\\
& \equiv \alpha_{k}^{\prime}-\tau-\left(\beta_{k}^{\prime}\right)^{2} / \bar{d}_{k-1}, \quad k=1, \ldots, n
\end{align*}
$$

where $\left|\epsilon_{i k}\right| \leq u$. Hence, the computed number $\bar{\pi}$ is the exact number of eigenvalues greater than τ of a matrix A^{\prime}, where A^{\prime} has elements satisfying

$$
\begin{equation*}
\left|\alpha_{k}^{\prime}-\alpha_{k}\right| \leq u\left(2\left|\alpha_{k}\right|+|\tau|\right), \quad\left|\beta_{k}^{\prime}-\beta_{k}\right| \leq 2 u\left|\beta_{k}\right| . \tag{9.6.19}
\end{equation*}
$$

This is a very satisfactory backward error bound. It has been improved even further by Kahan $[28,1966]$, who shows that the term $2 u\left|\alpha_{k}\right|$ in the bound can be dropped, see also Problem 1. Hence it follows that eigenvalues found by bisection differ by a factor at most $(1 \pm u)$ from the exact eigenvalues of a matrix where only the off-diagonal elements are subject to a relative perturbed of at most $2 u$. This is obviously a very satisfactory result.

The above technique can be used to locate any individual eigenvalue λ_{k} of A. Assume we have two values τ_{l} and τ_{u} such that for the corresponding diagonal factors we have

$$
\pi\left(D_{l}\right) \geq k, \quad \pi\left(D_{u}\right)<k
$$

so that λ_{k} lies in the interval $\left[\tau_{l}, \tau_{u}\right)$. We can then using p steps of the bisection (or multisection) method (see Section 6.1.1) locate λ_{k} in an interval of length $\left(\tau_{u}-\tau_{l}\right) / 2^{p}$. From Gerschgorin's theorem it follows that all the eigenvalues of a tridiagonal matrix are contained in the union of the intervals $\alpha_{i} \pm\left(\left|\beta_{i}\right|+\left|\beta_{i+1}\right|\right)$, $i=1, \ldots, n\left(\beta_{1}=\beta_{n+1}=0\right)$.

Using the bound (9.3.20) it follows that the bisection error in each computed eigenvalue is bounded by $\left|\bar{\lambda}_{j}-\lambda_{j}\right| \leq\left\|A^{\prime}-A\right\|_{2}$, where from (9.4.11), using the improved bound by Kahan, and the inequalities $|\tau| \leq\|A\|_{2},\left|\alpha_{k}\right| \leq\|A\|_{2}$ it follows that

$$
\begin{equation*}
\left|\bar{\lambda}_{j}-\lambda_{j}\right| \leq 5 u\|A\|_{2} \tag{9.6.20}
\end{equation*}
$$

This shows that the absolute error in the computed eigenvalues is always small. If some $\left|\lambda_{k}\right|$ is small it may be computed with poor relative precision. In some special cases (for example, tridiagonal, graded matrices see Section 9.6.4) even very small eigenvalues are determined to high relative precision by the elements in the matrix.

If many eigenvalues of a general real symmetric matrix A are to be determined by spectrum slicing, then A should initially be reduced to tridiagonal form. However, if A is a banded matrix and only few eigenvalues are to be determined then the Band Cholesky Algorithm 6.4.6 can be used to slice the spectrum. It is then necessary to monitor the element growth in the factorization. We finally mention that the technique of spectrum slicing is also applicable to the computation of selected singular values of a matrix and to the generalized eigenvalue problem

$$
A x=\lambda B x,
$$

where A and B are symmetric and B or A positive definite, see Section 9.9.

Review Questions

1. Describe how an arbitrary square matrix can be reduced to Hessenberg form by a sequence of orthogonal similarity transformations. If this reduction is applied to a real symmetric matrix what condensed form is obtained?
2. Describe the method of spectrum slicing for determining selected eigenvalues of a real symmetric matrix A.

Problems

1. Reduce to tridiagonal form, using an exact orthogonal similarity, the real symmetric matrix

$$
A=\left(\begin{array}{cccc}
1 & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
\sqrt{2} & -\sqrt{2} & -1 & \sqrt{2} \\
\sqrt{2} & -1 & \sqrt{2} & \sqrt{2} \\
2 & \sqrt{2} & \sqrt{2} & -3
\end{array}\right)
$$

2. Show that if a real skew symmetric matrix $A, A^{T}=-A$, is reduced to Hessenberg form H by an orthogonal similarity, then H is a real skew symmetric tridiagonal matrix. Perform the reduction of the circulant matrix A (see Problem 9.1.9) with first row equal to

$$
(0,1,1,0,-1,-1)
$$

3. To compute the eigenvalues of the following pentadiagonal matrix

$$
A=\left(\begin{array}{llllll}
4 & 2 & 1 & 0 & 0 & 0 \\
2 & 4 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 2 & 1 & 0 \\
0 & 1 & 2 & 4 & 2 & 1 \\
0 & 0 & 1 & 2 & 4 & 2 \\
0 & 0 & 0 & 1 & 2 & 4
\end{array}\right)
$$

we first reduce A to tridiagonal form.
(a) Determine a Givens rotation G_{23} which zeros the element in position $(3,1)$ in $G_{23} A$. Compute the the transformed matrix $A^{(1)}=G_{23} A G_{23}^{T}$.
(b) In the matrix $A^{(1)}$ a new nonzero element has been introduced. Show how this can be zeroed by a new rotation without introducing any new nonzero elements.
(c) Device a "zero chasing" algorithm to reduce a general real symmetric pentadiagonal matrix $A \in \mathbf{R}^{n \times n}$ to symmetric tridiagonal form. How many rotations are needed? How many flops?
4. (a) Use one Givens rotation to transform to tridiagonal form the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)
$$

(b) Compute the largest eigenvalue of A, using spectrum slicing on the tridiagonal form derived in (a). Then compute the corresponding eigenvector.
5. Show that (9.6.17) can be written

$$
\hat{d}_{k}=\alpha_{k}-\frac{\beta_{k}^{2}}{\hat{d}_{k-1}} \frac{\left(1+\epsilon_{1 k}\right)\left(1+\epsilon_{2 k}\right)}{\left(1+\epsilon_{3, k-1}\right)\left(1+\epsilon_{4, k-1}\right)}-\frac{\tau}{\left(1+\epsilon_{3 k}\right)}, \quad k=1, \ldots, n
$$

where we have put $\bar{d}_{k}=\hat{d}_{k}\left(1+\epsilon_{3 k}\right)\left(1+\epsilon_{4 k}\right)$, and $\left|\epsilon_{i k}\right| \leq u$. Conclude that since $\operatorname{sign}\left(\hat{d}_{k}\right)=\operatorname{sign}\left(\bar{d}_{k}\right)$ the computed number $\bar{\pi}$ is the exact number of eigenvalues a tridiagonal matrix A^{\prime} whose elements satisfy

$$
\left|\alpha_{k}^{\prime}-\alpha_{k}\right| \leq u|\tau|, \quad\left|\beta_{k}^{\prime}-\beta_{k}\right| \leq 2 u\left|\beta_{k}\right|
$$

9.7 The LR and QR Algorithms

When combined with a preliminary reduction to Hessenberg or symmetric tridiagonal form (see Section 9.6) the QR algorithm yields a very efficient method for finding all eigenvalues and eigenvectors of small to medium size matrices. Then the necessary modifications to make it into a practical method are described. The general nonsymmetric case is treated in Section 9.7.3 and the real symmetric case in Section 9.7.4.

9.7.1 The Basic LR and QR Algorithms

The LR algorithm, developed by Rutishauser in [39, 1958], is an iterative method of reducing a matrix to triangular form by a sequence of similarity transformations. Rutishauser observed that if $A=L R$ then a similarity transformation of A is

$$
L^{-1} A L=L^{-1}(L R) L=R L
$$

Hence the matrix obtained by multiplying the factors in reverse order gives a matrix similar to A. The LR algorithm is obtained by repeating this process.

Setting $A_{1}=A$ we compute $A_{k+1}=L_{k}^{-1} A_{k} L_{k}$ from

$$
\begin{equation*}
A_{k}=L_{k} R_{k}, \quad A_{k+1}=R_{k} L_{k}, \quad k=1,2, \ldots \tag{9.7.1}
\end{equation*}
$$

Repeated application of (9.7.1) gives

$$
\begin{equation*}
A_{k}=L_{k-1}^{-1} \cdots L_{2}^{-1} L_{1}^{-1} A_{1} L_{1} L_{2} \cdots L_{k-1} \tag{9.7.2}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{1} L_{2} \cdots L_{k-1} A_{k}=A_{1} L_{1} L_{2} \cdots L_{k-1} \tag{9.7.3}
\end{equation*}
$$

The two matrices defined by

$$
\begin{equation*}
T_{k}=L_{1} \cdots L_{k-1} L_{k}, \quad U_{k}=R_{k} R_{k-1} \cdots R_{1} \tag{9.7.4}
\end{equation*}
$$

are lower and upper triangular respectively. Forming the product $T_{k} U_{k}$ and using (9.7.3) we have

$$
\begin{aligned}
T_{k} U_{k} & =L_{1} \cdots L_{k-1}\left(L_{k} R_{k}\right) R_{k-1} \cdots R_{1} \\
& =L_{1} \cdots L_{k-1} A_{k} R_{k-1} \cdots R_{1} \\
& =A_{1} L_{1} \cdots L_{k-1} R_{k-1} \cdots R_{1}
\end{aligned}
$$

Repeating this we obtain the basic relation

$$
\begin{equation*}
T_{k} U_{k}=A_{1}^{k} \tag{9.7.5}
\end{equation*}
$$

This shows that the close relation between the LR algorithm and the power method.
It is possible to show that under certain restrictions the matrix A_{k} converges to an upper triangular matrix R_{∞}. The eigenvalues are then equal to the diagonal elements of R_{∞}. In establishing the convergence result several assumptions need to be made. for example, that the $L R$ factorization exists at every stage. This is not be true for the simple matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-3 & 4
\end{array}\right)
$$

with eigenvalues 1 and 3. Although we could equally well work with the shifted matrix $A+I$, which has a triangular factorization, there are other problems with the LR algorithm, which makes a robust implementation difficult.

In order to avoid the problems with the LR algorithm it seems natural to devise a similar algorithm using orthogonal similarity transformations. This leads to the QR algorithm, developed independently by Francis [14, 1961] and Kublanovskaya $[31,1961] .{ }^{9}$ It then represented a significant and genuinely new contribution to eigensystems computation.

In the QR algorithm applied to $A_{1}=A$ the matrix $A_{k+1}=Q_{k}^{T} A_{k} Q_{k}$, is computed from

$$
\begin{equation*}
A_{k}=Q_{k} R_{k}, \quad A_{k+1}=R_{k} Q_{k}, \quad k=1,2, \ldots \tag{9.7.6}
\end{equation*}
$$

where Q_{k} is orthogonal and R_{k} is upper triangular, i.e., in the k th step we first compute the QR decomposition of the matrix A_{k} and then multiply the factors in reverse order to get A_{k+1}.

The successive iterates of the QR algorithm satisfy relations similar to those derived for the LR algorithm. We define

$$
P_{k}=Q_{1} Q_{2} \cdots Q_{k}, \quad U_{k}=R_{k} \cdots R_{2} R_{1}
$$

where P_{k} is orthogonal and U_{k} is upper triangular. Then by repeated applications of (9.7.6) it follows that

$$
\begin{equation*}
A_{k+1}=P_{k}^{T} A P_{k} \tag{9.7.7}
\end{equation*}
$$

Further we have

$$
\begin{align*}
P_{k} U_{k} & =Q_{1} \cdots Q_{k-1}\left(Q_{k} R_{k}\right) R_{k-1} \cdots R_{1} \tag{9.7.8}\\
& =Q_{1} \cdots Q_{k-1} A_{k} R_{k-1} \cdots R_{1} \tag{9.7.9}\\
& =A_{1} Q_{1} \cdots Q_{k-1} R_{k-1} \cdots R_{1} \tag{9.7.10}
\end{align*}
$$

Repeating this gives

$$
\begin{equation*}
P_{k} U_{k}=A_{1}^{k} \tag{9.7.11}
\end{equation*}
$$

[^7]When A is real symmetric and positive definite we can modify the LR algorithm and use the Cholesky factorization $A=L L^{T}$ instead. The algorithm then takes the form

$$
\begin{equation*}
A_{k}=L_{k} L_{k}^{T}, \quad A_{k+1}=L_{k}^{T} L_{k}, \quad k=1,2, \ldots \tag{9.7.12}
\end{equation*}
$$

and we have

$$
\begin{equation*}
A_{k+1}=L_{k}^{-1} A_{k} L_{k}=L_{k}^{T} A_{k} L_{k}^{-T} \tag{9.7.13}
\end{equation*}
$$

Clearly all matrices A_{k} are symmetric and positive definite and the algorithm is well defined. Repeated application of (9.7.13) gives

$$
\begin{equation*}
A_{k}=T_{k-1}^{-1} A_{1} T_{k-1}=T_{k-1}^{T} A_{1}\left(T_{k-1}^{-1}\right)^{T} \tag{9.7.14}
\end{equation*}
$$

where $T_{k}=L_{1} L_{2} \cdots L_{k}$. Further we have

$$
\begin{equation*}
A_{1}^{k}=\left(L_{1} L_{2} \cdots L_{k}\right)\left(L_{k}^{T} \cdots L_{2}^{T} L_{1}^{T}\right)=T_{k} T_{k}^{T} \tag{9.7.15}
\end{equation*}
$$

When A is real symmetric and positive definite there is a close relationship between the LR and QR algorithms. For the QR algorithm we have $A_{k}^{T}=A_{k}=$ $R_{k}^{T} Q_{k}^{T}$ and hence

$$
\begin{equation*}
A_{k}^{T} A_{k}=A_{k}^{2}=R_{k}^{T} Q_{k}^{T} Q_{k} R_{k}=R_{k}^{T} R_{k} \tag{9.7.16}
\end{equation*}
$$

which shows that R_{k}^{T} is the lower triangular Cholesky factor of A_{k}^{2}.
For the Cholesky LR algorithm we have from (9.7.4) and (9.7.5)

$$
\begin{equation*}
A_{k}^{2}=L_{k} L_{k+1}\left(L_{k} L_{k+1}\right)^{T} \tag{9.7.17}
\end{equation*}
$$

These two Cholesky factorizations (9.7.16) and (9.7.16) of the matrix A_{k}^{2} must be the same and therefore $R_{k}^{T}=L_{k} L_{k+1}$. Thus

$$
A_{k+1}=R_{k} Q_{k}=R_{k} A_{k} R_{k}^{-1}=L_{k+1}^{T} L_{k}^{T} A_{k}\left(L_{k+1}^{T} L_{k}^{T}\right)^{-1}
$$

Comparing this with (9.7.14) we deduce that one step of the QR algorithm is equivalent to two steps in the Cholesky LR algorithm. Hence the matrix $A_{(2 k+1)}$ obtained by the Cholesky LR algorithm equals the matrix $A_{(k+1)}$ obtained using the QR algorithm.

We now show that in general the QR iteration is related to orthogonal iteration. Given an orthogonal matrix $\tilde{Q}_{0} \in \mathbf{R}^{n \times n}$, orthogonal iteration computes a sequence $\tilde{Q}_{1}, \tilde{Q}_{2}, \ldots$, where

$$
\begin{equation*}
Z_{k}=A \tilde{Q}_{k}, \quad Z_{k}=\tilde{Q}_{k+1} R_{k} . \quad k=0,1, \ldots \tag{9.7.18}
\end{equation*}
$$

The related sequence of matrices $B_{k}=\tilde{Q}_{k}^{T} A \tilde{Q}_{k}=\tilde{Q}_{k}^{T} Z_{k}$ similar to A can be computed directly. Using (9.7.18) we have $B_{k}=\left(\tilde{Q}_{k}^{T} \tilde{Q}_{k+1}\right) R_{k}$, which is the QR decomposition of B_{k}, and

$$
B_{k+1}=\left(\tilde{Q}_{k+1}^{T} A\right) \tilde{Q}_{k+1}=\left(\tilde{Q}_{k+1}^{T} A \tilde{Q}_{k}\right) \tilde{Q}_{k}^{T} \tilde{Q}_{k+1}=R_{k}\left(\tilde{Q}_{k}^{T} \tilde{Q}_{k+1}\right)
$$

Hence, B_{k+1} is obtained by multiplying the QR factors of B_{k} in reverse order, which is just one step of QR iteration! If, in particular we take $\tilde{Q}_{0}=I$ then $B_{0}=A_{0}$, and
it follows that $B_{k}=A_{k}, k=0,1,2, \ldots$, where A_{k} is generated by the QR iteration (9.7.6). From the definition of B_{k} and (9.7.6) we have $\tilde{Q}_{k}=P_{k-1}$, and (compare (9.4.4))

$$
\begin{equation*}
A^{k}=\tilde{Q}_{k} \tilde{R}_{k}, \quad \tilde{R}_{k}=R_{k} \cdots R_{2} R_{1} \tag{9.7.19}
\end{equation*}
$$

From this we can conclude that the first p columns of \tilde{Q}_{k} form an orthogonal basis for the space spanned by the first p columns of A^{k}, i.e., $A^{k}\left(e_{1}, \ldots, e_{p}\right)$.

In the QR algorithm subspace iteration takes place on the subspaces spanned by the unit vectors $\left(e_{1}, \ldots, e_{p}\right), p=1, \ldots, n$. It is important for the understanding of the QR algorithm to recall that therefore, according to Theorem 9.4.1, also inverse iteration by $\left(A^{H}\right)^{-1}$ takes place on the orthogonal complements, i.e., the subspaces spanned by $\left(e_{p+1}, \ldots, e_{n}\right), p=0, \ldots, n-1$. Note that this means that in the QR algorithm direct iteration is taking place in the top left corner of A, and inverse iteration in the lower right corner. (For the QL algorithm this is reversed, see below.)

9.7.2 Convergence of the Basic QR Algorithm

Assume that the eigenvalues of A satisfy $\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right|$, and let (9.4.16) be a corresponding Schur decomposition. Let $P_{k}=\left(P_{k 1}, P_{k 2}\right), P_{k 1} \in \mathbf{R}^{n \times p}$, be defined by (9.7.6). Then by Theorem 9.4.1 with linear rate of convergence equal to $\left|\lambda_{p+1} / \lambda_{p}\right|$

$$
\mathcal{R}\left(P_{k 1}\right) \rightarrow \mathcal{R}\left(U_{1}\right) .
$$

where U_{1} spans the dominant invariant subspace of dimension p of A. It follows that A_{k} will tend to reducible form

$$
A_{k}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right)+O\left(\left(\left|\lambda_{p+1} / \lambda_{p}\right|\right)^{k}\right)
$$

This result can be used to show that under rather general conditions A_{k} will tend to an upper triangular matrix R whose diagonal elements then are the eigenvalues of A.

Theorem 9.7.1.

If the eigenvalues of A satisfy $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$, then the matrices A_{k} generated by the $Q R$ algorithm will tend to upper triangular form. The lower triangular elements $a_{i j}^{(k)}, i>j$, converge to zero with linear rate equal to $\left|\lambda_{i} / \lambda_{j}\right|$.

Proof. See Watkins [50].
If the product $P_{k}, k=1,2, \ldots$ of the transformations are accumulated the eigenvectors may then be found by calculating the eigenvectors of the final triangular matrix and then transforming them back.

To speed up convergence the QR algorithm can be applied to the matrix $\tilde{A}=A-\tau I$, where τ is a shift. If τ approximates a simple eigenvalue λ_{j} of A, then in general $\left|\lambda_{i}-\tau\right| \gg\left|\lambda_{j}-\tau\right|$ for $i \neq j$. By the result above the off-diagonal
elements in the last row of \tilde{A}_{k} will approach zero very fast. Usually a different shift in used in each step. If further the shift is restored at the end of the step the QR iteration can be written

$$
\begin{equation*}
A_{k}-\tau_{k} I=Q_{k} R_{k}, \quad R_{k} Q_{k}+\tau_{k} I=A_{k+1}, \quad k=0,1,2, \ldots, \tag{9.7.20}
\end{equation*}
$$

It is easily verified that with this shifted QR iteration we have $A_{k+1}=Q_{k}^{T} A_{k} Q_{k}$, and the relation to the power method is now expressed by the following result.

Theorem 9.7.2.

Let Q_{k} and R_{k} be computed by the $Q R$ algorithm (9.7.20). Then

$$
\begin{align*}
& \left(A-\tau_{k} I\right) \cdots\left(A-\tau_{1} I\right)\left(A-\tau_{0} I\right)=P_{k} U_{k}, \tag{9.7.21}\\
& P_{k}=Q_{0} Q_{1} \cdots Q_{k}, \quad U_{k}=R_{k} R_{k-1} \cdots R_{0} .
\end{align*}
$$

Proof. For $k=0$ the relation (9.7.21) is just the defining equation of Q_{0} and R_{0}. Assume now that the relation is true for $k-1$. From $A_{k+1}=Q_{k}^{T} A_{k} Q_{k}$ and using the orthogonality of P_{k}

$$
\begin{equation*}
A_{k+1}-\tau_{k} I=P_{k}^{T}\left(A-\tau_{k} I\right) P_{k} \tag{9.7.22}
\end{equation*}
$$

Hence, $R_{k}=\left(A_{k+1}-\tau_{k} I\right) Q_{k}^{T}=P_{k}^{T}\left(A-\tau_{k} I\right) P_{k} Q_{k}^{T}=P_{k}^{T}\left(A-\tau_{k} I\right) P_{k-1}$. Postmultiplying this equation by U_{k-1} we get

$$
R_{k} U_{k-1}=U_{k}=P_{k}^{T}\left(A-\tau_{k} I\right) P_{k-1} U_{k-1},
$$

and thus $P_{k} U_{k}=\left(A-\tau_{k} I\right) P_{k-1} U_{k-1}$. Using the inductive hypothesis the theorem follows.

A variant called the QL algorithm is based on the iteration

$$
\begin{equation*}
A_{k}=Q_{k} L_{k}, \quad L_{k} Q_{k}=A_{k+1}, \quad k=0,1,2, \ldots \tag{9.7.23}
\end{equation*}
$$

where L_{k} is lower triangular, and is merely a reorganization of the QR algorithm. Let J be a permutation matrix such that $J A$ reverses the rows of A. Then $A J$ reverses the columns of A and hence $J A J$ reverses both rows and columns. If R is upper triangular then $J R J$ is lower triangular. It follows that if $A=Q R$ is the QR decomposition then $J A J=(J Q J)(J R J)$ is the QL decomposition of $J A J$. It follows that the QR algorithm applied to A is the same as the QL algorithm applied to $J A J$. The convergence theory is therefore the same for both algorithms. However, in the QL algorithm inverse iteration is taking place in the top left corner of A, and direct iteration in the lower right corner.

An important case where the choice of either the OR or QL algorithm should be preferred is when the matrix A is graded, see Section 9.6.4. If the large elements occur in the lower right corner then the QL algorithm is more stable. (Note that then the reduction to tridiagonal form should be done from bottom up; see the
remark in Section 9.6.4.) Of course, the same effect can be achieved by explicitly reversing the ordering of the rows and columns.

For a dense matrix the cost for one QR iteration is $4 n^{3} / 3$ flops, which is too much to make it a practical algorithm. However, if the matrix A is initially reduced, as described in Section 9.6, to upper Hessenberg form, or in the real symmetric case to tridiagonal form, this form is preserved by the QR iteration. The cost is then reduced to only $4 n^{2}$ flops per iteration, or about $12 n$ flops per iteration in the real symmetric case. The QR algorithm in practice also depends on several other factors to achieve full accuracy and efficiency. Some of these will be discussed in the following sections.

9.7.3 QR Algorithm for Hessenberg Matrices

We first show that Hessenberg form is preserved by the QR iteration. Let H_{k} be upper Hessenberg and for $k=0,1,2, \ldots$

$$
\begin{equation*}
H_{k}-\tau_{k} I=Q_{k} R_{k}, \quad R_{k} Q_{k}+\tau_{k} I=H_{k+1} \tag{9.7.24}
\end{equation*}
$$

First note that the addition or subtraction of $\tau_{k} I$ does not affect the Hessenberg form. If R_{k} is nonsingular then $Q_{k}=\left(H_{k}-\tau_{k} I\right) R_{k}^{-1}$ is a product of an upper Hessenberg matrix and an upper triangular matrix, and therefore again a Hessenberg matrix (cf. Problem 6.2.5). Hence $R_{k} Q_{k}$ and H_{k+1} are again of upper Hessenberg form.

In the explicit-shift QR algorithm we first form the matrix $H_{k}-\tau_{k} I$, and then apply a sequence of Givens rotations, $G_{j, j+1}, j=1, \ldots, n-1$ (see (7.4.14)) so that

$$
G_{n-1, n} \cdots G_{23} G_{12}\left(H_{k}-\tau_{k} I\right)=Q_{k}^{T}\left(H_{k}-\tau_{k} I\right)=R_{k},
$$

becomes upper triangular. At a typical step $(n=5, j=3)$ the partially reduced matrix has the form

$$
\left(\begin{array}{ccccc}
\rho_{11} & \times & \times & \times & \times \\
& \rho_{22} & \times & \times & \times \\
& & \nu_{33} & \times & \times \\
& & h_{43} & \times & \times \\
& & & \times & \times
\end{array}\right)
$$

The rotation $G_{3,4}$ is now chosen so that the element h_{43} is annihilated, which carries the reduction one step further. To form H_{k+1} we must now compute

$$
R_{k} Q_{k}+\tau_{k} I=R_{k} G_{12}^{T} G_{23}^{T} \cdots G_{n-1, n}^{T}+\tau_{k} I
$$

The product $R_{k} G_{12}^{T}$ will affect only the first two columns of R_{k}, which are replaced by linear combinations of one another. This will add a nonzero element in the $(2,1)$ position. The rotation G_{23}^{T} will similarly affect the second and third columns in $R_{k} G_{12}^{T}$, and adds a nonzero element in the $(3,2)$ position. The final result is obviously a Hessenberg matrix.

If an upper Hessenberg matrix H has a zero subdiagonal entry, then we can write

$$
H=\left(\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right) .
$$

The eigenvalues of H are then the sum of the eigenvalues of the two Hessenberg matrices H_{11} and H_{22}, and the eigenvalue problem decouples into two problems of smaller dimensions. In particular, if H_{22} is a scalar, then we have found an eigenvalue and the problem deflates.

If the shift τ is chosen as an exact eigenvalue of H, then $H-\tau I=Q R$ has a zero eigenvalue and thus is singular. Since Q is orthogonal R must be singular. Moreover, if H is unreduced then the first $n-1$ columns of $H-\tau I$ are independent and therefore the last diagonal element $r_{n n}$ must vanish. Hence the last row in $R Q$ is zero, and the elements in the last row of $H^{\prime}=R Q+\tau I$ are $h_{n, n-1}^{\prime}=0$ and $h_{n n}^{\prime}=\tau$,

The above result shows that if the shift is equal to an eigenvalue τ then the QR algorithm converges in one step to this eigenvalue. This indicates that τ should be chosen as an approximation to an eigenvalue λ. Then $h_{n, n-1}$ will converge to zero at least with linear rate equal to $|\lambda-\tau| / \min _{\lambda^{\prime} \neq \lambda}\left|\lambda^{\prime}-\tau\right|$. The choice

$$
\tau=h_{n n}=e_{n}^{T} H e_{n}
$$

is called the Rayleigh quotient shift, since it can be shown to produce the same sequence of shifts as the RQI starting with the vector $q_{0}=e_{n}$. With this shift convergence is therefore asymptotically quadratic.

If H is real with complex eigenvalues, then we obviously cannot converge to a complex eigenvalue using only real shifts. We could shift by the eigenvalue of

$$
C=\left(\begin{array}{cc}
h_{n-1, n-1} & h_{n-1, n} \tag{9.7.25}\\
h_{n, n-1} & h_{n, n}
\end{array}\right)
$$

closest to $h_{n, n}$, although this has the disadvantage of introducing complex arithmetic even when A is real. A way to avoid this will be described later.

A important question is when to stop the iterations and accept an eigenvalue approximation. We set $h_{n, n-1}=0$ and accept $h_{n n}$ as an eigenvalue if

$$
\left|h_{n, n-1}\right| \leq \epsilon\left(\left|h_{n-1, n-1}\right|+\left|h_{n, n}\right|\right)
$$

where ϵ is a small constant times the unit roundoff. This criterion can be justified since it corresponds to a small backward error. In practice the size of all subdiagonal elements should be monitored. Whenever

$$
\left|h_{i, i-1}\right| \leq \epsilon\left(\left|h_{i-1, i-1}\right|+\left|h_{i, i}\right|\right)
$$

for some $i<n$, we set $\left|h_{i, i-1}\right|$ and continue to work on smaller subproblems. This is important for the efficiency of the algorithm, since the work is proportional to the square of the dimension of the Hessenberg matrix. An empirical observation is that on the average less than two QR iterations per eigenvalue are required.

When the shift is explicitly subtracted from the diagonal elements this may introduce large relative errors in any eigenvalue much smaller than the shift. We now describe an implicit-shift $Q R$-algorithm, which avoids this type of error. This is based on Theorem9.6.1, which says that the matrix H_{k+1} in a QR iteration (9.7.24) is essentially uniquely defined by the first column in Q_{k}, provided it is unreduced.

In the following, for simplicity, we drop the iteration index and write (9.7.24) as

$$
\begin{equation*}
H-\tau I=Q R, \quad H^{\prime}=R Q+\tau I \tag{9.7.26}
\end{equation*}
$$

To apply Theorem 9.6 .1 to the QR algorithm we must find the first column q_{1} in Q. From $H-\tau I=Q R$ with R upper triangular it follows that $r_{11} q_{1}$ equals the first column in $H-\tau I$, which is

$$
h_{1}=\left(h_{11}-\tau, h_{21}, 0, \cdots, 0\right)^{T} .
$$

If we choose a Givens rotation G_{12} so that $G_{12}^{T} h_{1}= \pm\left\|h_{1}\right\|_{2} e_{1}$, then $G_{12} e_{1}$ is proportional to h_{1}, and (take $n=6$)

$$
G_{12}^{T} H=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& & \times & \times & \times & \times \\
& & & \times & \times & \times \\
& & & & \times & \times,
\end{array}\right) \quad G_{12}^{T} H G_{12}=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
+ & \times & \times & \times & \times & \times \\
& & \times & \times & \times & \times \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right) .
$$

To preserve the Hessenberg form a rotation G_{23} is chosen to zero the element + ,

$$
G_{23}^{T} G_{12}^{T} H G_{12} G_{23}=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& + & \times & \times & \times & \times \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right)
$$

We continue to chase the element + down the diagonal, with rotations $G_{34}, \ldots, G_{n-1, n}$ until it disappears. We have then obtained a Hessenberg matrix $Q^{T} H Q$, where the first column in Q is $G_{12} G_{23} \cdots G_{n-1, n} e_{1}=G_{12} e_{1}$. From Theorem 9.6.1 it follows that the computed Hessenberg matrix is indeed H^{\prime}. Note that the information of the shift τ is contained in G_{12}, and the shift is not explicitly subtracted from the other diagonal elements. The cost of one QR iteration is $4 n^{2}$ flops.

To avoid complex arithmetic when H is real one can adopt the implicit-shift QR algorithm to compute the real Schur form in Theorem 9.2.2, where R is quasitriangular with 1×1 and 2×2 diagonal blocks. For real matrices this will save a factor of 2-4 over using complex arithmetic. Let τ_{1} and τ_{2} be the eigenvalues of the matrix C in (9.7.25), and consider two QR iterations with these shifts,

$$
\begin{aligned}
H-\tau_{1} I=Q_{1} R_{1}, & H^{\prime}=R_{1} Q_{1}+\tau_{1} I \\
H^{\prime}-\tau_{2} I=Q_{2} R_{2}, & H^{\prime \prime}=R_{2} Q_{2}+\tau_{2} I
\end{aligned}
$$

We now show how to compute $H^{\prime \prime}$ directly from H using real arithmetic. We have $H^{\prime \prime}=\left(Q_{1} Q_{2}\right)^{T} H Q_{1} Q_{2}$ and from Theorem 9.7.2

$$
\begin{aligned}
\left(Q_{1} Q_{2}\right)\left(R_{2} R_{1}\right) & =\left(H-\tau_{1} I\right)\left(H-\tau_{2} I\right) \\
& =H^{2}-\left(\tau_{1}+\tau_{2}\right) H+\tau_{1} \tau_{2} I \equiv G
\end{aligned}
$$

where $\left(\tau_{1}+\tau_{2}\right)$ and $\tau_{1} \tau_{2}$ are real. By the uniqueness theorem $\left(Q_{1} Q_{2}\right)$ is determined from its first column, which is proportional to the first column $g_{1}=$ $G e_{1}=(u, v, w, 0, \ldots, 0)^{T}$ of G. Taking out a factor $h_{21} \neq 0$ this can be written $g_{1}=h_{21}(p, q, r, 0, \ldots, 0)^{T}$, where

$$
\begin{align*}
p & =\left(h_{11}^{2}-\left(\tau_{1}+\tau_{2}\right) h_{11}+\tau_{1} \tau_{2}\right) / h_{21}+h_{12} \tag{9.7.27}\\
q & =h_{11}+h_{22}-\left(\tau_{1}+\tau_{2}\right), \quad r=h_{32}
\end{align*}
$$

Note that we do not even have to compute τ_{1} and τ_{2}, since we have $\tau_{1}+\tau_{2}=$ $h_{n-1, n-1}+h_{n, n}$, and $\tau_{1} \tau_{2}=\operatorname{det}(C)$. Substituting this into (9.7.27), and grouping terms to reduce roundoff errors, we get

$$
\begin{aligned}
p & =\left[\left(h_{n n}-h_{11}\right)\left(h_{n-1, n-1}-h_{11}\right)-h_{n, n-1} h_{n-1, n}\right] / h_{21}+h_{12} \\
q & =\left(h_{22}-h_{11}\right)-\left(h_{n n}-h_{11}\right)-\left(h_{n-1, n-1}-h_{11}\right), \quad r=h_{32}
\end{aligned}
$$

The double QR step iteration can now be implemented by a chasing algorithm. We first choose rotations G_{23} and G_{12} so that $G_{1}^{T} g_{1}=G_{12}^{T} G_{23}^{T} g_{1}= \pm\left\|g_{1}\right\|_{2} e_{1}$, and carry out a similarity transformation

$$
G_{1}^{T} H=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
+ & \times & \times & \times & \times & \times \\
& & \times & \times & \times & \times \\
& & & \times & \times & \times \\
& & & \times & \times
\end{array}\right), \quad G_{1}^{T} H G_{1}=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
+ & \times & \times & \times & \times & \times \\
+ & + & \times & \times & \times & \times \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right)
$$

To preserve the Hessenberg form we then choose the transformation $G_{2}=G_{34} G_{23}$ to zero out the two elements + in the first column. Then

$$
G_{2}^{T} G_{1}^{T} H G_{1} G_{2}=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& + & \times & \times & \times & \times \\
& + & + & \times & \times & \times \\
& & & & \times & \times
\end{array}\right)
$$

Note that this step is similar to the first step. The "bulge" of + elements has now shifted one step down along the diagonal, and we continue to chase these elements until they disappear below the last row. We have then completed one double step of the implicit QR algorithm.

Suppose the QR algorithm has converged to the final upper triangular matrix T. Then we have

$$
P^{T} H P=T, \quad P=Q_{0} Q_{1} Q_{2} \cdots
$$

where Q_{k} is a product of Givens rotations, and P is the product of all the transformations used. The eigenvectors $z_{i}, i=1,2, \ldots, n$ of T satisfy $T z_{i}=\lambda_{i} z_{i}, z_{1}=e_{1}$, and z_{i} is a linear combination of e_{1}, \ldots, e_{i}. The nonzero components of z_{i} can then
be computed by back-substitution

$$
\begin{equation*}
z_{i i}=1, \quad z_{j i}=-\left(\sum_{k=j+1}^{i} t_{j k} z_{k i}\right) /\left(\lambda_{j}-\lambda_{i}\right), \quad j=i-1, \ldots, 1 \tag{9.7.28}
\end{equation*}
$$

The eigenvectors of H are then given by $P z_{i}, i=1,2, \ldots, n$. Finally if H has been obtained by reducing a matrix A to Hessenberg form as described in Section 9.6.3, then the eigenvectors of A can be computed from

$$
\begin{equation*}
x_{i}=U P z_{i}, \quad i=1,2, \ldots, n, \quad U^{H} A U=H \tag{9.7.29}
\end{equation*}
$$

When only a few selected eigenvectors are wanted, then a more efficient way is to compute these by using inverse iteration. However, if more than a quarter of the eigenvectors are required, it is better to use the procedure outlined above.

It must be remembered that the matrix A may be defective, in which case there is no complete set of eigenvectors. In practice it is very difficult to take this into account, since with any procedure that involves rounding errors one cannot demonstrate that a matrix is defective. Usually one therefore should attempt to find a complete set of eigenvectors. If the matrix is nearly defective this will often be evident, in that corresponding computed eigenvectors will be almost parallel.

If we do not want the eigenvectors, then it is not necessary to save the sequence of orthogonal transformations. It is even possible to avoid storing the rotations by performing the postmultiplications simultaneously with the premultiplications. For example, once we have formed $G_{23} G_{12} H_{k}$ the first two columns do not enter in the remaining steps and we can perform the postmultiplication with G_{12}^{T}. Hence we can alternately pre- and postmultiply; in the next step we compute $\left(G_{34}\left(\left(G_{23} G_{12} H_{k}\right) G_{12}^{T}\right)\right) G_{23}^{T}$, and so on.

From the real Schur form $Q^{T} A Q=T$ computed by the QR algorithm, we get information about some of the invariant subspaces of A. If

$$
T=\left(\begin{array}{cc}
T_{11} & T_{12} \\
& T_{22}
\end{array}\right), \quad Q=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)
$$

and $\lambda\left(T_{11}\right) \cap \lambda\left(T_{22}\right)=0$, then Q_{1} is an orthogonal basis for the unique invariant subspace associated with $\lambda\left(T_{11}\right)$. However, this observation is useful only if we want the invariant subspace corresponding to a set of eigenvalues appearing at the top of the diagonal in T. Fortunately, it is easy to modify the real Schur decomposition so that an arbitrary set of eigenvalues are permuted to the top position. Clearly we can achieve this by performing a sequence of transformations, where in each step we interchange two nearby eigenvalues in the Schur form. Thus we only need to consider the 2×2 case,

$$
Q^{T} A Q=T=\left(\begin{array}{cc}
\lambda_{1} & h_{12} \\
0 & \lambda_{2}
\end{array}\right), \quad \lambda_{1} \neq \lambda_{2}
$$

To reverse the order of the eigenvalues we note that $T x=\lambda_{2} x$ where

$$
x=\binom{h_{12}}{\lambda_{2}-\lambda_{1}} .
$$

Let G^{T} be a Givens rotation such that $G^{T} x=\gamma e_{1}$. Then $G^{T} T G\left(G^{T} x\right)=\lambda_{2} G^{T} x$, i.e. $G^{T} x$ is an eigenvector of $\hat{T}=G T G^{T}$. It follows that $\hat{T} e_{1}=\lambda_{2} e_{1}$ and \hat{T} must have the form

$$
\hat{Q}^{T} A \hat{Q}=\hat{T}=\left(\begin{array}{cc}
\lambda_{2} & \pm h_{12} \\
0 & \lambda_{1}
\end{array}\right)
$$

where $\hat{Q}=Q G$.

9.7.4 QR Algorithm for Symmetric Tridiagonal Matrices

By the methods described in Section 9.6 any Hermitian (real symmetric) matrix can by a unitary (orthogonal) similarity transformation be reduced into real, symmetric tridiagonal form

$$
T=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \tag{9.7.30}\\
\beta_{2} & \alpha_{2} & \beta_{3} & & \\
& \beta_{3} & \ddots & \ddots & \\
& & \ddots & \alpha_{n-1} & \beta_{n} \\
& & & \beta_{n} & \alpha_{n}
\end{array}\right)
$$

A tridiagonal matrix T is called unreduced if all off-diagonal elements are nonzero, $\beta_{i} \neq 0, i=2, \ldots, n$. Let T be unreduced and λ an eigenvalue of T. Then $\operatorname{rank}(T-\lambda I)=n-1$ (the submatrix obtained by crossing out the first row and last column of $T-\lambda I$ has nonzero determinant, $\beta_{2} \cdots \beta_{n} \neq 0$). Hence there is only one eigenvector corresponding to λ and since T is diagonalizable λ must have multiplicity one. Thus all eigenvalues of an unreduced symmetric tridiagonal matrix are distinct. In the following we can assume that T is unreduced, since otherwise it can be split up in smaller unreduced tridiagonal matrices.

The QR algorithm also preserves symmetry. Hence it follows that if T is symmetric tridiagonal, and

$$
\begin{equation*}
T-\tau I=Q R, \quad T^{\prime}=R Q+\tau I, \tag{9.7.31}
\end{equation*}
$$

then also $T^{\prime}=Q^{T} T Q$ is symmetric tridiagonal.
From the Implicit Q Theorem (Theorem 9.6.1) we have the following result, which can be used to develop an implicit QR algorithm.

Theorem 9.7.3.

Let A be real symmetric, $Q=\left(q_{1}, \ldots, q_{n}\right)$ orthogonal, and $T=Q^{T} A Q$ an unreduced symmetric tridiagonal matrix. Then Q and T are essentially uniquely determined by the first column q_{1} of Q.

Suppose we can find an orthogonal matrix Q with the same first column q_{1} as in (9.7.31) such that $Q^{T} A Q$ is an unreduced tridiagonal matrix. Then by Theorem 9.7.3 it must be the result of one step of the QR algorithm with shift τ. Equating the first columns in $T-\tau I=Q R$ it follows that $r_{11} q_{1}$ equals the first column t_{1} in $T-\tau I$. In the implicit shift algorithm a Givens rotation G_{12} is chosen
so that

$$
G_{12}^{T} t_{1}= \pm\left\|t_{1}\right\|_{2} e_{1}, \quad t_{1}=\left(\alpha_{1}-\tau, \beta_{2}, 0, \cdots, 0\right)^{T}
$$

We now perform the similarity transformation $G_{12}^{T} T G_{12}$, which results in fill-in in positions $(1,3)$ and (3,1), pictured below for $n=5$:

$$
G_{12}^{T} T=\left(\begin{array}{cccccc}
\times & \times & + & & & \\
\times & \times & \times & & & \\
& \times & \times & \times & & \\
& & \times & \times & \times & \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right), \quad G_{12}^{T} T G_{12}=\left(\begin{array}{cccccc}
\times & \times & + & & & \\
\times & \times & \times & & & \\
+ & \times & \times & \times & & \\
& & \times & \times & \times & \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right)
$$

To preserve the tridiagonal form a rotation G_{23} can be used to zero out the fill-in elements.

$$
G_{23}^{T} G_{12}^{T} T G_{12} G_{23}=\left(\begin{array}{cccccc}
\times & \times & & & & \\
\times & \times & \times & + & & \\
& \times & \times & \times & & \\
& + & \times & \times & \times & \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right)
$$

We continue to "chase the bulge" of + elements down the diagonal, with transformations $G_{34}, \ldots, G_{n-1, n}$ after which it disappears. We have then obtained a symmetric tridiagonal matrix $Q^{T} T Q$, where the first column in Q is $G_{12} G_{23} \cdots G_{n-1, n} e_{1}=$ $G_{12} e_{1}$. By Theorem 9.6.1 it follows that the result must be the matrix T^{\prime} in (9.7.31).

There are several possible ways to choose the shift. Suppose that we are working with the submatrix ending with row r, and that the current elements of the two by two trailing matrix is

$$
\left(\begin{array}{cc}
\alpha_{r-1} & \beta_{r} \tag{9.7.32}\\
\beta_{r} & \alpha_{r}
\end{array}\right)
$$

The Rayleigh quotient shift $\tau=\alpha_{r}$, gives the same result as Rayleigh Quotient Iteration starting with e_{r}. This leads to generic cubic convergence, but not guaranteed. In practice the Wilkinson shift has proved more efficient. This shift equals the eigenvalue of the submatrix (9.7.32), which is closest to α_{r}. A suitable formula for computing this shift is

$$
\begin{equation*}
\tau=\alpha_{r}-\beta_{r}^{2} /\left(|d|+\operatorname{sign}(d) \sqrt{d^{2}+\beta_{r}^{2}}\right), \quad d=\left(\alpha_{r-1}-\alpha_{r}\right) / 2 \tag{9.7.33}
\end{equation*}
$$

(cf. Algorithm (9.5.1)). A great advantage of the Wilkinson shift is that it gives guaranteed global convergence. ${ }^{10}$ It can also be shown to give almost always local cubic convergence, although quadratic convergence might be possible.

[^8]Example 9.7.1. Consider an unreduced tridiagonal matrix of the form

$$
T=\left(\begin{array}{ccc}
\times & \times & 0 \\
\times & \times & \epsilon \\
0 & \epsilon & t_{33}
\end{array}\right)
$$

Show, that with the shift $\tau=t_{33}$, the first step in the reduction to upper triangular form gives a matrix of the form

$$
G_{12}(T-s I)=\left(\begin{array}{ccc}
\times & \times & s_{1} \epsilon \\
0 & a & c_{1} \epsilon \\
0 & \epsilon & 0
\end{array}\right)
$$

If we complete this step of the QR algorithm, $Q R=T-\tau I$, the matrix $\hat{T}=R Q+\tau I$, has elements $\hat{t}_{32}=\hat{t}_{23}=-c_{1} \epsilon^{3} /\left(\epsilon^{2}+a^{2}\right)$. This shows that if $\epsilon \ll$ the QR method tends to converge cubically.

As for the QR algorithm for unsymmetric matrices it is important to check for negligible subdiagonal elements using the criterion

$$
\left|\beta_{i}\right| \leq \epsilon\left(\left|\alpha_{i-1}\right|+\left|\alpha_{i}\right|\right) .
$$

When this criterion is satisfied for some $i<n$, we set β_{i} equal to zero and the problem decouples. At any step we can partition the current matrix so that

$$
T=\left(\begin{array}{ccc}
T_{11} & & \\
& T_{22} & \\
& & D_{3}
\end{array}\right)
$$

where D_{3} is diagonal and T_{22} is unreduced. The QR algorithm is then applied to T_{22}.

We will not give more details of the algorithm here. If full account of symmetry is taken then one QR iteration can be implemented in only $9 n$ multiplications, $2 n$ divisions, $n-1$ square roots and $6 n$ additions. By reorganizing the inner loop of the QR algorithm, it is possible to eliminate square roots and lower the operation count to about 4 n multiplications, 3 n divisions and 5 n additions. This rational QR algorithm is the fastest way to get the eigenvalues alone, but does not directly yield the eigenvectors.

The Wilkinson shift may not give the eigenvalues in monotonic order. If some of the smallest or largest eigenvalues are wanted, then it is usually recommended to use Wilkinson shifts anyway and risk finding a few extra eigenvalues. To check if all wanted eigenvalues have been found one can use spectrum slicing, see Section 9.6.5. For a detailed discussion of variants of the symmetric tridiagonal QR algorithm, see Parlett [38].

If T has been obtained by reducing a Hermitian matrix to real symmetric tridiagonal form, $U^{H} A U=T$, then the eigenvectors are given by

$$
\begin{equation*}
x_{i}=U P e_{i}, \quad i=1,2, \ldots, n \tag{9.7.34}
\end{equation*}
$$

where $P=Q_{0} Q_{1} Q_{2} \cdots$ is the product of all transformations in the QR algorithm. Note that the eigenvector matrix $X=U P$ will by definition be orthogonal.

If eigenvectors are to be computed, the cost of a QR iteration goes up to $4 n^{2}$ flops and the overall cost to $O\left(n^{3}\right)$. To reduce the number of QR iterations where we accumulate transformations, we can first compute the eigenvalues without accumulating the product of the transformations. We then perform the QR algorithm again, now shifting with the computed eigenvalues, the perfect shifts, convergence occurs in one iteration. This may reduce the cost of computing eigenvectors by about 40%. As in the unsymmetric case, if fewer than a quarter of the eigenvectors are wanted, then inverse iteration should be used instead. The drawback of this approach, however, is the difficulty of getting orthogonal eigenvectors to clustered eigenvalues.

For symmetric tridiagonal matrices one often uses the QL algorithm instead of the QR algorithm. We showed in Section 9.7.1 that the QL algorithm is just the QR algorithm on $J A J$, where J is the permutation matrix that reverses the elements in a vector. If A is tridiagonal then $J A J$ is tridiagonal with the diagonal elements in reverse order.

In the implicit QL algorithm one chooses the shift from the top of A and chases the bulge from bottom to top. The reason for preferring the QL algorithm is simply that in practice it is often the case that the tridiagonal matrix is graded with the large elements at the bottom. Since for reasons of stability the small eigenvalues should be determined first the QL algorithm is preferable in this case. For matrices graded in the other direction the QR algorithm should be used, or rows and columns reversed before the QL algorithm is applied.

9.7.5 QR-SVD algorithms for Bidiagonal Matrices

For the computation of the SVD of a matrix $A \in \mathbf{R}^{m \times n}$ it is usually advisable to first perform a QR decomposition with column pivoting of A

$$
\begin{equation*}
A \Pi=Q\binom{R}{0} \tag{9.7.35}
\end{equation*}
$$

(We assume in the following that $m \geq n$. This is no restriction since otherwise we can consider A^{T}.) Let let $R=U_{R} \Sigma V^{T}$ be the SVD of R. Then it follows that

$$
\begin{equation*}
A=U \Sigma V^{T}, \quad U=Q\binom{U_{R}}{0} \tag{9.7.36}
\end{equation*}
$$

Clearly the singular values and the right singular vectors of $A \Pi$ and R are the same and the first n left singular vectors of A are easily obtained from those of R.

Starting with $R_{1}=R$, a sequence of upper triangular matrices $R_{k}, k=$ $1,2, \ldots$. In step k the QR factorization of a the lower triangular matrix is computed

$$
\begin{equation*}
R_{k}^{T}=Q_{k+1} R_{k+1} \tag{9.7.37}
\end{equation*}
$$

In the next step R_{k+1} is transposed and the process repeated. As we now show This iteration is related to the basic unshifted QR algorithm for $R^{T} R$ and $R^{T} R$.

Using (9.7.37) we observe that

$$
R_{k}^{T} R_{k}=Q_{k+1}\left(R_{k+1} R_{k}\right)
$$

is the QR factorization of $R_{k}^{T} R_{k}$. Forming the product in reverse order gives

$$
\begin{aligned}
\left(R_{k+1} R_{k}\right) Q_{k+1} & =R_{k+1} R_{k+1}^{T} Q_{k+1}^{T} Q_{k+1}=R_{k+1} R_{k+1}^{T} \\
& =R_{k+2}^{T} Q_{k+2}^{T} Q_{k+2} R_{k+2}=R_{k+2}^{T} R_{k+2} .
\end{aligned}
$$

Hence two successive iterations of (9.7.37) are equivalent to one iteration of the basic QR algorithm for $R^{T} R$. Moreover this is achieved without forming $R^{T} R$, which is essential to avoid loss of accuracy.

Using the orthogonality of Q_{k+1} it follows from (9.7.37) that $R_{k+1}=Q_{k+1}^{T} R_{k}^{T}$, and hence

$$
R_{k+1}^{T} R_{k+1}=R_{k}\left(Q_{k+1} Q_{k+1}^{T}\right) R_{k}^{T}=R_{k} R_{k}^{T}
$$

Further we have

$$
\begin{equation*}
R_{k+2} R_{k+2}^{T}=R_{k+2} R_{k+1} Q_{k+2}=Q_{k+2}^{T}\left(R_{k} R_{k}^{T}\right) Q_{k+2} \tag{9.7.38}
\end{equation*}
$$

which shows that we are simultaneously performing an iteration on $R_{k} R_{k}^{T}$, again without explicitly forming this matrix.

One iteration of (9.7.37) is equivalent to one iteration of the Cholesky LR algorithm applied to $B_{k}=R_{k} R_{k}^{T}$. This follows since B_{k} has the Cholesky factorization $B_{k}=R_{k+1}^{T} R_{k+1}$ and multiplication of these factors in reverse order gives $B_{k+1}=R_{k+1} R_{k+1}^{T}$. (Recall that for a symmetric, positive definite matrix two steps of the LR algorithm is equivalent to one step of the QR algorithm.)

The convergence of this algorithm is enhanced provided the QR factorization of A in the first step is performed using column pivoting. It has been shown that then already the diagonal elements of R_{1} often are surprisingly good approximations to the singular values of A.

For the QR-SVD algorithm to be efficient it is necessary to initially reduce A to a compact form that is preserved during the QR iterations and to introduce shifts. The proper compact form here is a bidiagonal form B. It was described in Section 8.6.6 how any matrix $A \in \mathbf{R}^{m \times n}$ can be reduced to upper bidiagonal form. Performing this reduction on R we have

$$
Q_{B}^{T} R P_{B}=B=\left(\begin{array}{ccccc}
q_{1} & e_{2} & & & \tag{9.7.39}\\
& q_{2} & e_{3} & & \\
& & \ddots & \ddots & \\
& & & q_{n-1} & e_{n} \\
& & & & q_{n}
\end{array}\right)
$$

with orthogonal transformations from left and right. Using a sequence of Householder transformations

$$
Q_{B}=Q_{1} \cdots Q_{n} \in \mathbf{R}^{n \times n}, \quad P_{B}=P_{1} \cdots P_{n-2} \in \mathbf{R}^{n \times n}
$$

the reduction can be carried out in $\frac{4}{3} n^{3}$ flops. Note that also a complex matrix A can be reduced to real bidiagonal form using complex Householder transformations, see Section 9.1.2. The singular values of B equal those of A and the left and right singular vectors can be constructed from those of B.

We first notice that if in (9.7.39) $e_{i}=0$, then the matrix B breaks into two upper bidiagonal matrices, for which the singular values can be computed independently. If $q_{i}=0$, then B has a singular value equal to zero. Applying a sequence of Givens rotations from the left, $G_{i, i+1}, G_{i, i+2}, \ldots, G_{i, n}$ the i th row be zeroed out, and again the matrix breaks up into two parts. Hence we may without loss of generality assume that none of the elements $q_{1}, q_{i}, e_{i}, i=2, \ldots, n$ are zero. This assumption implies that the matrix $B^{T} B$ has nondiagonal elements $\alpha_{i+1}=q_{i} e_{i+1} \neq 0$, and hence is unreduced. It follows that all eigenvalues of $B^{T} B$ are positive and distinct, and we have $\sigma_{1}>\cdots>\sigma_{n}>0$.

Since shifts are essential for achieving rapid convergence and deflation we now look into alternative ways of implementing the QR-SVD algorithm.

We first proceed by forming the symmetric matrix

$$
C=\left(\begin{array}{cc}
0 & B \tag{9.7.40}\\
B^{T} & 0
\end{array}\right) \in \mathbf{R}^{2 n \times 2 n} .
$$

whose eigenvalues are $\pm \sigma_{i}, i=1, \ldots, n$. After reordering rows and columns by an odd/even permutation C becomes symmetric tridiagonal matrix with zeros on the main diagonal. Hence

$$
T=P^{T} C P=\left(\begin{array}{cccccc}
0 & q_{1} & & & & \tag{9.7.41}\\
q_{1} & 0 & e_{2} & & & \\
& e_{2} & 0 & q_{2} & & \\
& & q_{2} & 0 & \ddots & \\
& & & \ddots & \ddots & q_{n} \\
& & & & q_{n} & 0
\end{array}\right)
$$

where P is the permutation matrix whose columns are those of the identity in the order $(n+1,1, n+2,2, \ldots, 2 n, n)$. Hence the QR algorithm, the divide and conquer algorithm, and spectrum slicing (see Problem 6) are all applicable to this special tridiagonal matrix to compute the singular values of B. A disadvantage of this approach is that the dimension is essentially doubled.

A closer inspection of the QR algorithm applied to T reveals it to be equivalent to an algorithm where the iterations are carried out directly on B. It is also equivalent to an implicit version of the QR algorithm applied to the symmetric tridiagonal matrix $T=B^{T} B$.

We now consider the application of the implicit shift QR algorithm to $B^{T} B$. Since forming $B^{T} B$ would lead to a severe loss of accuracy in the small singular values it is essential to work directly with the matrix B. The Wilkinson shift τ can be determined as the smallest eigenvalue of the lower right 2×2 submatrix in $B B^{T}$, or equivalently as the square of the smallest singular value of the 2×2 upper
triangular submatrix in (9.7.39)

$$
\left(\begin{array}{cc}
q_{n-1} & e_{n} \\
0 & q_{n}
\end{array}\right)
$$

In the implicit shift QR algorithm for $B^{T} B$ we first determine a Givens rotation $T_{1}=G_{12}$ so that

$$
\begin{equation*}
G_{12}^{T} t_{1}= \pm\left\|t_{1}\right\|_{2} e_{1}, \quad t_{1}=\left(q_{1}^{2}-\tau, q_{1} e_{2}, 0, \ldots, 0\right)^{T} \tag{9.7.42}
\end{equation*}
$$

where t_{1} is the first column in $B^{T} B-\tau I$ and τ is the shift. Suppose we next apply a sequence of Givens transformations such that

$$
T_{n-1}^{T} \cdots T_{2}^{T} T_{1}^{T} B^{T} B T_{1} T_{2} \cdots T_{n-1}
$$

is tridiagonal, but we wish to avoid doing this explicitly. Let us start by applying the transformation T_{1} to B. Then we get (take $n=5$),

$$
B T_{1}=\vec{\rightarrow}\left(\begin{array}{ccccc}
\times & \times & & & \\
+ & \times & \times & & \\
& & \times & \times & \\
& & & \times & \times \\
& & & & \times
\end{array}\right)
$$

If we now premultiply by a Givens rotation $S_{1}^{T}=R_{12}$ to zero out the + element, this creates a new nonzero element in the $(1,3)$ position; To preserve the bidiagonal form we then choose the transformation $T_{2}=R_{23}$ to zero out the element + :

$$
S_{1}^{T} B T_{1}=\left(\begin{array}{ccccc}
\times & \times & + & & \\
\oplus & \times & \times & & \\
& & \times & \times & \\
& & & \times & \times \\
& & & & \times
\end{array}\right), \quad S_{1}^{T} B T_{1} T_{2}=\left(\begin{array}{cccc}
\times & & \downarrow & \oplus \\
& & & \\
& \times & \times & \\
& + & \times & \times \\
& & & \\
& & & \\
& & & \times
\end{array}\right) .
$$

We can now continue to chase the element + down, with transformations alternately from the right and left until we get a new bidiagonal matrix

$$
\hat{B}=\left(S_{n-1}^{T} \cdots S_{1}^{T}\right) B\left(T_{1} \cdots T_{n-1}\right)=U^{T} B P
$$

But then the matrix

$$
\hat{T}=\hat{B}^{T} \hat{B}=P^{T} B^{T} U U^{T} B P=P^{T} T P
$$

is tridiagonal, where the first column of P equals the first column of T_{1}. Hence if \hat{T} is unreduced it must be the result of one QR iteration on $T=B^{T} B$ with shift equal to τ.

The subdiagonal entries of T equal $q_{i} e_{i+1}, i=1, \ldots, n-1$. If some element e_{i+1} is zero, then the bidiagonal matrix splits into two smaller bidiagonal matrices

$$
B=\left(\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right) .
$$

If $q_{i}=0$, then we can zero the i th row by premultiplication by a sequence Givens transformations $R_{i, i+1}, \ldots, R_{i, n}$, and the matrix then splits as above. In practice two convergence criteria are used. After each QR step if

$$
\left|e_{i+1}\right| \leq 0.5 u\left(\left|q_{i}\right|+\left|q_{i+1}\right|\right),
$$

where u is the unit roundoff, we set $e_{i+1}=0$. We then find the smallest p and the largest q such that B splits into quadratic subblocks

$$
\left(\begin{array}{ccc}
B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 & 0 & B_{3}
\end{array}\right),
$$

of dimensions $p, n-p-q$ and, q where B_{3} is diagonal and B_{2} has a nonzero subdiagonal. Second, if diagonal elements in B_{2} satisfy

$$
\left|q_{i}\right| \leq 0.5 u\left(\left|e_{i}\right|+\left|e_{i+1}\right|\right),
$$

set $q_{i}=0$, zero the superdiagonal element in the same row, and repartition B. Otherwise continue the QR algorithm on B_{2}.

A justification for these tests is that roundoff in a rotation could make the matrix indistinguishable from one with a q_{i} or e_{i+1} equal to zero. Also, the error introduced by the tests is not larger than some constant times $u\|B\|_{2}$.

The implicit QR-SVD algorithm can be shown to be backward stable. This essentially follows from the fact that we have only applied a sequence of orthogonal transformations to A. Hence the computed singular values $\bar{\Sigma}=\operatorname{diag}\left(\bar{\sigma}_{k}\right)$ are the exact singular values of a nearby matrix $A+E$, where $\|E\|_{2} \leq c(m, n) \cdot u \sigma_{1}$. Here $c(m, n)$ is a constant depending on m and n and u the unit roundoff. From Theorem 7.3.4

$$
\left|\bar{\sigma}_{k}-\sigma_{k}\right| \leq c(m, n) \cdot u \sigma_{1} .
$$

Thus, if A is nearly rank deficient, this will always be revealed by the computed singular values. Note, however, that the smaller singular values may not be computed with high relative accuracy.

When all the superdiagonal elements in B have converged to zero we have $Q_{S}^{T} B T_{S}=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Hence

$$
\begin{equation*}
U^{T} A V=\binom{\Sigma}{0}, \quad U=Q_{B} \operatorname{diag}\left(Q_{S}, I_{m-n}\right), \quad V=T_{B} T_{S} \tag{9.7.43}
\end{equation*}
$$

is the singular value decomposition of A. Usually less than $2 n$ iterations are needed in the second phase. One QR iteration requires $14 n$ multiplications and $2 n$ calls to givrot. Accumulating the rotations into U requires $6 m n$ flops. Accumulating the

Table 9.7.1. Comparison of multiplications for SVD algorithms.

Required	Golub-Reinsch SVD	Chan SVD
Σ, U_{1}, V	$(3+C) m n^{2}+\frac{11}{3} n^{3}$	$3 m n^{2}+2(C+1) n^{3}$
Σ, U_{1}	$(3+C) m n^{2}-n^{3}$	$3 m n^{2}+(C+4 / 3) n^{3}$
Σ, V	$2 m n^{2}+C n^{3}$	$m n^{2}+(C+5 / 3) n^{3}$
Σ	$2 m n^{2}-2 n^{3} / 3$	$m n^{2}+n^{3}$

rotations into V requires $6 n^{2}$ flops. If singular vectors are desired, the cost of a QR iteration goes up to $4 n^{2}$ flops and the overall cost to $O\left(n^{3}\right)$. See Table 9.7.5 for a comparison of flop counts for different variants.

To reduce the number of QR iterations where we accumulate transformations we can first compute the singular values without accumulating vectors. If we then choose shifts based on the computed singular values, the perfect shifts, convergence occurs in one iteration. This may reduce the cost about 40%. If fewer than 25% of the singular vectors are wanted, then inverse iteration should be used instead. The drawback of this approach is the difficulty of getting orthogonal singular vectors to clustered singular values.

An important implementation issue is that the bidiagonal matrix is often graded, i.e., the elements may be large at one end and small at the other. For example, if in the Chan-SVD column pivoting is used in the initial QR decomposition, then the matrix is usually graded from large at upper left to small at lower right as illustrated below

$$
\left(\begin{array}{llll}
1 & 10^{-1} & & \tag{9.7.44}\\
& 10^{-2} & 10^{-3} & \\
& & 10^{-4} & 10^{-5} \\
& & & 10^{-6}
\end{array}\right)
$$

From the following perturbation result it follows that it should be possible to compute all singular values of a bidiagonal matrix to full relative precision independent of their magnitudes.

Theorem 9.7.4. (Demmel and Kahan [9, 1990])
Let $B \in \mathbf{R}^{n \times n}$ be a bidiagonal matrix with singular values $\sigma_{1} \geq \cdots \geq \sigma_{n}$. Let $|\delta B| \leq \omega|B|$, and let $\bar{\sigma}_{1} \geq \cdots \geq \bar{\sigma}_{n}$ be the singular values of $\bar{B}=B+\delta B$. Then if $\eta=(2 n-1) \omega<1$,

$$
\begin{gather*}
\left|\bar{\sigma}_{i}-\sigma_{i}\right| \leq \frac{\eta}{1-\eta}\left|\sigma_{i}\right| \tag{9.7.45}\\
\max \left\{\sin \theta\left(u_{i}, \tilde{u}_{i}\right), \sin \theta\left(v_{i}, \tilde{v}_{i}\right)\right\} \leq \frac{\sqrt{2} \eta(1+\eta)}{\operatorname{relgap}_{i}-\eta} \tag{9.7.46}
\end{gather*}
$$

$i=1, \ldots, n$, where the relative gap between singular values is

$$
\begin{equation*}
\operatorname{relgap}_{i}=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\sigma_{i}+\sigma_{j}} \tag{9.7.47}
\end{equation*}
$$

The QR algorithm as described above tries to converge to the singular values from smallest to largest, and "chases the bulge" from top to bottom. Convergence will then be fast. However, if B is graded the opposite way then the QR algorithm may require many more steps. To avoid this the rows and columns of B could in this case be reversed before the QR algorithm is applied. Alternatively many algorithms check for the direction of grading. Note that the matrix may break up into diagonal blocks which are graded in different ways.

To compute small singular values of a bidiagonal matrix accurately one can use the unshifted QR-SVD algorithm given by (9.7.37). which uses the iteration

$$
\begin{equation*}
B_{k}^{T}=Q_{k+1} B_{k+1}, \quad k=0,1,2, \ldots \tag{9.7.48}
\end{equation*}
$$

In each step the lower bidiagonal matrix B_{k}^{T} is transformed into an upper bidiagonal matrix B_{k+1}.

$$
Q_{1}^{T} B=\stackrel{\rightarrow}{\rightarrow}\left(\begin{array}{ccccc}
\times & + & & & \\
\otimes & \times & & & \\
& \times & \times & & \\
& & \times & \times & \\
& & & \times & \times
\end{array}\right), \quad Q_{2} Q_{1}^{T} B=\rightarrow\left(\begin{array}{ccccc}
\times & \times & & & \\
& \times & + & & \\
& \otimes & \times & & \\
& & \times & \times & \\
& & & \times & \times
\end{array}\right),
$$

etc. Each iteration in (9.7.48) can be performed with a sequence of $n-1$ Givens rotations at a cost of only $2 n$ multplications and $n-1$ calls to givrot. Two steps of the iteration is equivalent to one step of the zero shift QR algorithm. (Recall that one step of the QR algorithm with nonzero shifts, requires $12 n$ multiplications and $4 n$ additions.) The zero shift algorithm is very simple and uses no subtractions, Hence each entry of the transformed matrix is computed to high relative accuracy.

Algorithm 9.7.1 The Zero Shift QR Algorithm

The algorithm performs p steps of the zero shift QR algorithm on the bidiagonal matrix B in (9.7.39):

$$
\begin{aligned}
& \text { for } k=1: 2 p \\
& \quad \text { for } i=1: n-1 \\
& \quad[c, s, r]=\operatorname{givrot}\left(q_{i}, e_{i+1}\right) \\
& \quad q_{i}=r ; q_{i+1}=q_{i+1} * c \\
& \quad e_{i+1}=q_{i+1} * s \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

If two successive steps of (9.7.48) are interleaved we get the zero shift QR algorithm, the implementation of which has been studied in depth by Demmel and Kahan [9]. To give full accuracy for the smaller sigingular values the convergence tests used for standard shifted QR-SVD algorithm must be modified. This is a non-trivial task, for which we refer to the original paper.

9.7.6 Singular Values by Spectrum Slicing

An algorithm for computing singular values can be developed by applying Algorithm 9.6.6 for spectrum slicing to the special symmetric tridiagonal matrix T in (9.7.41). Taking advantage of the zero diagonal this algorithm simplifies and one slice requires only of the order $2 n$ flops. Given the elements q_{1}, \ldots, q_{n} and e_{2}, \ldots, e_{n} of T in (9.7.41), the following algorithm generates the number π of singular values of T greater than a given value $\sigma>0$.

Algorithm 9.7.2

Singular Values by Spectrum Slicing Let T be the tridiagonal matrix (9.6.9). Then the number π of eigenvalues greater than a given number σ is generated by the following algorithm:

```
\(d_{1}:=-\sigma ;\)
flip \(:=-1\);
\(\pi:=\) if \(d_{1}>0\) then 1 else 0 ;
for \(k=2: 2 n\)
flip \(:=-\) flip;
if flip \(=1\) then \(\beta=q_{k / 2}\)
        else \(\beta=e_{(k+1) / 2} ;\)
end
    \(d_{k}:=-\beta\left(\beta / d_{k-1}\right)-\tau ;\)
    if \(\left|d_{k}\right|<\sqrt{\omega}\) then \(d_{k}:=\sqrt{\omega}\);
    if \(d_{k}>0\) then \(\pi:=\pi+1\);
end
```

Spectrum slicing algorithm for computing singular values has been analyzed by Fernando [11]. and shown to provide high relative accuracy also for tiny singular values.

Review Questions

1. What is meant by a graded matrix, and what precautions need to be taken when transforming such a matrix to condensed form?
2. For a certain class of symmetric matrices small eigenvalues are determined with a very small error compared to $\|A\|_{F}$. Which?
3. If one step of the QR algorithm is performed on A with a shift τ equal to an eigenvalue of A, what can you say about the result? Describe how the shift usually is chosen in the QR algorithm applied to a real symmetric tridiagonal matrix.
4. What are the advantages of the implicit shift version of the QR algorithm for a real Hessenberg matrix H ?
5. Suppose the eigenvalues to a Hessenberg matrix have been computed using the QR algorithm. How are the eigenvectors best computed (a) if all eigenvectors are needed; (b) if only a few eigenvectors are needed.
6. (a) Show that the symmetry of a matrix is preserved during the QR algorithm. What about normality?
(b) Show that the Hessenberg form is preserved during the QR algorithm.
7. What condensed form is usually chosen for the singular value decomposition? What kind of transformations are used for bringing the matrix to condensed form? How are the singular values computed for the condensed form?

Problems

1. Perform a QR step without shift on the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & 0
\end{array}\right)
$$

and show that the nondiagonal elements are reduced to $-\sin ^{3} \theta$.
2. Let T be the tridiagonal matrix in (9.7.30), and suppose a QR step using the shift $\tau=\alpha_{n}$ is carried out,

$$
T-\alpha_{n} I=Q R, \quad \tilde{T}=R Q+\alpha_{n} I
$$

Generalize the result from Problem 2, and show that if $\gamma=\min _{i}\left|\lambda_{i}\left(T_{n-1}\right)-\alpha_{n}\right|>0$, then $\left|\tilde{\beta}_{n}\right| \leq\left|\beta_{n}\right|^{3} / \gamma^{2}$.
3. Show that a complex matrix A can be reduced to real bidiagonal form using a sequence of unitary Householder transformations, see (9.6.2)-(9.6.3)
4. Let C be the matrix in (9.7.40) and P the permutation matrix whose columns are those of the identity matrix in the order $(n+1,1, n+2,2, \ldots, 2 n, n)$. Show that the matrix $P^{T} C P$ becomes a tridiagonal matrix T of the form in (9.7.41).
5. To compute the SVD of a matrix $A \in \mathbf{R}^{m \times 2}$ we can first reduce A to upper triangular form by a QR decomposition

$$
A=\left(a_{1}, a_{2}\right)=\left(q_{1}, q_{2}\right)\binom{R}{0}, \quad R=\left(\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right) .
$$

Then, as outlined in Golub and Van Loan [21, Problem 8.5.1], a Givens rotation G can be determined such that $B=G R G^{T}$ is symmetric. Finally, B can be diagonalized by a Jacobi transformation. Derive the details of this algorithm!
6. (a) Let σ_{i} be the singular values of the matrix

$$
M=\left(\begin{array}{cccc}
z_{1} & & & \\
z_{2} & d_{2} & & \\
\vdots & & \ddots & \\
z_{n} & & & d_{n}
\end{array}\right) \in \mathbf{R}^{n \times n}
$$

where the elements d_{i} are distinct. Show the interlacing property

$$
0<\sigma_{1}<d_{2}<\cdots<d_{n}<\sigma_{n}<d_{n}+\|z\|_{2}
$$

(b) Show that σ_{i} satisfies the secular equation

$$
f(\sigma)=1+\sum_{k=1}^{n} \frac{z_{k}^{2}}{d_{k}^{2}-\sigma^{2}}=0 .
$$

Give expressions for the right and left singular vectors of M.
Hint: See Lemma 9.6.2.
7. Modify Algorithm 9.7.1 for the zero shift QR-SVD algorithm so that the two loops are merged into one.

9.8 Subspace Methods for Large Eigenvalue Problems

In many applications eigenvalue problems arise involving matrices so large that they cannot be conveniently treated by the methods described so far. For such problems, it is not reasonable to ask for a complete set of eigenvalues and eigenvectors, and usually only some extreme eigenvalues (often at one end of the spectrum) are required. In the 1980's typical values could be to compute 10 eigenpairs of a matrix of order 10,000. In the late 1990's problems are solved where 1,000 eigenpairs are computed for matrices of order $1,000,000$!

We concentrate on the symmetric eigenvalue problem since fortunately many of the very large eigenvalue problems that arise are symmetric. We first consider the general problem of obtaining approximations from a subspace of \mathbf{R}^{n}. We then survey the two main classes of methods developed for large or very large eigenvalue problems.

9.8.1 The Rayleigh-Ritz Procedure

Let \mathcal{S} be the subspace of \mathbf{R}^{n} spanned by the columns of a given matrix $S=$ $\left(s_{1}, \ldots, s_{m}\right) \in \mathbf{R}^{n \times m}$ (usually $m \ll n$). We consider here the problem of finding the best set of approximate eigenvectors in \mathcal{S} to eigenvectors of a Hermitian matrix A. The following generalization of the Rayleigh quotient is the essential tool needed.

Theorem 9.8.1.

Let A be Hermitian and $Q \in \mathbf{R}^{n \times p}$ be orthonormal, $Q^{H} Q=I_{p}$. Then the residual norm $\|A Q-Q C\|_{2}$ is minimized for $C=M$ where

$$
\begin{equation*}
M=\rho(Q)=Q^{H} A Q \tag{9.8.1}
\end{equation*}
$$

is the corresponding Rayleigh quotient matrix. Further, if $\theta_{1}, \ldots, \theta_{p}$ are the eigenvalues of M, there are p eigenvalues $\lambda_{i 1}, \ldots, \lambda_{i p}$ of A, such that

$$
\begin{equation*}
\left|\lambda_{i j}-\theta_{j}\right| \leq\|A Q-Q M\|_{2}, \quad j=1, \ldots, p \tag{9.8.2}
\end{equation*}
$$

Proof. See Parlett [38, Section 11-5].

We can now outline the complete procedure:

Algorithm 9.8.1

The Rayleigh-Ritz procedure

1. Determine an orthonormal matrix $Q=\left(q_{1}, \ldots, q_{m}\right)$ such that $\mathcal{R}(Q)=\mathcal{S}$.
2. Form the matrix $B=A Q=\left(A q_{1}, \ldots, A q_{m}\right)$ and the generalized Rayleigh quotient matrix

$$
\begin{equation*}
M=Q^{H}(A Q) \in \mathbf{R}^{m \times m} \tag{9.8.3}
\end{equation*}
$$

3. Compute the $p \leq m$ eigenpairs of the Hermitian matrix M which are of interest

$$
\begin{equation*}
M z_{i}=\theta_{1} z_{i}, \quad i=1, \ldots, p \tag{9.8.4}
\end{equation*}
$$

The eigenvectors can be chosen such that $Z=\left(z_{1}, \ldots, z_{m}\right)$ is a unitary matrix. The eigenvalues θ_{i} are the $\mathbf{R i t z}$ values, and the vectors $y_{i}=Q z_{i}$ the Ritz vectors.
4. Compute the residual matrix $R=\left(r_{1}, \ldots, r_{p}\right)$, where

$$
\begin{equation*}
r_{i}=A y_{i}-y_{i} \theta_{i}=(A Q) z_{i}-y_{i} \theta_{i} . \tag{9.8.5}
\end{equation*}
$$

Then each interval

$$
\begin{equation*}
\left[\theta_{i}-\left\|r_{i}\right\|_{2}, \theta_{i}+\left\|r_{i}\right\|_{2}\right], \quad i=1, \ldots, p \tag{9.8.6}
\end{equation*}
$$

contains an eigenvalue λ_{i} of A.

The pairs $\left(\theta_{i}, y_{i}\right), i=1, \ldots, p$ are the best approximate eigenpairs of A which can be derived from the space \mathcal{S}. If some of the intervals in (9.8.6) overlap, we cannot be sure to have approximations to p eigenvalues of A. However, there are always p eigenvalues in the intervals defined by (9.8.2).

We can get error bounds for the approximate eigenspaces from an elegant generalization of Theorem 9.3.15. We first need to define the gap of the spectrum of A with respect to a given set of approximate eigenvalues.

Definition 9.8.2.

Let $\lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be eigenvalues of a Hermitian matrix A. For the set $\rho=\left\{\theta_{1}, \ldots, \theta_{p}\right\}$, let $s_{\rho}=\left\{\lambda_{i_{1}}, \ldots, \lambda_{i_{p}}\right\}$ be a subset of $\lambda(A)$ minimizing $\max _{j} \mid \theta_{j}-$ $\lambda_{i_{j}} \mid$. Then we define

$$
\begin{equation*}
\operatorname{gap}(\rho)=\min _{\lambda \in \lambda(A)}\left|\lambda-\theta_{i}\right|, \quad \lambda \notin s_{\rho}, \quad \theta_{i} \in \rho . \tag{9.8.7}
\end{equation*}
$$

Theorem 9.8.3.

Let $Q \in \mathbf{R}^{n \times p}$ be orthonormal and A a Hermitian matrix. Let $\left\{\theta_{1}, \ldots, \theta_{p}\right\}$ be the eigenvalues of $H=\rho(Q)=Q^{H} A Q$, and let $s_{r}=\left\{\lambda_{i_{1}}, \ldots, \lambda_{i_{p}}\right\}$ be a subset of eigenvalues of A such that $\max _{j}\left|\theta_{j}-\lambda_{i_{j}}\right|$ is minimized. If \mathcal{Z} is the invariant subspace of A corresponding to s_{r}, then

$$
\begin{equation*}
\theta(\mathcal{Q}, \mathcal{Z}) \leq\|A Q-Q H\|_{2} / \operatorname{gap}(\rho) \tag{9.8.8}
\end{equation*}
$$

where $\sin \theta(\mathcal{Q}, \mathcal{Z})$ is the largest angle between the subspaces \mathcal{Q} and \mathcal{Z}.

9.8.2 Subspace Iteration for Hermitian Matrices

In Section 9.4.4 subspace iteration, or orthogonal iteration, was introduced as a block version of the power method. Subspace iteration has long been one of the most important methods for solving large sparse eigenvalue problems. In particular it has been used much in structural engineering, and developed to a high standard of refinement.

In simple subspace iteration we start with an initial matrix $Q_{0} \in \mathbf{R}^{n \times p}(1<$ $p \ll n$) with orthogonal columns. From this a sequence of matrices $\left\{Q_{k}\right\}$ are computed from

$$
\begin{equation*}
Z_{k}=A Q_{k-1}, \quad Q_{k} R_{k}=Z_{k}, \quad k=1,2, \ldots \tag{9.8.9}
\end{equation*}
$$

where $Q_{k} R_{k}$ is the $Q R$ decomposition of the matrix Z_{k}. There is no need for the matrix A to be known explicitly; only an algorithm (subroutine) for computing the matrix-vector product $A q$ for an arbitrary vector q is required. This iteration (9.8.9) generates a sequence of subspaces $\mathcal{S}_{k}=\mathcal{R}\left(A^{k} Q_{0}\right)=\mathcal{R}\left(Q_{k}\right)$, and we seek approximate eigenvectors of A in these subspaces. It can be shown (see Section 9.4.4) that if A has p dominant eigenvalues $\lambda_{1}, \cdots, \lambda_{p}$, i.e.,

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right| \geq \cdots \geq\left|\lambda_{n}\right|
$$

then the subspaces $\mathcal{S}_{k}, k=0,1,2, \ldots$ converge almost always to the corresponding dominating invariant subspace. The convergence is linear with rate $\left|\lambda_{p+1} / \lambda_{p}\right|$.

For the individual eigenvalues $\lambda_{i}>\lambda_{i+1}, i \leq p$, it holds that

$$
\left|r_{i i}^{(k)}-\lambda_{i}\right|=O\left(\left|\lambda_{i+1} / \lambda_{i}\right|^{k}\right), \quad i=1, \ldots, p
$$

where $r_{i i}^{(k)}$ are the diagonal elements in R_{k}. This rate of convergence is often unacceptably slow. We can improve this by including the Rayleigh-Ritz procedure in orthogonal iteration. For the real symmetric (Hermitian) case this leads to the improved algorithm below.

Algorithm 9.8.2

Orthogonal Iteration, Hermitian Case.
With $Q_{0} \in \mathbf{R}^{n \times p}$ compute for $k=1,2, \ldots$ a sequence of matrices Q_{k} as follows:

1. Compute $Z_{k}=A Q_{k-1}$;
2. Compute the QR decomposition $Z_{k}=\bar{Q}_{k} R_{k}$;
3. Form the (matrix) Rayleigh quotient $B_{k}=\bar{Q}_{k}^{T}\left(A \bar{Q}_{k}\right)$;
4. Compute eigenvalue decomposition $B_{k}=U_{k} \Theta_{k} U_{k}^{T}$;
5. Compute the matrix of Ritz vectors $Q_{k}=\bar{Q}_{k} U_{k}$.

It can be shown that

$$
\left|\theta_{i}^{(k)}-\lambda_{i}\right|=\mathrm{O}\left(\left|\lambda_{p+1} / \lambda_{i}\right|^{k}\right), \quad \Theta_{k}=\operatorname{diag}\left(\theta_{1}^{(k)}, \ldots, \theta_{p}^{(k)}\right)
$$

which is a much more favorable rate of convergence than without the Rayleigh-Ritz procedure. The columns of Q_{k} are the Ritz vectors, and they will converge to the corresponding eigenvectors of A.

Example 9.8.1.

Let A have the eigenvalues $\lambda_{1}=100, \lambda_{2}=99, \lambda_{3}=98 \lambda_{4}=10$, and $\lambda_{5}=5$. With $p=3$ the asymptotic convergence ratios for the j th eigenvalue with and without Rayleigh-Ritz acceleration are:

j	without R-R	with R-R
1	0.99	0.1
2	0.99	0.101
3	0.102	0.102

The work in step 1 of Algorithm 9.8.2 consists of p matrix times vector operations with the matrix A. If the modified Gram-Schmidt method is used step 2 requires $p(p+1) n$ flops. To form the Rayleigh quotient matrix requires a further p matrix times vector multiplications and $p(p+1) n / 2$ flops, taking the symmetry of B_{k} into account. Finally steps 4 and 5 take about $5 p^{3}$ and $p^{2} n$ flops, respectively.

Note that the same subspace \mathcal{S}_{k} is generated by k consecutive steps of 1 , as with the complete Algorithm 9.8.2. Therefore the rather costly orthogonalization and Rayleigh-Ritz acceleration need not be carried out at every step. However, to be able to check convergence to the individual eigenvalues we need the RayleighRitz approximations. If we then form the residual vectors

$$
\begin{equation*}
r_{i}=A q_{i}^{(k)}-q_{i}^{(k)} \theta_{i}=\left(A Q_{k}\right) u_{i}^{(k)}-q_{i}^{(k)} \theta_{i} . \tag{9.8.10}
\end{equation*}
$$

and compute $\left\|r_{i}\right\|_{2}$ each interval $\left[\theta_{i}-\left\|r_{i}\right\|_{2}, \theta_{i}+\left\|r_{i}\right\|_{2}\right]$ will contain an eigenvalue of A. Sophisticated versions of subspace iteration have been developed. A highlight is the Contribution II/9 by Rutishauser in [40].

Algorithm 9.8.2 can be generalized to nonsymmetric matrices, by substituting in step 4 the Schur decomposition

$$
B_{k}=U_{k} S_{k} U_{k}^{T}
$$

where S_{k} is upper triangular. The vectors q_{i} then converge to the Schur vector u_{i} of A.

If interior eigenvalues are wanted then we can consider the spectral transformation (see Section 9.4.2)

$$
\hat{A}=(A-\mu I)^{-1}
$$

The eigenvalues of \hat{A} and A are related through $\hat{\lambda}_{i}=1 /\left(\lambda_{i}-\mu\right)$. Hence, the eigenvalues λ in a neighborhood of μ will correspond to outer eigenvalues of \hat{A}, and can be determined by applying subspace iteration to \hat{A}. To perform the multiplication $\hat{A} q$ we need to be able to solve systems of equations of the form

$$
\begin{equation*}
(A-\mu I) p=q \tag{9.8.11}
\end{equation*}
$$

This can be done, e.g., by first computing an LU factorization of $A-\mu I$ or by an iterative method.

9.8.3 Krylov Subspaces

Of great importance for iterative methods are the subspaces of the form

$$
\begin{equation*}
\mathcal{K}_{m}(v, A)=\operatorname{span}\left(v, A v, \ldots, A^{m-1} v\right) \tag{9.8.12}
\end{equation*}
$$

generated by a matrix A and a single vector v. These are called Krylov subspaces ${ }^{11}$ and the corresponding matrix

$$
K_{m}=\left(v, A v, \ldots, A^{m-1} v\right)
$$

is called a Krylov matrix. If $m \leq n$ the dimension of \mathcal{K}_{m} usually equals m unless v is specially related to A.

Many methods for the solving the eigenvalue problem developed by Krylov and others in the 1930's and 40's aimed at bringing the characteristic equation into polynomial form. Although this in general is a bad idea, we will consider one approach, which is of interest because of its connection with Krylov subspace methods and the Lanczos process.

Throughout this section we assume that $A \in \mathbf{R}^{n \times n}$ is a real symmetric matrix. Associated with A is the characteristic polynomial (9.1.5)

$$
p(\lambda)=(-1)^{n}\left(\lambda^{n}-\xi_{n-1} \lambda^{n-1}-\cdots \xi_{0}\right)=0
$$

The Cayley-Hamilton theorem states that $p(A)=0$, that is

$$
\begin{equation*}
A^{n}=\xi_{n-1} A^{n-1}+\cdots \xi_{1} A+\xi_{0} \tag{9.8.13}
\end{equation*}
$$

In particular we have

$$
\begin{aligned}
A^{n} v & =\xi_{n-1} A^{n-1} v+\cdots \xi_{1} A v+\xi_{0} v \\
& =\left[v, A v, \ldots, A^{n-1} v\right] x
\end{aligned}
$$

[^9]where $x=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n-1}\right)^{T}$.
Consider the Krylov sequence of vectors, $v_{0}=v$,
\[

$$
\begin{equation*}
v_{j+1}=A v_{j}, \quad j=0: n-1 \tag{9.8.14}
\end{equation*}
$$

\]

We assume in the following that v is chosen so that $v_{i} \neq 0, i=0: n-1$, Then we may write (9.8.14) as

$$
\begin{equation*}
x B x=v_{n}, \quad B=\left[v_{0}, v_{1}, \ldots, v_{n+1}\right] \tag{9.8.15}
\end{equation*}
$$

which is a linear equations in n unknowns.
Multiplying (9.8.15) on the left with B^{T} we obtain a symmetric linear system, the normal equations

$$
M x=z, \quad M=B^{T} B, \quad z=B^{T} v_{n} .
$$

The elements $m_{i j}$ of the matrix M are

$$
m_{i+1, j+1}=v_{i}^{T} v_{j}=\left(A^{i} v\right)^{T} A^{j} v=v^{T} A^{i+j} v
$$

They only depend on the sum of the indices and we write

$$
m_{i+1, j+1}=\mu_{i+j}, \quad i+j=0 ; 2 n-1
$$

Unfortunately this system tends to be very ill-conditioned. For larger values of n the Krylov vectors soon become parallel to the eigenvector associated with the dominant eigenvalue.

The Krylov subspace $\mathcal{K}_{m}(v, A)$ depends on both A and v. However, it is important to note the following simply verified invariance properties:

- Scaling: $\mathcal{K}_{m}(\alpha v, \beta A)=\mathcal{K}_{m}(v, A), \alpha \neq 0, \beta \neq 0$.
- Translation: $\mathcal{K}_{m}(v, A-\mu I)=\mathcal{K}_{m}(v, A)$.
- Similarity: $\mathcal{K}_{m}\left(Q^{T} v, Q^{T} A Q\right)=Q^{T} \mathcal{K}_{m}(v, A), Q^{T} Q=I$.

These invariance can be used to deduce some important properties of methods using Krylov subspaces. Since A and $-A$ generate the same subspaces the left and right part of the spectrum of A are equally approximated. The invariance with respect to shifting shows, e.g, that it does not matter if A is positive definite or not.

We note that the Krylov subspace $\mathcal{K}(v, A)$ is spanned by the vectors generated by performing $k-1$ steps of the power method starting with v. However, in the power method we throw away previous vectors and just use the last vector $A^{k} v$ to get an approximate eigenvector. It turns out that this is wasteful and that much more powerful methods can be developed which work with the complete Krylov subspace.

Any vector $x \in \mathcal{K}_{m}(v)$ can be written in the form

$$
x=\sum_{i=0}^{m-1} c_{i} A^{i} v=P_{m-1}(A) v
$$

where P_{m-1} is a polynomial of degree less than m. This provides a link between polynomial approximation and Krylov type methods, the importance of which will become clear in the following.

A fundamental question is: How well can an eigenvector of A be approximated by a vector in $\mathcal{K}(v, A)$? Let Π_{k} denote the orthogonal projector onto the Krylov subspace $\mathcal{K}(v, A)$. The following lemma bounds the distance $\left\|u_{i}-\Pi_{k} u_{i}\right\|_{2}$, where u_{i} is a particular eigenvector of A.

Theorem 9.8.4.

Assume that A is diagonalizable and let the initial vector v have the expansion

$$
\begin{equation*}
v=\sum_{k=1}^{n} \alpha_{k} u_{k} \tag{9.8.16}
\end{equation*}
$$

in terms of the normalized eigenvectors u_{1}, \ldots, u_{n}. Let P_{k-1} be the set of polynomials of degree at most $k-1$ such that $p\left(\lambda_{i}\right)=1$. Then, if $\alpha_{i} \neq 0$ the following inequality holds:

$$
\begin{equation*}
\left\|u_{i}-\Pi_{k} u_{i}\right\|_{2} \leq \xi_{i} \epsilon_{i}^{(k)}, \quad \xi_{i}=\sum_{j \neq i}\left|\alpha_{j}\right| /\left|\alpha_{i}\right| \tag{9.8.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon_{i}^{(k)}=\min _{p \in P_{k-1}} \max _{\lambda \in \lambda(A)-\lambda_{i}}|p(\lambda)| . \tag{9.8.18}
\end{equation*}
$$

Proof. We note that any vector in \mathcal{K}_{k} can be written $q(A) v$, where q is a polynomial $q \in P_{k-1}$. Since Π_{k} is the orthogonal projector onto \mathcal{K}_{k} we have

$$
\left\|\left(I-\Pi_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-q(A) v\right\|_{2} .
$$

Using the expansion (9.8.16) of v it follows that for any polynomial $p \in P_{k-1}$ with $p\left(\lambda_{i}\right)=1$ we have

$$
\left\|\left(I-\Pi_{k}\right) \alpha_{i} u_{i}\right\|_{2} \leq\left\|\alpha_{i} u_{i}-\sum_{j=1}^{n} \alpha_{j} p\left(\lambda_{j}\right) u_{j}\right\|_{2} \leq \max _{j \neq i}\left|p\left(\lambda_{j}\right)\right| \sum_{j \neq i}\left|\alpha_{j}\right|
$$

The last inequality follows noticing that the component in the eigenvector u_{i} is zero and using the triangle inequality. Finally dividing by $\left|\alpha_{i}\right|$ establishes the result. \square

To obtain error bounds we use the properties of the Chebyshev polynomials. We now consider the Hermitian case and assume that the eigenvalues of A are simple and ordered so that $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}$. Let $T_{k}(x)$ be the Chebyshev polynomial of the first kind of degree k. Then $\left|T_{k}(x)\right| \leq 1$ for $|x| \leq 1$, and for $|x| \geq 1$ we have

$$
\begin{equation*}
T_{k}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{k}+\left(x-\sqrt{x^{2}-1}\right)^{k}\right] \tag{9.8.19}
\end{equation*}
$$

Now if we take

$$
\begin{equation*}
x=l_{i}(\lambda)=1+2 \frac{\lambda-\lambda_{i+1}}{\lambda_{i+1}-\lambda_{n}}, \quad \gamma_{i}=l_{i}\left(\lambda_{i}\right)=1+2 \frac{\lambda_{i}-\lambda_{i+1}}{\lambda_{i}-\lambda_{n}} . \tag{9.8.20}
\end{equation*}
$$

the interval $\lambda=\left[\lambda_{i+1}, \lambda_{n}\right]$ is mapped onto $x=[-1,1]$, and $\gamma_{1}>1$. In particular, for $i=1$, we take

$$
p(\lambda)=\frac{T_{k-1}\left(l_{1}(\lambda)\right)}{T_{k-1}\left(\gamma_{1}\right)} .
$$

Then $p\left(\lambda_{1}\right)=1$ as required by Theorem 9.8.4. When k is large we have

$$
\begin{equation*}
\epsilon_{1}^{(k)} \leq \max _{\lambda \in \lambda(A)-\lambda_{i}}|p(\lambda)| \leq \frac{1}{T_{k-1}\left(\gamma_{1}\right)} \approx 2 /\left(\gamma_{1}+\sqrt{\gamma_{1}^{2}-1}\right)^{k-1} \tag{9.8.21}
\end{equation*}
$$

The steep climb of the Chebyshev polynomials outside the interval $[-1,1]$ explains the powerful approximation properties of the Krylov subspaces. The approximation error tends to zero with a rate depending on the gap $\lambda_{1}-\lambda_{2}$ normalized by the spread of the rest of the eigenvalues $\lambda_{2}-\lambda_{n}$. Note that this has the correct form with respect to the invariance properties of the Krylov subspaces.

By considering the matrix $-A$ we get analogous convergence results for the rightmost eigenvalue λ_{n} of A. In general, for $i>1$, similar but weaker results can be proved using polynomials of the form

$$
p(\lambda)=q_{i-1}(\lambda) \frac{T_{k-i}\left(l_{i}(\lambda)\right)}{T_{k-i}\left(\gamma_{i}\right)}, \quad q_{i-1}(\lambda)=\prod_{j=1}^{i-1} \frac{\lambda_{j}-\lambda}{\lambda_{j}-\lambda_{i}} .
$$

Notice that $q_{i-1}(\lambda)$ is a polynomial of degree $i-1$ with $q_{i-1}\left(\lambda_{j}\right)=0, j=1, \ldots, i-1$, and $q_{i-1}\left(\lambda_{i}\right)=1$. Further

$$
\begin{equation*}
\max _{\lambda \in \lambda(A)-\lambda_{i}}\left|q_{i-1}(\lambda)\right| \leq\left|q_{i-1}\left(\lambda_{n}\right)\right|=C_{i} . \tag{9.8.22}
\end{equation*}
$$

Thus when k is large we have

$$
\begin{equation*}
\epsilon_{i}^{(k)} \leq C_{i} / T_{k-i}\left(\gamma_{i}\right) \tag{9.8.23}
\end{equation*}
$$

This indicates that we can expect interior eigenvalues and eigenvectors to be less well approximated by Krylov-type methods.

9.8.4 The Lanczos Process

We will now show that the Rayleigh-Ritz procedure can be applied to the sequence of Krylov subspaces $\mathcal{K}_{m}(v), m=1,2,3, \ldots$, in a very efficient way using the Lanczos process. The Lanczos process, developed by Lanczos [33, 1950], can be viewed as a way for reducing a symmetric matrix A to tridiagonal form $T=Q^{T} A Q$. Here
$Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ is orthogonal, where q_{1} can be chosen arbitrarily, and

$$
T=T_{n}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \tag{9.8.24}\\
\beta_{2} & \alpha_{2} & \beta_{3} & & \\
& \beta_{3} & \ddots & \ddots & \\
& & \ddots & \alpha_{n-1} & \beta_{n} \\
& & & \beta_{n} & \alpha_{n}
\end{array}\right)
$$

is symmetric tridiagonal.
Equating the first $n-1$ columns in $A\left(q_{1}, q_{2}, \ldots, q_{n}\right)=\left(q_{1}, q_{2}, \ldots, q_{n}\right) T$ gives

$$
A q_{j}=\beta_{j} q_{j-1}+\alpha_{j} q_{j}+\beta_{j+1} q_{j+1}, \quad j=1, \ldots, n-1
$$

where we have put $\beta_{1} q_{0} \equiv 0$. The requirement that $q_{j+1} \perp q_{j}$ gives

$$
\alpha_{j}=q_{j}^{T}\left(A q_{j}-\beta_{j} q_{j-1}\right)
$$

(Note that since $q_{j} \perp q_{j-1}$ the last term could in theory be dropped; however, since a loss of orthogonality occurs in practice it should be kept. This corresponds to using the modified rather than the classical Gram-Schmidt orthogonalization process.)

Further solving for q_{j+1},

$$
\beta_{j+1} q_{j+1}=r_{j+1}, \quad r_{j+1}=A q_{j}-\alpha_{j} q_{j}-\beta_{j} q_{j-1},
$$

so if $r_{j+1} \neq 0$, then β_{j+1} and q_{j+1} is obtained by normalizing r_{j+1}. Given q_{1} these equations can be used recursively to compute the elements in the tridiagonal matrix T and the orthogonal matrix Q.

Algorithm 9.8.3

The Lanczos Process.
Let A be a symmetric matrix and $q_{1} \neq 0$ a given vector. The following algorithm computes in exact arithmetic after k steps a symmetric tridiagonal matrix $T_{k}=$ $\operatorname{trid}\left(\beta_{j}, \alpha_{j}, \beta_{j+1}\right)$ and a matrix $Q_{k}=\left(q_{1}, \ldots, q_{k}\right)$ with orthogonal columns spanning the Krylov subspace $\mathcal{K}_{k}\left(q_{1}, A\right)$:

```
\(r_{0}=q_{1} ; q_{0}=0 ;\)
\(\beta_{1}=\left\|r_{0}\right\|_{2}=1\);
for \(j=1,2,3 \ldots\).
    \(q_{j}=r_{j-1} / \beta_{j} ;\)
    \(r_{j}=A q_{j}-\beta_{j} q_{j-1} ;\)
    \(\alpha_{j}=q_{j}^{T} r_{j} ;\)
    \(r_{j}=r_{j}-\alpha_{j} q_{j} ;\)
    \(\beta_{j+1}=\left\|r_{j}\right\|_{2}\);
    if \(\beta_{j+1}=0\) then exit;
end
```

Note that A only occurs in the matrix-vector operation $A q_{j}$. Hence, the matrix A need not be explicitly available, and can be represented by a subroutine. Only three n-vectors are needed in storage.

It is easy to see that if the Lanczos algorithm can be carried out for k steps then it holds

$$
\begin{equation*}
A Q_{k}=Q_{k} T_{k}+\beta_{k+1} q_{k+1} e_{k}^{T} \tag{9.8.25}
\end{equation*}
$$

The Lanczos process stops if $\beta_{k+1}=0$ since then q_{k+1} is not defined. However, then by (9.8.25) it holds that $A Q_{k}=Q_{k} T_{k}$, and thus Q_{k} spans an invariant subspace of A. This means that the eigenvalues of T_{k} also are eigenvalues of A. (For example, if q_{1} happens to be an eigenvector of A, the process stops after one step.) Further eigenvalues of A can the be determined by restarting the Lanczos process with a vector orthogonal to q_{1}, \ldots, q_{k}.

By construction it follows that $\operatorname{span}\left(Q_{k}\right)=\mathcal{K}_{k}(A, b)$. Multiplying (9.8.25) by Q_{k}^{T} and using $Q_{k}^{T} q_{k+1}=0$ it follows that $T_{k}=Q_{k}^{T} A Q_{k}$, and hence T_{k} is the generalized Rayleigh quotient matrix corresponding to $\mathcal{K}_{k}(A, b)$. The Ritz values are the eigenvalues θ_{i} of T_{k}, and the Ritz vectors are $y_{i}=Q_{k} z_{i}$, where z_{i} are the eigenvectors of T_{k} corresponding to θ_{i}.

In principle we could at each step compute the Ritz values θ_{i} and Ritz vectors $y_{i}, i=1, \ldots, k$. Then the accuracy of the eigenvalue approximations could be assessed from the residual norms $\left\|A y_{i}-\theta_{i} y_{i}\right\|_{2}$, and used to decide if the process should be stopped. However, this is not necessary since using (9.8.25) we have

$$
A y_{i}-y_{i} \theta_{i}=A Q_{k} z_{i}-Q_{k} z_{i} \theta_{i}=\left(A Q_{k}-Q_{k} T_{k}\right) z_{i}=\beta_{k+1} q_{k+1} e_{k}^{T} z_{i}
$$

Taking norms we get

$$
\begin{equation*}
\left\|A y_{i}-y_{i} \theta_{i}\right\|_{2}=\beta_{k+1}\left|e_{k}^{T} z_{i}\right| . \tag{9.8.26}
\end{equation*}
$$

i.e., we can compute the residual norm just from the bottom element of the normalized eigenvectors of T_{k}. This is fortunate since then we need to access the Q matrix only after the process has converged. The vectors can be stored on secondary storage, or often better, regenerated at the end. The result (9.8.26) also explains why some Ritz values can be very accurate approximations even when β_{k+1} is not small.

So far we have discussed the Lanczos process in exact arithmetic. In practice, roundoff will cause the generated vectors to lose orthogonality. A possible remedy is to reorthogonalize each generated vector q_{k+1} to all previous vectors q_{k}, \ldots, q_{1}. This is however very costly both in terms of storage and operations.

A satisfactory analysis of the numerical properties of the Lanczos process was first given by C. C. Paige [36, 1971]. He showed that it could be very effective in computing accurate approximations to a few of the extreme eigenvalues of A even in the face of total loss of orthogonality! The key to the behaviour is, that at the same time as orthogonality is lost, a Ritz pair converges to an eigenpair of A. As the algorithm proceeds it will soon start to converge to a second copy of the already converged eigenvalue, and so on. The effect of finite precision is to slow down convergence, but does not prevent accurate approximations to be found!

The Lanczos process is also the basis for several methods for solving large scale symmetric linear systems, and least squares problems, see Section 10.4.

9.8.5 Golub-Kahan Bidiagonalization.

A Lanczos process can also be developed for computing singular values and singular vectors to a rectangular matrix A. For this purpose we consider here the Golub-Kahan bidiagonalization (GKBD) of a matrix $A \in \mathbf{R}^{m \times n}, m \geq n$. This has important applications for computing approximations to the large singular values and corresponding singular vectors, as well as for solving large scale least squares problems.

In Section 8.4.8 we gave an algorithm for computing the decomposition

$$
\begin{equation*}
A=U\binom{B}{0} V^{T}, \quad U^{T} U=I_{m}, \quad V^{T} V=I_{n} \tag{9.8.27}
\end{equation*}
$$

where $U=\left(u_{1}, \ldots, u_{m}\right)$ and $V=\left(v_{1}, \ldots, v_{n}\right)$ are chosen as products of Householder transformations and B is upper bidiagonal. If we set $U_{1}=\left(u_{1}, \ldots, u_{n}\right)$ then from (9.8.27) we have

$$
\begin{equation*}
A V=U_{1} B, \quad A^{T} U_{1}=V B^{T} \tag{9.8.28}
\end{equation*}
$$

In an alternative approach, given by Golub and Kahan [19, 1965], the columns of U and V are generated sequentially, as in the Lanczos process.

A more useful variant of this bidiagonalization algorithm is obtained by instead taking transforming A into lower bidiagonal form

$$
B_{n}=\left(\begin{array}{cccc}
\alpha_{1} & & & \tag{9.8.29}\\
\beta_{2} & \alpha_{2} & & \\
& \beta_{3} & \ddots & \\
& & \ddots & \alpha_{n} \\
& & & \beta_{n+1}
\end{array}\right) \in \mathbf{R}^{(n+1) \times n} .
$$

(Note that B_{n} is not square.) Equating columns in (9.8.28) we obtain, setting $\beta_{1} v_{0} \equiv 0, \alpha_{n+1} v_{n+1} \equiv 0$, the recurrence relations

$$
\begin{align*}
& A^{T} u_{j}=\beta_{j} v_{j-1}+\alpha_{j} v_{j} \\
& A v_{j}=\alpha_{j} u_{j}+\beta_{j+1} u_{j+1}, \quad j=1, \ldots, n \tag{9.8.30}
\end{align*}
$$

Starting with a given vector $u_{1} \in \mathbf{R}^{m},\left\|u_{1}\right\|_{2}=1$, we can now recursively generate the vectors $v_{1}, u_{2}, v_{2}, \ldots, u_{m+1}$ and corresponding elements in B_{n} using, for $j=$ $1,2, \ldots$, the formulas

$$
\begin{align*}
& r_{j}=A^{T} u_{j}-\beta_{j} v_{j-1}, \quad \alpha_{j}=\left\|r_{j}\right\|_{2}, \quad v_{j}=r_{j} / \alpha_{j} \tag{9.8.31}\\
& p_{j}=A v_{j}-\alpha_{j} u_{j}, \quad \beta_{j+1}=\left\|p_{j}\right\|_{2}, \quad u_{j+1}=p_{j} / \beta_{j+1} \tag{9.8.32}
\end{align*}
$$

For this bidiagonalization scheme we have

$$
u_{j} \in \mathcal{K}_{j}\left(A A^{T}, u_{1}\right), \quad v_{j} \in \mathcal{K}_{j}\left(A^{T} A, A^{T} u_{1}\right)
$$

There is a close relationship between the above bidiagonalization process and the Lanczos process applied to the two matrices $A A^{T}$ and $A^{T} A$. Note that these matrices have the same nonzero eigenvalues $\sigma_{i}^{2}, i=1, \ldots, n$, and that the corresponding eigenvectors equal the left and right singular vectors of A, respectively.

The GKBD process (9.8.31)-(9.8.32) generates in exact arithmetic the same sequences of vectors u_{1}, u_{2}, \ldots and v_{1}, v_{2}, \ldots as are obtained by simultaneously applying the Lanczos process to $A A^{T}$ with starting vector $u_{1}=b /\|b\|_{2}$, and to $A^{T} A$ with starting vector $v_{1}=A^{T} b /\left\|A^{T} b\right\|_{2}$.

In floating point arithmetic the computed Lanczos vectors will lose orthogonality. In spite of this the extreme (largest and smallest) singular values of the truncated bidiagonal matrix $B_{k} \in \mathbf{R}^{(k+1) \times k}$ tend to be quite good approximations to the corresponding singular values of A, even for $k \ll n$. Let the singular value decomposition of B_{k} be $B_{k}=P_{k+1} \Omega_{k} Q_{k}^{T}$. Then approximations to the singular vectors of A are

$$
\hat{U}_{k}=U_{k} P_{k+1}, \quad \hat{V}_{k}=V_{k} Q_{k}
$$

This is a simple way of realizing the Ritz-Galerkin projection process on the subspaces $\mathcal{K}_{j}\left(A^{T} A, v_{1}\right)$ and $\mathcal{K}_{j}\left(A A^{T}, A v_{1}\right)$. The corresponding approximations are called Ritz values and Ritz vectors.

Lanczos algorithms for computing selected singular values and vectors have been developed, which have been used, e.g., in information retrieval problems and in seismic tomography. In these applications typically, the 100-200 largest singular values and vectors for matrices having up to 30,000 rows and 20,000 columns are required.

9.8.6 Arnoldi's Method.

Arnoldi's method is an orthogonal projection method onto Krylov subspace \mathcal{K}_{m} for general non Hermitian matrices. The procedure starts by building an orthogonal basis for \mathcal{K}_{m}

Algorithm 9.8.4

The Arnoldi process.
Let A be a matrix and $v_{1},\left\|v_{1}\right\|_{2}=1$, a given vector. The following algorithm computes in exact arithmetic after k steps a Hessenberg matrix $H_{k}=\left(h_{i j}\right)$ and a matrix $V_{k}=\left(v_{1}, \ldots, v_{k}\right)$ with orthogonal columns spanning the Krylov subspace $\mathcal{K}_{k}\left(v_{1}, A\right)$:

$$
\begin{aligned}
& \text { for } j=1: k \\
& \quad \text { for } i=1: j \\
& \quad h_{i j}=v_{i}^{H}\left(A v_{j}\right) \\
& \quad \text { end } \\
& \quad r_{j}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i} ; \\
& \quad h_{j+1, j}=\left\|r_{j}\right\|_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { if } h_{j+1, j}=0 \text { then exit; } \\
& v_{j+1}=r_{j} / h_{j+1, j} \text {; } \\
& \text { end }
\end{aligned}
$$

The Hessenberg matrix $H_{k} \in \mathbf{C}^{k \times k}$ and the unitary matrix V_{k} computed in the Arnoldi process satisfy the relations

$$
\begin{align*}
A V_{k} & =V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{H} \tag{9.8.33}\\
V_{k}^{H} A V_{k} & =H_{k} \tag{9.8.34}
\end{align*}
$$

The process will break down at step j if and only if the vector r_{j} vanishes. When this happens we have $A V_{k}=V_{k} H_{k}$, and so $\mathcal{R}\left(V_{k}\right)$ is an invariant subspace of A. By (9.8.33) $H_{k}=V_{k}^{H} A V_{k}$ and thus the Ritz values and Ritz vectors are obtained from the eigenvalues and eigenvectors of H_{k}. The residual norms can be inexpensively obtained as follows (cf. (9.8.26))

$$
\begin{equation*}
\left\|\left(A-\theta_{i} I\right) y_{i}\right\|_{2}=h_{m+1, m}\left|e_{k}^{T} z_{i}\right| \tag{9.8.35}
\end{equation*}
$$

The proof of this relation is left as an exercise.

Review Questions

1. Tell the names of two algorithms for (sparse) symmetric eigenvalue problems, where the matrix A need not to be explicitly available but only as a subroutine for the calculation of $A q$ for an arbitrary vector q. Describe one of the algorithms.
2. Tell the names of two algorithms for (sparse) symmetric eigenvalue problems, where the matrix A need not to be explicitly available but only as a subroutine for the calculation of $A q$ for an arbitrary vector q. Describe one of the algorithms.

Problems

1. (To be added.)

9.9 Generalized Eigenvalue Problems

9.9.1 Introduction

In this section we consider the generalized eigenvalue problem of computing nontrivial solutions (λ, x) of

$$
\begin{equation*}
A x=\lambda B x \tag{9.9.1}
\end{equation*}
$$

where A and B are square matrices of order n. The family of matrices $A-\lambda B$ is called a matrix pencil. ${ }^{12}$ It is called a regular pencil if $\operatorname{det}(A-\lambda B) \not \equiv 0$, else it is a singular pencil. A simple example of a singular pencil is

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right),
$$

where A and B have a null vector e_{2} in common.
If $A-\lambda B$ is a regular pencil, then the eigenvalues λ are the zeros of the characteristic equation

$$
\begin{equation*}
\operatorname{det}(A-\lambda B)=0 \tag{9.9.2}
\end{equation*}
$$

If the degree of the characteristic polynomial is $n-p$, then we say that $A-\lambda B$ has p eigenvalues at ∞.

Example 9.9.1.

The characteristic equation of the pencil

$$
A-\lambda B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\lambda\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

is $\operatorname{det}(A-\lambda B)=1-\lambda$ and has degree one. There is one eigenvalue $\lambda=\infty$ corresponding to the eigenvector e_{1}.

Note that infinite eigenvalues of $A-\lambda B$ simply correspond to the zero eigenvalues of the pencil $B-\lambda A$.

If S and T are nonsingular matrices then (9.9.2) is equivalent to

$$
\operatorname{det} S(A-\lambda B) T=\operatorname{det}(S A T-\lambda S B T)=0 .
$$

The two pencils $A-\lambda B$ and $S A T-\lambda S B T$ are said to be equivalent. They have the same eigenvalues and the eigenvectors are simply related.

If A and B are symmetric, then symmetry is preserved under congruence transformations in which $T=S^{T}$. The two pencils are then said to be congruent. Of particular interest are orthogonal congruence transformations, $S=Q^{T}$ and $T=Q$, where Q is orthogonal. Such transformations are stable since they preserve the 2-norm,

$$
\left\|Q^{T} A Q\right\|_{2}=\|A\|_{2}, \quad\left\|Q^{T} B Q\right\|_{2}=\|B\|_{2}
$$

9.9.2 Canonical Forms

The algebraic and analytic theory of the generalized eigenvalue problem is much more complicated than for the standard problem, and a complete treatment is outside the scoop of this book. There is a canonical form for regular matrix pencils corresponding to the Jordan canonical form, Theorem 9.2.7, which we state without proof.

[^10]Theorem 9.9.1. Kronecker's Canonical Form.
Let $A-\lambda B \in \mathbf{C}^{n \times n}$ be a regular matrix pencil. Then there are nonsingular matrices $X, Z \in \mathbf{C}^{n \times n}$, such that $X^{-1}(A-\lambda B) Z=\hat{A}-\lambda \hat{B}$, where

$$
\begin{align*}
& \hat{A}=\operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right), \ldots, J_{m_{s}}\left(\lambda_{s}\right), I_{m_{s+1}}, \ldots, I_{m_{t}}\right) \tag{9.9.3}\\
& \hat{B}=\operatorname{diag}\left(I_{m_{1}}, \ldots, I_{m_{s}}, J_{m_{s+1}}(0), \ldots, J_{m_{t}}(0)\right)
\end{align*}
$$

and where $J_{m_{i}}\left(\lambda_{i}\right)$ are Jordan blocks and the blocks $s+1, \ldots, t$ correspond to infinite eigenvalues. The numbers m_{1}, \ldots, m_{t} are unique and $\sum_{i=1}^{t} m_{i}=n$.

The disadvantage with the Kronecker Canonical Form is that it depends discontinuously on A and B and is unstable. There is also a generalization of the Schur Canonical Form (Theorem 9.2.1), which can be computed stably and more efficiently.

Theorem 9.9.2. Generalized Schur Canonical Form.
Let $A-\lambda B \in \mathbf{C}^{n \times n}$ be a regular matrix pencil. Then there exist unitary matrices U and V so that

$$
U A V=T_{A}, \quad U B V=T_{B}
$$

where both T_{A} and T_{B} are upper triangular. The eigenvalues of the pencil are the ratios of the diagonal elements of T_{A} and T_{B}.

Proof. See Stewart [1973, Ch. 7.6].
As for the standard case, when A and B are real, then U and V can be chosen real and orthogonal if T_{A} and T_{B} are allowed to have 2×2 diagonal blocks corresponding to complex conjugate eigenvalues.

9.9.3 Reduction to Standard Form

When B is nonsingular the eigenvalue problem (9.9.1) is formally equivalent to the standard eigenvalue problem $B^{-1} A x=\lambda x$. However, when B is singular such a reduction is not possible. Also, if B is close to a singular matrix, then we can expect to lose accuracy in forming $B^{-1} A$.

Of particular interest is the case when the problem can be reduced to a symmetric eigenvalue problem of standard form. A surprising fact is that any real square matrix F can be written as $F=A B^{-1}$ or $F=B^{-1} A$ where A and B are suitable symmetric matrices. For a proof see Parlett [38, Section 15-2] (cf. also Problem 1). Hence, even if A and B are symmetric the generalized eigenvalue problems embodies all the difficulties of the unsymmetric standard eigenvalue problem. However, if B is also positive definite, then the problem (9.9.1) can be reduced to a standard symmetric eigenvalue problem. This reduction is equivalent to the simultaneous transformation of the two quadratic forms $x^{T} A x$ and $x^{T} B x$ to diagonal form.

Theorem 9.9.3.

Let A and B be real symmetric square matrices and B also positive definite. Then there exists a nonsingular matrix X such that

$$
\begin{equation*}
X^{T} A X=D_{A}, \quad X^{T} B X=D_{B} \tag{9.9.4}
\end{equation*}
$$

are real and diagonal. The eigenvalues of $A-\lambda B$ are given by

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=D_{A} D_{B}^{-1}
$$

Proof. Let $B=L L^{T}$ be the Cholesky factorization of B. Then

$$
\begin{equation*}
L^{-1}(A-\lambda B) L^{-T}=\tilde{A}-\lambda I, \quad \tilde{A}=\tilde{A}=L^{-1} A L^{-T} \tag{9.9.5}
\end{equation*}
$$

where \tilde{A} is real and symmetric. Let $\tilde{A}=Q^{T} D_{A} Q$ be the eigendecomposition of \tilde{A}. Then we have

$$
X^{T}(A-\lambda B) X=D_{A}-\lambda D_{B}, \quad X=\left(Q L^{-1}\right)^{T}
$$

and the theorem follows.
Given the pencil $A-\lambda B$ the pencil $\hat{A}-\lambda \hat{B}=\gamma A+\sigma B-\lambda(-\sigma A+\gamma B)$, where $\gamma^{2}+\sigma^{2}=1$ has the same eigenvectors and the eigenvalues are related through

$$
\begin{equation*}
\lambda=(\gamma \hat{\lambda}+\sigma) /(-\sigma \hat{\lambda}+\gamma) \tag{9.9.6}
\end{equation*}
$$

Hence, for the above reduction to be applicable, it suffices that some linear combination $-\sigma A+\gamma B$ is positive definite. It can be shown that if

$$
\inf _{x \neq 0}\left(\left(x^{T} A x\right)^{2}+\left(x^{T} B x\right)^{2}\right)^{1 / 2}>0
$$

then there exist such γ and σ.
Under the assumptions in Theorem 9.9.3 the symmetric pencil $A-\lambda B$ has n real roots. Moreover, the eigenvectors can be chosen to be B-orthogonal, i.e.,

$$
x_{i}^{T} B x_{j}=0, \quad i \neq j .
$$

This generalizes the standard symmetric case for which $B=I$.
Numerical methods can be based on the explicit reduction to standard form in (9.9.5). $A x=\lambda B x$ is then equivalent to $C y=\lambda y$, where

$$
\begin{equation*}
C=L^{-1} A L^{-T}, \quad y=L^{T} x \tag{9.9.7}
\end{equation*}
$$

Computing the Cholesky decomposition $B=L L^{T}$ and forming $C=\left(L^{-1} A\right) L^{-T}$ takes about $5 n^{3} / 12$ flops if symmetry is used, see Wilkinson and Reinsch, Contribution II/10, [53]. If eigenvectors are not wanted, then the transform matrix L need not be saved.

If A and B are symmetric band matrices and $B=L L^{T}$ positive definite, then although L inherits the bandwidth of A the matrix $C=\left(L^{-1} A\right) L^{-T}$ will in general be a full matrix. Hence in this case it may not be practical to form C. Crawford [7] has devised an algorithm for reduction to standard form which interleaves orthogonal transformations in such way that the matrix C retains the bandwidth of A, see Problem 2.

The round-off errors made in the reduction to standard form are in general such that they could be produced by small perturbations in A and B. When B is ill-conditioned then the eigenvalues λ may vary widely in magnitude, and a small perturbation in B can correspond to large perturbations in the eigenvalues. Surprisingly, well-conditioned eigenvalues are often given accurately in spite of the ill-conditioning of B. Typically L will have elements in its lower part. This will produce a matrix $\left(L^{-1} A\right) L^{-T}$ which is graded so that the large elements appear in the lower right corner. Hence, a reduction to tridiagonal form should work from bottom to top and the QL-algorithm should be used.

Example 9.9.2. Wilkinson and Reinsch [53, p. 310].
The matrix pencil $A-\lambda B$, where

$$
A=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 2 \\
2 & 4.0001
\end{array}\right)
$$

has one eigenvalue ≈-2 and one $\mathrm{O}\left(10^{4}\right)$. The true matrix

$$
\left(L^{-1} A\right) L^{-T}=\left(\begin{array}{cc}
2 & -200 \\
-200 & 10000
\end{array}\right)
$$

is graded, and the small eigenvalue is insensitive to relative perturbation in its elements.

9.9.4 Methods for Generalized Eigenvalue Problems

We first note that the power method and inverse iteration can both be extended to the generalized eigenvalue problems. Starting with some q_{0} with $\left\|q_{0}\right\|_{2}=1$, these iterations now become

$$
\begin{aligned}
B \hat{q}_{k} & =A q_{k-1}, \quad q_{k}=\hat{q}_{k} /\left\|\hat{q}_{k}\right\|, \\
(A-\sigma B) \hat{q}_{k} & =B q_{k-1}, \quad q_{k}=\hat{q}_{k} /\left\|\hat{q}_{k}\right\|, \quad k=1,2, \ldots
\end{aligned}
$$

respectively. Note that $B=I$ gives the iterations in equations (9.5.4) and (9.5.7). The Rayleigh Quotient Iteration also extends to the generalized eigenvalue problem: For $k=0,1,2, \ldots$ compute

$$
\begin{equation*}
\left(A-\rho\left(q_{k-1}\right) B\right) \hat{q}_{k}=B q_{k-1}, \quad q_{k}=\hat{q}_{k} /\left\|q_{k}\right\|_{2}, \tag{9.9.8}
\end{equation*}
$$

where the (generalized) Rayleigh quotient of x is

$$
\rho(x)=\frac{x^{H} A x}{x^{H} B x} .
$$

In the symmetric definite case the Rayleigh Quotient Iteration has asymptotically cubic convergence and the residuals $\left\|\left(A-\mu_{k} B\right) x_{k}\right\|_{B^{-1}}$ decrease monotonically.

The Rayleigh Quotient method is advantageous to use when A and B have band structure, since it does not require an explicit reduction to standard form. The method of spectrum slicing can be used to count eigenvalues of $A-\lambda B$ in an interval.

Theorem 9.9.4.

Let $A-\sigma B$ have the Cholesky factorization

$$
A-\sigma B=L D L^{T}, \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)
$$

where L is unit lower triangular. If B is positive definite then the number of eigenvalues of A greater than σ equals the number of positive elements $\pi(D)$ in the sequence d_{1}, \ldots, d_{n}.

Proof. The proof follows from Sylvester's Law of Inertia (Theorem 7.3.8) and the fact that by Theorem 9.9.1 A and B are congruent to D_{A} and D_{B} with $\Lambda=D_{A} D_{B}^{-1}$. ■

For a nearly singular pencil (A, B) it may be preferable to use the $\mathbf{Q Z}$ algorithm of Moler and Stewart which is a generalization of the implicit QR algorithm. Here the matrix A is first reduced to upper Hessenberg form H_{A} and simultaneously B to upper triangular form R_{B} using standard Householder transformations and Givens rotations. Infinite eigenvalues, which correspond to zero diagonal elements of R_{B} are then eliminated. Finally the implicit shift QR algorithm is applied to $H_{A} R_{B}^{-1}$, without explicitly forming this product. This is achieved by computing unitary matrices Q and Z such that $Q A Z$ is upper Hessenberg, $Q B Z$ upper triangular and choosing the first column of Q proportional to the first column of $H_{A} R_{B}^{-1}-\sigma I$. A double shift technique can also be used if A and B are real. The matrix H_{A} will converge to upper triangular form and the eigenvalues of $A-\lambda B$ will be obtained as ratios of diagonal elements of the transformed H_{A} and R_{B}. For a more detailed description of the algorithm see Stewart [43, Chapter 7.6].

The total work in the QZ algorithm is about $15 n^{3}$ flops for eigenvalues alone, $8 n^{3}$ more for Q and $10 n^{3}$ for Z (assuming 2 QZ iterations per eigenvalue). It avoids the loss of accuracy related to explicitly inverting B. Although the algorithm is applicable to the case when A is symmetric and B positive definite, the transformations do not preserve symmetry and the method is just as expensive as for the general problem.

9.9.5 The Generalized SVD.

We now introduce the generalized singular value decomposition (GSVD) of two matrices $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{p \times n}$ with the same number of columns. The GSVD has applications to, e.g., constrained least squares problems. The GSVD is related to the generalized eigenvalue problem $A^{T} A x=\lambda B^{T} B x$, but as in the case
of the SVD the formation of $A^{T} A$ and $B^{T} B$ should be avoided. In the theorems below we assume for notational convenience that $m \geq n$.

Theorem 9.9.5. The Generalized Singular Value Decomposition (GSVD). Let $A \in \mathbf{R}^{m \times n}, m \geq n$, and $B \in \mathbf{R}^{p \times n}$ be given matrices. Assume that

$$
\operatorname{rank}(M)=k \leq n, \quad M=\binom{A}{B}
$$

Then there exist orthogonal matrices $U_{A} \in \mathbf{R}^{m \times m}$ and $U_{B} \in \mathbf{R}^{p \times p}$ and a matrix $Z \in \mathbf{R}^{k \times n}$ of rank k such that

$$
U_{A}^{T} A=\binom{D_{A}}{0} Z, \quad U_{B}^{T} B=\left(\begin{array}{cc}
D_{B} & 0 \tag{9.9.9}\\
0 & 0
\end{array}\right) Z
$$

where

$$
D_{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{k}\right), \quad D_{B}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{q}\right), \quad q=\min (p, k)
$$

Further, we have

$$
\begin{aligned}
& 0 \leq \alpha_{1} \leq \cdots \leq \alpha_{k} \leq 1, \quad 1 \geq \beta_{1} \geq \cdots \geq \beta_{q} \geq 0 \\
& \alpha_{i}^{2}+\beta_{i}^{2}=1, \quad i=1, \ldots, q, \quad \alpha_{i}=1, \quad i=q+1, \ldots, k
\end{aligned}
$$

and the singular values of Z equal the nonzero singular values of M.
Proof. We now give a constructive proof of Theorem 9.9.5 using the CS decomposition, Let the SVD of M be

$$
M=\binom{A}{B}=Q\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right) P^{T}
$$

where Q and P are orthogonal matrices of order $(m+p)$ and n, respectively, and

$$
\Sigma_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right), \quad \sigma_{1} \geq \cdots \geq \sigma_{k}>0
$$

Set $t=m+p-k$ and partition Q and P as follows:

$$
\left.Q=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
\underbrace{Q_{21}}_{k} & \underbrace{Q_{22}}_{t}
\end{array}\right)\right\} m, \quad{ }_{t}, \quad P=(\underbrace{P_{1}}_{k}, \underbrace{P_{2}}_{n-k}) .
$$

Then the SVD of M can be written

$$
\binom{A}{B} P=\left(\begin{array}{ll}
A P_{1} & 0 \tag{9.9.10}\\
B P_{1} & 0
\end{array}\right)=\binom{Q_{11}}{Q_{21}}\left(\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right)
$$

Now let

$$
Q_{11}=U_{A}\binom{C}{0} V^{T}, \quad Q_{21}=U_{B}\left(\begin{array}{cc}
S & 0 \\
0 & 0
\end{array}\right) V^{T}
$$

be the CS decomposition of Q_{11} and Q_{21}. Substituting this into (9.9.10) we obtain

$$
\begin{aligned}
& A P=U_{A}\binom{C}{0} V^{T}\left(\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right), \\
& B P=U_{B}\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right) V^{T}\left(\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right),
\end{aligned}
$$

and (9.9.9) follows with

$$
D_{A}=C, \quad D_{B}=S, \quad Z=V^{T}\left(\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right) P^{T}
$$

Here $\sigma_{1} \geq \cdots \geq \sigma_{k}>0$ are the singular values of Z.
When $B \in \mathbf{R}^{n \times n}$ is square and nonsingular the GSVD of A and B corresponds to the SVD of $A B^{-1}$. However, when A or B is ill-conditioned, then computing $A B^{-1}$ would usually lead to unnecessarily large errors, so this approach is to be avoided. It is important to note that when B is not square, or is singular, then the SVD of $A B^{\dagger}$ does not in general correspond to the GSVD.

9.9.6 The CS Decomposition.

The CS decomposition is a special case of the generalized SVD (GSVD) which is of interest in its own right.

Theorem 9.9.6. CS Decomposition. Let $Q \in \mathbf{R}^{(m+p) \times n}$ have orthonormal columns, and be partitioned as

$$
\begin{equation*}
\left.Q=\binom{Q_{1}}{Q_{2}}\right\}_{\} p}^{\} m} \in \mathbf{R}^{(m+p) \times n}, \quad m \geq n \tag{9.9.11}
\end{equation*}
$$

i.e., $Q^{T} Q=Q_{1}^{T} Q_{1}+Q_{2}^{T} Q_{2}=I_{n}$. Then there are orthogonal matrices $U_{1} \in \mathbf{R}^{m \times m}$, $U_{2} \in \mathbf{R}^{p \times p}$, and $V \in \mathbf{R}^{n \times n}$, and square nonnegative diagonal matrices

$$
\begin{equation*}
C=\operatorname{diag}\left(c_{1}, \ldots, c_{q}\right), \quad S=\operatorname{diag}\left(s_{1}, \ldots, s_{q}\right), \quad q=\min (n, p), \tag{9.9.12}
\end{equation*}
$$

satisfying $C^{2}+S^{2}=I_{q}$ such that

$$
\left(\begin{array}{cc}
U_{1}^{T} & 0 \tag{9.9.13}\\
0 & U_{2}^{T}
\end{array}\right)\binom{Q_{1}}{Q_{2}} V=\binom{U_{1}^{T} Q_{1} V}{U_{2}^{T} Q_{2} V}=\binom{\Sigma_{1}}{\Sigma_{2}} \begin{aligned}
& \} m \\
& \} p
\end{aligned}
$$

has one of the following forms:

$$
\begin{aligned}
& \text { The diagonal elements } c_{i} \text { and } s_{i} \text { are }
\end{aligned}
$$

$$
c_{i}=\cos \left(\theta_{i}\right), \quad s_{i}=\sin \left(\theta_{i}\right), \quad i=1, \ldots, q
$$

where without loss of generality, we may assume that

$$
0 \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{q} \leq \pi / 2
$$

Proof. To construct U_{1}, V, and C, note that since U_{1} and V are orthogonal and C is a nonnegative diagonal matrix, (9.9.13) is the SVD of Q_{1}. Hence the elements c_{i} are the singular values of Q_{1}. If we put $\tilde{Q}_{2}=Q_{2} V$, then the matrix

$$
\left(\begin{array}{c}
C \\
0 \\
\tilde{Q}_{2}
\end{array}\right)=\left(\begin{array}{cc}
U_{1}^{T} & 0 \\
0 & I_{p}
\end{array}\right)\binom{Q_{1}}{Q_{2}} V
$$

has orthonormal columns. Thus $C^{2}+\tilde{Q}_{2}^{T} \tilde{Q}_{2}=I_{n}$, which implies that $\tilde{Q}_{2}^{T} \tilde{Q}_{2}=$ $I_{n}-C^{2}$ is diagonal and hence the matrix $\tilde{Q}_{2}=\left(\tilde{q}_{1}^{(2)}, \ldots, \tilde{q}_{n}^{(2)}\right)$ has orthogonal columns.

We assume that the singular values $c_{i}=\cos \left(\theta_{i}\right)$ of Q_{1} have been ordered according to (9.9.6) and that $c_{r}<c_{r+1}=1$. Then the matrix $U_{2}=\left(u_{1}^{(2)}, \ldots, u_{p}^{(2)}\right)$ is constructed as follows. Since $\left\|\tilde{q}_{j}^{(2)}\right\|_{2}^{2}=1-c_{j}^{2} \neq 0, \quad j \leq r$ we take

$$
u_{j}^{(2)}=\tilde{q}_{j}^{(2)} /\left\|\tilde{q}_{j}^{(2)}\right\|_{2}, \quad j=1, \ldots, r,
$$

and fill the possibly remaining columns of U_{2} with orthonormal vectors in the orthogonal complement of $\mathcal{R}\left(\tilde{Q}_{2}\right)$. From the construction it follows that $U_{2} \in \mathbf{R}^{p \times p}$ is orthogonal and that

$$
U_{2}^{T} \tilde{Q}_{2}=U_{2} Q_{2} V=\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right), \quad S=\operatorname{diag}\left(s_{1}, \ldots, s_{q}\right)
$$

with $s_{j}=\left(1-c_{j}^{2}\right)^{1 / 2}>0$, if $j=1, \ldots, r$, and $s_{j}=0$, if $j=r+1, \ldots, q$.
In the theorem above we assumed that $m \geq n$. The general case gives rise to four different forms corresponding to cases where Q_{1} and/or Q_{2} have too few rows to accommodate a full diagonal matrix of order n.

The proof of the CS decomposition is constructive. In particular U_{1}, V, and C can be computed by a standard SVD algorithm. However, the above algorithm for computing U_{2} is unstable when some singular values c_{i} are close to 1 .

Review Questions

1. What is meant by a regular matrix pencil? Give examples of a singular pencil, and a regular pencil that has an infinite eigenvalue.
2. Formulate a generalized Schur Canonical Form. Show that the eigenvalues of the pencil are easily obtained from the canonical form.
3. Let A and B be real symmetric matrices, and B also positive definite. Show that there is a congruence transformation that diagonalizes the two matrices simultaneously. How is the Rayleigh Quotient iteration generalized to this type of eigenvalue problems, and what is its order of convergence?

Problems

1. Show that the matrix pencil $A-\lambda B$ where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

has complex eigenvalues, even though A and B are both real and symmetric.
2. Let A and B be symmetric tridiagonal matrices. Assume that B is positive definite and let $B=L L^{T}$, where the Cholesky factor L is lower bidiagonal.
(a) Show that L can be factored as $L=L_{1} L_{2} \cdots L_{n}$, where L_{k} differs from the unit matrix only in the k th column.
(b) Consider the recursion

$$
A_{1}=A, \quad A_{k+1}=Q_{k} L_{k}^{-1} A_{k} L_{k}^{-T} Q_{k}^{T}, \quad k=1, \ldots, n
$$

Show that if Q_{k} are orthogonal, then the eigenvalues of A_{n+1} are the same as those for the generalized eigenvalue problem $A x=\lambda B x$.
(c) Show how to construct Q_{k} as a sequence of Givens rotations so that the matrices A_{k} are all tridiagonal. (The general case, when A and B have symmetric bandwidth $m>1$, can be treated by considering A and B as block-tridiagonal.)

Notes

Complex Givens rotations and complex Householder transformations are treated in detail by Wilkinson [52, pp. 47-50]. For implementation details of complex Householder transformations, see the survey by R. B. Lehoucq [34, 1996].

For a more complete treatment of matrix functions see Chapter V in Gantmacher [15, 1959] and Lancaster [32, 1985]. Stewart and Sun [45] is a lucid treatise of matrix perturbation theory, with many historical comments and a very useful bibliography. Ward 1977 analyzed the method based on scaling and squaring for computing the exponential of a matrix and gave an a posteriori error bound. Moler and Van Loan 1978 gave a backward error analysis covering truncation error in the Padé approximation.

An analysis and a survey of inverse iteration for a single eigenvector is given by Ipsen [26]. The relation between simultaneous iteration and the QR algorithm and is explained in Watkins [50].

A still unsurpassed text on computational methods for the eigenvalue problem is Wilkinson [52, 1965]. Also the Algol subroutines and discussions in Wilkinson and Reinsch [53, 1971] are very instructive. An excellent discussion of the symmetric eigenvalue problem is given in Parlett [38, 1980]. Methods for solving large scale eigenvalue problems are treated by Saad [41, 1992].

The monograph by Bhatia [5] on perturbation theory for eigenspaces of Hermitian matrices is a valuable source of reference.

A stable algorithm for computing the SVD based on an initial reduction to bidiagonal form was first sketched by Golub and Kahan in [19]. The adaption of the QR algorithm, using a simplified process due to Wilkinson, for computing the SVD of the bidiagonal matrix was described by Golub [18]. The "final" form of the QR algorithm for computing the SVD was given by Golub and Reinsch [20]. The GSVD was first studied by Van Loan [21, 1996]. Paige and Saunders [37, 1981] extended the GSVD to handle all possible cases, and gave a computationally more amenable form.

For a survey of cases when it is possible to compute singular values and singular vectors with high relative accuracy; see [8].

Many important practical details on implementation of eigenvalue algorithms can be found in the documentation of the EISPACK and LAPACK software; see Smith et al. [42, 1976], B. S. Garbow et al. [16, 1977], and E. Anderson et al. [1, 1999].

Bibliography

[1] Edward Anderson, Zhaojun Bai, Christian Bischof, S. Blackford, J. Demmel, J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and Danny Sorensen, editors. LAPACK Users' Guide. SIAM, Philadelphia, PA, third edition, 1999.
[2] Zhaojun Bai, James W. Demmel, Jack J. Dongarra, Axel Ruhe, and Henk A. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA, 2000.
[3] Jesse Barlow and James W. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal, 27:762-791, 1990.
[4] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA, 1994.
[5] Rajendra Bhatia. Matrix Analysis. Springer, New York, 1997.
[6] Shivkumar Chandrasekaran and Ilse C. F. Ipsen. Analysis of a QR algorithm for computing singular values. SIAM J. Matrix Anal. Appl., 16:2:520-535, 1995.
[7] C. R. Crawford. Reduction of a band-symmetric generalized eigenvalue problem. Comm. ACM, 16:41-44, 1973.
[8] James W. Demmel, Ming Gu, Stanley Eisenstat, Ivan Slapničar, Kresimir Verselić, and Zlatko Drmac̆. Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl., 299:21-80, 1999.
[9] James W. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Comput., 11:873-912, 1990.
[10] James W. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13:4:1204-1245, 1992.
[11] K. V. Fernando. Accurately counting singular values of bidiagonal matrices and eigenvalues of skew-symmetric tridiagonal matrices. SIAM J. Matrix Anal. Appl., 20:2:373-399, 1998.
[12] Roger Fletcher and Danny C. Sorensen. An algorithmic derivation of the Jordan canonical form. American Mathematical Monthly, 90, 1983.
[13] George E. Forsythe and Peter Henrici. The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Amer. Math. Soc., 94:1-23, 1960.
[14] J. G. F. Francis. The QR transformation. Part I and II. Computer J., 4:265271, 332-345, 1961-1962.
[15] F. R. Gantmacher. The Theory of Matrices. Vols. I and II. Chelsea Publishing Co, New York, 1959.
[16] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and G. W. Stewart. Matrix Eigensystems Routines: EISPACK Guide Extension. Springer-Verlag, New York, 1977.
[17] S. A. Gerschgorin. Über die Abgrenzung der Eigenwerte einer Matrix. Akademia Nauk SSSR, Mathematics and Natural Sciences, 6:749-754, 1931.
[18] Gene H. Golub. Least squares, singular values and matrix approximations. Aplikace Matematiky, 13:44-51, 1968.
[19] Gene H. Golub and W. Kahan. Calculating the singular values and pseudoinverse of a matrix. SIAM J. Numer. Anal. Ser. B, 2:205-224, 1965.
[20] Gene H. Golub and Christian Reinsch. Singular value decomposition and least squares solution. Numer. Math, 14:403-420, 1970.
[21] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
[22] Ming Gu and Stanley C. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal. SIAM J. Matrix. Anal. Appl., 16:172-191, 1995.
[23] M. R. Hestenes. Inversion of matrices by biorthogonalization and related results. J. Soc. Indust. Appl. Math., 6:51-90, 1958.
[24] Nicholas J. Higham. QR factorization with complete pivoting and accurate computation of the svd. Linear Algebra Appl., 309:153-174, 2000.
[25] Nicholas J. Higham. The scaling and squaring method for the matrix exponential function. SIAM J. Matrix Anal. Appl., 2004.
[26] Ilse Ipsen. Computing an eigenvector with inverse iteration. SIAM Review, 39:254-291, 1997.
[27] C. G. J. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen. J. reine angew. Math.., 30:51-94, 1846.
[28] W. M. Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix. Tech. Report No. CS-41, Revised June 1968, Computer Science Department, Stanford University, CA, 1966.
[29] E. G. Kogbetliantz. Solution of linear equations by diagonalization of coefficients matrix. Quart. Appl. Math., 13:123-132, 1955.
[30] A. N. Krylov. On the numerical solution of the equation by which, in technical matters, frequencies of small oscillations of material systems are determined. Izv. Akad. Nauk. S.S.S.R. Otdel.Mat. Estest. Nauk, VII:4:491-539, 1931. in Russian.
[31] Vera N. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem. USSR Comput. Math. Phys., 3:637-657, 1961.
[32] Peter Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, New York, 1985.
[33] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards, Sect. B, 45:255-282, 1950.
[34] Richard B. Lehoucq. The computations of elementary unitary matrices. $A C M$ Trans. Math. Software, 22:393-400, 1996.
[35] Cleve Moler and Charles F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45:3-49, 2003.
[36] Christopher C. Paige. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices. PhD thesis, University of London, 1971.
[37] Christopher C. Paige and Michael A. Saunders. Toward a generalized singular value decomposition. SIAM J. Numer. Anal., 18:398-405, 1981.
[38] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics 20. SIAM, Philadelphia, PA, 1998.
[39] Heinz Rutishauser. Solution of eigenvalue problems with the lr-transformation. Nat. Bureau of Standards, Appl. Math. Ser., 49:47-81, 1958.
[40] Heinz Rutishauser. The Jacobi method for real symmetric matrices. Numer. Math., 9:1-10, 1966.
[41] Yosef Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York, 1992.
[42] B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix Eigensystems Routines-EISPACK Guide. Springer-Verlag, New York, second edition, 1976.
[43] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.
[44] G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, Philadelphia, PA, 2001.
[45] George W. Stewart and Ji guang. Sun. Matrix Perturbation Theory. Academic Press, Boston, MA, 1990.
[46] Gilbert Strang. Linear Algebra and Its Applications. Academic Press, New York, third edition, 1988.
[47] Lloyd N. Trefethen. Pseudospectra of linear operators. SIAM Review, 39:383406, 1997.
[48] Charles F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13:76-83, 1976.
[49] Richard S. Varga. Gerschgorin and his Circles. Springer, Berlin, Heidelberg, New York, 2004.
[50] David S. Watkins. Understanding the QR algorithm. SIAM Review, 24:427440, 1982.
[51] David S. Watkins. Fundamentals of Matrix Computation. Wiley-InterScience, New York, 2002.
[52] James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.
[53] James H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Computation. Vol. II, Linear Algebra. Springer-Verlag, New York, 1971.

Index

adjoint matrix, 2
Aitken extrapolation, 50
algorithm
Givens rotations, 68
Lanczos, 109
orthogonal iteration, 103
Rayleigh-Ritz procedure, 102
singular values by spectrum slicing, 99
svd, 60, 65
The Arnoldi process, 112
tridiagonal spectrum slicing, 76
analytic function
of matrix, 22
Arnoldi's method, 112-113
arrowhead matrix, 74
Bauer-Fike's theorem, 38
bidiagonal decomposition
Lanczos process, 111
canonical form
Kronecker, 115
Schur, 11-14
Cayley-Hamilton theorem, 18, 105
characteristic equation, 3
characteristic polynomial, 3
CS decomposition, 120-121
decomposition
block diagonal, 16
CS, 120-121
GSVD, 118
deflation, 51-52
deflation of matrix, 7, 52
departure from normality, 14
divide and conquer
tridiagonal eigenproblem, 74-75
dominant
invariant subspace, 57
eigenvalue
algebraic multiplicity, 7
by spectrum slicing, 75-77
defective, 8
dominant, 49
error bound, 43-46
geometric multiplicity, 8
Jacobi's method, 59-62
of Kronecker product, 9
of Kronecker sum, 9
perturbation, 38-46
power method, 49-57
subspace iteration, 56-57
eigenvalue of matrix, 3
eigenvalue problem
large, 101-113
eigenvector
of matrix, 3
perturbation, 38-46
elementary rotations
unitary, 66
exponential of matrix, 21
field of values, 43
Fischer's theorem, 41
flop count
QR algorithm for SVD, 97
QR step, 84
reduction to Hessenberg form, 69, 72
functions
matrix-valued, 21-29
gap
of spectrum, 102
generalized eigenvalue problem, 113118
generalized SVD, 118-120
Gerschgorin disks, 36
Gerschgorin's theorem, 36, 37
Givens rotation
unitary, 67
GKBD, see Golub-Kahan bidiagonalization
Golub-Kahan bidiagonalization, 111112
in finite precision, 112
grade
of vector, 9
graded matrix, 73
graph
connected, 6
directed, 6
growth ratio, 71
Hermitian matrix, 2
Hessenberg form reduction to, 69-72
Hessenberg matrix unreduced, 10, 70
Hotelling, 51
Householder reflection unitary, 67,68
instability
irrelevant, 70
invariant subspace, 5
inverse iteration, 52-55 shift, 52

Jacobi transformation, 60
Jacobi's method
classical, 61
cyclic, 61
for SVD, 62
sweep, 61
threshold, 61
Jordan block, 9
Jordan canonical form, 15-18
Kronecker
product, 9
sum, 9
Kronecker's canonical form, 115
Krylov
subspaces, 105-108
Lanczos bidiagonalization, see GolubKahan bidiagonalization, 112
Lanczos process, 108-111
Lyapunov's equation, 15
Markov chain, 29
matrix
adjoint, 2
defective, 8
derogatory, 17
diagonalizable, 5
eigenvalue of, 3
eigenvector of, 3
elementary divisors, 18
exponential, 21
functions, 21-29
graded, 73
Hermitian, 2
irreducible, 6
non-negative irreducible, 28
normal, 13
quasi-triangular, 12
reducible, 6
row stochastic, 29
scaled diagonally dominant, 73
square root, 27
trace, 3
unitary, 2
matrix exponential
hump, 24
matrix pencil, 114
congruent, 114
equivalent, 114
regular, 114
singular, 114
minimal polynomial, 17
of vector, 9
minimax characterization of eigenvalues, 41

Newton's interpolation formula
for matrix functions, 35
Non-negative matrices, 28-29
one-sided Jacobi SVD, 64-65
orthogonal iteration, 56, 103
Padé approximant, 25
Perron-Frobenius theorem, 28
perturbation
of eigenvalue, 38-46
of eigenvector, 38-46
power method, 49-57
principal vector, 17
QR algorithm, 79-92, 98
explicit-shift, 84
for SVD, 92-96
Hessenberg matrix, 84-88
implicit shift, 85
perfect shifts, 92
rational, 91
Rayleigh quotient shift, 85
symmetric tridiagonal matrix, 8992
Wilkinson shift, 90
QZ algorithm, 118
radius of convergence, 19
Rayleigh quotient, 43
iteration, 55, 117
matrix, 102, 110
Rayleigh-Ritz procedure, 101-103
reduction
to standard form, 115-117
reduction to
Hessenberg form, 69-72
symmetric tridiagonal form, 72 74
residual vector, 44
Ritz values, 102
Ritz vectors, 102
row stochastic matrix, 29
RQI, see Rayleigh quotient iteration
scaled diagonally dominant, 73
Schur
canonical form, 11-14
generalized, 115
vectors, 12
Schur decomposition, 27
secular equation, 48,74
similarity transformation, 4
singular values
by spectrum slicing, 99
relative gap, 97
spectral abscissa, 4, 22
spectral radius, 4,19
spectral transformation, 52, 105
spectrum of matrix, 3
spectrum slicing, 75-77
square root of matrix, 27
subspace
invariant, 5
subspace iteration, 103-105
SVD
generalized, 118-120
Sylvester's
equation, 14
law of inertia, 118
symmetric tridiagonal form
reduction to, 72-74
theorem
Cayley-Hamilton, 18
implicit $Q, 70,89$
transformation similarity, 4
tridiagonal matrix, 48
unreduced, 89
two-side Jacobi-SVD, 63
two-sided Jacobi-SVD, 65
unreduced
Hessenberg matrix, 10
vector
principal, 17
Wielandt-Hoffman theorem, 42
zero shift QR algorithm, 98

[^0]: ${ }^{1}$ From Latin verb specere meaning "to look".

[^1]: ${ }^{2}$ James Joseph Sylvester English mathematician (1814-1893) considered the homogenous case in 1884 .

[^2]: ${ }^{3}$ Marie Ennemond Camille Jordan (1838-1922), French mathematician, professor at École Polytechnique and Collége de France. Jordan made important contributions to finte group theory, linear and multilinear algebra as well as differential equations.

[^3]: ${ }^{4}$ German mathematician (1880-1975).
 ${ }^{5}$ Named after Russian mathematician Andrej Andreevic Markov (1856-1922), who introduced them in 1908,

[^4]: ${ }^{6}$ This assumption is no restriction since we can always adjoin zero rows (columns) to make A square.

[^5]: ${ }^{7}$ Carl Gustf Jacob Jacobi (1805-1851), German mathematician. Jacobi joined the faculty of Berlin university in 1825. Like Euler, he was a profilic calculator, who drew a great deal of insight from immense algorithmical work. His method for computing eigenvalues was publsihed in 1846; see [27].

[^6]: ${ }^{8}$ Note that in the Householder tridiagonalization described in [53], Contribution II/2 the reduction is performed instead from the bottom up.

[^7]: ${ }^{9}$ The QR algorithm was chosen as one of the 10 algorithms with most influence on scientific computing in the 20th century by the editors of the journal Computing in Science and Engineering.

[^8]: ${ }^{10}$ A proof is given in Parlett [38, Chapter 8].

[^9]: ${ }^{11}$ Named after Aleksei Nikolaevich Krylov (1877-1945) Russian mathematcian. Krylov worked at the Naval Academy in Saint-Petersburg and in 1931 published a paper [30] on what is now called "Krylov subspaces".

[^10]: ${ }^{12}$ The word "pencil" comes from optics and geometry, and is used for any one parameter family of curves, matrices, etc.

