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Chapter 9

Matrix Eigenvalue

Problems

9.1 Basic Properties

9.1.1 Introduction

Eigenvalues and eigenvectors are a standard tool in the mathematical sciences and
in scientific computing. Eigenvalues give information about the behavior of evolving
systems governed by a matrix or operator. The problem of computing eigenvalues
and eigenvectors of a matrix occurs in many settings in physics and engineering.
Eigenvalues are useful in analyzing resonance, instability, and rates of growth or
decay with applications to, e.g., vibrating systems, airplane wings, ships, buildings,
bridges and molecules. Eigenvalue decompositions also play an important part in
the analysis of many numerical methods. Further, singular values are closely related
to an eigenvalues a symmetric matrix.

In this chapter we treat numerical methods for computing eigenvalues and
eigenvectors of matrices. In the first three sections we briefly review the classical
theory needed for the proper understanding of the numerical methods treated in
the later sections. In particular Section 9.1 gives a brief account of basic facts of
the matrix eigenvalue problem, Section 9.2 treats the classical theory of canonical
forms and matrix functions. Section 9.3 is devoted to the localization of eigenvalues
and perturbation results for eigenvalues and eigenvectors.

Section 9.5 treats the Jacobi methods for the real symmetric eigenvalue prob-
lem and the SVD. These methods have advantages for parallel implementation and
are potentially very accurate. The power method and its modifications are treated
in Section 9.4. Transformation to condensed form described in Section 9.4 often is a
preliminary step in solving the eigenvalue problem. Followed by the QR algorithm
this constitutes the current method of choice for computing eigenvalues and eigen-
vectors of small to medium size matrices, see Section 9.7. This method can also
be adopted to compute singular values and singular vectors although the numerical
implementation is often far from trivial, see Section 9.7.

In Section 9.8 we briefly discuss some methods for solving the eigenvalue prob-

1



2 Chapter 9. Matrix Eigenvalue Problems

lem for large sparse matrices. Finally, in Section 9.9 we consider the generalized
eigenvalue problem Ax = λBx, and the generalized SVD.

9.1.2 Complex Matrices

In developing the theory for the matrix eigenvalue problem it often is more relevant
to work with complex vectors and matrices. This is so because a real unsymmetric
matrix can have complex eigenvalues and eigenvectors. We therefore introduce the
vector space Cn×m of all complex n ×m matrices whose components are complex
numbers.

Most concepts and operations in Section 7.2 carry over from the real to the
complex case in a natural way. Addition and multiplication of vectors and matrices
follow the same rules as before. The Hermitian inner product of two vectors x and
y in Cn is defined as

(x, y) = xHy =

n∑

k=1

x̄kyk, (9.1.1)

where xH = (x̄1, . . . , x̄n) and x̄i denotes the complex conjugate of xi. Hence (x, y) =
(y, x), and x ⊥ y if xHy = 0. The Euclidean length of a vector x thus becomes

‖x‖2 = (x, x)1/2 =

n∑

k=1

|xk|2.

The set of complex m×n matrices is denoted by Cm×n. If A = (aij) ∈ Cm×n

then by definition its adjoint matrix AH ∈ Cn×m satisfies

(x,AHy) = (Ax, y).

By using coordinate vectors for x and y it follows that AH = ĀT , that is, AH is the
conjugate transpose of A. It is easily verified that (AB)H = BHAH . In particular,
if α is a scalar αH = ᾱ.

A matrix A ∈ Cn×n is called self-adjoint or Hermitian if AH = A. A
Hermitian matrix has analogous properties to a real symmetric matrix. If A is
Hermitian, then (xHAx)H = xHAx is real, and A is called positive definite if

xHAx > 0, ∀x ∈ Cn, x 6= 0.

A square matrix U is unitary if UHU = I. From (9.1.1) we see that a unitary
matrix preserves the Hermitian inner product

(Ux,Uy) = (x, UHUy) = (x, y).

In particular the 2-norm is invariant under unitary transformations, ‖Ux‖2
2 = ‖x‖2

2.
Hence, unitary matrices corresponds to real orthogonal matrices. Note that in every
case, the new definition coincides with the old when the vectors and matrices are
real.
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9.1.3 Theoretical Background

Of central importance in the study of matrices A ∈ Cn×n are the special vectors
whose directions are not changed when multiplied by A. A complex scalar λ such
that

Ax = λx, x 6= 0, (9.1.2)

is called an eigenvalue of A and x is an eigenvector of A. When an eiegnvalue is
known, the determination of the corresponding eigenvector(s) requires the solution
of a linear homogenous system (A − λI)x = 0. Clearly, if x is an eigenvector so is
αx for any scalar α 6= 0.

It follows that λ is an eigenvalue of A if and only if the system (A− λI)x = 0
has a nontrivial solution x 6= 0, or equivalently if and only if the matrix A− λI is
singular. Hence the eigenvalues satisfy the characteristic equation

pn(λ) = det(A− λI) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

... . . .
. . .

...
an1 an2 · · · ann − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (9.1.3)

The set λ(A) = {λi}n
i=1 of all eigenvalues of A is called the spectrum1 of A.

The polynomial pn(λ) = det(A − λI) is called the characteristic polynomial of
the matrix A. Expanding the determinant in (9.1.3) it follows that p(λ) has the
form

pn(λ) = (a11 − λ)(a22 − λ) · · · (ann − λ) + q(λ), (9.1.4)

= (−1)n(λn − ξn−1λ
n−1 − · · · ξ0). (9.1.5)

where q(λ) has degree at most n− 2. Thus, by the fundamental theorem of algebra
the matrix A has exactly n eigenvalues λi, i = 1, 2, . . . n, counting multiple roots
according to their multiplicities, and we can write

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Using the relation between roots and coefficients of an algebraic equation we obtain

p(0) = λ1λ2 · · ·λn = det(A), (9.1.6)

Further, using the relation between roots and coefficients of an algebraic equation
we obtain

λ1 + λ2 + · · · + λn = trace (A). (9.1.7)

where trace (A) = a11 + a22 + · · ·+ ann is the trace of the matrix A. This relation
is useful for checking the accuracy of a computed spectrum.

1From Latin verb specere meaning “to look”.
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Theorem 9.1.1.
Let A ∈ Cn×n. Then

λ(AT ) = λ(A), λ(AH) = λ̄(A).

Proof. Since det(AT − λI)T = det(A − λI)T = det(A − λI) it follows that AT

and A have the same characteristic polynomial and thus same set of eigenvalues.
For the second part note that det(AH − λ̄I) = det(A − λI)H is zero if and only if
det(A− λI) is zero.

By the above theorem, if λ is an eigenvalue of A then λ̄ is an eigenvalue of
AH , i.e., AHy = λy for some vector y 6= 0, or equivalently

yHA = λyH , y 6= 0. (9.1.8)

Here y is called a left eigenvector of A, and consequently if Ax = λx, x is also
called a right eigenvector of A. For a Hermitian matrix AH = A and thus λ = λ,
i.e., λ is real. In this case the left and right eigenvectors can be chosen to coincide.

Theorem 9.1.2.
Let λi and λj be two distinct eigenvalues of A ∈ Cn×n, and let yi and xj be

left and right eigenvectors corresponding to λi and λj respectively. Then yH
i xj = 0,

i.e., yi and xj are orthogonal.

Proof. By definition we have

yH
i A = λiy

H
i , Axj = λjxj .

Multiplying the first equation with xj from the right and the second with yH
i from

the left and subtracting we obtain (λi − λj)y
H
i xj = 0. Since λi 6= λj the theorem

follows.

Definition 9.1.3.
Denote the eigenvalues of the matrix A ∈ Cn×n by λi|, i = 1 : n. The

spectral radius of A is is the maximal absolute value of the eigenvalues of A

ρ(A) = max
i

|λi|. (9.1.9)

The spectral abscissa is the maximal real part of the eigenvalues of A

α(A) = max
i

ℜλi. (9.1.10)

If X is any square nonsingular matrix and

Ã = X−1AX, (9.1.11)

then Ã is said to be similar to A and (9.1.11) is called a similarity transformation
of A. Similarity of matrices is an equivalence transformation, i.e., if A is similar to
B and B is similar to C then A is similar to C.
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Theorem 9.1.4.
If A and B are similar, then A and B have the same characteristic polynomial,

and hence the same eigenvalues. Further, if B = X−1AX and y is an eigenvector
of B corresponding to λ then Xy is an eigenvector of A corresponding to λ.

Proof. We have

det(B − λI) = det(X−1AX − λI) = det(X−1(A− λI)X)

= det
(
X−1) det(A− λI

)
det(X) = det(A− λI).

Further, from AX = XB it follows that AXy = XBy = λXy.

Let Axi = λixi, i = 1, . . . , n. It is easily verified that these n equations are
equivalent to the single matrix equation

AX = XΛ, Λ = diag (λ1, . . . , λn),

where X = (x1, . . . , xn) is a matrix of right eigenvectors of A If the eigenvectors are
linearly independent then X is nonsingular and we have

X−1AX = Λ. (9.1.12)

This similarity transformation by X transforms A to diagonal form and A is said
to be diagonalizable.

From (9.1.12) it follows that X−1A = ΛX−1, which shows that the rows of
X−1 are left eigenvectors yH

i . We can also write A = XΛX−1 = XΛY H , or

A =
n∑

i=1

λiPi, Pi = xiy
H
i . (9.1.13)

Since Y HX = I it follows that the left and right eigenvectors are biorthogonal,
yH

i xj = 0, i 6= j, and yH
i xi = 1. Hence Pi is a projection (P 2

i = Pi) and (9.1.13) is
called the spectral decomposition of A. The decomposition (9.1.13) is essentially
unique. If λi1 is an eigenvalue of multiplicity m and λi1 = λi2 = · · · = λim

, then the
vectors xi1 , xi2 , . . . , xim

can be chosen as any basis for the null space of A− λi1I.

9.1.4 Invariant Subspaces

Suppose that for a matrix X ∈ Cn×k, rank (X) = k ≤ n, it holds that

AX = XB, B ∈ Ck×k.

Any vector x ∈ R(X) can be written x = Xz for some vector z ∈ Ck. Thus
Ax = AXz = XBz ∈ R(X) and R(X) is called a right invariant subspace. If
By = λy, it follows that

AXy = XBy = λXy,

and so any eigenvalue λ of B is also an eigenvalue of A and Xy a corresponding
eigenvector. Note that any set of right eigenvectors spans a right invariant subspace.
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Similarly, if Y HA = BY H , where Y ∈ Cn×k, rank (Y ) = k ≤ n, then R(Y ) is
a left invariant subspace. If vHB = λvH it follows that

vHY HA = vHBY H = λvHY H ,

and so λ is an eigenvalue of A and Y v is a left eigenvector.

Definition 9.1.5.
A matrix A ∈ Rn×n, is said to be reducible if for some permutation matrix

P , PTAP has the form

PTAP =

(
B C
0 D

)

, (9.1.14)

where B and C, are square submatrices, or if n = 1 and A = 0. Otherwise A is
called irreducible.

The concept of a reducible matrix can be illustrated using some elementary
notions from the theory of graphs. The directed graph of a matrixA is constructed
as follows: Let P1, . . . , Pn be n distinct points in the plane called nodes. For each
aij 6= 0 in A we connect node Pi to node Pj by means of directed edge from node i
to node j. (Compare the definition of an undirected graph of a matrix in Def. 6.5.2.)
It can be shown that a matrix A is irreducible if and only if its graph is connected
in the following sense. Given any two distinct nodes Pi and Pj there exists a path
Pi = Pi1 , Pi2 , . . . , Pip

= Pj along directed edges from Pi to Pj . Note that the graph
of a matrix A is the same as the graph of PTAP , where P is a permutation matrix;
only the labeling of the node changes.

Assume that a matrix A is reducible to the form (9.1.14), where B ∈ Rr×r,
B ∈ Rs×s (r + s = n). Then we have

Ã

(
Ir
0

)

=

(
Ir
0

)

B, ( 0 Is ) Ã = D ( 0 Is ) ,

that is, the first r unit vectors span a right invariant subspace, and the s last unit
vectors span a left invariant subspace of Ã. It follows that the spectrum of A equals
the union of the spectra of B and D.

If B and D are reducible they can be reduced in the same way. Continuing in
this way until the diagonal blocks are irreducible we obtain a block upper triangular
matrix

A =







A11 A12 · · · A1N

0 A22 · · · A2N
...

...
. . .

...
0 0 0 ANN






, (9.1.15)

where each diagonal block Aii is square.

Theorem 9.1.6.
Assume that the matrix A can be reduced by a permutation to the block up-

per triangular form (9.1.15). Then λ(A) =
⋃N

i=1 λ(Aii), where λ(A) denotes the
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spectrum of A. In particular the eigenvalues of a triangular matrix are its diagonal
elements.

Many important numerical methods for computing eigenvalues and eigenvec-
tors of a matrix A perform a sequence of similarity transformations to transform A
into a matrix of simpler form. With A0 = A one computes

Ak = P−1
k Ak−1Pk, k = 1, 2, ....

The matrix Ak is similar to A and the eigenvectors x of A and y of Ak are related
by x = P1P2 · · ·Pky. The eigenvalues of a triangular matrix equal its diagonal
elements. Hence if the matrix A can be transformed by successive similarities to
triangular form, then its eigenvalues are trivial to determine.

Let AX1 = X1B, for some X1 ∈ Rn×p of rank p, and B ∈ Rp×p. Then R(X1)
is a right invariant subspace of A. Let X2 ∈ Rn×(n−p) be such that X = (X1, X2)
is invertible. Then we have

X−1AX = X−1(AX1, AX2) = (X−1X1B,X
−1AX2) =

(
B T12

0 T22

)

(9.1.16)

that is, X−1AX is reducible. Hence, if a set of eigenvalues of A and a basis X1

for a corresponding right invariant are known, then we can find the remaining
eigenvalues of A from T22. This process is called deflation and is a powerful tool for
computation of eigenvalues and eigenvectors. Note that if X1 = Q1 has orthonormal
columns, then X = (Q1, Q2) in (9.1.16) can be chosen as an orthogonal matrix.

A matrix A may not have a full set of n linearly independent eigenvectors.
However, it holds:

Theorem 9.1.7.
Let x1, . . . , xk be eigenvectors of A ∈ Cn×n corresponding to distinct eigenval-

ues λ1, . . . , λk. Then the vectors x1, . . . , xk are linearly independent. In particular
if all the eigenvalues of a matrix A are distinct then A has a complete set of linearly
independent eigenvectors and hence A is diagonalizable.

Proof. Assume that only the vectors x1 . . . , xp, p < k, are linearly independent
and that xp+1 = γ1x1 + · · · + γpxp. Then Axp+1 = γ1Ax1 + · · · + γpAxp, or

λp+1xp+1 = γ1λ1x1 + · · · + γpλpxp.

It follows that
∑p

i=1 γi(λi −λp+1)xi = 0. Since γi 6= 0 for some i and λi −λp+1 6= 0
for all i, this contradicts the assumption of linear independence. Hence we must
have p = k linearly independent vectors.

Let λ1, · · · , λk be the distinct zeros of p(λ) and let σi be the multiplicity of λi,
i = 1, ..., k. The integer σi is called the algebraic multiplicity of the eigenvalue
λi and

σ1 + σ2 + · · · + σk = n.
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To every distinct eigenvalue corresponds at least one eigenvector. All the eigen-
vectors corresponding to the eigenvalue λi form a linear subspace L(λi) of Cn of
dimension

ρi = n− rank(A− λiI). (9.1.17)

The integer ρi is called the geometric multiplicity of λi, and specifies the max-
imum number of linearly independent eigenvectors associated with λi. The eigen-
vectors are not in general uniquely determined.

Theorem 9.1.8.
For the geometric and algebraic multiplicity the inequality ρ(λ) ≤ σ(λ) holds.

Proof. Let λ̄ be an eigenvalue with geometric multiplicity ρ = ρ(λ̄) and let
x1, . . . , xρ be linearly independent eigenvectors associated with λ̄. If we put X1 =
(x1, . . . , xρ) then we have AX1 = λ̄X1. We now let X2 = (xρ+1, · · · , xn) consist
of n − ρ more vectors such that the matrix X = (X1, X2) is nonsingular. Then it
follows that the matrix X−1AX must have the form

X−1AX =

(
λ̄I B
0 C

)

and hence the characteristic polynomial of A, or X−1AX is

p(λ) = (λ̄− λ)ρ det(C − λI).

Thus the algebraic multiplicity of λ̄ is at least equal to ρ.

If ρ(λ) < σ(λ) then λ is said to be a defective eigenvalue. A matrix
with at least one defective eigenvalue is defective, otherwise it is nondefective.
The eigenvectors of a nondefective matrix A span the space Cn and A is said to
have a complete set of eigenvectors. A matrix is nondefective if and only if it is
diagonalizable.

Example 9.1.1.
The matrix λ̄I, where I is a unit matrix of dimension n has the characteristic

polynomial p(λ) = (λ̄−λ)n and hence λ = λ̄ is an eigenvalue of algebraic multiplicity
equal to n. Since rank (λ̄I − λ̄·I) = 0, there are n linearly independent eigenvectors
associated with this eigenvalue. Clearly any vector x ∈ Cn is an eigenvector.

Now consider the nth order matrix

Jn(λ̄) =








λ̄ 1

λ̄
. . .
. . . 1

λ̄







. (9.1.18)

Also this matrix has the characteristic polynomial p(λ) = (λ̄− λ)n. However, since
rank (Jn(λ̄) − λ̄·I) = n − 1, Jn(λ̄) has only one right eigenvector x = (1, 0, ..., 0)T .
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Similarly it has only one left eigenvector y = (0, . . . , 0, 1)T , and the eigenvalue λ = λ̄
is defective. A matrix of this form is called a Jordan block, see Theorem 9.2.8.

For any nonzero vector v1 = v, define a sequence of vectors by

vk+1 = Avk = Akv1. (9.1.19)

Let vm+1 be the first of these vectors that can be expressed as a linear combination
of the preceding ones. (Note that we must have m ≤ n.) Then for some polynomial
p of degree m

p(λ) = c0 + c1λ+ · · · + λm

we have p(A)v = 0, i.e., p annihilates v. Since p is the polynomial of minimal degree
that annihilates v it is called the minimal polynomial and m the grade of v with
respect to A.

Of all vectors v there is at least one for which the degree is maximal, since for
any vector m ≤ n. If v is such a vector and q its minimal polynomial, then it can
be shown that q(A)x = 0 for any vector x, and hence

q(A) = γ0I + γ1A+ · · · + γs−1A
s−1 +As = 0.

This polynomial p is the minimal polynomial for the matrix A, see Section 9.2.2.
Consider the Kronecker product C = A ⊗ B of A ∈ Rn×n and B ∈ Rm×m

as defined in Sec. 7.5.5 The eigenvalues and eigenvectors of C can be expressed in
terms of the eigenvalues and eigenvectors of A and B. Assume that Axi = λixi,
i = 1, . . . , n, and Byj = µjyj, j = 1, . . . ,m. Then, using equation (7.5.26), we
obtain

(A⊗B)(xi ⊗ yj) = (Axi) ⊗ (Byj) = λiµj(xi ⊗ yj). (9.1.20)

This shows that the nm eigenvalues of A ⊗ B are λiµj , i = 1, . . . , n, j = 1, . . . ,m,
and xi ⊗ yj are the corresponding eigenvectors. If A and B are diagonalizable,
A = X−1Λ1X , B = Y −1Λ2Y , then

(A⊗B) = (X−1 ⊗ Y −1)(Λ1 ⊗ Λ2)(X ⊗ Y ),

and thus A⊗B is also diagonalizable.
The matrix

(Im ⊗A) + (B ⊗ In) ∈ Rnm×nm (9.1.21)

is the Kronecker sum of A and B. Since
[
(Im ⊗A) + (B ⊗ In)

]
(yj ⊗ xi) = yj ⊗ (Axi) + (Byj) ⊗ xi (9.1.22)

= (λi + µj)(yj ⊗ xi).

the nm eigenvalues of the Kronecker sum equal the sum of all pairs of eigenvalues
of A and B

Review Questions

1. How are the eigenvalues and eigenvectors of A affected by a similarity transforma-
tion?
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2. What is meant by a (right) invariant subspace of A? Describe how a basis for an
invariant subspace can be used to construct a similarity transformation of A to block
triangular form. How does such a transformation simplify the computation of the
eigenvalues of A?

3. What is meant by the algebraic multiplicity and the geometric multiplicity of an
eigenvalue of A? When is a matrix said to be defective?

Problems

1. A matrix A ∈ Rn×n is called nilpotent if Ak = 0 for some k > 0. Show that a
nilpotent matrix can only have 0 as an eigenvalue.

2. Show that if λ is an eigenvalue of a unitary matrix U then |λ| = 1.

3. Let A ∈ Rm×n and B ∈ Rn×m. Show that

X−1

„

AB 0
B 0

«

X =

„

0 0
B BA

«

, X =

„

I A
0 I

«

.

Conclude that the nonzero eigenvalues of AB ∈ Rm×m and BA ∈ Rn×n are the
same.

4. (a) Let A = xyT , where x and y are vectors in Rn, n ≥ 2. Show that 0 is an
eigenvalue of A with multiplicity at least n − 1, and that the remaining eigenvalue
is λ = yT x.

(b) What are the eigenvalues of a Householder reflector P = I − 2uuT , ‖u‖2 = 1?

5. What are the eigenvalues of a Givens’ rotation

R(θ) =

„

cos θ sin θ
− sin θ cos θ

«

?

When are the eigenvalues real?

6. An upper Hessenberg matrix is called unreduced if all its subdiagonal elements
are nonzero. Show that if H ∈ Rn×n is an unreduced Hessenberg matrix, then
rank (H) ≥ n − 1, and that therefore if H has a multiple eigenvalue it must be
defective.

7. Let A ∈ Cn×n be an Hermitian matrix, λ an eigenvalue of A, and z the corresponding
eigenvector. Let A = S + iK, z = x + iy, where S, K, x, y are real. Show that λ is
a double eigenvalue of the real symmetric matrix

„

S −K
K S

«

∈ R
2n×2n,

and determine two corresponding eigenvectors.

8. Show that the matrix

Kn =

0

B

B

B

B

@

−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

1

C

C

C

C

A
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has the characteristic polynomial

p(λ) = (−1)n(λn + a1λ
n−1 + · · · + an−1λ + an).

Kn is called the companion matrix of p(λ). Determine the eigenvectors of Kn

corresponding to an eigenvalue λ, and show that there is only one eigenvector even
when λ is a multiple eigenvalue.

Remark: The term companion matrix is sometimes used for slightly different matri-
ces, where the coefficients of the polynomial appear, e.g., in the last row or in the
last column.

9. Draw the graphs G(A), G(B) and G(C), where

A =

0

@

0 1 1
1 0 0
1 0 0

1

A , B =

0

B

B

@

1 0 1 0
0 1 1 1
1 0 1 0
1 1 0 1

1

C

C

A

, C =

0

B

B

@

1 0 1 0
0 0 0 1
0 1 0 0
1 0 0 1

1

C

C

A

.

Show that A and C are irreducible but B is reducible.

9.2 Canonical Forms and Matrix Functions

Using similarity transformations it is possible to transform a matrix into one of
several canonical forms, which reveal its eigenvalues and gives information about
the eigenvectors. These canonical forms are useful also for extending analytical
functions of one variable to matrix arguments.

9.2.1 The Schur Normal Form

The computationally most useful of the canonical forms is the triangular, or Schur
normal form.

Theorem 9.2.1. Schur Normal Form.
Given A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n such that

UHAU = T = D +N, (9.2.1)

where T is upper triangular, N strictly upper triangular, D = diag (λ1, · · · , λn), and
λi, i = 1, ..., n are the eigenvalues of A. Furthermore, U can be chosen so that the
eigenvalues appear in arbitrary order in D.

Proof. The proof is by induction on the order n of the matrix A. For n = 1 the
theorem is trivially true. Assume the theorem holds for all matrices of order n− 1.
We will show that it holds for any matrix A ∈ Cn×n.

Let λ be an arbitrary eigenvalue of A. Then, Ax = λx , for some x 6= 0 and
we let u1 = x/‖x‖2. Then we can always find U2 ∈ Cn×n−1 such that U = (u1, U2)
is a unitary matrix. Since AU = A(u1, U2) = (λu1, AU2) we have

UHAU =

(
uH

1

UH
2

)

AU =

(
λuH

1 u1 uH
1 AU2

λUH
2 u1 UH

2 AU2

)

=

(
λ wH

0 B

)

.
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Here B is of order n − 1 and by the induction hypothesis there exists a unitary
matrix Ũ such that ŨHBŨ = T̃ . Then

U
H
AU = T =

(
λ wH Ũ
0 T̃

)

, U = U

(
1 0
0 Ũ

)

,

where U is unitary. From the above it is obvious that we can choose U to get the
eigenvalues of A arbitrarily ordered on the diagonal of T .

The advantage of the Schur normal form is that it can be obtained using a
numerically stable unitary transformation. The eigenvalues of A are displayed on
the diagonal. The columns in U = (u1, u2, . . . , un) are called Schur vectors. It is
easy to verify that the nested sequence of subspaces

Sk = span[u1, . . . , uk], k = 1, . . . , n,

are invariant subspaces. However, of the Schur vectors in general only u1 is an
eigenvector.

If the matrix A is real, we would like to restrict ourselves to real similarity
transformations, since otherwise we introduce complex elements in U−1AU . If A
has complex eigenvalues, then A obviously cannot be reduced to triangular form
by a real orthogonal transformation. For a real matrix A the eigenvalues occur in
complex conjugate pairs, and it is possible to reduce A to block triangular form T ,
with 1× 1 and 2× 2 diagonal blocks, in which the 2× 2 blocks correspond to pairs
of complex conjugate eigenvalues. T is then said to be in quasi-triangular form.

Theorem 9.2.2. The Real Schur Form.
Given A ∈ Rn×n there exists a real orthogonal matrix Q ∈ Rn×n such that

QTAQ = T = D +N, (9.2.2)

where T is real block upper triangular, D is block diagonal with 1 × 1 and 2 × 2
blocks, and where all the 2 × 2 blocks have complex conjugate eigenvalues.

Proof. Let A have the complex eigenvalue λ 6= λ̄ corresponding to the eigenvector
x. Then, since Ax̄ = λ̄x̄, also λ̄ is an eigenvalue with eigenvector x̄ 6= x, and R(x, x̄)
is an invariant subspace of dimension 2. Let

X1 = (x1, x2), x1 = x+ x̄, x2 = i(x− x̄)

be a real basis for this invariant subspace. Then AX1 = X1M where M ∈ R2×2

has eigenvalues λ and λ̄. Let X1 = Q

(
R
0

)

= Q1R be the QR decomposition of

X1. Then AQ1R = Q1RM or AQ1 = Q1P , where P = RMR−1 ∈ R2×2 is similar
to M . Using (9.1.16) with X = Q, we find that

QTAQ =

(
P WH

0 B

)

.



9.2. Canonical Forms and Matrix Functions 13

where P has eigenvalues λ and λ̄. An induction argument completes the proof.

We now introduce a class of matrices for which the Schur normal form is
diagonal.

Definition 9.2.3.
A matrix A ∈ Cn×n is said to be normal if

AHA = AAH . (9.2.3)

If A is normal then for unitary U so is UHAU , since

(UHAU)HUHAU = UH(AHA)U = UH(AAH)U = UHAU(UHAU)H .

It follows that the upper triangular matrix T in the Schur normal form is normal,

THT = TTH , T =







λ1 t12 . . . t1n

λ2 . . . t2n

. . .
...
λn






,

Equating the (1, 1)-element on both sides of the equation THT = TTH we get
|λ1|2 = |λ1|2 +

∑n
j=2 |t1j |2, and so t1j = 0, j = 2, . . . , n. In the same way it can be

shown that all the other nondiagonal elements in T vanishes, and so T is diagonal.
Important classes of normal matrices are Hermitian (A = AH), skew-Hermitian

(AH = −A), unitary (A−1 = AH) and circulant matrices (see Problem 9.1.10).
Hermitian matrices have real eigenvalues, skew-Hermitian matrices have imaginary
eigenvalues, and unitary matrices have eigenvalues on the unit circle.

Theorem 9.2.4.
A matrix A ∈ Cn×n is normal, AHA = AAH , if and only if A can be unitarily

diagonalized, i.e., there exists a unitary matrix U ∈ Cn×n such that

UHAU = D = diag (λ1, · · · , λn).

Proof. If A is normal, then it follows from the above that the matrix T in the
Schur normal form is diagonal. If on the other hand A is unitarily diagonalizable
then we immediately have that

AHA = UDHDUH = UDDHUH = AAH .

It follows in particular that any Hermitian matrix may be decomposed into

A = UΛUH =

n∑

i=1

λiuiu
H
i . (9.2.4)
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with λi real. In the special case that A is real and symmetric we can take U to be
real and orthogonal, U = Q = (q1, . . . , qn) , where qi are orthonormal eigenvectors.
Note that in (9.2.4) uiu

H
i is the unitary projection matrix that projects unitarily

onto the eigenvector ui. We can also write A =
∑

j λPj , where the sum is taken
over the distinct eigenvalues of A, and Pj projects Cn unitarily onto the eigenspace
belonging to λj . (This comes closer to the formulation given in functional analysis.)

Note that although U in the Schur normal form (9.2.1) is not unique, ‖N‖F

is independent of the choice of U , and

∆2
F (A) ≡ ‖N‖2

F = ‖A‖2
F −

n∑

i=1

|λi|2.

The quantity ∆F (A) is called the departure from normality of A.

9.2.2 Sylvester’s Equation and Jordan’s Canonical Form

Let the matrix A have the block triangular form

A =

(
B C
0 D

)

, (9.2.5)

where B and D are square. Suppose that we wish to reduce A to block diagonal
form by a similarity transformation of the form

P =

(
I Q
0 I

)

, P−1 =

(
I −Q
0 I

)

.

This gives the result

P−1AP =

(
I −Q
0 I

)(
B C
0 D

)(
I Q
0 I

)

=

(
B C −QD +BQ
0 D

)

.

The result is a block diagonal matrix if and only if BQ−QD = −C. This equation,
which is a linear equation in the elements of Q, is called Sylvester’s equation2

We will investigate the existence and uniqueness of solutions to the general
Sylvester equation

AX −XB = C, X ∈ Rn×m, (9.2.6)

where A ∈ Rn×n, B ∈ Rm×m. We prove the following result.

Theorem 9.2.5.
The matrix equation (9.2.6) has a unique solution if and only if

λ(A) ∩ λ(B) = ∅.

Proof. From Theorem 9.2.1 follows the existence of the Schur decompositions

UH
1 AU1 = S, UH

2 BU2 = T,

2James Joseph Sylvester English mathematician (1814–1893) considered the homogenous case
in 1884.
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where S and T are upper triangular and U1 and U2 are unitary matrices. Using
these decompositions (9.2.6) can be reduced to

SY − Y T = F, Y = UH
1 XU2, F = UH

1 CU2.

Expanding this equation by columns gives

S ( y1 y2 y3 · · · ) − ( y1 y2 y3 · · · )







t11 t12 t13 · · ·
0 t22 t33 · · ·
0 0 t33 · · ·
...

...
...







= ( f1 f2 f3 · · · ) .

(9.2.7)
The first column of the system (9.2.7) has the form

Sy1 − t11y1 = (S − t11I)y1 = d1.

Here t11 is an eigenvalue of T and hence is not an eigenvalue of S. Therefore the
triangular matrix S − t11I is not singular and we can solve for y1. Now suppose
that we have found y1, . . . , yk−1. From the kth column of the system

(S − tkkI)yk = dk +

k∑

i=1

tikyi.

Here the right hand side is known and, by the argument above, the triangular
matrix S − tkkI nonsingular. Hence it can be solved for yk. The proof now follows
by induction.

If we have an algorithm for computing the Schur decompositions this proof
gives an algorithm for solving the Sylvester equation. It involves solving m trian-
gular equations and requires O(mn2) operations.

An important special case of (9.2.6) is the Lyapunov equation

AX +XAH = C. (9.2.8)

Here B = −AH , and hence by Theorem 9.2.5 this equation has a unique solution
if and only if the eigenvalues of A satisfy λi + λ̄j 6= 0 for all i and j. Further, if
CH = C the solution X is Hermitian. In particular, if all eigenvalues of A have
negative real part, then all eigenvalues of −AH have positive real part, and the
assumption is satisfied.

We have seen that a given block triangular matrix (9.2.5) can be transformed
by a similarity transformation to block diagonal form provided that B and C have
disjoint spectra. The importance of this contruction is that it cann be applied
recursively.

If A is not normal, then the matrix T in its Schur normal form cannot be
diagonal. To transform T to a form closer to a diagonal matrix we have to use
non-unitary similarities. By Theorem 9.2.1 we can order the eigenvalues so that in
the Schur normal form

D = diag (λ1, . . . , λn), λ1 ≥ λ2 ≥ · · · ≥ λn.

We now show how to obtain the following block diagonal form:
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Theorem 9.2.6. Block Diagonal Decomposition.
Let the distinct eigenvalues of A be λ1, · · · , λk, and in the Schur normal form

let D = diag (D1, . . . , Dk), Di = λiI, i = 1, . . . , k. Then there exists a nonsin-
gular matrix Z such that

Z−1UHAUZ = Z−1TZ = diag (λ1I +N1, · · · , λkI +Nk),

where Ni, i = 1, . . . , k are strictly upper triangular. In particular, if the matrix A
has n distinct eigenvalues the matrix D diagonal.

Proof. Consider first the matrix T =

(
λ1 t
0 λ2

)

∈ C2×2, where λ1 6= λ2. Perform

the similarity transformation

M−1TM =

(
1 −m
0 1

)(
λ1 t
0 λ2

)(
1 m
0 1

)

=

(
λ1 m(λ1 − λ2) + t
0 λ2

)

.

where M is an upper triangular elementary elimination matrix, see Section 7.3.5.
By taking m = t/(λ2 − λ1), we can annihilate the off-diagonal element in T .

In the general case let tij be an element in T outside the block diagonal. Let
Mij be a matrix which differs from the unit matrix only in the (i, j)th element,
which is equal to mij . Then as above we can choose mij so that the element (i, j) is
annihilated by the similarity transformation M−1

ij TMij. Since T is upper triangular
this transformation will not affect any already annihilated off-diagonal elements in
T with indices (i′, j′) if j′ − i′ < j − i. Hence, we can annihilate all elements tij
outside the block diagonal in this way, starting with the elements on the diagonal
closest to the main diagonal and working outwards. For example, in a case with 3
blocks of orders 2, 2, 1 the elements are eliminated in the order

0

B

B

B

@

× × 2 3 4
× 1 2 3

× × 2
× 1

×

1

C

C

C

A

.

Further details of the proof is left to the reader.

A matrix which does not have n linearly independent eigenvectors is defective
and cannot be similar to a diagonal matrix. We now state without proof the follow-
ing fundamental Jordan Canonical Form3 For a proof based on the block diagonal
decomposition in Theorem 9.2.6, see Fletcher and Sorensen [12, ].

Theorem 9.2.7. Jordan Canonical Form.
If A ∈ Cn×n, then there is a nonsingular matrix X ∈ Cn×n, such that

X−1AX = J = diag (Jm1(λ1), · · · , Jmt
(λt)), (9.2.9)

3Marie Ennemond Camille Jordan (1838–1922), French mathematician, professor at École Poly-
technique and Collége de France. Jordan made important contributions to finte group theory, linear
and multilinear algebra as well as differential equations.
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where

Jmi
(λi) =








λi 1

λi
. . .
. . . 1

λi








= λiI + S ∈ Cmi×mi , mi ≥ 1,

The numbers m1, . . . ,mt are unique and
∑t

i=1mi = n. To each Jordan block
Jmi

(λi) there corresponds exactly one eigenvector. Hence the number of Jordan
blocks corresponding to a multiple eigenvalue λ equals the geometric multiplicity of
λ.

The form (9.2.9) is called the Jordan canonical form of A, and is unique up
to the ordering of the Jordan blocks. Note that the same eigenvalue may appear in
several different Jordan blocks. A matrix for which this occurs is called derogatory.
The Jordan canonical form has the advantage that it displays all eigenvalues and
eigenvectors of A explicitly. A serious disadvantage is that the Jordan canonical
form is not in general a continuous function of the elements of A. For this reason
the Jordan canonical form of a nondiagonalizable matrix may be very difficult to
determine numerically.

Example 9.2.1.
Consider the matrices of the form

Jm(λ, ǫ) =








λ 1

λ
. . .
. . . 1

ǫ λ








∈ Cm×m.

The matrix Jm(λ, 0) has an eigenvalue equal to λ of multiplicity m, and is in Jordan
canonical form. For any ǫ > 0 the matrix Jm(λ, ǫ) has m distinct eigenvalues µi,
i = 1, . . . ,m, which are the roots of the equation (λ − µ)m − (−1)mǫ = 0. Hence
Jm(λ, ǫ) is diagonalizable for any ǫ 6= 0, and its eigenvalues λi satisfy|λi−λ| = |ǫ|1/m.
For example, if m = 10 and ǫ = 10−10, then the perturbation is of size 0.1.

If X = (x1, x2, . . . , xn) is the matrix in (9.2.9), then

Ax1 = λ1x1, Axi+1 = λ1xi+1 + xi, i = 1, . . . ,m1 − 1.

The vectors x2, . . . , xm1 are called principal vectors of the matrix A. Similar
relations holds for the other Jordan blocks.

The minimal polynomial of A can be read off from its Jordan canonical form.
Consider a Jordan block Jm(λ) = λI+N of order m and put q(z) = (z−λ)j . Then
we have q(Jm(λ)) = N j = 0 for j ≥ m. The minimal polynomial of a matrix A
with the distinct eigenvalues λ1, . . . , λk then has the form

q(z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λk)mk , (9.2.10)
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wheremj is the highest dimension of any Jordan box corresponding to the eigenvalue
λj , j = 1, . . . , k.

As a corollary we obtain Cayley–Hamilton theorem, which states that the
characteristic polynomial p(z) of a matrix A satisfies p(A) = 0. The polynomials

πi(z) = det
(
zI − Jmi

(λi)
)

= (z − λi)
mi

are called elementary divisors of A. They divide the characteristic polynomial of
A. The elementary divisors of the matrix A are all linear if and only if the Jordan
canonical form is diagonal.

We end with an approximation theorem due to Bellman, which sometimes
makes it possible to avoid the complication of the Jordan canonical form.

Theorem 9.2.8.
Let A ∈ Cn×n be a given matrix. Then for any ǫ > 0 there exists a matrix

B with ‖A − B‖2 ≤ ǫ, such that B has n distinct eigenvalues. Hence, the class of
diagonalizable matrices is dense in Cn×n.

Proof. Let X−1AX = J be the Jordan canonical form of A. Then, by a slight
extension of Example 9.2.1 it follows that there is a matrix J(δ) with distinct
eigenvalues such that ‖J − J(δ)‖2 = δ. (Show this!) Take B = XJ(δ)X−1. Then

‖A−B‖2 ≤ ǫ, ǫ = δ‖X‖2‖X−1‖2.

9.2.3 Convergence of Matrix Power Series

We start with a definition of the limit of a sequence of matrices:

Definition 9.2.9.
An infinite sequence of matrices A1, A2, . . . is said to converge to a matrix A,

lim
n→∞

An = A, if

lim
n→∞

‖An −A‖ = 0.

From the equivalence of norms in a finite dimensional vector space it follows
that convergence is independent of the choice of norm. The particular choice ‖ · ‖∞
shows that convergence of vectors in Rn is equivalent to convergence of the n
sequences of scalars formed by the components of the vectors. By considering
matrices in Rm×n as vectors in Rmn the same conclusion holds for matrices.

An infinite sum of matrices is defined by:

∞∑

k=0

Bk = lim
n→∞

Sn, Sn =

n∑

k=0

Bk.

In a similar manner we can define limz→∞A(z), A′(z), etc., for matrix-valued
functions of a complex variable z ∈ C.
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Theorem 9.2.10.
If ‖ · ‖ is any matrix norm, and

∑∞
k=0 ‖Bk‖ is convergent, then

∑∞
k=0 Bk is

convergent.

Proof. The proof follows from the triangle inequality ‖∑n
k=0 Bk‖ ≤ ∑n

k=0 ‖Bk‖
and the Cauchy condition for convergence. (Note that the converse of this theorem
is not necessarily true.)

A power series
∑∞

k=0 Bkz
n, z ∈ C, has a circle of convergence in the z-plane

which is equivalent to the smallest of the circles of convergence corresponding to
the series for the matrix elements. In the interior of the convergence circle, formal
operations such as term-wise differentiation and integration with respect to z are
valid for the element series and therefore also for matrix series.

We now investigate the convergence of matrix power series. First we prove a
theorem which is also of fundamental importance for the theory of convergence of
iterative methods studied in Chapter 10. We first recall the the following result:

Lemma 9.2.11. For any consistent matrix norm

ρ(A) ≤ ‖A‖, (9.2.11)

where ρ(A) = maxi |λi(A)| is the spectral radius of A.

Proof. If λ is an eigenvalue ofA then there is a nonzero vector x such that λx = Ax.
Taking norms we get |λ| ‖x‖ ≤ ‖A‖‖x‖. Dividing with ‖x‖ the result follows.

We now return to the question of convergence of matrix series.

Theorem 9.2.12.
If the infinite series f(z) =

∑∞
k=0 akz

k has radius of convergence r, then
the matrix series f(A) =

∑∞
k=0 akA

k converges if ρ < r, where ρ = ρ(A) is the
spectral radius of A. If ρ > r, then the matrix series diverges; the case ρ = r is a
“questionable case”.

Proof. By Theorem 9.2.10 the matrix series
∑∞

k=0 akA
k converges if the series

∑∞
k=0 |ak|‖Ak‖ converges. By Theorem 9.2.13 for any ǫ > 0 there is a matrix norm

such that ‖A‖T = ρ + ǫ. If ρ < r then we can choose r1 such that ρ(A) ≤ r1 < r,
and we have

‖Ak‖T ≤ ‖A‖k
T ≤ (ρ+ ǫ)k = O(rk

1 ).

Here
∑∞

k=0 |ak|rk
1 converges, and hence

∑∞
k=0 |ak|‖Ak‖ converges. If ρ > r, let

Ax = λx with |λ| = ρ. Then Akx = λkx, and since
∑∞

k=0 akλ
k diverges

∑∞
k=0 akA

k

cannot converge.

Theorem 9.2.13.
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Given a matrix A ∈ Rn×n with spectral radius ρ = ρ(A). Denote by ‖ · ‖ any
lp-norm, 1 ≤ p ≤ ∞, and set ‖A‖T = ‖T−1AT ‖. Then the following holds:

(a) If A has no defective eigenvalues with absolute value ρ then there exists a
nonsingular matrix T such that

‖A‖T = ρ.

(b) If A has a defective eigenvalue with absolute value ρ then for every ǫ > 0 there
exists a nonsingular matrix T (ǫ) such that

‖A‖T (ǫ) ≤ ρ+ ǫ.

In this case, the condition number κ(T (ǫ)) → ∞ like ǫ1−m∗

as ǫ → 0, where
m∗ > 1 is the largest order of a Jordan block belonging to an eigenvalue λ
with |λ| = ρ.

Proof. If A is diagonalizable, we can simply take T as the diagonalizing trans-
formation. Then clearly ‖A‖T = ‖D‖ = ρ, where D = diag (λ1, . . . , λn). In the
general case, we first bring A to Jordan canonical form, X−1AX = J , where

J = diag
(
J1(λ1), · · · , Jt(λt)

)
, Ji(λi) = λiI +Ni ∈ Cmi×mi , mi ≥ 1,

and Ji(λi) is a Jordan block. We shall find a diagonal matrixD = diag (D1, . . . , Dt),
such that a similarity transformation with T = XD, K = T−1AT = D−1JD makes
K close to the diagonal of J . Note that ‖A‖T = ‖K‖, and

K = diag (K1,K2, . . . ,Kt), Ki = D−1
i Ji(λi)Di.

If mi = 1, we set Di = 1, hence ‖Ki‖ = |λi|. Otherwise we choose

Di = diag
(
1, δi, δ

2
i , . . . , δ

mi−1
i

)
, δi > 0. (9.2.12)

Then Ki = λiI + δiNi, and ‖K‖ = maxi(‖Ki‖). (Verify this!) We have ‖Ni‖ ≤ 1,
because Nix = (x2, x3, ..., xmi

, 0)T , so ‖Nix‖ ≤ ‖x‖ for all vectors x. Hence,

‖Ki‖ ≤ |λi| + δi. (9.2.13)

If mi > 1 and |λi| < ρ, we choose δi = ρ − |λi|, hence ‖Ki‖ ≤ ρ. This proves case
(a).

In case (b), mi > 1 for at least one eigenvalue with |λi| = ρ. Let M = {i :
|λi| = ρ}, and choose δi = ǫ, for i ∈M . Then by (9.2.13) ‖Ki‖ ≤ ρ+ ǫ, for i ∈M ,
while ‖Ki‖ ≤ ρ, for i /∈ M . Hence ‖K‖ = maxi ‖Ki‖ = ρ+ ǫ, and the first part of
statement (b) now follows.

With T (ǫ) = XD(ǫ), we have that

κ
(
D(ǫ)

)
/κ(X) ≤ κ

(
T (ǫ)

)
≤ κ

(
D(ǫ)

)
κ(X).
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When |λi| = ρ we have δi = ǫ, and it follows from (9.2.12) that κ(Di) grows like
ǫ1−mi . Since κ(D) = maxi κ(Di), and for |λi| < ρ the condition numbers of Di are
bounded, this proves the second part of statement (b).

Note that 1/κ(T ) ≤ ‖A‖T /‖A‖ ≤ κ(T ). For every natural number n, we have,
in case (a), ‖An‖T ≤ ‖A‖n

T = ρ(A)n. Hence

‖An‖p ≤ κ(T )‖An‖T ≤ κ(T )ρn.

In case (b), the same holds, if ρ, T are replaced by, respectively, ρ+ ǫ, T (ǫ). See also
Problem 9.

If only statement (b) is needed, a more elementary proof can be found by a
similar argument applied to the Schur canonical form instead of the Jordan canon-
ical form. Since X is unitary in this case, one has a better control of the condition
numbers, which is of particular importance in some applications to partial differen-
tial equations, where one needs to apply this kind of theorem to a family of matrices
instead of just one individual matrix. This leads to the famous matrix theorems of
Kreiss, see Theorems 13.8.6–13.8.7.

For some classes of matrices, an efficient (or rather efficient) norm can be
found more easily than by the construction used in the proof of Theorem 9.2.13
This may have other advantages as well, e.g., a better conditioned T . Consider, for
example, the weighted max-norm

‖A‖w = ‖T−1AT ‖∞ = max
i

∑

j

|aij |wj/wi,

where T = diag (w1, . . . , wn) > 0, and κ(T ) = maxwi/minwi. We then note that
if we can find a positive vector w such that |A|w ≤ αw, then ‖A‖w ≤ α.

9.2.4 Matrix Functions

The matrix exponential eAt, where A is a constant matrix, can be defined by the
series expansion

eAt = I +At+
1

2!
A2t2 +

1

3!
A3t3 + · · · .

This series converges for all A and t since the radius of convergence of the power
series

∑∞
k=0 ‖A‖ktk/k! is infinite. The series can thus be differentiated everywhere

and
d

dt
(eAt) = A+A2t+

1

2!
A3t2 + · · · = AeAt.

Hence y(t) = eAtc ∈ Rn solves the initial value problem for the linear system of
ordinary differential equations with constant coefficients

dy(t)/dt = Ay(t), y(0) = c. (9.2.14)

Such systems occurs in many physical, biological, and economic processes.
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Other functions, for example, sin(z), cos(z), log(z), can be similarly defined
for matrix arguments from their Taylor series representation. In general, if f(z) is
an analytic function with Taylor expansion f(z) =

∑∞
k=0 akz

k, then we define

f(A) =

∞∑

k=0

akA
k.

We now turn to the question of how to define analytic functions of matrices
in general. If the matrix A is diagonalizable, A = XΛX−1, we define

f(A) = Xdiag
(
f(λ1), . . . , f(λn)

)
X−1 = Xf(Λ)X−1. (9.2.15)

This expresses the matrix function f(A) in terms of the function f evaluated at the
spectrum of A and is often the most convenient way to compute f(A).

For the case when A is not diagonalizable we first give an explicit form for the
kth power of a Jordan block Jm(λ) = λI+N . Since N j = 0 for j ≥ m we get using
the binomial theorem

Jk
m(λ) = (λI +N)k = λkI +

min(m−1,k)
∑

p=1

(
k

p

)

λk−pNp, k ≥ 1.

Since an analytic function can be represented by its Taylor series we are led to the
following definition:

Definition 9.2.14.
Suppose that the analytic function f(z) is regular for z ∈ D ⊂ C, where D is

a simply connected region, which contains the spectrum of A in its interior. Let

A = XJX−1 = Xdiag
(
Jm1(λ1), · · · , Jmt

(λt)
)
X−1

be the Jordan canonical form of A. We then define

f(A) = X diag
(

f
(
Jm1(λ1)

)
, · · · , f

(
Jmt

(λt)
))

X−1. (9.2.16)

where the analytic function f of a Jordan block is

f(Jm) = f(λ)I +

m−1∑

p=1

1

p!
f (p)(λ)Np. (9.2.17)

If A is diagonalizable, A = X−1ΛX , then for the exponential function we
have,

‖eA‖2 = κ(X)eα(A),

where α(A) = maxi ℜλi is the spectral abscissa of A and κ(X) denotes the
condition number of the eigenvector matrix. If A is normal, then V is orthogonal
and κ(V ) = 1.
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One can show that for every non-singular matrix T it holds

f(T−1AT ) = T−1f(A)T. (9.2.18)

With this definition, the theory of analytic functions of a matrix variable closely
follows the theory of a complex variable. If lim

n→∞
fn(z) = f(z) for z ∈ D, then

lim
n→∞

fn(J(λi)) = f(J(λi)). Hence if the spectrum of A lies in the interior of D

then lim
n→∞

fn(A) = f(A). This allows us to deal with operations involving limit
processes.

The following important theorem can be obtained, which shows that Defini-
tion 9.2.14 is consistent with the more restricted definition (by a power series) given
in Theorem 9.2.12.

Theorem 9.2.15.
All identities which hold for analytic functions of one complex variable z for

z ∈ D ⊂ C, where D is a simply connected region, also hold for analytic functions
of one matrix variable A if the spectrum of A is contained in the interior of D. The
identities also hold if A has eigenvalues on the boundary of D, provided these are
not defective.

Example 9.2.2.
We have, for example,

cos2A+ sin2 A = I, ∀A;

ln(I −A) = −
∞∑

n=1

1

n
An, ρ(A) < 1;

∫ ∞

0

e−steAtdt = (sI −A)−1, Re(λi) < Re(s);

Further, if f(z) is analytic inside C, and if the whole spectrum of A is inside C, we
have (cf. Problem 9)

1

2πi

∫

C

(zI −A)−1f(z)dz = f(A).

Observe also that, for two arbitrary analytic functions f and g, which satisfy
the condition of the definition, f(A)g(A) = g(A)f(A). However, when several non-
commutative matrices are involved, one can no longer use the usual formulas for
analytic functions.

Example 9.2.3.
e(A+B)t = eAteBt for all t if and only if BA = AB. We have

eAteBt =
∞∑

p=0

Aptp

p!

∞∑

q=0

Bqtq

q!
=

∞∑

n=0

tn

n!

n∑

p=0

(
n

p

)

ApBn−p.
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This is in general not equivalent to

e(A+B)t =

∞∑

n=0

tn

n!
(A+B)n.

The difference between the coefficients of t2/2 in the two expressions is

(A+B)2 − (A2 + 2AB +B2) = BA−AB 6= 0, if BA 6= AB.

Conversely, if BA = AB, then it follows by induction that the binomial theorem
holds for (A+B)n, and the two expressions are equal.

Because of its key role in the solution of differential equations methods for
computing the matrix exponential and investigation of its qualitative behavior has
been studied extensively. A wide variety of methods for computing eA have been
proposed; see Moler and Van Loan [35]. Consider the 2 by 2 upper triangular matrix

A =

(
λ α
0 µ

)

.

The exponential of this matrix is

etA =










eλt α

eλt − eµt

λ− µ
0 eµt



 , if λ 6= µ,

(
eλt αteλt

0 eµt

)

, if λ = µ

. (9.2.19)

When |λ−µ| is small, but not negligible neither of these two expressions are suitable,
since severe cancellation will occur in computing the divided difference in the (1,2)-
element in (9.2.19). When the same type of difficulty occurs in non-triangular
problems of larger size the cure is by no means easy!

Another property of eAt that does not occur in the scalar case is illustrated
next.

Example 9.2.4. Consider the matrix

A =

(
−1 4
0 −2

)

.

Since max{−1,−2} = −1 < 0 it follows that limt→∞ etA = 0. In Figure 9.2.1 we
have plotted ‖etA‖2 as a function of t. The curve has a hump illustrating that as
t increases some of the elements in etA first increase before they start to decay.

One of the best methods to compute eA, the method of scaling and squaring,
uses the fundamental relation

eA = (eA/m)m, m = 2s
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Figure 9.2.1. ‖etA‖ as a function of t for the matrix in Example 9.2.4.

of the exponential function. Here the exponent s is chosen so that eA/m can be
reliably computed, e.g. from a Taylor or Padé approximation. Then eA = (eA/m)2

s

can be formed by squaring the result s times.
Instead of the Taylor series it is advantageous to use the diagonal Padé ap-

proximation of ex.

rm,m(z) =
Pm,m(z)

Qm,m(z)
=

∑m
j=0 pjz

j

∑n
j=0 qjz

j
, (9.2.20)

which are known explicitly for all m. We have

pj =
(2m− j)!m!

(2m)! (m− j)!j!
, qj = (−1)jpj , j = 0 : m. (9.2.21)

with the error

ez − Pm,m(z)

Qm,m(z)
= (−1)k (m!)2

(2m)!(2m+ 1)!
z2m+1 +O(z2m+2). (9.2.22)

Note that Pm,m(z) = Qm,m(−z), which reflects the property that e−z = 1/ez. The
coefficients satisfy the recursion

p0 = 1, pj+1 =
m− j

(2m− j)(j + 1)
pj , j = 0 : m− 1. (9.2.23)

To evaluate a digonal Padé approximant of even degree m we can write

P2m,2m(A) = p2mA
2m + · · · + p2A

2 + p0I

+A(p2m−1A
2m−2 + · · · + p3A

2 + p1I) = U + V.

This can be evaluated withm+1 matrix multiplications by formingA2, A4, . . . , A2m.
Then Q2m(A) = U−V needs no extra matrix multiplications. For an approximation
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of odd degree 2m+ 1 we write

P2m+1,2m+1(A) = A(p2m+1A
2m + · · · + p3A

2 + p1I)

+ p2mA
2m−2 + · · · + p2A

2 + p0I = U + V.

This can be evalauted with the same number of matrix multiplications andQ2m+1(A) =
−U + V . The final division Pk,m(A)/Qm,m(A) is performed by solving

Qm,m(A)rm,m(A) = Pm,m(A)

for rm,m(A) using Gaussian elimination.
The function expm in Matlab uses a scaling such that 2−s‖A‖ < 1/2 and a

diagonal Padé approximant of degree 2m = 6

P6,6(z) = 1 +
1

2
z +

5

44
z2 +

1

66
z3 +

1

792
z4 +

1

15840
z5 +

1

665280
z6.

function E = expmv(A);

% EXPMV computes the exponential

% of the matrix A

% Compute scaling parameter

[f,e] = log2(norm(A,’inf’));

s = max(0,e+1);

A = A/2^s;

X = A;

d = 2; c = 1/d;

E = eye(size(A)) + c*A;

D = eye(size(A)) - c*A;

m = 8; p = 1;

for k = 2:m

d = d*(k*(2*m-k+1))/(m-k+1)

c = 1/d;

X = A*X;

cX = c*X;

E = E + cX;

if p, D = D + c*X;

else, D = D - c*X; end

p = ~p;

end

E = D\E;

for k = 1:s, E = E*E; end

It can be shown ([35, Appendix A]) that then rmm(2−sA)2
s

= eA+E, where

‖E‖
‖A‖ < 23(2−s‖A‖)2m (m!)2

(2m)!(2m+ 1)!
.

For s and m chosen as in Matlab this gives ‖E‖/‖A‖ < 3.4 · 10−16, which is
close to the unit roundoff in IEEE double precision 2−53 = 1.11 · 10−16. Note that
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this backward error result does not guarantee an accurate result. If the problem is
inherently sensitive to perturbations the error can be large.

The analysis does not take roundoff errors in the squaring phase into consid-
eration. This is the weak point of this approach. We have

‖A2 − fl(A2)‖ ≤ γn‖A‖2, γn =
nu

1 − nu

but since possibly ‖A2‖ ≪ ‖A‖2 this is not satisfactory and shows the danger in
matrix squaring. If a higher degree Padé approximation is chosen then the number
of squarings can be reduced. Choices suggested in the literature (N. J. Higham [25])
are m = 8, with 2−s‖A‖ < 1.5 and m = 13, with 2−s‖A‖ < 5.4.

Given a square matrix A ∈ Cn×n a matrix X such that

X2 = A, (9.2.24)

is called a square root of A and denoted by X = A1/2. Unlike a square root of a
scalar, the square root of a matrix may not exist. For example, it is easy to verify
that the matrix

A =

(
0 1
0 0

)

has no square root. A sufficient condition for A to have a square root is that
it has at least n − 1 nonzero eigenvalues. We assume in the following that this
condition is satisfied. If A is nonsingular and has s distinct eigenvalues then it has
precisely 2s square roots that are expressible as polynomials in the matrix A. If
some eigenvalues appear in more than one Jordan block then there are infinitely
many additional square roots, none of which can be expressed as a polynomial in
A. For example, any Householder matrix is a square root of the identity matrix.

There is a principal square root of particular interest, namely the one
whose eigenvalues lie in the right half plane. To make this uniquely defined we
map any eigenvalue on the negative real axis to the positive imaginary axis. The
principal square root, when it exists, is a polynomial in the original matrix. When
A is symmetric positive definite the principal square root is the unique symmetric
positive definite square root.

To compute the principal square root we first determine the Schur decompo-
sition

A = QSQH ,

where Q is unitary and S upper triangular. If U is an upper triangular square
root of S, then X = QUQH is a square root of A. If A is a normal matrix then

S = diag (λi) and we can just take U = diag (λ
1/2
i ). Otherwise, from the relation

S = U2 we get

sij =

j
∑

k=i

uikukj , i ≤ j. (9.2.25)

This gives a recurrence relation for determining the elements in U . For the diagonal
elements in U we have

uii = s
1/2
ii , i = 1 : n. (9.2.26)
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Further

uij =

(

sij −
j−1
∑

k=i+1

uikukj

)/

(uii + ujj). i < j. (9.2.27)

Hence, the elements in U can be determined computed from (9.2.27), for example,
one diagonal at a time. Since whenever sii = sjj we take uii = ujj this recursion
does not break down. (Recall we assumed that at most one diagonal element of S
is zero.)

If we let Ū be the computed square root of S then it can be shown that

Ū2 = S + E, ‖E‖ ≤ c(n)u(‖S‖ + ‖U‖2),

where u is the unit roundoff and c(n) a small constant epending on n. If we define

α = ‖A1/2‖2/‖A‖,

then we have
‖E‖ ≤ c(n)u(1 + α)‖S‖.

To study the conditioning of the square root we let X̃ be an approximation to
the square root of A and look for a correction E such that X = X̃ +E. Expanding
(X̃ + E)2 = A and neglecting the term E2 we get

X̃E + EX̃ = A− X̃2.

We remark that for real matrices an analogue algorithm can be developed,
which uses the real Schur decomposition and only exploys real arithmetic.

9.2.5 Non-Negative Matrices

Non-negative matrices arise in many applications and play an important role in,
e.g., queuing theory, stochastic processes, and input-output analysis.

Definition 9.2.16. A matrix A ∈ Rn×n is called non-negative if aij ≥ 0 for each
i and j and positive if aij > 0 for i, j = 1 : n. Similarly, a vector x ∈ Rn is called
non-negative if xi ≥ 0 i = 1 : n and positive if xi > 0 i = 1 : n.

Theorem 9.2.17. Let A ∈ Rn×n be a square nonnegative matrix and let s = Ae,
e = (1 1 · · · 1)T be the vector of row sums of A. Then

min
i
si ≤ ρ(A) ≤ max

i
si = ‖A‖1. (9.2.28)

For the class of nonnegative and irreducible matrices (see (Def. 9.1.5)) the
following classical theorem holds.

Theorem 9.2.18. (Perron–Frobenius Theorem)
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If A > 0 then r = ρ(A) is a simple eigenvalue and there are no other eigenvalue
of modulus ρ(A).

If A ≥ 0 is irreducible then ρ(A) is a simple eigenvalue and

(i) A has a positive eigenvector x corresponding to the eigenvalue ρ(A) and any
nonnegative eigenvector of A is a multiple of x;

(ii) The eigenvalues of modulus ρ(A) are all simple. If there are m eigenvalues of
modulus ρ, they must be of the form

λk = ρe
2kπi

m , k = 0 : m− 1.

(iii) ρ(A) increases when any entry of A increases.

Proof. See, e.g., Gantmacher [15, ], Vol. II or [4, pp. 27,32]. A simpler proof
of some of these results is found in Strang [46, , [p. ].

Perron4 (1907) proved the first part of this theorem for A > 0. Later Frobe-
nius (1912) extended most of Perron’s result to the class of nonnegative irreducible
matrices.

9.2.6 Finite Markov Chains

A Markov chain5 is a probabilistic process in which the future development is
completely determined by the present state and not at all in the way it arose.
Markov chains serve as models for describing systems that can be in a number of
different states s1, s2, s3, . . .. At each time step the system moves from state si to
state sj with probability qij . Such processes have many applications in the physical,
biological and social sciences. The Markov chain is finite if the number of states is
finite.

Definition 9.2.19. A matrix Q ∈ Rn×n is called row stochastic matrix if it
satisfies

qij ≥ 0,
∑

1≤j≤n

qij = 1, i, j = 1 : n. (9.2.29)

It is called doubly stochastic if in addition

∑

1≤i≤n

qij = 1, (9.2.30)

4German mathematician (1880–1975).
5Named after Russian mathematician Andrej Andreevic Markov (1856–1922), who introduced

them in 1908,



30 Chapter 9. Matrix Eigenvalue Problems

In a finite Markov chain there are a finite number of states si, i = 1 : n. The
nonnegative matrix Q with elements equal to the transition probabilities qij is a
row stochastic matrix. From (9.2.29) it follows that

Qe = e, e = ( 1 1 . . . 1 )T , (9.2.31)

i.e. e is a right eigenvector of Q corresponding to the eigenvalue λ = 1. From
Theorem 9.2.17 it follows that ρ(Q) = 1.

The vector p = ( p1 p2 . . . pn )
T
, where pi ≥ 0, eT p = 1 is the probability

that the system is at state i, is called the state vector of the Markov chain. Let
pk denote the state vector at time step k. Then p(k+1) = QT pk, and

pk = (Qk)T p0, k = 1, 2, . . . .

An important problem is to find the stationary distribution p of a Markov
chain. A state vector p of a Markov chain is said to be stationary if

QTp = p, eT p = 1. (9.2.32)

Hence p is a left eigenvector of Q corresponding to the eigenvalue λ = 1 = ρ(Q). It
follows that p solves the singular homogeneous linear system

(I −QT )p = 0. (9.2.33)

From the Perron–Frobenius Theorem it follows that if Q is irreducible then
λ = 1 is a simple eigenvalue of Q and there is a unique eigenvector p satisfying
(9.2.32). If Q > 0, then there is no other eigenvalue with modulus ρ(Q) and we
have the following result:

Theorem 9.2.20. Assume that a Markov chain has a positive transition matrix.
Then, independent of the initial state vector,

lim
k→∞

pk = p,

where p satisfies (9.2.32).

If Q is not positive then the Markov chain may not converge to a stationary
state.

Example 9.2.5. Consider a Markov chain with two states for which state 2 is al-
ways transformed into state 1 and state 2 into state 1. The corresponding transition
matrix

Q =

(
0 1
1 0

)

,

with two eigenvalues of modolus ρ(Q), λ1 = 1 and λ2 = −1. Here Q is symmetric
and its left eigenvalue equals p = (0.5 0.5)T . However, for any initial state different
from p the state will oscillate and not converge.
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This example can be generalized by considering a Markov chain with m states
and taking Q equal to the permutation matrix corresponding to a cyclic shift. Then
Q has m eigenvalues on the unit circle in the complex plane.

The theory of Markov chains for general reducible nonnegative transition ma-
trices Q is much more complicated. It is then neccessary to classify the states. We
say that a state si has access to a state sj if it is possible to move from state si

to sj in a finite number of steps. If also sj has access to si si and sj are said to
communicate. This is an equivalence relation on the set of states and partitions the
states into classes. If a class of states has access to no other class it is called final.
If a final class contains a single state then the state is called absorbing.

Suppose that Q has been permuted to its block triangular form

Q =







Q11 0 . . . 0
Q21 Q22 . . . 0

...
...

...
Qs1 Qs2 . . . Qss







(9.2.34)

where the diagonal blocks Qii are square and irreducible. Then these blocks cor-
respond to the classes associated with the corresponding Markov chain. The class
associated with Qii is final if and only if Qij = 0, j = 1 : i− 1. If the matrix Q is
irreducible then the corresponding matrix chain contains a single class of states.

Example 9.2.6. Suppose there is an epidemic in which every month 10% of those
who are well become sick and of those who are sick 20% dies, and the rest become
well. This can be modeled by the Markov process with three states dead, sick,well,
and transition matrix

Q =





1 0 0
0.1 0 0.9
0 0.2 0.8



 .

Then the left eigenvector is p = e1 = ( 1 0 0 )
T

, i.e. in the stationary distribution
all are dead. Clearly the class dead is absorbing!

We now describe a way to force a Markov chain to become irreducible.

Example 9.2.7 (Eldén).
Let Q ∈ Rn×n be a row stohastic matrix and set

P = αQ+ (1 − α)
1

n
eeT , α > 0,

where e is a vector of all ones. Then P > 0 and since eT e = n we have Pe =
(1 − α)e + αe = 1, so P is row stochastic. From the Perron–Frobenius Theorem it
follows that there is no other eigenvalue of P with modulus 1

We now show that if the eigenvalues of Q equal 1, λ2, λ3, . . . , λn then the
eigenvalues of P are 1, αλ2, αλ3, . . . , αλn.
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Proceeding as in the proof of the Schur normal form (Theorem 9.2.1) we define
the orthogonal matrix U = (u1 U2), where u1 = e/

√
n. Then

UTQU = UT (QTu1 QTU2 ) = UT (u1 QTU2 )

=

(
uT

1 u1 uT
1Q

TU2

UT
2 u1 UT

2 Q
TU2

)

=

(
1 vT

0 T

)

.

This is a similarity transformation so T has eigenvalues λ2, λ3, . . . , λn. Further
UT e =

√
ne1 so that UT eeTU = ne1e

T
1 , and we obtain

UTPU = UT

(

αQ+ (1 − α)
1

n
eeT

)

U

= α

(
1 vT

0 T

)

+ (1 − α)

(
1 0
0 0

)

=

(
1 αvT

0 αT

)

.

The result now follows.

Review Questions

1. What is the Schur normal form of a matrix A ∈ Cn×n?

(b)What is meant by a normal matrix? How does the Schur form simplify for
a normal matrix?

2. How can the class of matrices which are diagonalizable by unitary transfor-
mations be characterized?

3. What is meant by a defective eigenvalue? Give a simple example of a matrix
with a defective eigenvalue.

4. Define the matrix function eA. Show how this can be used to express the
solution to the initial value problem y′(t) = Ay(t), y(0) = c?

5. What can be said about the behavior of ‖Ak‖, k ≫ 1, in terms of the spectral
radius and the order of the Jordan blocks of A? (See Problem 8.)

6. (a) Given a square matrix A. Under what condition does there exist a vector
norm, such that the corresponding operator norm ‖A‖ equals the spectral
radius? If A is diagonalizable, mention a norm that has this property.

(b) What can you say about norms that come close to the spectral radius, when
the above condition is not satisfied? What sets the limit to their usefulness?

7. Show that

lim
t→∞

1

t
ln ‖eAt‖ = max

λ∈λ(A)
Re(λ), lim

t→0

1

t
ln ‖eAt‖ = µ(A).

8. Prove the Cayley-Hamilton theorem for a diagonalizable matrix. Then gen-
eralize to an arbitrary matrix, either as in the text or by using Bellman’s
approximation theorem, (Theorem 9.2.5).
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9. Give an example of a matrix, for which the minimal polynomial has a lower
degree than the characteristic polynomial. Is the characteristic polynomial
always divisible by the minimal polynomial?

10. Under what conditions can identities which hold for analytic functions of com-
plex variable(s) be generalized to analytic functions of matrices?

11. (a) Show that any permutation matrix is doubly stochastic.

(b) What are the eigenvalues of matrix





0 1 0
= 0 1
1 0 0



?

12. Suppose that P and Q are row stochastic matrices.

(a) Show that αP + (1 − αQ) is a row stochastic matrix.

(b) Show that PQ is a row stochastic matrix.

Problems and Computer Exercises

1. Find a similarity transformation X−1AX that diagonalizes the matrix

A =

(
1 1
0 1 + ǫ

)

, ǫ > 0.

How does the transformation X behave as ǫ tends to zero?

2. Show that the Sylvester equation (9.2.6) can be written as the linear system

(Im ⊗A−BT ⊗ In)vec(X) = vec(C), (9.2.35)

where ⊗ denotes the Kronecker product and vec(X) is the column vector
obtained by stacking the column of X on top of each other.

3. (a) Let A ∈ Rn×n, and consider the matrix polynomial

p(A) = a0A
n + a1A

n−1 + · · · + anI ∈ Rn×n.

Show that if Ax = λx then p(λ) is an eigenvalue and x an associated eigen-
vector of p(A).

(b) Show that the same is true in general for an analytic function f(A). Ver-
ify (9.2.18). Also construct an example, where p(A) has other eigenvectors in
addition to those of A.

4. Show that the series expansion

(I −A)−1 = I +A+A2 +A3 + . . .

converges if ρ(A) < 1.
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5. (a) Let ‖ · ‖ be a consistent matrix norm, and ρ denote the spectral radius.
Show that

lim
k→∞

‖Ak‖1/k = ρ(A).

(b) Show that

lim
t→∞

ln ‖eAt‖
t

= max
λ∈λ(A)

ℜ(λ).

Hint: Assume, without loss of generality, that A is in its Jordan canonical
form.

6. Show that the eigenvalues λi of a matrix A satisfy the inequalities

σmin(A) ≤ min
i

|λi| ≤ max
i

|λi|σmax(A).

Hint: Use the fact that the singular values of A and its Schur decomposition
QTAQ = diag (λi) +N are the same.

7. Show that Sylvester’s equation (9.2.6) can be written as an equation in stan-
dard matrix-vector form,

(
(I ⊗ A) + (−BT ⊗ I)

)
x = c,

where the vectors x, c ∈ Rnm are obtained from X = (x1, . . . , xm) and C =
(c1, . . . , cm) by

x =





x1
...
xm



 , c =





c1
...
cm



 .

Then use (9.1.19) to give an independent proof that Sylvester’s equation has
a unique solution if and only if λi − µj 6= 0, i = 1, . . . , n, j = 1, . . . ,m.

8. Show that

eA ⊗ eB = eB⊕A,

where ⊕ denotes the Kronecker sum.

9. (a) Show that if A =

(
λ1 1
0 λ2

)

and λ1 6= λ2 then

f(A) =

(

f(λ1)
f(λ1) − f(λ2)

λ1 − λ2
0 f(λ2)

)

.

Comment on the numerical use of this expression when λ2 → λ1.

(b) For A =

(
0.5 1
0 0.6

)

, show that ln(A) =

(
−0.6931 1.8232

0 0.5108

)

.
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10. (a) Compute eA, where

A =

(
−49 24
−64 31

)

,

using the method of scaling and squaring. Scale the matrix so that ‖A/2s‖∞ <
1/2 and approximate the exponential of the scaled matrix by a Padé approx-
imation of order (4,4).

(b) Compute the eigendecomposition A = XΛX−1 and obtain eA = XeΛX−1.
Compare the result with that obtained in (a).

11. Show that an analytic function of the matrix A can be computed by Newton’s
interpolation formula, i.e.,

f(A) = f(λ1)I +

n∗

∑

j=1

f(λ1, λ2, . . . , λj)(A− λ1I) · · · (A− λjI)

where λj , j = 1, 2, . . . , n∗ are the distinct eigenvalues of A, each counted with
the same multiplicity as in the minimal polynomial. Thus, n∗ is the degree of
the minimal polynomial of A.

12. We use the notation of Theorem 9.2.13. For a given n, show by an appropriate
choice of ǫ that ‖An‖p ≤ Cnm∗−1ρn, where C is independent of n. Then derive
the same result from the Jordan Canonical form.

Hint: See the comment after Theorem 9.2.13.

13. Let C be a closed curve in the complex plane, and consider the function,

φC(A) =
1

2πi

∫

C

(zI −A)−1dz,

If the whole spectrum of A is inside C then, by Example 9.2.2, φC(A) = I.
What is φC(A), when only part of the spectrum (or none of it) is inside C?
Is it generally true that φC(A)2 = φC(A)?

Hint: First consider the case, when A is a Jordan block.

9.3 Perturbation Theory and Eigenvalue Bounds

Methods for computing eigenvalues and eigenvectors are subject to roundoff errors.
The best we can demand of an algorithm in general is that it yields approximate
eigenvalues of a matrix A that are the exact eigenvalues of a slightly perturbed
matrix A + E. In order to estimate the error in the computed result we need to
know the effects of the perturbation E on the eigenvalues and eigenvectors of A.
Such results are derived in this section.

9.3.1 Gerschgorin’s Theorems

In 1931 the Russian mathematician published a seminal paper [17] on how to obtain
estimates of all eigenvalues of a complex matrix. His results can be used both to
locate eigenvalues and to derive perturbation results.
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Theorem 9.3.1.
All the eigenvalues of the matrix A ∈ Cn×n lie in the union of the Ger-

schgorin disks in the complex plane

Di = {z | |z − aii| ≤ ri}, ri =

n∑

j=1,j 6=i

|aij |, i = 1, 2, . . . , n. (9.3.1)

Proof. If λ is an eigenvalue there is an eigenvector x 6= 0 such that Ax = λx, or

(λ− aii)xi =

n∑

j=1,j 6=i

aijxj , i = 1, . . . , n.

Choose i so that |xi| = ‖x‖∞. Then

|λ− aii| ≤
n∑

j=1,j 6=i

|aij ||xj |
|xi|

≤ ri. (9.3.2)

The Gerschgorin theorem is very useful for getting crude estimates for eigen-
values of matrices, and can also be used to get accurate estimates for the eigenvalues
of a nearly diagonal matrix. Since A and AT have the same eigenvalues we can, in
the non-Hermitian case, obtain more information about the location of the eigen-
values simply by applying the theorem also to AT .

From (9.3.2) it follows that if the ith component of the eigenvector is maximal,
then λ lies in the ith disk. Otherwise the Gerschgorin theorem does not say in which
disks the eigenvalues lie. Sometimes it is possible to decide this as the following
theorem shows.

Theorem 9.3.2.
If the union M of k Gerschgorin disks Di is disjoint from the remaining disks,

then M contains precisely k eigenvalues of A.

Proof. Consider for t ∈ [0, 1] the family of matrices

A(t) = tA+ (1 − t)DA, DA = diag (aii).

The coefficients in the characteristic polynomial are continuous functions of t, and
hence also the eigenvalues λ(t) of A(t) are continuous functions of t. Since A(0) =
DA and A(1) = A we have λi(0) = aii and λi(1) = λi. For t = 0 there are exactly
k eigenvalues in M. For reasons of continuity an eigenvalue λi(t) cannot jump to
a subset that does not have a continuous connection with aii for t = 1. Therefore
also k eigenvalues of A = A(1) lie in M.
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Example 9.3.1.
The matrix

A =





2 −0.1 0.05
0.1 1 −0.2
0.05 −0.1 1



 ,

with eigenvalues λ1 = 0.8634, λ2 = 1.1438, λ3 = 1.9928, has the Gerschgorin disks

D1 = {z | |z − 2| ≤ 0.15}; D2 = {z | |z − 1| ≤ 0.3}; D3 = {z | |z − 1| ≤ 0.15}.

Since the disk D1 is disjoint from the rest of the disks, it must contain precisely one
eigenvalue of A. The remaining two eigenvalues must lie in D2 ∪ D3 = D2.

There is another useful sharpening of Gerschgorin’s Theorem in case the ma-
trix A is irreducible, cf. Def. 9.1.5.

Theorem 9.3.3.
If A is irreducible then each eigenvalue λ lies in the interior of the union of

the Gerschgorin disks, unless it lies on the boundary of all Gerschgorin disks.

Proof. If λ lies on the boundary of the union of the Gerschgorin disks, then we
have

|λ− aii| ≥ ri, ∀i. (9.3.3)

Let x be a corresponding eigenvector and assume that |xi1 | = ‖x‖∞. Then from
the proof of Theorem 9.3.1 and (9.3.3) it follows that |λ − ai1i1 | = ri1 . But (9.3.2)
implies that equality can only hold here if for any ai1j 6= 0 it holds that |xj | = ‖x‖∞.
If we assume that ai1,i2 6= 0 then it follows that |λ − ai2i2 | = ri2 . But since A is
irreducible for any j 6= i there is a path i = i1, i2, . . . , ip = j. It follows that λ must
lie on the boundary of all Gerschgorin disks.

Example 9.3.2. Consider the real, symmetric matrix

A =









2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2









∈ Rn×n.

Its Gerschgorin disks are

|z − 2| ≤ 2, i = 2, . . . , n− 1, |z − 2| ≤ 1, i = 1, n,

and it follows that all eigenvalues of A satisfy λ ≥ 0. Since zero is on the boundary
of the union of these disks, but not on the boundary of all disks, zero cannot be an
eigenvalue of A. Hence all eigenvalues are strictly positive and A is positive definite.
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9.3.2 Perturbation Theorems

In the rest of this section we consider the sensitivity of eigenvalue and eigenvectors
to perturbations.

Theorem 9.3.4. (Bauer–Fike.)
Let the matrix A ∈ Cn×n be diagonalizable, X−1AX = D = diag(λ1, · · · , λn),

and let µ be an eigenvalue to A+ E. Then for any p-norm

min
1≤i≤n

|µ− λi| ≤ κp(X)‖E‖p. (9.3.4)

where κp(X) = ‖X−1‖p ‖X‖p is the condition number of the eigenvector matrix.

Proof. We can assume that µ is not an eigenvalue of A, since otherwise (9.3.4)
holds trivially. Since µ is an eigenvalue of A+E the matrix A+E − µI is singular
and so is also

X−1(A+ E − µI)X = (D − µI) +X−1EX.

Then there is a vector z 6= 0 such that

(D − µI)z = −X−1EXz.

Solving for z and taking norms we obtain

‖z‖p ≤ κp(X)‖(D − µI)−1‖p‖E‖p‖z‖p.

The theorem follows by dividing by ‖z‖p and using the fact that for any p-norm
‖(D − µI)−1‖p = 1/ min

1≤i≤n
|λi − µ|.

The Bauer–Fike theorem shows that κp(X) is an upper bound for the condition
number of the eigenvalues of a diagonalizable matrix A. In particular if A is normal
we know from the Schur Canonical Form (Theorem 9.2.1) that we can take X = U
to be a unitary matrix. Then we have κ2(X) = 1, which shows the important result
that the eigenvalues of a normal matrix are perfectly conditioned, also if they have
multiplicity greater than one. On the other hand, for a matrix A which is close to
a defective matrix the eigenvalues can be very ill-conditioned, see Example 9.2.1,
and the following example.

Example 9.3.3.

Consider the matrix A =

(
1 1
ǫ 1

)

, 0 < ǫ with eigenvector matrix

X =

(
1 1√
ǫ −√

ǫ

)

, X−1 =
0.5√
ǫ

(√
ǫ 1√
ǫ −1

)

.

If ǫ≪ 1 then

κ∞(X) = ‖X−1‖∞‖X‖∞ =
1√
ǫ

+ 1 ≫ 1.
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Note that in the limit when ǫ→ 0 the matrix A is not diagonalizable.

In general a matrix may have a mixture of well-conditioned and ill-conditioned
eigenvalues. Therefore it is useful to have perturbation estimates for the individual
eigenvalues of a matrix A. We now derive first order estimates for simple eigenvalues
and corresponding eigenvectors.

Theorem 9.3.5.
Let λj be a simple eigenvalue of A and let xj and yj be the corresponding right

and left eigenvector of A,

Axj = λjxj , yH
j A = λjy

H
j .

Then for sufficiently small ǫ the matrix A+ ǫE has a simple eigenvalue λj(ǫ) such
that,

λj(ǫ) = λj + ǫ
yH

j Exj

yH
j xj

+O(ǫ2). (9.3.5)

Proof. Since λj is a simple eigenvalue there is a δ > 0 such that the disk D =
{µ‖|µ− λj | < δ} does not contain any eigenvalues of A other than λj . Then using
Theorem 9.3.2 it follows that for sufficiently small values of ǫ the matrix A + ǫE
has a simple eigenvalue λj(ǫ) in D. If we denote a corresponding eigenvector xj(ǫ)
then

(A+ ǫE)xj(ǫ) = λj(ǫ)xj(ǫ).

Using results from function theory, it can be shown that λj(ǫ) and xj(ǫ) are analytic
functions of ǫ for ǫ < ǫ0. Differentiating with respect to ǫ and putting ǫ = 0 we get

(A− λjI)x
′
j(0) + Exj = λ′j(0)xj . (9.3.6)

Since yH
j (A − λjI) = 0 we can eliminate x′j(0) by multiplying this equation with

yH
j and solve for λ′j(0) = yH

j Exj/y
H
j xj .

If ‖E‖2 = 1 we have |yH
j Exj | ≤ ‖xj‖2‖yj‖2 and E can always be chosen so

that equality holds. If we also normalize so that ‖xj‖2 = ‖yj‖2 = 1, then 1/s(λj),
where

s(λj) = |yH
j xj | (9.3.7)

can be taken as the condition number of the simple eigenvalue λj . Note that s(λj) =
cos θ(xj , yj), where θ(xj , yj) is the acute angle between the left and right eigenvector
corresponding to λj . If A is a normal matrix we get s(λj) = 1.

The above theorem shows that for perturbations in A of order ǫ, a simple
eigenvalue λ of A will be perturbed by an amount approximately equal to ǫ/s(λ).
If λ is a defective eigenvalue, then there is no similar result. Indeed, if the largest
Jordan block corresponding to λ is of order k, then perturbations to λ of order ǫ1/k

can be expected. Note that for a Jordan box we have x = e1 and y = em and so
s(λ) = 0 in (9.3.7).
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Example 9.3.4.
Consider the perturbed diagonal matrix

A+ ǫE =





1 ǫ 2ǫ
ǫ 2 ǫ
ǫ 2ǫ 2



 .

Here A is diagonal with left and right eigenvector equal to xi = yi = ei. Thus
yH

i Exi = eii = 0 and the first order term in the perturbation of the simple eigen-
values are zero. For ǫ = 10−3 the eigenvalues of A+ E are

0.999997, 1.998586, 2.001417.

Hence the perturbation in the simple eigenvalue λ1 is of order 10−6. Note that
the Bauer–Fike theorem would predict perturbations of order 10−3 for all three
eigenvalues.

We now consider the perturbation of an eigenvector xj corresponding to a sim-
ple eigenvalue λj . Assume that the matrix A is diagonalizable and that x1, . . . , xn

are linearly independent eigenvectors. Then we can write

xj(ǫ) = xj + ǫx′j(0) +O(ǫ2), x′j(0) =
∑

k 6=j

ckjxk,

where we have normalized xj(ǫ) to have unit component along xj . Substituting the
expansion of x′j(0) into (9.3.6) we get

∑

k 6=j

ckj(λk − λj)xk + Exj = λ′j(0)xj .

Multiplying by yH
i and using yH

i xj = 0, i 6= j, we obtain

cij =
yH

i Exj

(λj − λi)yH
i xi

, i 6= j. (9.3.8)

Hence, the sensitivity of the eigenvectors also depend on the separation δj =
mini6=j |λi − λj | between λj and the rest of the eigenvalues of A. If several eigen-
vectors corresponds to a multiple eigenvalue these are not uniquely determined,
which is consistent with this result. Note that even if the individual eigenvectors
are sensitive to perturbations it may be that an invariant subspace containing these
eigenvectors is well determined.

To measure the accuracy of computed invariant subspaces we need to introduce
the largest angle between two subspaces.

Definition 9.3.6. Let X and Y = R(Y ) be two subspaces of Cn of dimension k.
Define the largest angle between these subspaces to be

θmax(X ,Y) = max
x∈X

‖x‖2=1

min
y∈Y

‖y‖2=1

θ(x, y). (9.3.9)
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where θ(x, y) is the acute angle between x and y.

The quantity sin θmax(X ,Y) defines a distance between the two subspaces X
and Y. If X and Y are orthonormal matrices such that X = R(X) and Y = R(Y ),
then it can be shown (see Golub and Van Loan [21]) that

θ(X ,Y) = arccosσmin(XHY ). (9.3.10)

9.3.3 Hermitian Matrices

We have seen that the eigenvalues of Hermitian, and real symmetric matrices are all
real, and from Theorem 9.3.5 it follows that these eigenvalues are perfectly condi-
tioned. For this class of matrices it is possible to get more informative perturbation
bounds, than those given above. In this section we give several classical theorems.
They are all related to each other, and the interlace theorem dates back to Cauchy,
1829. We assume in the following that the eigenvalues of A have been ordered in
decreasing order λ1 ≥ λ2 ≥ · · · ≥ λn.

In the particular case of a Hermitian matrix the extreme eigenvalues λ1 and
λn can be characterized by

λ1 = max
x∈Cn

x 6=0

ρ(x), λn = min
x∈Cn

x 6=0

ρ(x).

The following theorem gives an important extremal characterization also of
the intermediate eigenvalues of a Hermitian matrix.

Theorem 9.3.7. Fischer’s Theorem.
Let the Hermitian matrix A have eigenvalues λ1, λ2, . . . , λn ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λi = max
dim (S)=i

min
x∈S
x 6=0

xHAx

xHx
(9.3.11)

= min
dim (S)=n−i+1

max
x∈S
x 6=0

xHAx

xHx
. (9.3.12)

where S denotes a subspace of Cn.

Proof. See Stewart [43, , p. 314].

The formulas (9.3.11) and (9.3.12) are called the max-min and the min-max
characterization, respectively. They can be used to establish an important relation
between the eigenvalues of two Hermitian matrices A and B, and their sum C =
A+B.

Theorem 9.3.8.
Let α1 ≥ α2 ≥ · · · ≥ αn, β1 ≥ β2 ≥ · · · ≥ βn, and γ1 ≥ γ2 ≥ · · · ≥ γn be the

eigenvalues of the Hermitian matrices A, B, and C = A+B. Then

αi + β1 ≥ γi ≥ αi + βn, i = 1, 2, . . . , n. (9.3.13)
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Proof. Let x1, x2, . . . , xn be an orthonormal system of eigenvectors of A corre-
sponding to α1 ≥ α2 ≥ · · · ≥ αn, and let S be the subspace of Cn spanned by
x1, . . . , xi. Then by Fischer’s theorem

γi ≥ min
x∈S
x 6=0

xHCx

xHx
≥ min

x∈S
x 6=0

xHAx

xHx
+ min

x∈S
x 6=0

xHBx

xHx
= αi + min

x∈S
x 6=0

xHBx

xHx
≥ αi + βn.

This is the last inequality of (9.3.12). The first equality follows by applying this
result to A = C + (−B).

The theorem implies that when B is added to A all of its eigenvalues are
changed by an amount which lies between the smallest and greatest eigenvalues
of B. If the matrix rank (B) < n, the result can be sharpened, see Parlett [38,
Section 10-3]. An important case is when B = ±zzT is a rank one matrix. Then
B has only one nonzero eigenvalue equal to ρ = ±‖z‖2

2. In this case the perturbed
eigenvalues will satisfy the relations

λ′i − λi = miρ, 0 ≤ mi,
∑

mi = 1. (9.3.14)

Hence all eigenvalues are shifted by an amount which lies between zero and ρ.
An important application is to get bounds for the eigenvalues λ′i of A + E,

where A and E are Hermitian matrices. Usually the eigenvalues of E are not known,
but from

max{|λ1(E)|, |λn(E)|} = ρ(E) = ‖E‖2

it follows that
|λi − λ′i| ≤ ‖E‖2. (9.3.15)

Note that this result also holds for large perturbations.
A related result is the Wielandt–Hoffman theorem which states that

√
∑n

i=1 |λi − λ′i|2 ≤ ‖E‖F . (9.3.16)

An elementary proof of this result is given by Wilkinson [52, Section 2.48].
Another important result that follows from Fischer’s Theorem is the following

theorem, due to Cauchy, which relates the eigenvalues of a principal submatrix to
the eigenvalues of the original matrix.

Theorem 9.3.9. Interlacing Property.
Let An−1 be a principal submatrix of order n − 1 of a Hermitian matrix

An ∈ Cn×n, Then, the eigenvalues of An−1, µ1 ≥ µ2 ≥ · · · ≥ µn−1 interlace
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of An, that is

λi ≥ µi ≥ λi+1, i = 1, . . . , n− 1. (9.3.17)

Proof. Without loss of generality we assume that An−1 is the leading principal
submatrix of A,

An =

(
An−1 aH

a α

)

.
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Consider the subspace of vectors S′ = {x ∈ Cn, x ⊥ en}. Then with x ∈ S′ we have
xHAnx = (x′)HAn−1x

′, where xH = ((x′)H , 0). Using the minimax characteriza-
tion (9.3.11) of the eigenvalue λi it follows that

λi = max
dim (S)=i

min
x∈S
x 6=0

xHAnx

xHx
≥ max

dim(S)=i

S⊥en

min
x∈S
x 6=0

xHAnx

xHx
= µi.

The proof of the second inequality µi ≥ λi+1 is obtained by a similar argument
applied to −An.

Since any principal submatrix of a Hermitian matrix also is Hermitian, this
theorem can be used recursively to get relations between the eigenvalues of An−1

and An−2, An−2 and An−3, etc.

9.3.4 Rayleigh quotient and residual bounds

We make the following definition.

Definition 9.3.10.
The Rayleigh quotient of a nonzero vector x ∈ Cn is the (complex) scalar

ρ(x) = ρ(A, x) =
xHAx

xHx
. (9.3.18)

The Rayleigh quotient plays an important role in the computation of eigen-
values and eigenvectors. The Rayleigh quotient is a homogeneous function of x,
ρ(αx) = ρ(x) for all scalar α 6= 0.

Definition 9.3.11.
The field of values of a matrix A is the set of all possible Rayleigh quotients

F (A) = {ρ(A, x) | x ∈ Cn}.

For any unitary matrix U we have F (UHAU) = F (A). From the Schur
canonical form it follows that there is no restriction in assuming A to be upper
triangular, and, if normal, then diagonal. Hence for a normal matrix A

ρ(x) =

n∑

i=1

λi|ξi|2
/ n∑

i=1

|ξi|2,

that is any point in F (A) is a weighted mean of the eigenvalues of A. Thus for a
normal matrix the field of values coincides with the convex hull of the eigenvalues.
In the special case of a Hermitian matrix the field of values equals the segment
[λ1, λn] of the real axis.
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In general the field of values of a matrix A may contain complex values even if
its eigenvalues are real. However, the field of values will always contain the convex
hull of the eigenvalues.

Let x and A be given and consider the problem

min
µ

‖Ax− µx‖2
2.

This is a linear least squares problem for the unknown µ. The normal equations
are xHxµ = xHAx. Hence the minimum is attained for ρ(x), the Rayleigh quotient
of x.

When A is Hermitian the gradient of 1
2ρ(x) is

1

2
∇ρ(x) =

Ax

xHx
− xHAx

(xHx)2
x =

1

xHx
(Ax− ρx),

and hence the Rayleigh quotient ρ(x) is stationary if and only if x is an eigenvector
of A.

Suppose we have computed by some method an approximate eigenvalue/eigenvector
pair (σ, v) to a matrix A. In the following we derive some error bounds depending
on the residual vector

r = Av − σv.

Since r = 0 if (σ, v) are an exact eigenpair it is reasonable to assume that the size
of the residual r measures the accuracy of v and σ. We show a simple backward
error bound:

Theorem 9.3.12.
Let λ̄ and x̄, ‖x̄‖2 = 1, be a given approximate eigenpair of A ∈ Cn×n, and

r = Ax̄−λ̄x̄ be the corresponding residual vector. Then λ̄ and x̄ is an exact eigenpair
of the matrix A+ E, where

E = −rx̄H , ‖E‖2 = ‖r‖2. (9.3.19)

Proof. We have (A+ E)x̄ = (A− rx̄H/x̄H x̄)x̄ = Ax̄− r = λ̄x̄.

It follows that given an approximate eigenvector x̄ a good eigenvalue approx-
imation is the Rayleigh quotient ρ(x̄), since this choice minimizes the error bound
in Theorem 9.3.12.

By combining Theorems 9.3.4 and 9.3.12 we obtain for a Hermitian matrix A
the very useful a posteriori error bound

Corollary 9.3.13. Let A be a Hermitian matrix. For any λ̄ and any unit vector x̄
there is an eigenvalue of λ of A such that

|λ− λ̄| ≤ ‖r‖2, r = Ax̄− λ̄x̄. (9.3.20)

For a fixed x̄, the error bound is minimized by taking λ̄ = x̄TAx̄.



9.3. Perturbation Theory and Eigenvalue Bounds 45

This shows that (λ̄, x̄) (‖x̄‖2 = 1) is a numerically acceptable eigenpair of the
Hermitian matrix A if ‖Ax̄− λx̄‖2 is of order machine precision.

For a Hermitian matrix A, the Rayleigh quotient ρ(x) may be a far more ac-
curate approximate eigenvalue than x is an approximate eigenvector. The following
theorem shows that if an eigenvector is known to precision ǫ, the Rayleigh quotient
approximates the corresponding eigenvalue to precision ǫ2.

Theorem 9.3.14.
Let the Hermitian matrix A have eigenvalues λ1, . . . , λn and orthonormal

eigenvectors x1, . . . , xn. If the vector x =
∑n

i=1 ξixi, satisfies

‖x− ξ1x1‖2 ≤ ǫ‖x‖2. (9.3.21)

then |ρ(x) − λ1| ≤ 2‖A‖2ǫ
2. (9.3.22)

Proof. Writing Ax =
∑n

i=1 ξiλixi, the Rayleigh quotient becomes

ρ(x) =

n∑

i=1

|ξi|2λi

/ n∑

i=1

|ξi|2 = λ1 +

n∑

i=2

|ξi|2(λi − λ1)
/ n∑

i=1

|ξi|2.

Using (9.3.21) we get |ρ(x)−λ1 | ≤ maxi |λi−λ1|ǫ2. Since the matrix A is Hermitian
we have |λi| ≤ σ1(A) = ‖A‖2, i = 1, . . . , n, and the theorem follows.

Stronger error bounds can be obtained if σ = ρ(v) is known to be well sepa-
rated from all eigenvalues except λ.

Theorem 9.3.15.
Let A be a Hermitian matrix with eigenvalues λ(A) = {λ1, . . . , λn}, x a unit

vector and ρ(x) its Rayleigh quotient. Let Az = λρz, where λρ is the eigenvalue of
A closest to ρ(x). Define

gap (ρ) = min
λ∈λ(A)

|λ− ρ|, λ 6= λρ. (9.3.23)

Then it holds that

|λρ − ρ(x)| ≤ ‖Ax− xρ‖2
2/gap (ρ), (9.3.24)

sin θ(x, z) ≤ ‖Ax− xρ‖2/gap (ρ). (9.3.25)

Proof. See Parlett [38, Section 11.7].

Example 9.3.5.
With x = (1, 0)T and

A =

(
1 ǫ
ǫ 0

)

, we get ρ = 1, Ax− xρ =

(
0
ǫ

)

.
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From Corollary 9.3.13 we get |λ−1| ≤ ǫ, whereas Theorem 9.3.15 gives the improved
bound |λ− 1| ≤ ǫ2/(1 − ǫ2).

Often gap(σ) is not known and the bounds in Theorem 9.3.15 are only the-
oretical. In some methods, e.g., the method of spectrum slicing (see Section 9.4.4)
an interval around σ can be determined which contain no eigenvalues of A.

9.3.5 Residual bounds for SVD

The singular values of a matrix A ∈ Rm×n equal the positive square roots of the
eigenvalues of the symmetric matrix ATA and AAT . Another very useful relation-
ship between the SVD of A = UΣV T and a symmetric eigenvalue was given in
Theorem 7.3.2. If A is square, then6

C =

(
0 A
AT 0

)

=
1√
2

(
U U
V −V

)(
Σ 0
0 −Σ

)
1√
2

(
U U
V −V

)T

(9.3.26)

Using these relationships the theory developed for the symmetric (Hermitian) eigen-
value problem in Secs. 9.3.3–9.3.4 applies also to the singular value decomposi-
tion. For example, Theorems 8.3.3–8.3.5 are straightforward applications of Theo-
rems 9.3.7–9.3.9.

We now consider applications of the Rayleigh quotient and residual error
bounds given in Section 9.3.4. If u, v are unit vectors the Rayleigh quotient of
C is

ρ(u, v) =
1√
2
(uT , vT )

(
0 A
AT 0

)
1√
2

(
u
v

)

= uTAv, (9.3.27)

From Corollary 9.3.13 we obtain the following error bound.

Theorem 9.3.16. For any scalar α and unit vectors u, v there is a singular value
σ of A such that

|σ − α| ≤ 1√
2

∥
∥
∥
∥

(
Av − uα
ATu− vα

)∥
∥
∥
∥

2

. (9.3.28)

For fixed u, v this error bound is minimized by taking α = uTAv.

The following theorem is an application to Theorem 9.3.15.

Theorem 9.3.17.
Let A have singular values σi, i = 1, . . . , n. Let u and v be unit vectors,

ρ = uTAv the corresponding Rayleigh quotient, and

δ =
1√
2

∥
∥
∥
∥

(
Av − uρ
ATu− vρ

)∥
∥
∥
∥

2

6This assumption is no restriction since we can always adjoin zero rows (columns) to make A

square.
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the residual norm. If σs is the closest singular value to ρ and Aus = σsvs, then

|σs − ρ(x)| ≤ δ2/gap (ρ), (9.3.29)

max{sin θ(us, u), sin θ(vs, v)} ≤ δ/gap (ρ). (9.3.30)

where

gap (ρ) = min
i6=s

|σi − ρ|. (9.3.31)

Review Questions

1. State Gerschgorin’s Theorem, and discuss how it can be sharpened.

2. Discuss the sensitivity to perturbations of eigenvalues and eigenvectors of a
Hermitian matrix A.

3. Suppose that (λ̄, x̄) is an approximate eigenpair of A. Give a backward error
bound. What can you say of the error in λ̄ if A is Hermitian?

4. (a) Tell the minimax and maximin properties of the eigenvalues (of what kind
of matrices?), and the related properties of the singular values (of what kind
of matrices?).

(b) Show how the theorems in (a) can be used for deriving an interlacing
property for the eigenvalues of a matrix in Rn×n (of what kind?) and the
eigenvalues of its principal submatrix in R(n−1)×(n−1).

Problems

1. An important problem is to decide if all the eigenvalues of a matrix A have
negative real part. Such a matrix is called stable. Show that if

Re(aii) + ri ≤ 0, ∀i,

and Re(aii) + ri < 0 for at least one i, then the matrix A is stable if A is
irreducible.

2. Suppose that the matrix A is real, and all Gerschgorin discs of A are distinct.
Show that from Theorem 9.3.2 it follows that all eigenvalues of A are real.

3. Show that all eigenvalues to a matrix A lie in the union of the disks

|z − aii| ≤
1

di

n∑

j=1,j 6=i

dj |aij |, i = 1, 2, . . . , n,

where di, i = 1, 2, . . . , n are given positive scale factors.

Hint: Use the fact that the eigenvalues are invariant under similarity trans-
formations.
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4. Let A ∈ Cn×n, and assume that ǫ = maxi6=j |aij | is small. Choose the diagonal
matrix D = diag (µ, 1, . . . , 1) so that the first Gerschgorin disk of DAD−1 is
as small as possible, without overlapping the other disks. Show that if the
diagonal elements of A are distinct then

µ =
ǫ

δ
+O(ǫ2), δ = min

i6=1
|aii − a11|,

and hence the first Gerschgorin disk is given by

|λ− a11| ≤ r1, r1 ≤ (n− 1)ǫ2/δ +O(ǫ3).

5. Compute the eigenvalues of B and A, where

B =

(
0 ǫ
ǫ 0

)

, A =





0 ǫ 0
ǫ 0 1
0 1 0



 .

Show that they interlace.

6. Use a suitable diagonal similarity and Gerschgorin’s theorem to show that the
eigenvalues of the tridiagonal matrix

T =









a b2
c2 a b3

. . .
. . .

. . .

cn−1 a bn
cn a









.

satisfy the inequality

|λ− a| < 2
√

max
i

|bi|max
i

|ci|.

7. Let A and B be square Hermitian matrices and

H =

(
A C
CH B

)

.

Show that for every eigenvalue λ(B) of B there is an eigenvalue λ(H) of H
such that

|λ(H) − λ(B)| ≤ (‖CHC‖2)
1/2.

Hint: Use the estimate (9.3.20).

8. (a) Let D = diag (di) and z = (z1, . . . , zn)T . Show that if λ 6= di, i = 1, . . . , n,
then

det(D + µzzT − λI) = det
(
(D − λI)(I + (D − λI)−1µzzT )

)
.

Using the identity det(I + xyT ) = 1 + yTx conclude that the eigenvalues λ of
D + µzzT are the roots of the secular equation

f(λ) = 1 + µ

n∑

i=1

z2
i

di − λ
= 0.
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(b) Show by means of Fischer’s Theorem 9.3.8 that the eigenvalues λi interlace
the elements di so that if , for example, µ ≥ 0 then

d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ · · · ≤ dn ≤ λn.

9.4 The Power Method

9.4.1 The Simple Power Method

One of the oldest methods for computing eigenvalues and eigenvectors of a matrix
is the power method. For a long time the power method was the only alternative
for finding the eigenvalues of a general non-Hermitian matrix. It is still one of the
few practical methods when the matrix A is very large and sparse. Although it
is otherwise no longer much used in its basic form for computing eigenvalues it is
central to the convergence analysis of many currently used algorithms. A variant of
the power method is also a standard method for computing eigenvectors when an
accurate approximation to the corresponding eigenvalue is known.

Let A ∈ Rn×n and q0 6= 0 be a given starting vector. In the power method
the sequence of vectors q1, q2, . . . is formed, where

qk = Aqk−1, k = 1, 2, . . . .

It follows that qk = Akq0, which explains the name of the method. Note that in
general it would be much more costly to form the matrix Ak, than to perform the
above sequence of matrix vector multiplications.

We assume in the following that the eigenvalues are ordered so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

To simplify the analysis of the power method assume that the matrix A is diago-
nalizable. Then the initial vector q0 can be expanded along the eigenvectors xi of
A, q0 =

∑n
j=1 αjxj , and we have

qk =

n∑

j=1

λk
jαjxj = λk

1

(

α1x1 +

n∑

j=2

(λj

λ1

)k

αjxj

)

, k = 1, 2, · · ·

If λ1 is a unique eigenvalue of maximum magnitude, |λ1| > |λ2|, we say that λ1 is
a dominant eigenvalue. If α1 6= 0, then

1

λk
1

qk = α1x1 +O

(∣
∣
∣
λ2

λ1

∣
∣
∣

k
)

, (9.4.1)

and up to a factor λk
1 the vector qk will converge to a limit vector which is an

eigenvector associated with the dominating eigenvalue λ1. The rate of convergence
is linear and equals |λ2|/|λ1|. One can show that this result holds also when A is
not diagonalizable by writing q0 as a linear combination of the vectors associated
with the Jordan (or Schur) canonical form of A, see Theorem 9.2.7 (9.2.1).
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In practice the vectors qk have to be normalized in order to avoid overflow or
underflow. Hence we modify the initial recursion as follows. Assume that ‖q0‖=1,
and compute

q̂k = Aqk−1, µk = ‖q̂k‖, qk = q̂k/µk, k = 1, 2, . . . (9.4.2)

Then we have

qk =
1

γk
Akq0, γk = µ1 · · ·µk,

and under the assumptions above qk converges to a normalized eigenvector x1. From
equations (9.4.1) and (9.4.2) it follows that

q̂k = λ1qk−1 +O(|λ2/λ1|k), lim
k→∞

µk = |λ1|. (9.4.3)

An approximation to λ1 can also be obtained from the ratio of elements in
the two vectors q̂k and qk−1. The convergence, which is slow when |λ2| ≈ |λ1|, can
be accelerated by Aitken extrapolation.

If the matrix A is real symmetric (or Hermitian) its eigenvalues are real and
the eigenvectors can be chosen so that X = (x1, . . . , xn) is real and orthogonal.
Using (9.4.1) one can show that the Rayleigh quotient converges twice as fast as
µk,

λ1 = ρ(qk−1) +O
(

|λ2/λ1|2k
)

, ρ(qk−1) = qT
k−1Aqk−1 = qT

k−1q̂k. (9.4.4)

Example 9.4.1.
The eigenvalues of the matrix

A =





2 1 0
1 3 1
0 1 4





are (4.732051, 3, 1.267949), correct to 6 decimals. If we take q0 = (1, 1, 1)T then we
obtain the Rayleigh quotients ρk and errors ek = λ1 − ρk given in the table below:

k ρk ek ek/ek−1

1 4.333333 0.398718

2 4.627119 0.104932 0.263
3 4.694118 0.037933 0.361
4 4.717023 0.015027 0.396
5 4.729620 0.006041 0.402

The ratios of successive errors converge to (λ2/λ1)
2 = 0.4019.

The convergence of the power method depends on the assumption that α1 6= 0,
and hence we only can prove convergence for almost all starting vectors. Even when
α1 = 0, rounding errors will tend to introduce a small component along x1 in Aq0,
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and therefore the method converges in practice also in this case. Convergence of
the power method can also be shown under the weaker assumption that λ1 = λ2 =
· · · = λr, and

|λr| > |λr+1| ≥ · · · ≥ |λn|.
However, an inherent weakness in this case is that the limit vector will depend on the
expansion of q0 along x1, · · · , xr, and qk will converge to one particular vector in the
invariant subspace span[x1, . . . , xr ]. To determine the whole dominating invariant
subspace we will have to perform the power method with p ≥ r linearly independent
starting vectors, see Section 9.4.6.

An attractive feature of the power method is that the matrix A is not explicitly
needed. It suffices to be able to form the matrix times vector product Ay for any
given vector y. If the matrix A is sparse the cost of one iteration step is proportional
to the number of nonzero elements in A.

9.4.2 Deflation

The simple power method can be used for computing several eigenvalues and the
associated eigenvectors by combining it with deflation. By that we mean a method
that given an eigenvector x1 and the corresponding eigenvalue λ1 computes a matrix
A1 such that λ(A) = λ1∪λ(A1). A way to construct such a matrix A1 in a stable way
was indicated in Section 9.1, see (9.1.16). However, this method has the drawback
that even if A is sparse the matrix A1 will in general be dense.

The following simple method for deflation is due to Hotelling. Suppose an
eigenpair (λ1, x1), ‖x1‖2 = 1, of a symmetric matrix A is known. If we define
A1 = A− λ1x1x

H
1 , then from the orthogonality of the eigenvectors xi we have

A1xi = Axi − λ1x1(x
T
1 xi) =

{
0, if i = 1;
λixi, if i 6= 1.

Hence the eigenvalues of A1 are 0, λ2, . . . , λn with corresponding eigenvectors equal
to x1, x2, . . . , xn. The power method can now be applied to A1 to determine the
dominating eigenvalue of A1. Note that A1 = A − λ1x1x

T
1 = (I − x1x

T
1 )A = P1A,

where P1 is an orthogonal projection.
When A is unsymmetric there is a corresponding deflation technique. Here

it is necessary to have the left eigenvector yT
1 as well as the right x1. If these are

normalized so that yT
1 x1 = 1, then we define A1 by A1 = A − λ1x1y

T
1 . From the

biorthogonality of the xi and yi we have

A1xi = Axi − λ1x1(y
T
1 xi) =

{
0, if i = 1;
λixi, if i 6= 1.

In practice an important advantage of this scheme is that it is not necessary to
form the matrix A1 explicitly. The power method, as well as many other methods,
only requires that an operation of the form y = A1x can be performed. This
operation can be performed as

A1x = Ax− λ1x1(y
T
1 x) = Ax− τx1, τ = λ1(y

T
1 x).
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Hence it suffices to have the vectors x1, y1 available as well as a procedure for
computing Ax for a given vector x. Obviously this deflation procedure can be
performed repeatedly, to obtain A2, A3, . . . .

This deflation procedure has to be used with caution, since errors will accu-
mulate. This can be disastrous in the nonsymmetric case, when the eigenvalues
may be badly conditioned.

9.4.3 Spectral Transformation and Inverse Iteration

The simple power method has the drawback that convergence may be arbitrarily
slow or may not happen at all. To overcome this difficulty we can use a spectral
transformation, which we now describe. Let p(x) and q(x) be two polynomials
such that q(A) is nonsingular and define r(A) = (q(A))−1p(A). Then if A has an
eigenvalue λ with corresponding eigenvector x it follows that r(λ) is an eigenvalue
of r(A) with the same eigenvector x.

As a simple application of this assume that A is nonsingular and take r(x) =
1/x. Then the matrix r(A) = A−1 has eigenvalues equal to 1/λi. Hence from (9.4.3)
it follows that if the eigenvalues of A satisfy

|λ1| ≥ · · · ≥ |λn−1| > |λn|

and the power method is applied to A−1, then qk will converge to the eigenvector
xn of A corresponding to λn. This is called inverse iteration , and was introduced
by H. Wielandt in 1944.

Inverse iteration can also be applied to the matrix A−µI, where µ is a chosen
shift of the spectrum. The eigenvalues of (A− µI)−1 equal

µj = (λj − µ)−1. (9.4.5)

and the iteration can be written

(A− µI)q̂k = qk−1, qk = q̂k/‖q̂k‖2, k = 1, 2, . . . . (9.4.6)

Note that there is no need to explicitly invert A − µI. Instead we compute a
triangular factorization of A − µI, and in each step of (9.4.6) solve two triangular
systems

L(Uq̂k) = Pqk−1, P (A− µI) = LU.

For a dense matrix A one step of the iteration (9.4.5) is therefore no more costly
than one step of the simple power method. However, if the matrix is sparse the
total number of nonzero elements in L and U may be much larger than in A. Note
that if A is positive definite (or diagonally dominant) this property is in general not
shared by the shifted matrix (A − µI). Hence in general partial pivoting must be
employed.

If µ is chosen sufficiently close to an eigenvalue λi, so that |λi −µ| ≪ |λj −µ|,
λi 6= λj then (λi − µ)−1 is a dominating eigenvalue of B,

|λi − µ|−1 ≫ |λj − µ|−1, λi 6= λj . (9.4.7)
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Then qk will converge fast to the eigenvector xi, and an approximation λ̄i to the
eigenvalue λi of A is obtained from the Rayleigh quotient

1

λi − µ
≈ qT

k−1(A− µI)−1qk−1 = qT
k−1q̂k,

where q̂k satisfies (A− µI)q̂k = qk−1. Thus

λ̄i = µ+ 1/(qT
k−1q̂k). (9.4.8)

An a posteriori bound for the error in the approximate eigenvalue λ̄i of A can
be obtained from the residual corresponding to (λ̄i, q̂k), which equals

rk = Aq̂k −
(

µ+ 1/(qT
k−1q̂k)

)

q̂k = qk−1 − q̂k/(q
T
k−1q̂k).

Then, by Theorem 9.3.12, (λ̄i, q̂k) is an exact eigenpair of a matrix A + E, where
‖E‖2 ≤ ‖rk‖2/‖q̂k‖2. If A is real symmetric then the error in the approximative

eigenvalue λ̂i of A is bounded by ‖rk‖2/‖q̂k‖2.

9.4.4 Eigenvectors by Inverse Iteration

After extensive developments by Wilkinson and others inverse iteration has become
the method of choice for computing the associated eigenvector to an eigenvalue
λi, for which an accurate approximation already is known. Often just one step of
inverse iteration suffices.

Inverse iteration will in general converge faster the closer µ is to λi. However,
if µ equals λi up to machine precision then A−µI in (9.4.6) is numerically singular.
It was long believed that inverse iteration was doomed to failure when µ was chosen
too close to an eigenvalue. Fortunately this is not the case!

If Gaussian elimination with partial pivoting is used the computed factoriza-
tion of (A− µI) will satisfy

P (A+ E − µI) = L̄Ū ,

where ‖E‖2/‖A‖2 = f(n)O(u), and u is the unit roundoff and f(n) a modest
function of n (see Theorem 6.6.5). Since the rounding errors in the solution of the
triangular systems usually are negligible the computed qk will nearly satisfy

(A+ E − µI)q̂k = qk−1.

This shows that the inverse power method will give an approximation to an eigen-
vector of a slightly perturbed matrix A+ E, independent of the ill-conditioning of
(A− µI).

To decide when a computed vector is a numerically acceptable eigenvector
corresponding to an approximate eigenvalue we can apply the simple a posteriori
error bound in Theorem 9.3.12 to inverse iteration. By (9.4.6) qk−1 is the residual
vector corresponding to the approximate eigenpair (µ, q̂k). Hence, where u is the
unit roundoff, q̂k is a numerically acceptable eigenvector if

‖qk−1‖2/‖q̂k‖2 ≤ u‖A‖2. (9.4.9)
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Example 9.4.2.

The matrix A =

(
1 1

0.1 1.1

)

has a simple eigenvalue λ1 = 0.7298438 and the

corresponding normalized eigenvector is x1 = (0.9653911,−0.2608064)T . We take
µ = 0.7298 to be an approximation to λ1, and perform one step of inverse iteration,
starting with q0 = (1, 0)T we get

A− µI = LU =

(
1 0

0.37009623 1

)(
0.2702 1

0 0.0001038

)

and q̂1 = 104(1.3202568,−0.3566334)T , q1 = (0.9653989,−0.2607777)T , which agrees
with the correct eigenvector to more than four decimals. From the backward error
bound it follows that 0.7298 and q1 is an exact eigenpair to a matrix A+E, where
‖E‖2 ≤ 1/‖q̂1‖2 = 0.73122 · 10−4.

Inverse iteration is a useful algorithm for calculation of specified eigenvectors
corresponding to well separated eigenvalues for dense matrices. In order to save work
in the triangular factorizations the matrix is usually first reduced to Hessenberg or
real tridiagonal form, by the methods described in Section 9.6.

It is quite tricky to develop inverse iteration into a reliable algorithm in case
the eigenvalues are not well separated. When A is symmetric and eigenvectors
corresponding to multiple or very close eigenvalues are required, special steps have
to be taken to ensure orthogonality of the eigenvectors. In the nonsymmetric case
the situation can be worse in particular if the eigenvalue is defective or very ill-
conditioned. Then, unless a suitable initial vector is used inverse iteration may not
produce a numerically acceptable eigenvector. Often a random vector with elements
from a uniform distribution in [−1, 1] will work.

Example 9.4.3.
The matrix

A =

(
1 + ǫ 1
ǫ 1 + ǫ

)

has eigenvalues λ = (1 + ǫ)±√
ǫ. Assume that |ǫ| ≈ u, where u is the machine pre-

cision. Then the eigenpair λ = 1, x = (1, 0)T is a numerically acceptable eigenpair
of A, since it is exact for the matrix A+ E, where

E = −
(
ǫ 0
ǫ ǫ

)

, ‖E‖2 <
√

3u.

If we perform one step of inverse iteration starting from the acceptable eigenvector
q0 = (1, 0)T then we get

q̂1 =
1

1 − ǫ

(
−1
1

)

.

No growth occurred and it can be shown that (1, q1) is not an acceptable eigenpair of
A. If we carry out one more step of inverse iteration we will again get an acceptable
eigenvector!
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Equation (9.3.19) gives an expression for the backward error E of the com-
puted eigenpair. An error bound can then be obtained by applying the perturbation
analysis of Section 9.3. In the Hermitian case the eigenvalues are perfectly condi-
tioned, and the error bound equals ‖E‖2. In general the sensitivity of an eigenvalue
λ is determined by 1/s(λ) = 1/|yHx|, where x and y are right and left unit eigen-
vector corresponding to λ, see Section 9.3.2. If the power method is applied also to
AH (or in inverse iteration to (AH − µI)−1) we can generate an approximation to
y and hence estimate s(λ) .

9.4.5 Rayleigh Quotient Iteration

A natural variation of the inverse power method is to vary the shift µ in each
iteration. The previous analysis suggests choosing a shift equal to the Rayleigh
quotient of the current eigenvector approximation. This leads to the Rayleigh
Quotient Iteration (RQI):

Let q0, ‖q0‖2 = 1, be a given starting vector, and for k = 1, 2, . . . compute

(
A− ρ(qk−1)I

)
q̂k = qk−1, ρ(qk−1) = qT

k−1Aqk−1, (9.4.10)

and set qk = q̂k/‖q̂k‖2. Here ρ(qk−1) is the Rayleigh quotient of qk−1.
RQI can be used to improve a given approximate eigenvector. It can also

be used to find an eigenvector of A starting from any unit vector q0, but then we
cannot say to which eigenvector {qk} will converge. There is also a possibility that
some unfortunate choice of starting vector will lead to endless cycling. However,
it can be shown that such cycles are unstable under perturbations so this will not
occur in practice.

In the RQI a new triangular factorization must be computed of the matrix
A − ρ(qk−1)I for each iteration step, which makes this algorithm much more ex-
pensive than ordinary inverse iteration. However, if the matrix A is, for example,
of Hessenberg (or tridiagonal) form the extra cost is small. If the RQI converges
towards an eigenvector corresponding to a simple eigenvalue then it can be shown
that convergence is quadratic. More precisely, it can be shown that

ηk ≤ ckη
2
k−1, ηk = ‖Aqk − ρ(qk)qk‖2,

where ck changes only slowly, see Stewart [43, , Section7.2].
If the matrix A is real and symmetric (or Hermitian), then the situation is

even more satisfactory because of the result in Theorem 9.3.14. This theorem says
that if an eigenvector is known to precision ǫ, the Rayleigh quotient approximates
the corresponding eigenvalue to precision ǫ2. This leads to cubic convergence for the
RQI for real symmetric (or Hermitian) matrices. Also, in this case it is no longer
necessary to assume that the iteration converges to an eigenvector corresponding to
a simple eigenvalue. Indeed, it can be shown that the for Hermitian matrices RQI
has global convergence, i.e., it converges from any starting vector q0. A key fact in
the proof is that the norm of the residuals always decrease, ηk+1 ≤ ηk, for all k, see
Parlett [38, Section 4.8].
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9.4.6 Subspace Iteration

A natural generalization of the power method is to iterate simultaneously with
several vectors. Let Z0 = S = (s1, . . . , sp) ∈ Rn×p, be an initial matrix of rank
p > 1. If we compute a sequence of matrices {Zk}, from

Zk = AZk−1, k = 1, 2, . . . , (9.4.11)

then it holds
Zk = AkS = (Aks1, . . . , A

ksp). (9.4.12)

In applications A is often a very large sparse matrix and p≪ n.
At first it is not clear that we gain much by iterating with several vectors.

If A has a dominant eigenvalue λ1 all the columns of Zk will converge to a scalar
multiple of the dominant eigenvector x1. Hence Zk will be close to a matrix of
numerical rank one.

We first note that we are really computing a sequence of subspaces. If S =
span (S) the iteration produces the subspaces AkS = span (AkS). Hence the prob-
lem is that the basis Aks1, . . . , A

ksp of this subspace becomes more and more ill-
conditioned. This can be avoided by be maintaining orthogonality between the
columns as follows: Starting with a matrix Q0 with orthogonal columns we com-
pute

Zk = AQk−1 = QkRk, k = 1, 2, . . . , (9.4.13)

where QkRk is the QR decomposition of Zk. Here Qk can be computed, e.g.,
by Gram-Schmidt orthogonalization of Zk. The iteration (9.4.13) is also called
orthogonal iteration. Note that Rk plays the rule of a normalizing matrix. We
have Q1 = Z1R

−1
1 = AQ0R

−1
1 . Similarly it can be shown by induction that

Qk = AkQ0(Rk · · ·R1)
−1. (9.4.14)

It is important to note that if Z0 = Q0, then both iterations (9.4.11) and (9.4.13)
will generate the same sequence of subspaces. R(AkQ0) = R(Qk). However, in
orthogonal iteration an orthogonal bases for the subspace is calculated at each
iteration. (Since the iteration (9.4.11) is less costly it is sometimes preferable to
perform the orthogonalization in (9.4.13) only occasionally when needed.)

The method of orthogonal iteration overcomes several of the disadvantages of
the power method. In particular it allows us to determine a dominant invariant
subspace of a multiple eigenvalue.

Assume that the eigenvalues of A satisfy

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn| (9.4.15)

and let (
UH

1

UH
2

)

A(U1 U2) =

(
T11 T12

0 T22

)

, (9.4.16)

be a Schur decomposition of A, where

diag (T11) = (λ1, · · · , λp)
H .
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Then the subspace U1 = R(U1) is a dominant invariant subspace of A. It can
be shown that almost always the subspaces R(Qk) in orthogonal iteration (9.4.13)
converge to U1 when k → ∞.

Theorem 9.4.1.
Let U1 = R(U1) be a dominant invariant subspace of A defined in (9.4.16).

Let S be a p-dimensional subspace of Cn such that S ∩U⊥
1 = {0}. Then there exists

a constant C such that

θmax(A
kS,U1) ≤ C|λp+1/λp|k.

where θmax(X ,Y) denotes the largest angle between the two subspaces (see Defini-
tion 9.3.6).

Proof. See Golub and Van Loan [21, pp. 333].

If we perform subspace iteration on p vectors, we are simultaneously perform-
ing subspace iteration on a nested sequence of subspaces

span (s1), span (s1, s2), . . . , span (s1, s2, . . . , sp).

This is also true for orthogonal iteration since this property is not changed by the
orthogonalization procedure. Hence Theorem 9.4.1 shows that whenever |λq+1/λq|
is small for some q ≤ p, the convergence to the corresponding dominant invariant
subspace of dimension q will be fast.

We now show that there is a duality between direct and inverse subspace
iteration.

Lemma 9.4.2. (Watkins [1982])
Let S and S⊥ be orthogonal complementary subspaces of Cn. Then for all

integers k the spaces AkS and (AH)−kS⊥ are also orthogonal.

Proof. Let x ⊥ y ∈ Cn. Then (Akx)H(AH)−ky = xHy = 0 and thus Akx ⊥
(AH)−ky.

This duality property means that the two sequences

S,AS,A2S, . . . , S⊥, (AH)−1S⊥, (AH)−2S⊥, . . .

are equivalent in that they yield orthogonal complements! This result will be im-
portant in Section 9.7.1 for the understanding of the QR algorithm.

Approximations to eigenvalues of A can be obtained from eigenvalues of the
sequence of matrices

Bk = QT
kAQk = QT

kZk+1 ∈ Rp×p. (9.4.17)

Note that Bk is a generalized Rayleigh quotient, see Section 9.8.1– 9.8.2. Finally,
both direct and inverse orthogonal iteration can be performed using a sequence of
shifted matrices A− µkI, k = 0, 1, 2, . . ..
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Review Questions

1. Describe the power method and its variants. Name at least one important application
of the shifted inverse power method.

2. If the Rayleigh Quotient Iteration converges to a simple eigenvalue of a general
matrix A, what is the asymptotic rate of convergence? If A is Hermitian, what can
you say then?

3. Describe how the power method can be generalized to simultaneously iterating with
several starting vector.

Problems

1. Let A ∈ Rn×n be a symmetric matrix with eigenvalues satisfying λ1 > λ2 ≥ · · · ≥
λn−1 > λn. Show that the choice µ = (λ2 +λn)/2 gives fastest convergence towards
the eigenvector corresponding to λ1 in the power method applied to A − µI . What
is this rate of convergence?

2. The matrix A has one real eigenvalue λ = λ1 and another λ = −λ1. All remaining
eigenvalues satisfy |λ| < |λ1|. Generalize the simple power method so that it can be
used for this case.

3. (a) Compute the residual vector corresponding to the last eigenpair obtained in Ex-
ample 9.4.1, and give the corresponding backward error estimate.

(b) Perform Aitken extrapolation on the Rayleigh quotient approximations in Ex-
ample 9.4.1 to compute an improved estimate of λ1.

4. The symmetric matrix

A =

0

B

B

@

14 7 6 9
7 9 4 6
6 4 9 7
9 6 7 15

1

C

C

A

has an eigenvalue λ ≈ 4. Compute an improved estimate of λ with one step of
inverse iteration using the factorization A − 4I = LDLT .

5. For a symmetric matrix A ∈ Rn×n it holds that σi = |λi|, i = 1, . . . , n. Compute
with inverse iteration using the starting vector x = (1,−2, 1)T the smallest singular
value of the matrix

A =

0

@

1/5 1/6 1/7
1/6 1/7 1/8
1/7 1/8 1/9

1

A

with at least two significant digits.

6. The matrix

A =

„

1 1
ǫ 1 + ǫ

«

has two simple eigenvalues close to 1 if ǫ > 0. For ǫ = 10−3 and ǫ = 10−6 first
compute the smallest eigenvalue to six decimals, and then perform inverse iteration
to determine the corresponding eigenvectors. Try as starting vectors both x = (1, 0)T

and x = (0, 1)T .
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9.5 Jacobi Methods

9.5.1 Jacobi Methods for Real Symmetric Matrices

Jacobi’s7 method is one of the oldest methods for solving the eigenvalue problem
for real symmetric (or Hermitian) matrices. It is at least three times slower than
the QR algorithm, to be described in the next section. However, Jacobi’s method
is easily parallelized and there are problems, for which it should be prefered.

Jacobi’s method is an efficient method when one has to solve eigenvalue prob-
lems for a sequence of matrices, differing only slightly from each other, or, equiv-
alently, for computing eigenvalues of a nearly diagonal matrix. Jacobi’s method,
with a proper stopping criterion, can be shown to compute all eigenvalues of sym-
metric positive definite matrices with uniformly better relative accuracy, than any
algorithms which first reduces the matrix to tridiagonal form. Note that, although
the QR algorithm is backward stable (see Section 9.7), high relative accuracy can
only be guaranteed for the larger eigenvalues (those near ‖A‖ in magnitude).

The Jacobi method solves the eigenvalue problem for A ∈ Rn×n by employing
a sequence of similarity transformations

A0 = A, Ak+1 = JT
k AkJk (9.5.1)

such that the sequence of matrices Ak, k = 1, 2, ... tends to a diagonal form. For each
k, Jk is chosen as a plane rotations Jk = Gpq(θ), defined by a pair of indices (p, q),
p < q, called the pivot pair. The angle θ is chosen so that the off-diagonal elements
apq = aqp are reduced to zero, i.e. by solving a 2 × 2 subproblems. We note that
only the entries in rows and columns p and q of A will change, and since symmetry
is preserved only the upper triangular part of each A needs to be computed.

To construct the Jacobi transformation Jk we consider the symmetric 2 × 2
eigenvalue problem for the principal submatrix Apq formed by rows and columns p
and q. For simplicity of notation we rename Ak+1 = A′ and Ak = A. Hence we
want to determine c = cos θ, s = sin θ so that

(
lp 0
0 lq

)

=

(
c s
−s c

)T (
app apq

aqp aqq

)(
c s
−s c

)

. (9.5.2)

Equating the off-diagonal elements we obtain (as apq = aqp)

0 = (app − aqq)cs+ apq(c
2 − s2), (9.5.3)

which shows that the angle θ satisfies

τ ≡ cot 2θ = (aqq − app)/(2apq), apq 6= 0. (9.5.4)

The two diagonal elements app and aqq are transformed as follows,

a′pp = c2app − 2csapq + s2aqq = app − tapq,

a′qq = s2app + 2csapq + c2aqq = aqq + tapq.

7Carl Gustf Jacob Jacobi (1805–1851), German mathematician. Jacobi joined the faculty of
Berlin university in 1825. Like Euler, he was a profilic calculator, who drew a great deal of insight
from immense algorithmical work. His method for computing eigenvalues was publsihed in 1846;
see [27].
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where t = tan θ. We call this a Jacobi transformation. The following stopping
criterion should be used:

if |aij | ≤ tol (aiiajj)
1/2, set aij = 0, (9.5.5)

where tol is the relative accuracy desired.
A stable way to perform a Jacobi transformation is to first compute t = tan θ

as the root of smallest modulus to the quadratic equation t2+2τt−1 = 0. This choice
ensures that |θ| < π/4 , and can be shown to minimize the difference ‖A′ − A‖F .
In particular this will prevent the exchange of the two diagonal elements app and
aqq, when apq is small, which is critical for the convergence of the Jacobi method.
The transformation (9.5.2) is best computed by the following algorithm.

Algorithm 9.5.1
Jacobi transformation matrix (apq 6= 0):

[c, s, lp, lq] = jacobi(app, apq, aqq)

τ = (aqq − app)/(2apq);

t = sign (τ)/(|τ | +
√

1 + τ2);

c = 1/
√

1 + t2; s = t · c;
lp = app − tapq;

lq = aqq + tapq;

end

The computed transformation is applied also to the remaining elements in
rows and columns p and q of the full matrix A. These are transformed for j 6= p, q
according to

a′jp = a′pj = capj − saqj = apj − s(aqj + rapj),

a′jq = a′qj = sapj + caqj = aqj + s(apj − raqj).

where r = s/(1 + c) = tan(θ/2). (The formulas are written in a form, due to
Rutishauser [40, ], which reduces roundoff errors.)

If symmetry is exploited, then one Jacobi transformation takes about 4n flops.
Note that an off-diagonal element made zero at one step will in general become
nonzero at some later stage. The Jacobi method will also destroy the band structure
if A is a banded matrix.

The convergence of the Jacobi method depends on the fact that in each step
the quantity

S(A) =
∑

i6=j

a2
ij = ‖A−D‖2

F ,

i.e., the Frobenius norm of the off-diagonal elements is reduced. To see this, we
note that the Frobenius norm of a matrix is invariant under multiplication from left
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or right with an orthogonal matrix. Therefore, since a′pq = 0 we have

(a′pp)
2 + (a′qq)

2 = a2
pp + a2

qq + 2a2
pq.

We also have that ‖A′‖2
F = ‖A‖2

F , and it follows that

S(A′) = ‖A′‖2
F −

n∑

i=1

(a′ii)
2 = S(A) − 2a2

pq.

There are various strategies for choosing the order in which the off-diagonal
elements are annihilated. Since S(A′) is reduced by 2a2

pq, the optimal choice is
to annihilate the off-diagonal element of largest magnitude. This is done in the
classical Jacobi method. Then since

2a2
pq ≥ S(Ak)/N, N = n(n− 1)/2,

we have S(Ak+1) ≤ (1−1/N)S(Ak). This shows that for the classical Jacobi method
Ak+1 converges at least linearly with rate (1−1/N) to a diagonal matrix. In fact it
has been shown that ultimately the rate of convergence is quadratic, so that for k
large enough, we have S(Ak+1) < cS(Ak)2 for some constant c. The iterations are
repeated until S(Ak) < δ‖A‖F , where δ is a tolerance, which can be chosen equal
to the unit roundoff u. From the Bauer–Fike Theorem 9.3.4 it then follows that the
diagonal elements of Ak then approximate the eigenvalues of A with an error less
than δ‖A‖F .

In the Classical Jacobi method a large amount of effort must be spent on
searching for the largest off-diagonal element. Even though it is possible to reduce
this time by taking advantage of the fact that only two rows and columns are
changed at each step, the Classical Jacobi method is almost never used. In a
cyclic Jacobi method, the N = 1

2n(n − 1) off-diagonal elements are instead
annihilated in some predetermined order, each element being rotated exactly once
in any sequence of N rotations called a sweep. Convergence of any cyclic Jacobi
method can be guaranteed if any rotation (p, q) is omitted for which |apq| is smaller
than some threshold; see Forsythe and Henrici [13, ]. To ensure a good rate
of convergence this threshold tolerance should be successively decreased after each
sweep.

For sequential computers the most popular cyclic ordering is the row-wise
scheme, i.e., the rotations are performed in the order

(1, 2), (1, 3), . . . (1, n)
(2, 3), . . . (2, n)

. . . . . .
(n− 1, n)

(9.5.6)

which is cyclically repeated. About 2n3 flops per sweep is required. In practice,
with the cyclic Jacobi method not more than about 5 sweeps are needed to obtain
eigenvalues of more than single precision accuracy even when n is large. The number
of sweeps grows approximately as O(logn), and about 10n3 flops are needed to
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compute all the eigenvalues of A. This is about 3–5 times more than for the QR
algorithm.

An orthogonal system of eigenvectors of A can easily be obtained in the Jacobi
method by computing the product of all the transformations

Xk = J1J2 · · ·Jk.

Then limk→∞Xk = X . If we put X0 = I, then we recursively compute

Xk = Xk−1Jk, k = 1, 2, . . . (9.5.7)

In each transformation the two columns (p, q) of Xk−1is rotated, which requires
4n flop. Hence in each sweep an additional 2n flops is needed, which doubles the
operation count for the method.

The Jacobi method is very suitable for parallel computation since several
noninteracting rotations, (pi, qi) and (pj , qj), where pi, qi are distinct from pj , qj ,
can be performed simultaneously. If n is even the n/2 Jacobi transformations can be
performed simultaneously. A sweep needs at least n− 1 such parallel steps. Several
parallel schemes which uses this minimum number of steps have been constructed.
These can be illustrated in the n = 8 case by

(p, q) =

(1, 2), (3, 4), (5, 6), (7, 8)
(1, 4), (2, 6), (3, 8), (5, 7)
(1, 6), (4, 8), (2, 7), (3, 5)
(1, 8), (6, 7), (4, 5), (2, 3)
(1, 7), (8, 5), (6, 3), (4, 2)
(1, 5), (7, 3), (8, 2), (6, 4)
(1, 3), (5, 2), (7, 4), (8, 6)

.

The rotations associated with each row of the above can be calculated simul-
taneously. First the transformations are constructed in parallel; then the transfor-
mations from the left are applied in parallel, and finally the transformations from
the right.

9.5.2 Jacobi Methods for Computing the SVD.

Several Jacobi-type methods for computing the SVD A = UΣV T of a matrix were
developed in the 1950’s. The shortcomings of some of these algorithms have been
removed, and as for the real symmetric eigenproblem, there are cases for which
Jacobi’s method is to be preferred over the QR-algorithm for the SVD. In particular,
it computes the smaller singular values more accurately than any algorithm based
on a preliminary bidiagonal reduction.

There are two different ways to generalize the Jacobi method for the SVD
problem. We assume that A ∈ Rn×n is a square nonsymmetric matrix. This is no
restriction, sincer we can first compute QR factorization

A = Q

(
R
0

)
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and then apply the Jacobi-SVD method to R. In the two-sided Jacobi-SVD
algorithm for the SVD of A (Kogbetliantz [29]) the elementary step consists of
two-sided Givens transformations

A′ = Jpq(φ)AJT
pq(ψ), (9.5.8)

where Jpq(φ) and Jpq(ψ) are determined so that a′pq = a′qp = 0. Note that only
rows and columns p and q in A are affected by the transformation. The rotations
Jpq(φ) and Jpq(ψ) are determined by computing the SVD of a 2 × 2 submatrix

A =

(
app apq

aqp aqq

)

, app ≥ 0, aqq ≥ 0.

The assumption of nonnegative diagonal elements is no restriction, since we can
change the sign of these by premultiplication with an orthogonal matrix diag (±1,±1).

Since the Frobenius norm is invariant under orthogonal transformations it
follows that

S(A′) = S(A) − (a2
pq + a2

qp), S(A) = ‖A−D‖2
F .

This relation is the basis for a proof that the matrices generated by Kogbetliantz’s
method converge to a diagonal matrix containing the singular values of A. Orthog-
onal systems of left and right singular vectors can be obtained by accumulating the
product of all the transformations.

The rotation angles can be determined as follows: First a Givens transforma-
tion is applied to the left to transform it into an upper triangular 2 × 2 matrix. If
r12 6= 0, then we set

(
cosφ sinφ
− sinφ cosφ

)T (
r11 r12
0 r22

)(
cosψ sinψ
− sinψ cosψ

)

=

(
σ1 0
0 σ2

)

(9.5.9)

where the rotation angles are determined by the formula

tan 2ψ =
2r11r12

r222 − r211 + r212
, (9.5.10)

tanφ =
r12 + r11 tanψ

r22
=

r22 tanψ

r11 − r12 tanψ
. (9.5.11)

For stability reasons, in the latter formula, the quotients of absolutely larger num-
bers are always taken An alternative algorithm for the SVD of 2×2 upper triangular
matrix, which always gives high relative accuracy in the singular values and vectors,
has been developed by Demmel and Kahan; see Problem 5.

At first a drawback of the above algorithm seems to be that it works all the
time on a full m × n unsymmetric matrix. However, if a proper cyclig rotation
strategy is used, then at each step the matrix will be essentially triangular. If the
column cyclic strategy

(1, 2), (1, 3), (2, 3), . . . , (1, n), . . . , (n− 1, n)
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is used an upper triangular matrix will be successievly transformed into a lower
triangular matrix. The next sweep will transform it back to an upper triangular
matrix. During the whole process the matrix can be stored in an upper triangular
array. The initial QR factorization also cures some global convergence problems
present in the twosided Jacobi-SVD method.

In the one-sided Jacobi-SVD algorithm Givens transformations are used to
find an orthogonal matrix V such that the matrixAV has orthogonal columns. Then
AV = UΣ and the SVD of A is readily obtained. The columns can be explicitly
interchanged so that the final columns of AV appear in order of decreasing norm.
The basic step rotates two columns:

(âp, âq) = (ap, aq)

(
c s
−s c

)

, p < q. (9.5.12)

The parameters c, s are determined so that the rotated columns are orthogonal, or
equivalently so that

(
c s
−s c

)T ( ‖ap‖2
2 aT

p aq

aT
q ap ‖aq‖2

2

)(
c s
−s c

)

=

(
λ1 0
0 λ2

)T

is diagonal. This 2× 2 symmetric eigenproblem can be solved by a Jacobi transfor-
mation. To determine the rotation it is better to first compute the QR factorization

(ap, aq) = (q1, q2)

(
rpp rpq

0 rqq

)

≡ QR.

If now the 2 × 2 SVD R = UΣV T is computed, using one of the algorithm given
below, then since RV = UΣ

(ap, aq)V = (q1, q2)UΣ

will have orthogonal columns. It follows that V is the desired rotation in (9.5.12).
Clearly, the one-sided algorithm is mathematically equivalent to applying Ja-

cobi’s method to diagonalize C = ATA, and hence its convergence properties are
the same. Convergence of Jacobi’s method is related to the fact that in each step
the sum of squares of the off-diagonal elements

S(C) =
∑

i6=j

c2ij , C = ATA

is reduced. Hence the rate of convergence is ultimately quadratic, also for multiple
singular values. Note that the one-sided Jacobi SVD will by construction have U
orthogonal to working accuracy, but loss of orthogonality in V may occur. Therefore
the columns of V should be reorthogonalized using a Gram–Schmidt process at the
end.

The one-sided method can be applied to a general real (or complex) matrix
A ∈ Rm×n, m ≥ n, but an intial QR factorization should performed to speed
up convergence. If this is performed with row and column pivoting, then high
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relative accuracy can be achieved for matrices A that are diagonal scalings of a
well-conditioned matrix, that is which can be decomposed as

A = D1BD2,

where D1, D2 are diagonal and B well-conditioned. It has been domonstrated that
if presorting the rows after decreasing norm ‖ai,:‖∞ and then using column pivoting
only gives equally good results. By a careful choice of the rotation sequence the
esential triangularity of the matrix can be preserved during the Jacobi iterations.

In a cyclic Jacobi method, the off-diagonal elements are annihilated in some
predetermined order, each element being rotated exactly once in any sequence of
N = n(n − 1)/2 rotations called a sweep. Parallel implementations can take ad-
vantage of the fact that noninteracting rotations, (pi, qi) and (pj , qj), where pi, qi
and pj , qj are distinct, can be performed simultaneously. If n is even n/2 transfor-
mations can be performed simultaneously, and a sweep needs at least n − 1 such
parallel steps. In practice, with the cyclic Jacobi method not more than about five
sweeps are needed to obtain singular values of more than single precision accuracy
even when n is large. The number of sweeps grows approximately as O(log n).

The alternative algorithm for the SVD of 2× 2 upper triangular matrix below
always gives high relative accuracy in the singular values and vectors, has been
developed by Demmel and Kahan, and is based on the relations in Problem 5.

Review Questions

1. What is the asymptotic speed of convergence for the classical Jacobi method?
Discuss the advantages and drawbacks of Jacobi methods compared to the
QR algorithm.

2. There are two different Jacobi-type methods for computing the SVD were
developed. What are they called? What 2 × 2 subproblems are they based
on?

Problems

1. Implement Jacobi’s algorithm, using the stopping criterion (9.5.5) with tol =
10−12. Use it to compute the eigenvalues of

A =





−0.442 −0.607 −1.075
−0.607 0.806 0.455
−1.075 0.455 −1.069



 ,

How many Jacobi steps are used?
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2. Suppose the matrix

Ã =





1 10−2 10−4

10−2 2 10−2

10−4 10−2 4



 .

has been obtained at a certain step of the Jacobi algorithm. Estimate the
eigenvalues of Ã as accurately as possible using the Gerschgorin circles with a
suitable diagonal transformation, see Problem 9.3.3.

3. Jacobi-type methods can also be constructed for Hermitian matrices using
elementary unitary rotations of the form

U =

(
cos θ α sin θ

−ᾱ sin θ cos θ

)

, |α| = 1.

Show that if we take α = apq/|apq| then equation (9.5.4) for the angle θ
becomes

τ = cot 2θ = (app − aqq)/(2|apq|), |apq| 6= 0.

(Note that the diagonal elements app and aqq of a Hermitian matrix are real.)

4. Let A ∈ C2×2 be a given matrix, and U a unitary matrix of the form in
Problem 3. Determine U so that the matrix B = U−1AU becomes upper
triangular, that is, the Schur Canonical Form of A. Use this result to compute
the eigenvalues of

A =

(
9 10
−2 5

)

.

Outline a Jacobi-type method to compute the Schur Canonical form of a
general matrix A.

5. Consider the SVD of an upper triangular 2×2 matrix (9.5.9). where σ1 ≥ σ2.

(a) Show that the singular values satisfy

σ1σ2 = |r11r22|, σ2
1 + σ2

2 = r211 + r222 + r212.

Deduce that

σ1,2 =
1

2

∣
∣
∣

√

(r11 + r22)2 + r212 ±
√

(r11 − r22)2 + r212

∣
∣
∣, (9.5.13)

of which the larger is σ1 and the smaller σ2 = |r11r22|/σ1.

(b) Show that for the right singular vector (sv, cv) is parallel to (r211−σ2
1 , r11r12).

The left singular vectors then are obtained from

(cu, su) = (r11cv − r12sv, r22sv)/σ1.
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SVD of 2 × 2 upper triangular matrix (9.5.9) with |r11| ≥ |r22|:
[cu, su, cv, sv, σ1, σ2] = svd(r11, r12, r22)

l = (|r11| − |r22|)/|r11|;
m = r12/r11; t = 2 − l;

s =
√

t2 +m2; r =
√

l2 +m2;

a = 0.5(s+ r);

σ1 = |r11|a; σ2 = |r22|/a;
t = (1 + a)(m/(s+ t) +m/(r + l));

l =
√

t2 + 4;

cv = 2/l; sv = −t/l;
cu = (cv − svm)/a; su = sv(r22/r11)/a;

end

6. Show that if Kogbetliantz’s method is applied to a triangular matrix then
after one sweep of the row cyclic algorithm (9.5.6) an upper (lower) triangular
matrix becomes lower (upper) triangular.

9.6 Transformation to Condensed Form

9.6.1 Introduction

By Theorem 9.2.1 any matrix can be reduced to upper triangular form, the Schur
canonical form, by a unitary similarity transformation. For a normal matrix this
triangular form must necessarily be diagonal. In both cases we can read off the
eigenvalues from the diagonal. The construction of the similarity transformation
depended on the knowledge of successive eigenpairs, and this transformation can
therefore in general not be realized by a finite process.

It is, however, possible to reduce a matrix to upper Hessenberg form, which is
close to triangular, by a finite number of elementary similarity transformations. In
the symmetric case, a symmetric tridiagonal form is obtained. In several algorithms
for finding the eigenvalues and eigenvectors of a matrix the work is greatly reduced
if this transformation is first carried out.

9.6.2 Unitary Elementary Transformations

For transformation of complex matrices to condensed form we need to consider
unitary Givens and Householder transformations. To generalize Givens rotations
to the complex case, we consider matrices of the form

G =

(
c̄ s̄
−s c

)

, c = eiγ cos θ, s = eiδ sin θ.

It is easily verified that the matrix GH = G, i.e., G is unitary, and that G−1 = GH

is itself a plane rotation Given a complex vector (x1 x2)
T ∈ C2 we now want to
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determine c and s so that

G

(
x1

x2

)

=

(
σ
0

)

, σ2 = |x1|2 + |x2|2, (9.6.1)

Further, (9.6.1) holds provided that

c = x1/σ, s = x2/σ.

The following algorithm generalizes Algorithm 7.4.2 to the complex case:

Algorithm 9.6.1

Given x = (x1, x2)
T 6= 0 construct c, s, and real σ in a complex Givens rotation

such that Gx = σ(1, 0)T :

[c, s, σ] = givrot(x1, x2)

if |x1| > |x2|
t = x2/x1; u =

√

1 + |t|2;
c = (x1/|x1|)/u; s = tc; σ = x1/c;

else

t = x1/x2; u =
√

1 + |t|2;
s = (x2/|x2|)/u; c = ts; σ = x2/s;

end

Householder transformations can also be generalized to the complex case. We
consider unitary Householder transformations of the form

P = I − 1

γ
uuH , γ =

1

2
uHu, u ∈ Cn. (9.6.2)

It is easy to check that P is Hermitian, PH = P , and unitary, P−1 = P . Given a
vector x ∈ Cn we want to determine u such that Px = ke1, |k| = σ = ‖x‖2. It is
easily verified that if x1 = eiα1 |x1| then u and γ are given by

u = x+ ke1, k = σeiα1 , (9.6.3)

and

γ =
1

2
(σ2 + 2|k||x1| + |k|2) = σ(σ + |x1|). (9.6.4)

Note that u differs from x only in its first component.
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9.6.3 Reduction to Hessenberg Form

We now show how to reduce a matrix A ∈ Rn×n to Hessenberg form by an
orthogonal similarity,

QTAQ = H =










h11 h12 · · · h1,n−1 h1n

h21 h22 · · · h2,n−1 h2n

h32
. . .

...
...

. . .
. . .

...
hn,n−1 hnn










.

The orthogonal matrix Q will be constructed as a product of n − 2 Householder
transformations Q = P1P2 · · ·Pn−2, where

Pk = I − 1

γk
uku

T
k , γk =

1

2
‖uk‖2

2 (9.6.5)

(cf. the Householder QR decomposition in Section 8.4.3). Note that Pk is completely
specified by uk and γk, and that products of the form PA and AP , can each be
computed in 2n2 flops by

PA = A− uk(ATuk)T /γk, AP = A− (Auk)uT
k /γk.

We compute A = A(1), A(2), . . . , A(n−1) = H , where A(k+1) = PkA
(k)Pk. In

the first step, k = 1,

A(2) = P1AP1 =









h11 h12 ã13 . . . ã1n

h21 h22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n
...

...
...

...
0 ãn2 ãn3 . . . ãnn









,

where P1 is chosen so that P1A has zeros in the first column in the positions shown
above. These zeros are not destroyed by the post-multiplication (P1A)P1, which
only affects the n− 1 last columns. All later steps are similar. After (k − 1) steps
we have computed

A(k) =

(
H11 h12 Ã13

0 a22 Ã23

)

, (9.6.6)

where (H11 h12 ) ∈ Rk×k is part of the final Hessenberg matrix. Pk is chosen to
zero all elements but the first in a22. After n− 2 steps we have the required form

QTAQ = A(n−1) = H, Q = P1P2 · · ·Pn−2. (9.6.7)

A simple operation count shows that this reduction requires 5n3/3 flops. Note that
the transformation matrix Q is not explicitly computed, only the vectors defining
the Householder transformations P1, P2, . . . , Pn−2 are saved. These vectors can
conveniently overwrite the corresponding elements in the matrix A using also two
extra rows appended to A.
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The Hessenberg decomposition QTAQ = H is not unique. The following
important theorem states that it is uniquely determined once the first column in
Q is specified, provided that H has no zero subdiagonal element. A Hessenberg
matrix with this property is said to be unreduced.

Theorem 9.6.1. Implicit Q Theorem.
Given A,H,Q ∈ Rn×n, where Q = (q1, . . . , qn) is orthogonal and H = QTAQ

is upper Hessenberg with positive subdiagonal elements. Then H and Q are uniquely
determined by the first column q1 in Q.

Proof. Assume we have already computed q1, . . . , qk and the first k − 1 columns
in H . (Since q1 is known this assumption is valid for k = 1.) Equating the kth
columns in (q1, q2, . . . , qn)H = A(q1, q2, . . . , qn) we obtain

h1,kq1 + · · · + hk,kqk + hk+1,kqk+1 = Aqk.

Multiplying this by qT
i and using the orthogonality of Q, we obtain

hik = qT
i Aqk, i = 1, . . . , k.

Since H is unreduced hk+1,k 6= 0, and therefore qk+1 and hk+1,k are determined (up
to a factor of ±1) by

qk+1 = h−1
k+1,k

(

Aqk −
k∑

i=1

hikqi

)

,

and the condition that ‖qk+1‖2 = 1.

The reduction by Householder transformations is stable in the sense that the
computed H̄ can be shown to be the exact result of an orthogonal similarity trans-
formation of a matrix A+ E, where

‖E‖F ≤ cn2u‖A‖F , (9.6.8)

and c is a constant of order unity. Moreover if we use the information stored
to generate the product U = P1P2 · · ·Pn−2 then the computed result is close to
the matrix U that reduces A + E. This will guarantee that the eigenvalues and
transformed eigenvectors of H̄ are accurate approximations to those of a matrix
close to A. However, it should be noted that this does not imply that the computed
H̄ will be close to the matrix H corresponding to the exact reduction of A. Even
the same algorithm run on two computers with different floating point arithmetic
may produce very different matrices H̄ . Behavior of this kind, named irrelevant
instability by B. N. Parlett, unfortunately continue to cause much unnecessary
concern! The backward stability of the reduction ensures that each matrix will be
similar to A to working precision and will yield approximate eigenvalues to as much
absolute accuracy as is warranted.
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The reduction to Hessenberg form can also be achieved by using elementary
elimination matrices as introduced in Section 7.3.5. These are lower triangular ma-
trices of the form

Lj = I +mje
T
j , mj = (0, . . . , 0,mj+1,j , . . . ,mn,j)

T .

Only the elements below the main diagonal in the jth column differ from the unit
matrix. If a matrix A is premultiplied by Lj we get

LjA = (I +mje
T
j )A = A+mj(e

T
j A) = A+mja

T
j ,

i.e., multiples of the row aT
j are added to the last n− j rows of A. We complete the

similarity transformation LjAL
−1
j = ÃL−1

j by postmultiplying

ÃL−1
j = Ã(I −mje

T
j ) = Ã− (Ãmj)e

T
j .

In this operation a linear combination Ãmj of the last n− j columns is subtracted

from the jth column of Ã.
If the pivot element a21 6= 0, then we can eliminate the last n− 2 elements in

the first column of A by the transformation L2A, where

m2 = −(0, 0, a31/a21, . . . , an1/a21)
T .

These zeros are not affected by the postmultiplication (L2A)L−1
2 , which only affects

the elements in the last n−1 columns. Hence, if all pivot elements are nonzero we can
complete the transformation to Hessenberg form. The vectors mj, j = 2, . . . , n− 1
can overwrite the corresponding elements of A. The reduction may be unstable
if some pivot elements are small. Therefore, in practice this algorithm has to be
modified by the introduction of partial pivoting, in obvious analogy to Gaussian
elimination. With this modification the stability of the reduction is usually as good
as for the one using Householder reflections. The backward error bound will contain
a growth ratio gn, see Section 7.6.6, but a big growth rarely occurs in practice. The
operation count for this reduction can be shown to be n3/3 + n3/2 = 5n3/6 flops,
or half that for the orthogonal reduction. Because of this reduction by elementary
elimination matrices is often the preferred method.

The similarity reduction of a nonsymmetric matrix to tridiagonal form has also
been considered. This reduction is of interest also because of its relation to Lanczos
bi-orthogonalization and the bi-conjugate gradient method; see Secs. 10.5.2–10.5.3.
As shown by Wilkinson [52, pp. 388–405], this reduction can be performed in two
steps: first an orthogonal similarity is used to reduce A to lower Hessenberg form;
second the appropriate elements in the lower triangular half are zeroed column by
column using a sequence of similarity transformations by elementary elimination
matrices of the form in (6.3.15).

H := (I −mje
T
j )H(I +mje

T
j ), j = 1, . . . , n− 1.

In this step row pivoting can not be used, since this would destroy the lower Hes-
senberg structure. As a consequence, the reduction will fail if a zero pivot element
is encountered. In this case one must restart the reduction from the beginning.
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By (9.6.8) computed eigenvalues will usually have errors at least of order
u‖A‖F . Therefore it is desirable to precede the eigenvalue calculation by a diagonal
similarity transformation Ã = D−1AD which reduces the Frobenius norm. (Note
that only the off-diagonal elements are effected by such a transformation.) This can
be achieved by balancing the matrix A. We say that a matrix Ã is balanced for
some norm lp-norm if ‖ãi‖p = ‖ãi‖p, i = 1, . . . , n where ãi and ãi denote respectively

the ith column and ith row of Ã. There are classes of matrices which do not need
balancing; for example normal matrices are already balanced for p = 2.

An iterative algorithm has been given by Osborne that for any (real or com-
plex) irreducible matrix A and p = 2 converges to a balanced matrix Ã. For a
discussion and an implementation see Contribution II/11 in [53].

9.6.4 Reduction to Symmetric Tridiagonal Form

If we carry out the orthogonal reduction to Hessenberg form for a real symmetric
matrix A, then

HT = (QTAQ)T = QTATQ = H.

It follows that H is a real symmetric tridiagonal matrix, which we write

QTAQ = T =









α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn









. (9.6.9)

If elementary elimination matrices are used for the reduction symmetry is not pre-
served. Hence in this case the orthogonal reduction is clearly superior. A similar
remark applies to the case of the unitary reduction of a Hermitian matrix to Her-
mitian tridiagonal form.

In the kth step of the orthogonal reduction of a real symmetric matrix we
compute A(k+1) = PkA

(k)Pk, where Pk is again chosen to zero the last n − k − 1
elements in the kth column. By symmetry the corresponding elements in the kth
row will be zeroed by the post-multiplication Pk.

It is important to take advantage of symmetry to save storage and operations.
Since the intermediate matrix PkA

(k) is not symmetric, this means that we must
compute PkA

(k)Pk directly. Dropping the subscripts k we can write

PAP =
(

I − 1

γ
uuT

)

A
(

I − 1

γ
uuT

)

(9.6.10)

= A− upT − puT + uT puuT/γ (9.6.11)

= A− uqT − quT ,

where

p = Au/γ, q = p− βu, β = uT p/(2γ). (9.6.12)
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If the transformations are carried out in this fashion the operation count for the
reduction to tridiagonal form is reduced to about 2n3/3 flops,and we only need to
store, say, the lower halves of the matrices.

The orthogonal reduction to tridiagonal form has the same stability property
as the corresponding algorithm for the unsymmetric case, i.e., the computed tridi-
agonal matrix is the exact result for a matrix A+E, where E satisfies (9.6.8). Hence
the eigenvalues of T will differ from the eigenvalues of A by at most cn2u‖A‖F .

There is a class of symmetric matrices for which small eigenvalues are de-
termined with a very small error compared to ‖A‖F . This is the class of scaled
diagonally dominant matrices, see Barlow and Demmel [3, ]. A symmetric
scaled diagonally dominant (s.d.d) matrix is a matrix of the form DAD, where
A is symmetric and diagonally dominant in the usual sense, and D is an arbitrary
diagonal matrix. An example of a s.d.d. matrix is the graded matrix

A0 =





1 10−4

10−4 10−4 10−8

10−8 10−8





whose elements decrease progressively in size as one proceeds diagonally from top
to bottom. However, the matrix

A1 =





10−6 10−2

10−2 1 10−2

10−2 10−6



 .

is neither diagonally dominant or graded in the usual sense.
The matrix A0 has an eigenvalue λ of magnitude 10−8, which is quite insensi-

tive to small relative perturbations in the elements of the matrix. If the Householder
reduction is performed starting from the top row of A as described here it is im-
portant that the matrix is presented so that the larger elements of A occur in the
top left-hand corner. Then the errors in the orthogonal reduction will correspond
to small relative errors in the elements of A, and the small eigenvalues of A will not
be destroyed.8

A similar algorithm can be used to transform a Hermitian matrix into a tridi-
agonal Hermitian matrix using the complex Householder transformation introduced
in Section 9.6.2. With U = P1P2 · · ·Pn−2 we obtain T = UHAU , where T is Her-
mitian and therefore has positive real diagonal elements. By a diagonal similarity
DTD−1, D = diag (eiφ1 , eiφ2 , . . . , eiφn) it is possible to further transform T so that
the off-diagonal elements are real and nonnegative.

If the orthogonal reduction to tridiagonal form is carried out for a symmetric
banded matrix A, then the banded structure will be destroyed. By annihilating
pairs of elements using Givens rotations in an ingenious order it is possible to
perform the reduction without increasing the bandwidth. However, it will then take
several rotation to eliminate a single element. This algorithm is described in Parlett
[38, Section 10.5.1], see also Contribution II/8 in Wilkinson and Reinsch [53]. An

8Note that in the Householder tridiagonalization described in [53], Contribution II/2 the re-
duction is performed instead from the bottom up.
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operation count shows that the standard reduction is slower if the bandwidth is less
than n/6. Note that the reduction of storage is often equally important!

9.6.5 A Divide and Conquer Algorithm

The basic idea in the divide and conquer algorithm for the symmetric tridiagonal
eigenproblem is to divide the tridiagonal matrix (9.7.30) into two smaller symmetric
tridiagonal matrices S and T2 as follows.

T =





T1 βk+1ek 0
βk+1e

T
k αk+1 βk+2e

T
1

0 βk+2e1 T2



 = P





αk+1 βk+1e
T
k βk+2e

T
1

βk+1ek T1 0
βk+2e1 0 T2



PT .

(9.6.13)
Here ej is the jth unit vector of appropriate dimension and P is a permutation
matrix permuting block rows and columns 1 and 2. T1 and T2 are k × k and
(n−k−1)×(n−k−1) symmetric tridiagonal matrices and are principle submatrices
of T .

Suppose now that the eigendecompositions of Ti = QiDiQ
T
i , i = 1, 2 are

known. Substituting into (9.6.13) we get

T = P





αk+1 βk+1e
T
k βk+2e

T
1

βk+1ek Q1D1Q
T
1 0

βk+2e1 0 Q2D2Q
T
2



PT = QHQT , (9.6.14)

where

H =





αk+1 βk+1l
T
1 βk+2f

T
2

βk+1l1 D1 0
βk+2f2 0 D2



 , Q = P





1 0 0
0 Q1 0
0 0 Q2



 ,

and l1 = QT
1 ek, f2 = QT

2 e1. Hence the matrix T is reduced to H by an orthogonal
similarity transformation Q. The matrix H has the form

H =

(
α zT

z D

)

, D = diag (d2, . . . , dn).

where z = (z2, . . . , zn)T is a vector. Such a matrix is called a symmetric arrow-
head matrix. We assume that d2 ≥ d3 ≥ · · · ≥ dn, which can be achieved by a
symmetric permutation.

The eigenvalue problem for symmetric arrowhead matrices has been discussed
in detail in Wilkinson [52, pp. 95–96]. In particular, if we assume that the elements
di are distinct, d2 > d3 > · · · > dn, and that zi > 0, i = 2, . . . , n, then the
eigenvalues and eigenvectors of H are characterized by the following lemma (cf.
Problem 9.3.8).

Lemma 9.6.2.
The eigenvalues {λi}n

i=1 of H satisfy the secular equation

f(λ) = λ− α+
n∑

j=2

z2
j

dj − λ
= 0. (9.6.15)
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and the interlacing property λ1 > d2 > λ2 > · · · > dn > λn. For each eigenvalue λi

of H, a corresponding (unnormalized) eigenvector is given by

ui =

(

−1,
z2

d2 − λi
, . . . ,

zn

dn − λi

)T

. (9.6.16)

Hence simple roots of the secular equation are isolated in an interval (di, di+1)
where f(λ) is monotonic and smooth. A zerofinder based on rational interpolation
can be constructed which gets guaranteed quadratic convergence.

We make the following observations:

• If di = di+1 for some i, 2 ≤ i ≤ n−1, then it can be shown that one eigenvalue
of H equals di, and the degree of the secular equation may be reduced by one.

• If zi = 0, then one eigenvalue equals di, and again the degree of the secular
equation is decreased by one.

The splitting in (9.6.13) can be applied recursively to T1 and T2, i.e., we can
repeat the splitting on each T1 and T2, etc., until the original tridiagonal matrix T
has been reduced to a desired number of small subproblems. Then the relations in
Lemma 9.6.2 may be applied from the bottom up to glue the eigensystems together.

In practice the formula for the eigenvectors in Lemma 9.6.2 cannot be used
directly. The reason for this is that we can only compute an approximation λ̂i to
λi. Even if λ̂i is very close to λi, the approximate ratio zj/(dj − λ̂i) can be very
different from the corresponding exact ratio. These errors may lead to computed
eigenvectors of T which are numerically not orthogonal. Fortunately an ingenious
solution to this problem has been found, which involves modifying the vector z
rather than increasing the accuracy of the λ̂i, see Gu and Eisenstat [22, ]. The
resulting algorithm seems to outperform the QR algorithm even on single processor
computers.

9.6.6 Spectrum Slicing

Sylvester’s law of inertia (see Theorem 7.3.8) leads to a simple and important
method called spectrum slicing for counting the eigenvalues greater than a given
real number τ of a Hermitian matrix A. In the following we treat the real sym-
metric case, but everything goes through also for general Hermitian matrices. The
following theorem is a direct consequence of Sylvester’s Law of Inertia.

Theorem 9.6.3.
Assume that symmetric Gaussian elimination can be carried through for A−τI

yielding the factorization (cf. (6.4.5))

A− τI = LDLT , D = diag (d1, . . . , dn), (9.6.17)

where L is a unit lower triangular matrix. Then A − τI is congruent to D, and
hence the number of eigenvalues of A greater than τ equals the number of positive
elements π(D) in the sequence d1, . . . , dn.
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Example 9.6.1.
The LDLT factorization

A− 1 · I =





1 2
2 2 −4

−4 −6



 =





1
2 1

2 1









1
−2

2









1 2
1 2

1



 .

shows that the matrix A has two eigenvalues greater than 1.

The LDLT factorization may fail to exist if A−τI is not positive definite. This
will happen for example if we choose the shift τ = 2 for the matrix in Example 9.6.1.
Then a11 − τ = 0, and the first step in the factorization cannot be carried out. A
closer analysis shows that the factorization will fail if, and only if, τ equals an
eigenvalue to one or more of the n − 1 leading principal submatrices of A. If τ is
chosen in a small interval around each of these values, big growth of elements occurs
and the factorization may give the wrong count. In such cases one should perturb
τ by a small amount and restart the factorization from the beginning.

For the special case when A is a symmetric tridiagonal matrix the procedure
outlined above becomes particularly efficient and reliable. Here the factorization is
T − τI = LDLT , where L is unit lower bidiagonal and D = diag (d1, . . . , dn). The
remarkable fact is that if we only take care to avoid over/underflow then element
growth will not affect the accuracy of the slice.

Algorithm 9.6.2
Tridiagonal Spectrum Slicing Let T be the tridiagonal matrix (9.6.9). Then the

number π of eigenvalues greater than a given number τ is generated by the following
algorithm:

d1 := α1 − τ ;

π := if d1 > 0 then 1 else 0;

for k = 2 : n

dk := (αk − βk(βk/dk−1)) − τ ;

if |dk| <
√
ω then dk :=

√
ω;

if dk > 0 then π := π + 1;

end

Here, to prevent breakdown of the recursion, a small |dk| is replaced by
√
ω

where ω is the underflow threshold. The recursion uses only 2n flops, and it is not
necessary to store the elements dk. The number of multiplications can be halved
by computing initially β2

k, which however may cause unnecessary over/underflow.
Assuming that no over/underflow occurs Algorithm 9.6.6 is backward stable. A
round-off error analysis shows that the computed values d̄k satisfy exactly (let β1 =
0)

d̄k = fl
(
(αk − βk(βk/d̄k−1)) − τ

)
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=
((

αk − β2
k

d̄k−1
(1 + ǫ1k)(1 + ǫ2k)

)

(1 + ǫ3k) − τ
)

(1 + ǫ4k) (9.6.18)

≡ α′
k − τ − (β′

k)2/d̄k−1, k = 1, . . . , n,

where |ǫik| ≤ u. Hence, the computed number π̄ is the exact number of eigenvalues
greater than τ of a matrix A′, where A′ has elements satisfying

|α′
k − αk| ≤ u(2|αk| + |τ |), |β′

k − βk| ≤ 2u|βk|. (9.6.19)

This is a very satisfactory backward error bound. It has been improved even further
by Kahan [28, ], who shows that the term 2u|αk| in the bound can be dropped,
see also Problem 1. Hence it follows that eigenvalues found by bisection differ by
a factor at most (1 ± u) from the exact eigenvalues of a matrix where only the
off-diagonal elements are subject to a relative perturbed of at most 2u. This is
obviously a very satisfactory result.

The above technique can be used to locate any individual eigenvalue λk of
A. Assume we have two values τl and τu such that for the corresponding diagonal
factors we have

π(Dl) ≥ k, π(Du) < k

so that λk lies in the interval [τl, τu). We can then using p steps of the bisec-
tion (or multisection) method (see Section 6.1.1) locate λk in an interval of length
(τu − τl)/2

p. From Gerschgorin’s theorem it follows that all the eigenvalues of a
tridiagonal matrix are contained in the union of the intervals αi ± (|βi| + |βi+1|),
i = 1, . . . , n (β1 = βn+1 = 0).

Using the bound (9.3.20) it follows that the bisection error in each computed
eigenvalue is bounded by |λ̄j − λj | ≤ ‖A′ − A‖2, where from (9.4.11), using the
improved bound by Kahan, and the inequalities |τ | ≤ ‖A‖2, |αk| ≤ ‖A‖2 it follows
that

|λ̄j − λj | ≤ 5u‖A‖2. (9.6.20)

This shows that the absolute error in the computed eigenvalues is always small. If
some |λk| is small it may be computed with poor relative precision. In some special
cases (for example, tridiagonal, graded matrices see Section 9.6.4) even very small
eigenvalues are determined to high relative precision by the elements in the matrix.

If many eigenvalues of a general real symmetric matrix A are to be deter-
mined by spectrum slicing, then A should initially be reduced to tridiagonal form.
However, if A is a banded matrix and only few eigenvalues are to be determined
then the Band Cholesky Algorithm 6.4.6 can be used to slice the spectrum. It is
then necessary to monitor the element growth in the factorization. We finally men-
tion that the technique of spectrum slicing is also applicable to the computation of
selected singular values of a matrix and to the generalized eigenvalue problem

Ax = λBx,

where A and B are symmetric and B or A positive definite, see Section 9.9.
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Review Questions

1. Describe how an arbitrary square matrix can be reduced to Hessenberg form by a
sequence of orthogonal similarity transformations. If this reduction is applied to a
real symmetric matrix what condensed form is obtained?

2. Describe the method of spectrum slicing for determining selected eigenvalues of a
real symmetric matrix A.

Problems

1. Reduce to tridiagonal form, using an exact orthogonal similarity, the real symmetric
matrix

A =

0

B

B

@

1
√

2
√

2
√

2√
2 −

√
2 −1

√
2√

2 −1
√

2
√

2
2

√
2

√
2 −3

1

C

C

A

2. Show that if a real skew symmetric matrix A, AT = −A, is reduced to Hessenberg
form H by an orthogonal similarity, then H is a real skew symmetric tridiagonal
matrix. Perform the reduction of the circulant matrix A (see Problem 9.1.9) with
first row equal to

(0, 1, 1, 0,−1,−1).

3. To compute the eigenvalues of the following pentadiagonal matrix

A =

0

B

B

B

B

B

@

4 2 1 0 0 0
2 4 2 1 0 0
1 2 4 2 1 0
0 1 2 4 2 1
0 0 1 2 4 2
0 0 0 1 2 4

1

C

C

C

C

C

A

,

we first reduce A to tridiagonal form.

(a) Determine a Givens rotation G23 which zeros the element in position (3, 1) in
G23A. Compute the the transformed matrix A(1) = G23AGT

23.

(b) In the matrix A(1) a new nonzero element has been introduced. Show how this
can be zeroed by a new rotation without introducing any new nonzero elements.

(c) Device a “zero chasing” algorithm to reduce a general real symmetric pentadi-
agonal matrix A ∈ Rn×n to symmetric tridiagonal form. How many rotations are
needed? How many flops?

4. (a) Use one Givens rotation to transform to tridiagonal form the matrix

A =

0

@

1 2 2
2 1 2
2 2 1

1

A .

(b) Compute the largest eigenvalue of A, using spectrum slicing on the tridiagonal
form derived in (a). Then compute the corresponding eigenvector.
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5. Show that (9.6.17) can be written

d̂k = αk − β2
k

d̂k−1

(1 + ǫ1k)(1 + ǫ2k)

(1 + ǫ3,k−1)(1 + ǫ4,k−1)
− τ

(1 + ǫ3k)
, k = 1, . . . , n,

where we have put d̄k = d̂k(1 + ǫ3k)(1 + ǫ4k), and |ǫik| ≤ u. Conclude that since
sign(d̂k) = sign(d̄k) the computed number π̄ is the exact number of eigenvalues a
tridiagonal matrix A′ whose elements satisfy

|α′

k − αk| ≤ u|τ |, |β′

k − βk| ≤ 2u|βk |.

9.7 The LR and QR Algorithms

When combined with a preliminary reduction to Hessenberg or symmetric tridi-
agonal form (see Section 9.6) the QR algorithm yields a very efficient method for
finding all eigenvalues and eigenvectors of small to medium size matrices. Then
the necessary modifications to make it into a practical method are described. The
general nonsymmetric case is treated in Section 9.7.3 and the real symmetric case
in Section 9.7.4.

9.7.1 The Basic LR and QR Algorithms

The LR algorithm, developed by Rutishauser in [39, ], is an iterative method
of reducing a matrix to triangular form by a sequence of similarity transformations.
Rutishauser observed that if A = LR then a similarity transformation of A is

L−1AL = L−1(LR)L = RL.

Hence the matrix obtained by multiplying the factors in reverse order gives a matrix
similar to A. The LR algorithm is obtained by repeating this process.

Setting A1 = A we compute Ak+1 = L−1
k AkLk from

Ak = LkRk, Ak+1 = RkLk, k = 1, 2, . . . (9.7.1)

Repeated application of (9.7.1) gives

Ak = L−1
k−1 · · ·L−1

2 L−1
1 A1L1L2 · · ·Lk−1. (9.7.2)

or
L1L2 · · ·Lk−1Ak = A1L1L2 · · ·Lk−1. (9.7.3)

The two matrices defined by

Tk = L1 · · ·Lk−1Lk, Uk = RkRk−1 · · ·R1, (9.7.4)

are lower and upper triangular respectively. Forming the product TkUk and using
(9.7.3) we have

TkUk = L1 · · ·Lk−1(LkRk)Rk−1 · · ·R1

= L1 · · ·Lk−1AkRk−1 · · ·R1

= A1L1 · · ·Lk−1Rk−1 · · ·R1.
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Repeating this we obtain the basic relation

TkUk = Ak
1 . (9.7.5)

This shows that the close relation between the LR algorithm and the power method.
It is possible to show that under certain restrictions the matrix Ak converges

to an upper triangular matrix R∞. The eigenvalues are then equal to the diagonal
elements of R∞. In establishing the convergence result several assumptions need to
be made. for example, that the LR factorization exists at every stage. This is not
be true for the simple matrix

A =

(
0 1
−3 4

)

,

with eigenvalues 1 and 3. Although we could equally well work with the shifted
matrix A + I, which has a triangular factorization, there are other problems with
the LR algorithm, which makes a robust implementation difficult.

In order to avoid the problems with the LR algorithm it seems natural to
devise a similar algorithm using orthogonal similarity transformations. This leads
to the QR algorithm, developed independently by Francis [14, ] and Kublanov-
skaya [31, ].9 It then represented a significant and genuinely new contribution
to eigensystems computation.

In the QR algorithm applied to A1 = A the matrix Ak+1 = QT
kAkQk, is

computed from

Ak = QkRk, Ak+1 = RkQk, k = 1, 2, . . . , (9.7.6)

where Qk is orthogonal and Rk is upper triangular, i.e., in the kth step we first
compute the QR decomposition of the matrix Ak and then multiply the factors in
reverse order to get Ak+1.

The successive iterates of the QR algorithm satisfy relations similar to those
derived for the LR algorithm. We define

Pk = Q1Q2 · · ·Qk, Uk = Rk · · ·R2R1,

where Pk is orthogonal and Uk is upper triangular. Then by repeated applications
of (9.7.6) it follows that

Ak+1 = PT
k APk. (9.7.7)

Further we have

PkUk = Q1 · · ·Qk−1(QkRk)Rk−1 · · ·R1 (9.7.8)

= Q1 · · ·Qk−1AkRk−1 · · ·R1 (9.7.9)

= A1Q1 · · ·Qk−1Rk−1 · · ·R1. (9.7.10)

Repeating this gives
PkUk = Ak

1 . (9.7.11)

9The QR algorithm was chosen as one of the 10 algorithms with most influence on scientific
computing in the 20th century by the editors of the journal Computing in Science and Engineering.



9.7. The LR and QR Algorithms 81

When A is real symmetric and positive definite we can modify the LR algo-
rithm and use the Cholesky factorization A = LLT instead. The algorithm then
takes the form

Ak = LkL
T
k , Ak+1 = LT

kLk, k = 1, 2, . . . . (9.7.12)

and we have
Ak+1 = L−1

k AkLk = LT
kAkL

−T
k . (9.7.13)

Clearly all matrices Ak are symmetric and positive definite and the algorithm is
well defined. Repeated application of (9.7.13) gives

Ak = T−1
k−1A1Tk−1 = T T

k−1A1(T
−1
k−1)

T , (9.7.14)

where Tk = L1L2 · · ·Lk. Further we have

Ak
1 = (L1L2 · · ·Lk)(LT

k · · ·LT
2 L

T
1 ) = TkT

T
k . (9.7.15)

When A is real symmetric and positive definite there is a close relationship
between the LR and QR algorithms. For the QR algorithm we have AT

k = Ak =
RT

kQ
T
k and hence

AT
kAk = A2

k = RT
kQ

T
kQkRk = RT

kRk, (9.7.16)

which shows that RT
k is the lower triangular Cholesky factor of A2

k.
For the Cholesky LR algorithm we have from (9.7.4) and (9.7.5)

A2
k = LkLk+1(LkLk+1)

T . (9.7.17)

These two Cholesky factorizations (9.7.16) and (9.7.16) of the matrix A2
k must be

the same and therefore RT
k = LkLk+1. Thus

Ak+1 = RkQk = RkAkR
−1
k = LT

k+1L
T
kAk(LT

k+1L
T
k )−1.

Comparing this with (9.7.14) we deduce that one step of the QR algorithm is equiva-
lent to two steps in the Cholesky LR algorithm. Hence the matrix A(2k+1) obtained
by the Cholesky LR algorithm equals the matrix A(k+1) obtained using the QR
algorithm.

We now show that in general the QR iteration is related to orthogonal iter-
ation. Given an orthogonal matrix Q̃0 ∈ Rn×n, orthogonal iteration computes a
sequence Q̃1, Q̃2, . . ., where

Zk = AQ̃k, Zk = Q̃k+1Rk. k = 0, 1, . . . (9.7.18)

The related sequence of matrices Bk = Q̃T
kAQ̃k = Q̃T

kZk similar to A can be

computed directly. Using (9.7.18) we have Bk = (Q̃T
k Q̃k+1)Rk, which is the QR

decomposition of Bk, and

Bk+1 = (Q̃T
k+1A)Q̃k+1 = (Q̃T

k+1AQ̃k)Q̃T
k Q̃k+1 = Rk(Q̃T

k Q̃k+1).

Hence, Bk+1 is obtained by multiplying the QR factors of Bk in reverse order, which
is just one step of QR iteration! If, in particular we take Q̃0 = I then B0 = A0, and
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it follows that Bk = Ak, k = 0, 1, 2, . . ., where Ak is generated by the QR iteration
(9.7.6). From the definition of Bk and (9.7.6) we have Q̃k = Pk−1, and (compare
(9.4.4))

Ak = Q̃kR̃k, R̃k = Rk · · ·R2R1. (9.7.19)

From this we can conclude that the first p columns of Q̃k form an orthogonal basis
for the space spanned by the first p columns of Ak, i.e., Ak(e1, . . . , ep).

In the QR algorithm subspace iteration takes place on the subspaces spanned
by the unit vectors (e1, . . . , ep), p = 1, . . . , n. It is important for the understanding
of the QR algorithm to recall that therefore, according to Theorem 9.4.1, also
inverse iteration by (AH)−1 takes place on the orthogonal complements, i.e., the
subspaces spanned by (ep+1, . . . , en), p = 0, . . . , n − 1. Note that this means that
in the QR algorithm direct iteration is taking place in the top left corner of A, and
inverse iteration in the lower right corner. (For the QL algorithm this is reversed,
see below.)

9.7.2 Convergence of the Basic QR Algorithm

Assume that the eigenvalues of A satisfy |λp| > |λp+1|, and let (9.4.16) be a corre-
sponding Schur decomposition. Let Pk = (Pk1, Pk2), Pk1 ∈ Rn×p, be defined by
(9.7.6). Then by Theorem 9.4.1 with linear rate of convergence equal to |λp+1/λp|

R(Pk1) → R(U1).

where U1 spans the dominant invariant subspace of dimension p of A. It follows
that Ak will tend to reducible form

Ak =

(
A11 A12

0 A22

)

+O
((

|λp+1/λp|
)k
)

.

This result can be used to show that under rather general conditions Ak will tend
to an upper triangular matrix R whose diagonal elements then are the eigenvalues
of A.

Theorem 9.7.1.
If the eigenvalues of A satisfy |λ1| > |λ2| > · · · > |λn|, then the matrices

Ak generated by the QR algorithm will tend to upper triangular form. The lower

triangular elements a
(k)
ij , i > j, converge to zero with linear rate equal to |λi/λj |.

Proof. See Watkins [50].

If the product Pk, k = 1, 2, . . . of the transformations are accumulated the
eigenvectors may then be found by calculating the eigenvectors of the final triangular
matrix and then transforming them back.

To speed up convergence the QR algorithm can be applied to the matrix
Ã = A − τI, where τ is a shift. If τ approximates a simple eigenvalue λj of A,
then in general |λi − τ | ≫ |λj − τ | for i 6= j. By the result above the off-diagonal
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elements in the last row of Ãk will approach zero very fast. Usually a different shift
in used in each step. If further the shift is restored at the end of the step the QR
iteration can be written

Ak − τkI = QkRk, RkQk + τkI = Ak+1, k = 0, 1, 2, . . . , (9.7.20)

It is easily verified that with this shifted QR iteration we have Ak+1 = QT
kAkQk,

and the relation to the power method is now expressed by the following result.

Theorem 9.7.2.
Let Qk and Rk be computed by the QR algorithm (9.7.20). Then

(A− τkI) · · · (A− τ1I)(A− τ0I) = PkUk, (9.7.21)

Pk = Q0Q1 · · ·Qk, Uk = RkRk−1 · · ·R0.

Proof. For k = 0 the relation (9.7.21) is just the defining equation of Q0 and R0.
Assume now that the relation is true for k − 1. From Ak+1 = QT

kAkQk and using
the orthogonality of Pk

Ak+1 − τkI = PT
k (A− τkI)Pk. (9.7.22)

Hence, Rk = (Ak+1 − τkI)Q
T
k = PT

k (A− τkI)PkQ
T
k = PT

k (A− τkI)Pk−1. Postmul-
tiplying this equation by Uk−1 we get

RkUk−1 = Uk = PT
k (A− τkI)Pk−1Uk−1,

and thus PkUk = (A− τkI)Pk−1Uk−1. Using the inductive hypothesis the theorem
follows.

A variant called the QL algorithm is based on the iteration

Ak = QkLk, LkQk = Ak+1, k = 0, 1, 2, . . . , (9.7.23)

where Lk is lower triangular, and is merely a reorganization of the QR algorithm.
Let J be a permutation matrix such that JA reverses the rows of A. Then AJ
reverses the columns of A and hence JAJ reverses both rows and columns. If R
is upper triangular then JRJ is lower triangular. It follows that if A = QR is
the QR decomposition then JAJ = (JQJ)(JRJ) is the QL decomposition of JAJ .
It follows that the QR algorithm applied to A is the same as the QL algorithm
applied to JAJ . The convergence theory is therefore the same for both algorithms.
However, in the QL algorithm inverse iteration is taking place in the top left corner
of A, and direct iteration in the lower right corner.

An important case where the choice of either the OR or QL algorithm should
be preferred is when the matrix A is graded, see Section 9.6.4. If the large elements
occur in the lower right corner then the QL algorithm is more stable. (Note that
then the reduction to tridiagonal form should be done from bottom up; see the



84 Chapter 9. Matrix Eigenvalue Problems

remark in Section 9.6.4.) Of course, the same effect can be achieved by explicitly
reversing the ordering of the rows and columns.

For a dense matrix the cost for one QR iteration is 4n3/3 flops, which is too
much to make it a practical algorithm. However, if the matrix A is initially reduced,
as described in Section 9.6, to upper Hessenberg form, or in the real symmetric case
to tridiagonal form, this form is preserved by the QR iteration. The cost is then
reduced to only 4n2 flops per iteration, or about 12n flops per iteration in the
real symmetric case. The QR algorithm in practice also depends on several other
factors to achieve full accuracy and efficiency. Some of these will be discussed in
the following sections.

9.7.3 QR Algorithm for Hessenberg Matrices

We first show that Hessenberg form is preserved by the QR iteration. Let Hk be
upper Hessenberg and for k = 0, 1, 2, . . .

Hk − τkI = QkRk, RkQk + τkI = Hk+1. (9.7.24)

First note that the addition or subtraction of τkI does not affect the Hes-
senberg form. If Rk is nonsingular then Qk = (Hk − τkI)R

−1
k is a product of an

upper Hessenberg matrix and an upper triangular matrix, and therefore again a
Hessenberg matrix (cf. Problem 6.2.5). Hence RkQk and Hk+1 are again of upper
Hessenberg form.

In the explicit-shift QR algorithm we first form the matrix Hk − τkI, and
then apply a sequence of Givens rotations, Gj,j+1, j = 1, . . . , n− 1 (see (7.4.14)) so
that

Gn−1,n · · ·G23G12(Hk − τkI) = QT
k (Hk − τkI) = Rk,

becomes upper triangular. At a typical step (n = 5, j = 3) the partially reduced
matrix has the form








ρ11 × × × ×
ρ22 × × ×

ν33 × ×
h43 × ×

× ×







.

The rotation G3,4 is now chosen so that the element h43 is annihilated, which carries
the reduction one step further. To form Hk+1 we must now compute

RkQk + τkI = RkG
T
12G

T
23 · · ·GT

n−1,n + τkI.

The product RkG
T
12 will affect only the first two columns of Rk, which are replaced

by linear combinations of one another. This will add a nonzero element in the
(2, 1) position. The rotation GT

23 will similarly affect the second and third columns
in RkG

T
12, and adds a nonzero element in the (3, 2) position. The final result is

obviously a Hessenberg matrix.
If an upper Hessenberg matrix H has a zero subdiagonal entry, then we can

write

H =

(
H11 H12

0 H22

)

.
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The eigenvalues of H are then the sum of the eigenvalues of the two Hessenberg
matrices H11 and H22, and the eigenvalue problem decouples into two problems
of smaller dimensions. In particular, if H22 is a scalar, then we have found an
eigenvalue and the problem deflates.

If the shift τ is chosen as an exact eigenvalue of H , then H − τI = QR has
a zero eigenvalue and thus is singular. Since Q is orthogonal R must be singular.
Moreover, if H is unreduced then the first n−1 columns of H− τI are independent
and therefore the last diagonal element rnn must vanish. Hence the last row in RQ
is zero, and the elements in the last row of H ′ = RQ + τI are h′n,n−1 = 0 and
h′nn = τ ,

The above result shows that if the shift is equal to an eigenvalue τ then the
QR algorithm converges in one step to this eigenvalue. This indicates that τ should
be chosen as an approximation to an eigenvalue λ. Then hn,n−1 will converge to
zero at least with linear rate equal to |λ− τ |/minλ′ 6=λ |λ′ − τ |. The choice

τ = hnn = eT
nHen

is called the Rayleigh quotient shift, since it can be shown to produce the same
sequence of shifts as the RQI starting with the vector q0 = en. With this shift
convergence is therefore asymptotically quadratic.

If H is real with complex eigenvalues, then we obviously cannot converge to
a complex eigenvalue using only real shifts. We could shift by the eigenvalue of

C =

(
hn−1,n−1 hn−1,n

hn,n−1 hn,n

)

, (9.7.25)

closest to hn,n, although this has the disadvantage of introducing complex arithmetic
even when A is real. A way to avoid this will be described later.

A important question is when to stop the iterations and accept an eigenvalue
approximation. We set hn,n−1 = 0 and accept hnn as an eigenvalue if

|hn,n−1| ≤ ǫ(|hn−1,n−1| + |hn,n|),

where ǫ is a small constant times the unit roundoff. This criterion can be justified
since it corresponds to a small backward error. In practice the size of all subdiagonal
elements should be monitored. Whenever

|hi,i−1| ≤ ǫ(|hi−1,i−1| + |hi,i|),

for some i < n, we set |hi,i−1| and continue to work on smaller subproblems. This
is important for the efficiency of the algorithm, since the work is proportional to
the square of the dimension of the Hessenberg matrix. An empirical observation is
that on the average less than two QR iterations per eigenvalue are required.

When the shift is explicitly subtracted from the diagonal elements this may
introduce large relative errors in any eigenvalue much smaller than the shift. We now
describe an implicit-shift QR-algorithm, which avoids this type of error. This is
based on Theorem9.6.1, which says that the matrix Hk+1 in a QR iteration (9.7.24)
is essentially uniquely defined by the first column in Qk, provided it is unreduced.
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In the following, for simplicity, we drop the iteration index and write (9.7.24)
as

H − τI = QR, H ′ = RQ+ τI. (9.7.26)

To apply Theorem 9.6.1 to the QR algorithm we must find the first column q1 in
Q. From H − τI = QR with R upper triangular it follows that r11q1 equals the
first column in H − τI, which is

h1 = (h11 − τ, h21, 0, · · · , 0)T .

If we choose a Givens rotation G12 so that GT
12h1 = ±‖h1‖2e1, then G12e1 is

proportional to h1, and (take n = 6)

GT
12H =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×,

1

C

C

C

C

C

A

GT
12HG12 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×
+ × × × × ×

× × × ×
× × ×

× ×

1

C

C

C

C

C

A

.

To preserve the Hessenberg form a rotation G23 is chosen to zero the element +,

GT
23G

T
12HG12G23 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×

× × × × ×
+ × × × ×

× × ×
× ×

1

C

C

C

C

C

A

.

We continue to chase the element + down the diagonal, with rotationsG34, . . . , Gn−1,n

until it disappears. We have then obtained a Hessenberg matrix QTHQ, where the
first column in Q is G12G23 · · ·Gn−1,ne1 = G12e1. From Theorem 9.6.1 it follows
that the computed Hessenberg matrix is indeed H ′. Note that the information of
the shift τ is contained in G12, and the shift is not explicitly subtracted from the
other diagonal elements. The cost of one QR iteration is 4n2 flops.

To avoid complex arithmetic when H is real one can adopt the implicit-shift
QR algorithm to compute the real Schur form in Theorem 9.2.2, where R is quasi-
triangular with 1 × 1 and 2 × 2 diagonal blocks. For real matrices this will save a
factor of 2–4 over using complex arithmetic. Let τ1 and τ2 be the eigenvalues of the
matrix C in (9.7.25), and consider two QR iterations with these shifts,

H − τ1I = Q1R1, H ′ = R1Q1 + τ1I,

H ′ − τ2I = Q2R2, H ′′ = R2Q2 + τ2I.

We now show how to compute H ′′ directly from H using real arithmetic. We have
H ′′ = (Q1Q2)

THQ1Q2 and from Theorem 9.7.2

(Q1Q2)(R2R1) = (H − τ1I)(H − τ2I)

= H2 − (τ1 + τ2)H + τ1τ2I ≡ G,
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where (τ1 + τ2) and τ1τ2 are real. By the uniqueness theorem (Q1Q2) is de-
termined from its first column, which is proportional to the first column g1 =
Ge1 = (u, v, w, 0, . . . , 0)T of G. Taking out a factor h21 6= 0 this can be written
g1 = h21(p, q, r, 0, . . . , 0)T , where

p = (h2
11 − (τ1 + τ2)h11 + τ1τ2)/h21 + h12, (9.7.27)

q = h11 + h22 − (τ1 + τ2), r = h32.

Note that we do not even have to compute τ1 and τ2, since we have τ1 + τ2 =
hn−1,n−1 + hn,n, and τ1τ2 = det(C). Substituting this into (9.7.27), and grouping
terms to reduce roundoff errors, we get

p = [(hnn − h11)(hn−1,n−1 − h11) − hn,n−1hn−1,n]/h21 + h12

q = (h22 − h11) − (hnn − h11) − (hn−1,n−1 − h11), r = h32.

The double QR step iteration can now be implemented by a chasing algorithm. We
first choose rotations G23 and G12 so that GT

1 g1 = GT
12G

T
23g1 = ±‖g1‖2e1, and carry

out a similarity transformation

GT
1 H =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×
+ × × × × ×

× × × ×
× × ×

× ×

1

C

C

C

C

C

A

, GT
1 HG1 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×
+ × × × × ×
+ + × × × ×

× × ×
× ×

1

C

C

C

C

C

A

.

To preserve the Hessenberg form we then choose the transformation G2 = G34G23

to zero out the two elements + in the first column. Then

GT
2 GT

1 HG1G2 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×

× × × × ×
+ × × × ×
+ + × × ×

× ×

1

C

C

C

C

C

A

.

Note that this step is similar to the first step. The “bulge” of + elements has now
shifted one step down along the diagonal, and we continue to chase these elements
until they disappear below the last row. We have then completed one double step
of the implicit QR algorithm.

Suppose the QR algorithm has converged to the final upper triangular ma-
trix T . Then we have

PTHP = T, P = Q0Q1Q2 · · · ,

where Qk is a product of Givens rotations, and P is the product of all the transfor-
mations used. The eigenvectors zi, i = 1, 2, . . . , n of T satisfy Tzi = λizi, z1 = e1,
and zi is a linear combination of e1, . . . , ei. The nonzero components of zi can then
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be computed by back-substitution

zii = 1, zji = −
( i∑

k=j+1

tjkzki

)/

(λj − λi), j = i− 1, . . . , 1. (9.7.28)

The eigenvectors of H are then given by Pzi, i = 1, 2, . . . , n. Finally if H has been
obtained by reducing a matrix A to Hessenberg form as described in Section 9.6.3,
then the eigenvectors of A can be computed from

xi = UPzi, i = 1, 2, . . . , n, UHAU = H. (9.7.29)

When only a few selected eigenvectors are wanted, then a more efficient way is to
compute these by using inverse iteration. However, if more than a quarter of the
eigenvectors are required, it is better to use the procedure outlined above.

It must be remembered that the matrix A may be defective, in which case
there is no complete set of eigenvectors. In practice it is very difficult to take this
into account, since with any procedure that involves rounding errors one cannot
demonstrate that a matrix is defective. Usually one therefore should attempt to
find a complete set of eigenvectors. If the matrix is nearly defective this will often
be evident, in that corresponding computed eigenvectors will be almost parallel.

If we do not want the eigenvectors, then it is not necessary to save the se-
quence of orthogonal transformations. It is even possible to avoid storing the
rotations by performing the postmultiplications simultaneously with the premul-
tiplications. For example, once we have formed G23G12Hk the first two columns do
not enter in the remaining steps and we can perform the postmultiplication with
GT

12. Hence we can alternately pre- and postmultiply; in the next step we compute
(G34((G23G12Hk)GT

12))G
T
23, and so on.

From the real Schur form QTAQ = T computed by the QR algorithm, we get
information about some of the invariant subspaces of A. If

T =

(
T11 T12

T22

)

, Q = (Q1 Q2 ) ,

and λ(T11) ∩ λ(T22) = 0, then Q1 is an orthogonal basis for the unique invariant
subspace associated with λ(T11). However, this observation is useful only if we want
the invariant subspace corresponding to a set of eigenvalues appearing at the top
of the diagonal in T . Fortunately, it is easy to modify the real Schur decomposition
so that an arbitrary set of eigenvalues are permuted to the top position. Clearly we
can achieve this by performing a sequence of transformations, where in each step
we interchange two nearby eigenvalues in the Schur form. Thus we only need to
consider the 2 × 2 case,

QTAQ = T =

(
λ1 h12

0 λ2

)

, λ1 6= λ2.

To reverse the order of the eigenvalues we note that Tx = λ2x where

x =

(
h12

λ2 − λ1

)

.
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Let GT be a Givens rotation such that GTx = γe1. Then GTTG(GTx) = λ2G
Tx,

i.e. GTx is an eigenvector of T̂ = GTGT . It follows that T̂ e1 = λ2e1 and T̂ must
have the form

Q̂TAQ̂ = T̂ =

(
λ2 ±h12

0 λ1

)

,

where Q̂ = QG.

9.7.4 QR Algorithm for Symmetric Tridiagonal Matrices

By the methods described in Section 9.6 any Hermitian (real symmetric) matrix can
by a unitary (orthogonal) similarity transformation be reduced into real, symmetric
tridiagonal form

T =










α1 β2

β2 α2 β3

β3
. . .

. . .
. . . αn−1 βn

βn αn










. (9.7.30)

A tridiagonal matrix T is called unreduced if all off-diagonal elements are
nonzero, βi 6= 0, i = 2, . . . , n. Let T be unreduced and λ an eigenvalue of T . Then
rank (T − λI) = n − 1 (the submatrix obtained by crossing out the first row and
last column of T − λI has nonzero determinant, β2 · · ·βn 6= 0). Hence there is
only one eigenvector corresponding to λ and since T is diagonalizable λ must have
multiplicity one. Thus all eigenvalues of an unreduced symmetric tridiagonal matrix
are distinct. In the following we can assume that T is unreduced, since otherwise
it can be split up in smaller unreduced tridiagonal matrices.

The QR algorithm also preserves symmetry. Hence it follows that if T is
symmetric tridiagonal, and

T − τI = QR, T ′ = RQ+ τI, (9.7.31)

then also T ′ = QTTQ is symmetric tridiagonal.
From the Implicit Q Theorem (Theorem 9.6.1) we have the following result,

which can be used to develop an implicit QR algorithm.

Theorem 9.7.3.
Let A be real symmetric, Q = (q1, . . . , qn) orthogonal, and T = QTAQ an

unreduced symmetric tridiagonal matrix. Then Q and T are essentially uniquely
determined by the first column q1 of Q.

Suppose we can find an orthogonal matrix Q with the same first column
q1 as in (9.7.31) such that QTAQ is an unreduced tridiagonal matrix. Then by
Theorem 9.7.3 it must be the result of one step of the QR algorithm with shift τ .
Equating the first columns in T − τI = QR it follows that r11q1 equals the first
column t1 in T − τI. In the implicit shift algorithm a Givens rotation G12 is chosen
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so that

GT
12t1 = ±‖t1‖2e1, t1 = (α1 − τ, β2, 0, · · · , 0)T .

We now perform the similarity transformation GT
12TG12, which results in fill-in in

positions (1,3) and (3,1), pictured below for n = 5:

GT
12T =

0

B

B

B

B

B

@

× × +
× × ×

× × ×
× × ×

× × ×
× ×

1

C

C

C

C

C

A

, GT
12TG12 =

0

B

B

B

B

B

@

× × +
× × ×
+ × × ×

× × ×
× × ×

× ×

1

C

C

C

C

C

A

.

To preserve the tridiagonal form a rotation G23 can be used to zero out the fill-in
elements.

GT
23G

T
12 T G12G23 =

0

B

B

B

B

B

@

× ×
× × × +

× × ×
+ × × ×

× × ×
× ×

1

C

C

C

C

C

A

.

We continue to “chase the bulge” of + elements down the diagonal, with trans-
formationsG34, . . . , Gn−1,n after which it disappears. We have then obtained a sym-
metric tridiagonal matrixQTTQ, where the first column inQ isG12G23 · · ·Gn−1,ne1 =
G12e1. By Theorem 9.6.1 it follows that the result must be the matrix T ′ in (9.7.31).

There are several possible ways to choose the shift. Suppose that we are
working with the submatrix ending with row r, and that the current elements of
the two by two trailing matrix is

(
αr−1 βr

βr αr

)

, (9.7.32)

The Rayleigh quotient shift τ = αr, gives the same result as Rayleigh Quotient
Iteration starting with er. This leads to generic cubic convergence, but not guaran-
teed. In practice the Wilkinson shift has proved more efficient. This shift equals
the eigenvalue of the submatrix (9.7.32), which is closest to αr. A suitable formula
for computing this shift is

τ = αr − β2
r

/(

|d| + sign (d)
√

d2 + β2
r

)

, d = (αr−1 − αr)/2 (9.7.33)

(cf. Algorithm (9.5.1)). A great advantage of the Wilkinson shift is that it gives
guaranteed global convergence.10 It can also be shown to give almost always local
cubic convergence, although quadratic convergence might be possible.

10A proof is given in Parlett [38, Chapter 8].
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Example 9.7.1. Consider an unreduced tridiagonal matrix of the form

T =





× × 0
× × ǫ
0 ǫ t33



 .

Show, that with the shift τ = t33, the first step in the reduction to upper triangular
form gives a matrix of the form

G12(T − sI) =





× × s1ǫ
0 a c1ǫ
0 ǫ 0



 .

If we complete this step of the QR algorithm, QR = T−τI, the matrix T̂ = RQ+τI,
has elements t̂32 = t̂23 = −c1ǫ3/(ǫ2 + a2). This shows that if ǫ ≪ the QR method
tends to converge cubically.

As for the QR algorithm for unsymmetric matrices it is important to check
for negligible subdiagonal elements using the criterion

|βi| ≤ ǫ (|αi−1| + |αi|).

When this criterion is satisfied for some i < n, we set βi equal to zero and the
problem decouples. At any step we can partition the current matrix so that

T =





T11

T22

D3



 ,

where D3 is diagonal and T22 is unreduced. The QR algorithm is then applied
to T22.

We will not give more details of the algorithm here. If full account of symmetry
is taken then one QR iteration can be implemented in only 9n multiplications, 2n
divisions, n − 1 square roots and 6n additions. By reorganizing the inner loop of
the QR algorithm, it is possible to eliminate square roots and lower the operation
count to about 4n multiplications, 3n divisions and 5n additions. This rational
QR algorithm is the fastest way to get the eigenvalues alone, but does not directly
yield the eigenvectors.

The Wilkinson shift may not give the eigenvalues in monotonic order. If some
of the smallest or largest eigenvalues are wanted, then it is usually recommended to
use Wilkinson shifts anyway and risk finding a few extra eigenvalues. To check if all
wanted eigenvalues have been found one can use spectrum slicing, see Section 9.6.5.
For a detailed discussion of variants of the symmetric tridiagonal QR algorithm, see
Parlett [38].

If T has been obtained by reducing a Hermitian matrix to real symmetric
tridiagonal form, UHAU = T , then the eigenvectors are given by

xi = UPei, i = 1, 2, . . . , n, (9.7.34)
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where P = Q0Q1Q2 · · · is the product of all transformations in the QR algorithm.
Note that the eigenvector matrix X = UP will by definition be orthogonal.

If eigenvectors are to be computed, the cost of a QR iteration goes up to
4n2 flops and the overall cost to O(n3). To reduce the number of QR iterations
where we accumulate transformations, we can first compute the eigenvalues with-
out accumulating the product of the transformations. We then perform the QR
algorithm again, now shifting with the computed eigenvalues, the perfect shifts,
convergence occurs in one iteration. This may reduce the cost of computing eigen-
vectors by about 40%. As in the unsymmetric case, if fewer than a quarter of the
eigenvectors are wanted, then inverse iteration should be used instead. The draw-
back of this approach, however, is the difficulty of getting orthogonal eigenvectors
to clustered eigenvalues.

For symmetric tridiagonal matrices one often uses the QL algorithm instead
of the QR algorithm. We showed in Section 9.7.1 that the QL algorithm is just
the QR algorithm on JAJ , where J is the permutation matrix that reverses the
elements in a vector. If A is tridiagonal then JAJ is tridiagonal with the diagonal
elements in reverse order.

In the implicit QL algorithm one chooses the shift from the top of A and chases
the bulge from bottom to top. The reason for preferring the QL algorithm is simply
that in practice it is often the case that the tridiagonal matrix is graded with the
large elements at the bottom. Since for reasons of stability the small eigenvalues
should be determined first the QL algorithm is preferable in this case. For matrices
graded in the other direction the QR algorithm should be used, or rows and columns
reversed before the QL algorithm is applied.

9.7.5 QR-SVD algorithms for Bidiagonal Matrices

For the computation of the SVD of a matrix A ∈ Rm×n it is usually advisable to
first perform a QR decomposition with column pivoting of A

AΠ = Q

(
R
0

)

. (9.7.35)

(We assume in the following that m ≥ n. This is no restriction since otherwise we
can consider AT .) Let let R = URΣV T be the SVD of R. Then it follows that

A = UΣV T , U = Q

(
UR

0

)

. (9.7.36)

Clearly the singular values and the right singular vectors of AΠ and R are the same
and the first n left singular vectors of A are easily obtained from those of R.

Starting with R1 = R, a sequence of upper triangular matrices Rk, k =
1, 2, . . .. In step k the QR factorization of a the lower triangular matrix is computed

RT
k = Qk+1Rk+1, (9.7.37)

In the next step Rk+1 is transposed and the process repeated. As we now show
This iteration is related to the basic unshifted QR algorithm for RTR and RTR.
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Using (9.7.37) we observe that

RT
kRk = Qk+1(Rk+1Rk)

is the QR factorization of RT
kRk. Forming the product in reverse order gives

(Rk+1Rk)Qk+1 = Rk+1R
T
k+1Q

T
k+1Qk+1 = Rk+1R

T
k+1

= RT
k+2Q

T
k+2Qk+2Rk+2 = RT

k+2Rk+2.

Hence two successive iterations of (9.7.37) are equivalent to one iteration of the
basic QR algorithm for RTR. Moreover this is achieved without forming RTR,
which is essential to avoid loss of accuracy.

Using the orthogonality of Qk+1 it follows from (9.7.37) that Rk+1 = QT
k+1R

T
k ,

and hence
RT

k+1Rk+1 = Rk(Qk+1Q
T
k+1)R

T
k = RkR

T
k .

Further we have

Rk+2R
T
k+2 = Rk+2Rk+1Qk+2 = QT

k+2(RkR
T
k )Qk+2. (9.7.38)

which shows that we are simultaneously performing an iteration on RkR
T
k , again

without explicitly forming this matrix.
One iteration of (9.7.37) is equivalent to one iteration of the Cholesky LR

algorithm applied to Bk = RkR
T
k . This follows since Bk has the Cholesky factor-

ization Bk = RT
k+1Rk+1 and multiplication of these factors in reverse order gives

Bk+1 = Rk+1R
T
k+1. (Recall that for a symmetric, positive definite matrix two steps

of the LR algorithm is equivalent to one step of the QR algorithm.)
The convergence of this algorithm is enhanced provided the QR factorization

of A in the first step is performed using column pivoting. It has been shown that
then already the diagonal elements of R1 often are surprisingly good approximations
to the singular values of A.

For the QR-SVD algorithm to be efficient it is necessary to initially reduce
A to a compact form that is preserved during the QR iterations and to introduce
shifts. The proper compact form here is a bidiagonal form B. It was described in
Section 8.6.6 how any matrix A ∈ Rm×n can be reduced to upper bidiagonal form.
Performing this reduction on R we have

QT
BRPB = B =









q1 e2
q2 e3

. . .
. . .

qn−1 en

qn









. (9.7.39)

with orthogonal transformations from left and right. Using a sequence of House-
holder transformations

QB = Q1 · · ·Qn ∈ Rn×n, PB = P1 · · ·Pn−2 ∈ Rn×n.
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the reduction can be carried out in 4
3n

3 flops. Note that also a complex matrix A
can be reduced to real bidiagonal form using complex Householder transformations,
see Section 9.1.2. The singular values of B equal those of A and the left and right
singular vectors can be constructed from those of B.

We first notice that if in (9.7.39) ei = 0, then the matrix B breaks into two
upper bidiagonal matrices, for which the singular values can be computed indepen-
dently. If qi = 0, then B has a singular value equal to zero. Applying a sequence of
Givens rotations from the left, Gi,i+1, Gi,i+2, . . . , Gi,n the ith row be zeroed out, and
again the matrix breaks up into two parts. Hence we may without loss of generality
assume that none of the elements q1, qi, ei, i = 2, . . . , n are zero. This assumption
implies that the matrix BTB has nondiagonal elements αi+1 = qiei+1 6= 0, and
hence is unreduced. It follows that all eigenvalues of BTB are positive and distinct,
and we have σ1 > · · · > σn > 0.

Since shifts are essential for achieving rapid convergence and deflation we now
look into alternative ways of implementing the QR-SVD algorithm.

We first proceed by forming the symmetric matrix

C =

(
0 B
BT 0

)

∈ R2n×2n. (9.7.40)

whose eigenvalues are ±σi, i = 1, . . . , n. After reordering rows and columns by an
odd/even permutation C becomes symmetric tridiagonal matrix with zeros on the
main diagonal. Hence

T = PTCP =












0 q1
q1 0 e2

e2 0 q2

q2 0
. . .

. . .
. . . qn
qn 0












(9.7.41)

where P is the permutation matrix whose columns are those of the identity in the
order (n+1, 1, n+2, 2, . . . , 2n, n). Hence the QR algorithm, the divide and conquer
algorithm, and spectrum slicing (see Problem 6) are all applicable to this special
tridiagonal matrix to compute the singular values of B. A disadvantage of this
approach is that the dimension is essentially doubled.

A closer inspection of the QR algorithm applied to T reveals it to be equiv-
alent to an algorithm where the iterations are carried out directly on B. It is also
equivalent to an implicit version of the QR algorithm applied to the symmetric
tridiagonal matrix T = BTB.

We now consider the application of the implicit shift QR algorithm to BTB.
Since forming BTB would lead to a severe loss of accuracy in the small singular
values it is essential to work directly with the matrix B. The Wilkinson shift τ
can be determined as the smallest eigenvalue of the lower right 2 × 2 submatrix in
BBT , or equivalently as the square of the smallest singular value of the 2× 2 upper
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triangular submatrix in (9.7.39)

(
qn−1 en

0 qn

)

.

In the implicit shift QR algorithm for BTB we first determine a Givens rota-
tion T1 = G12 so that

GT
12t1 = ±‖t1‖2e1, t1 = (q21 − τ, q1e2, 0, . . . , 0)T , (9.7.42)

where t1 is the first column in BTB− τI and τ is the shift. Suppose we next apply
a sequence of Givens transformations such that

T T
n−1 · · ·T T

2 T
T
1 B

TBT1T2 · · ·Tn−1

is tridiagonal, but we wish to avoid doing this explicitly. Let us start by applying
the transformation T1 to B. Then we get (take n = 5),

BT1 =

0

B

B

B

B

@

→ × ×
→ + × ×

× ×
× ×

×

1

C

C

C

C

A

.

If we now premultiply by a Givens rotation ST
1 = R12 to zero out the + element,

this creates a new nonzero element in the (1, 3) position; To preserve the bidiagonal
form we then choose the transformation T2 = R23 to zero out the element +:

ST
1 BT1 =

0

B

B

B

B

@

→ × × +
→ ⊕ × ×

× ×
× ×

×

1

C

C

C

C

A

, ST
1 BT1T2 =

0

B

B

B

B

@

↓ ↓
× × ⊕

× ×
+ × ×

× ×
×

1

C

C

C

C

A

.

We can now continue to chase the element + down, with transformations alternately
from the right and left until we get a new bidiagonal matrix

B̂ = (ST
n−1 · · ·ST

1 )B(T1 · · ·Tn−1) = UTBP.

But then the matrix

T̂ = B̂T B̂ = PTBTUUTBP = PTTP

is tridiagonal, where the first column of P equals the first column of T1. Hence if
T̂ is unreduced it must be the result of one QR iteration on T = BTB with shift
equal to τ .
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The subdiagonal entries of T equal qiei+1, i = 1, . . . , n − 1. If some element
ei+1 is zero, then the bidiagonal matrix splits into two smaller bidiagonal matrices

B =

(
B1 0
0 B2

)

.

If qi = 0, then we can zero the ith row by premultiplication by a sequence Givens
transformations Ri,i+1, . . . , Ri,n, and the matrix then splits as above. In practice
two convergence criteria are used. After each QR step if

|ei+1| ≤ 0.5u(|qi| + |qi+1|),

where u is the unit roundoff, we set ei+1 = 0. We then find the smallest p and the
largest q such that B splits into quadratic subblocks





B1 0 0
0 B2 0
0 0 B3



 ,

of dimensions p, n − p − q and, q where B3 is diagonal and B2 has a nonzero
subdiagonal. Second, if diagonal elements in B2 satisfy

|qi| ≤ 0.5u(|ei| + |ei+1|),

set qi = 0, zero the superdiagonal element in the same row, and repartition B.
Otherwise continue the QR algorithm on B2.

A justification for these tests is that roundoff in a rotation could make the
matrix indistinguishable from one with a qi or ei+1 equal to zero. Also, the error
introduced by the tests is not larger than some constant times u‖B‖2.

The implicit QR-SVD algorithm can be shown to be backward stable. This
essentially follows from the fact that we have only applied a sequence of orthogo-
nal transformations to A. Hence the computed singular values Σ̄ = diag (σ̄k) are
the exact singular values of a nearby matrix A + E, where ‖E‖2 ≤ c(m,n) · uσ1.
Here c(m,n) is a constant depending on m and n and u the unit roundoff. From
Theorem 7.3.4

|σ̄k − σk| ≤ c(m,n) · uσ1.

Thus, if A is nearly rank deficient, this will always be revealed by the computed sin-
gular values. Note, however, that the smaller singular values may not be computed
with high relative accuracy.

When all the superdiagonal elements in B have converged to zero we have
QT

SBTS = Σ = diag (σ1, . . . , σn). Hence

UTAV =

(
Σ
0

)

, U = QBdiag(QS , Im−n), V = TBTS (9.7.43)

is the singular value decomposition of A. Usually less than 2n iterations are needed
in the second phase. One QR iteration requires 14n multiplications and 2n calls to
givrot. Accumulating the rotations into U requires 6mn flops. Accumulating the
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Table 9.7.1. Comparison of multiplications for SVD algorithms.

Required Golub–Reinsch SVD Chan SVD

Σ, U1, V (3 + C)mn2 + 11
3 n

3 3mn2 + 2(C + 1)n3

Σ, U1 (3 + C)mn2 − n3 3mn2 + (C + 4/3)n3

Σ, V 2mn2 + Cn3 mn2 + (C + 5/3)n3

Σ 2mn2 − 2n3/3 mn2 + n3

rotations into V requires 6n2 flops. If singular vectors are desired, the cost of a QR
iteration goes up to 4n2 flops and the overall cost to O(n3). See Table 9.7.5 for a
comparison of flop counts for different variants.

To reduce the number of QR iterations where we accumulate transformations
we can first compute the singular values without accumulating vectors. If we then
choose shifts based on the computed singular values, the perfect shifts, convergence
occurs in one iteration. This may reduce the cost about 40%. If fewer than 25% of
the singular vectors are wanted, then inverse iteration should be used instead. The
drawback of this approach is the difficulty of getting orthogonal singular vectors to
clustered singular values.

An important implementation issue is that the bidiagonal matrix is often
graded, i.e., the elements may be large at one end and small at the other. For ex-
ample, if in the Chan-SVD column pivoting is used in the initial QR decomposition,
then the matrix is usually graded from large at upper left to small at lower right as
illustrated below






1 10−1

10−2 10−3

10−4 10−5

10−6




 . (9.7.44)

From the following perturbation result it follows that it should be possible to com-
pute all singular values of a bidiagonal matrix to full relative precision independent
of their magnitudes.

Theorem 9.7.4. (Demmel and Kahan [9, ])
Let B ∈ Rn×n be a bidiagonal matrix with singular values σ1 ≥ · · · ≥ σn. Let

|δB| ≤ ω|B|, and let σ̄1 ≥ · · · ≥ σ̄n be the singular values of B̄ = B + δB. Then if
η = (2n− 1)ω < 1,

|σ̄i − σi| ≤
η

1 − η
|σi|, (9.7.45)

max{sin θ(ui, ũi), sin θ(vi, ṽi)} ≤
√

2η(1 + η)

relgapi − η
, (9.7.46)

i = 1, . . . , n, where the relative gap between singular values is

relgapi = min
j 6=i

|σi − σj |
σi + σj

. (9.7.47)
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The QR algorithm as described above tries to converge to the singular values
from smallest to largest, and “chases the bulge” from top to bottom. Convergence
will then be fast. However, if B is graded the opposite way then the QR algorithm
may require many more steps. To avoid this the rows and columns of B could
in this case be reversed before the QR algorithm is applied. Alternatively many
algorithms check for the direction of grading. Note that the matrix may break up
into diagonal blocks which are graded in different ways.

To compute small singular values of a bidiagonal matrix accurately one can
use the unshifted QR-SVD algorithm given by (9.7.37). which uses the iteration

BT
k = Qk+1Bk+1, k = 0, 1, 2, . . . . (9.7.48)

In each step the lower bidiagonal matrix BT
k is transformed into an upper bidiagonal

matrix Bk+1.

QT
1 B =

0

B

B

B

B

@

→ × +
→ ⊗ ×

× ×
× ×

× ×

1

C

C

C

C

A

, Q2Q
T
1 B =

0

B

B

B

B

@

× ×
→ × +
→ ⊗ ×

× ×
× ×

1

C

C

C

C

A

,

etc. Each iteration in (9.7.48) can be performed with a sequence of n− 1 Givens
rotations at a cost of only 2n multplications and n− 1 calls to givrot. Two steps of
the iteration is equivalent to one step of the zero shift QR algorithm. (Recall that
one step of the QR algorithm with nonzero shifts, requires 12n multiplications and
4n additions.) The zero shift algorithm is very simple and uses no subtractions,
Hence each entry of the transformed matrix is computed to high relative accuracy.

Algorithm 9.7.1 The Zero Shift QR Algorithm

The algorithm performs p steps of the zero shift QR algorithm on the bidiagonal
matrix B in (9.7.39):

for k = 1 : 2p

for i = 1 : n− 1

[c, s, r] = givrot(qi, ei+1);

qi = r; qi+1 = qi+1 ∗ c;
ei+1 = qi+1 ∗ s;

end

end

If two successive steps of (9.7.48) are interleaved we get the zero shift QR
algorithm, the implementation of which has been studied in depth by Demmel and
Kahan [9]. To give full accuracy for the smaller sigingular values the convergence
tests used for standard shifted QR-SVD algorithm must be modified. This is a
non-trivial task, for which we refer to the original paper.
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9.7.6 Singular Values by Spectrum Slicing

An algorithm for computing singular values can be developed by applying Algorithm
9.6.6 for spectrum slicing to the special symmetric tridiagonal matrix T in (9.7.41).
Taking advantage of the zero diagonal this algorithm simplifies and one slice requires
only of the order 2n flops. Given the elements q1, . . . , qn and e2, . . . , en of T in
(9.7.41), the following algorithm generates the number π of singular values of T
greater than a given value σ > 0.

Algorithm 9.7.2
Singular Values by Spectrum Slicing Let T be the tridiagonal matrix (9.6.9). Then
the number π of eigenvalues greater than a given number σ is generated by the
following algorithm:

d1 := −σ;

flip := −1;

π := if d1 > 0 then 1 else 0;

for k = 2 : 2n

flip := −flip;
if flip = 1 then β = qk/2

else β = e(k+1)/2;

end

dk := −β(β/dk−1) − τ ;

if |dk| <
√
ω then dk :=

√
ω;

if dk > 0 then π := π + 1;

end

Spectrum slicing algorithm for computing singular values has been analyzed
by Fernando [11]. and shown to provide high relative accuracy also for tiny singular
values.

Review Questions

1. What is meant by a graded matrix, and what precautions need to be taken when
transforming such a matrix to condensed form?

2. For a certain class of symmetric matrices small eigenvalues are determined with a
very small error compared to ‖A‖F . Which?

3. If one step of the QR algorithm is performed on A with a shift τ equal to an eigenvalue
of A, what can you say about the result? Describe how the shift usually is chosen
in the QR algorithm applied to a real symmetric tridiagonal matrix.

4. What are the advantages of the implicit shift version of the QR algorithm for a real
Hessenberg matrix H?
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5. Suppose the eigenvalues to a Hessenberg matrix have been computed using the QR
algorithm. How are the eigenvectors best computed (a) if all eigenvectors are needed;
(b) if only a few eigenvectors are needed.

6. (a) Show that the symmetry of a matrix is preserved during the QR algorithm. What
about normality?

(b) Show that the Hessenberg form is preserved during the QR algorithm.

7. What condensed form is usually chosen for the singular value decomposition? What
kind of transformations are used for bringing the matrix to condensed form? How
are the singular values computed for the condensed form?

Problems

1. Perform a QR step without shift on the matrix

A =

„

cos θ sin θ
sin θ 0

«

and show that the nondiagonal elements are reduced to − sin3 θ.

2. Let T be the tridiagonal matrix in (9.7.30), and suppose a QR step using the shift
τ = αn is carried out,

T − αnI = QR, T̃ = RQ + αnI.

Generalize the result from Problem 2, and show that if γ = mini |λi(Tn−1)−αn| > 0,
then |β̃n| ≤ |βn|3/γ2.

3. Show that a complex matrix A can be reduced to real bidiagonal form using a
sequence of unitary Householder transformations, see (9.6.2)–(9.6.3)

4. Let C be the matrix in (9.7.40) and P the permutation matrix whose columns are
those of the identity matrix in the order (n +1, 1, n + 2, 2, . . . , 2n, n). Show that the
matrix P T CP becomes a tridiagonal matrix T of the form in (9.7.41).

5. To compute the SVD of a matrix A ∈ Rm×2 we can first reduce A to upper triangular
form by a QR decomposition

A = (a1, a2) = (q1, q2)

„

R
0

«

, R =

„

r11 r12

0 r22

«

.

Then, as outlined in Golub and Van Loan [21, Problem 8.5.1], a Givens rotation G can
be determined such that B = GRGT is symmetric. Finally, B can be diagonalized
by a Jacobi transformation. Derive the details of this algorithm!

6. (a) Let σi be the singular values of the matrix

M =

0

B

B

B

@

z1

z2 d2

...
. . .

zn dn

1

C

C

C

A

∈ R
n×n,

where the elements di are distinct. Show the interlacing property

0 < σ1 < d2 < · · · < dn < σn < dn + ‖z‖2.
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(b) Show that σi satisfies the secular equation

f(σ) = 1 +

n
X

k=1

z2
k

d2
k − σ2

= 0.

Give expressions for the right and left singular vectors of M .

Hint: See Lemma 9.6.2.

7. Modify Algorithm 9.7.1 for the zero shift QR-SVD algorithm so that the two loops
are merged into one.

9.8 Subspace Methods for Large Eigenvalue
Problems

In many applications eigenvalue problems arise involving matrices so large that they
cannot be conveniently treated by the methods described so far. For such problems,
it is not reasonable to ask for a complete set of eigenvalues and eigenvectors, and
usually only some extreme eigenvalues (often at one end of the spectrum) are re-
quired. In the 1980’s typical values could be to compute 10 eigenpairs of a matrix
of order 10,000. In the late 1990’s problems are solved where 1,000 eigenpairs are
computed for matrices of order 1,000,000!

We concentrate on the symmetric eigenvalue problem since fortunately many
of the very large eigenvalue problems that arise are symmetric. We first consider
the general problem of obtaining approximations from a subspace of Rn. We then
survey the two main classes of methods developed for large or very large eigenvalue
problems.

9.8.1 The Rayleigh–Ritz Procedure

Let S be the subspace of Rn spanned by the columns of a given matrix S =
(s1, . . . , sm) ∈ Rn×m (usually m ≪ n). We consider here the problem of finding
the best set of approximate eigenvectors in S to eigenvectors of a Hermitian matrix
A. The following generalization of the Rayleigh quotient is the essential tool needed.

Theorem 9.8.1.
Let A be Hermitian and Q ∈ Rn×p be orthonormal, QHQ = Ip. Then the

residual norm ‖AQ−QC‖2 is minimized for C = M where

M = ρ(Q) = QHAQ (9.8.1)

is the corresponding Rayleigh quotient matrix. Further, if θ1, . . . , θp are the eigen-
values of M , there are p eigenvalues λi1, . . . , λip of A, such that

|λij − θj | ≤ ‖AQ−QM‖2, j = 1, . . . , p. (9.8.2)

Proof. See Parlett [38, Section 11-5].
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We can now outline the complete procedure:

Algorithm 9.8.1
The Rayleigh–Ritz procedure

1. Determine an orthonormal matrix Q = (q1, . . . , qm) such that R(Q) = S.

2. Form the matrix B = AQ = (Aq1, . . . , Aqm) and the generalized Rayleigh
quotient matrix

M = QH(AQ) ∈ Rm×m. (9.8.3)

3. Compute the p ≤ m eigenpairs of the Hermitian matrix M which are of
interest

Mzi = θ1zi, i = 1, . . . , p. (9.8.4)

The eigenvectors can be chosen such that Z = (z1, . . . , zm) is a unitary matrix.
The eigenvalues θi are the Ritz values, and the vectors yi = Qzi the Ritz
vectors.

4. Compute the residual matrix R = (r1, . . . , rp), where

ri = Ayi − yiθi = (AQ)zi − yiθi. (9.8.5)

Then each interval

[
θi − ‖ri‖2, θi + ‖ri‖2

]
, i = 1, . . . , p, (9.8.6)

contains an eigenvalue λi of A.

The pairs (θi, yi), i = 1, . . . , p are the best approximate eigenpairs of A which
can be derived from the space S. If some of the intervals in (9.8.6) overlap, we
cannot be sure to have approximations to p eigenvalues of A. However, there are
always p eigenvalues in the intervals defined by (9.8.2).

We can get error bounds for the approximate eigenspaces from an elegant
generalization of Theorem 9.3.15. We first need to define the gap of the spectrum
of A with respect to a given set of approximate eigenvalues.

Definition 9.8.2.
Let λ(A) = {λ1, . . . , λn} be eigenvalues of a Hermitian matrix A. For the set

ρ = {θ1, . . . , θp}, let sρ = {λi1 , . . . , λip
} be a subset of λ(A) minimizing maxj |θj −

λij
|. Then we define

gap (ρ) = min
λ∈λ(A)

|λ− θi|, λ 6∈ sρ, θi ∈ ρ. (9.8.7)
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Theorem 9.8.3.
Let Q ∈ Rn×p be orthonormal and A a Hermitian matrix. Let {θ1, . . . , θp}

be the eigenvalues of H = ρ(Q) = QHAQ, and let sr = {λi1 , . . . , λip
} be a subset

of eigenvalues of A such that maxj |θj − λij
| is minimized. If Z is the invariant

subspace of A corresponding to sr, then

θ(Q,Z) ≤ ‖AQ−QH‖2/gap (ρ). (9.8.8)

where sin θ(Q,Z) is the largest angle between the subspaces Q and Z.

9.8.2 Subspace Iteration for Hermitian Matrices

In Section 9.4.4 subspace iteration, or orthogonal iteration, was introduced as a
block version of the power method. Subspace iteration has long been one of the
most important methods for solving large sparse eigenvalue problems. In particular
it has been used much in structural engineering, and developed to a high standard
of refinement.

In simple subspace iteration we start with an initial matrix Q0 ∈ Rn×p (1 <
p ≪ n) with orthogonal columns. From this a sequence of matrices {Qk} are
computed from

Zk = AQk−1, QkRk = Zk, k = 1, 2, . . . , (9.8.9)

where QkRk is the QR decomposition of the matrix Zk. There is no need for the
matrix A to be known explicitly; only an algorithm (subroutine) for computing
the matrix-vector product Aq for an arbitrary vector q is required. This iteration
(9.8.9) generates a sequence of subspaces Sk = R(AkQ0) = R(Qk), and we seek
approximate eigenvectors ofA in these subspaces. It can be shown (see Section 9.4.4)
that if A has p dominant eigenvalues λ1, · · · , λp, i.e.,

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|

then the subspaces Sk, k = 0, 1, 2, . . . converge almost always to the corresponding
dominating invariant subspace.The convergence is linear with rate |λp+1/λp|.

For the individual eigenvalues λi > λi+1, i ≤ p, it holds that

|r(k)
ii − λi| = O(|λi+1/λi|k), i = 1, . . . , p.

where r
(k)
ii are the diagonal elements in Rk. This rate of convergence is often

unacceptably slow. We can improve this by including the Rayleigh–Ritz procedure
in orthogonal iteration. For the real symmetric (Hermitian) case this leads to the
improved algorithm below.

Algorithm 9.8.2
Orthogonal Iteration, Hermitian Case.

With Q0 ∈ Rn×p compute for k = 1, 2, . . . a sequence of matrices Qk as follows:
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1. Compute Zk = AQk−1;

2. Compute the QR decomposition Zk = Q̄kRk;

3. Form the (matrix) Rayleigh quotient Bk = Q̄T
k (AQ̄k);

4. Compute eigenvalue decomposition Bk = UkΘkU
T
k ;

5. Compute the matrix of Ritz vectors Qk = Q̄kUk.

It can be shown that

|θ(k)
i − λi| = O(|λp+1/λi|k), Θk = diag (θ

(k)
1 , . . . , θ(k)

p ),

which is a much more favorable rate of convergence than without the Rayleigh–Ritz
procedure. The columns of Qk are the Ritz vectors, and they will converge to the
corresponding eigenvectors of A.

Example 9.8.1.
Let A have the eigenvalues λ1 = 100, λ2 = 99, λ3 = 98 λ4 = 10, and λ5 = 5.

With p = 3 the asymptotic convergence ratios for the jth eigenvalue with and
without Rayleigh–Ritz acceleration are:

j without R-R with R-R

1 0.99 0.1
2 0.99 0.101
3 0.102 0.102

The work in step 1 of Algorithm 9.8.2 consists of p matrix times vector op-
erations with the matrix A. If the modified Gram-Schmidt method is used step 2
requires p(p+ 1)n flops. To form the Rayleigh quotient matrix requires a further p
matrix times vector multiplications and p(p+ 1)n/2 flops, taking the symmetry of
Bk into account. Finally steps 4 and 5 take about 5p3 and p2n flops, respectively.

Note that the same subspace Sk is generated by k consecutive steps of 1, as
with the complete Algorithm 9.8.2. Therefore the rather costly orthogonalization
and Rayleigh–Ritz acceleration need not be carried out at every step. However, to
be able to check convergence to the individual eigenvalues we need the Rayleigh–
Ritz approximations. If we then form the residual vectors

ri = Aq
(k)
i − q

(k)
i θi = (AQk)u

(k)
i − q

(k)
i θi. (9.8.10)

and compute ‖ri‖2 each interval [θi −‖ri‖2, θi + ‖ri‖2] will contain an eigenvalue of
A. Sophisticated versions of subspace iteration have been developed. A highlight is
the Contribution II/9 by Rutishauser in [40].

Algorithm 9.8.2 can be generalized to nonsymmetric matrices, by substituting
in step 4 the Schur decomposition

Bk = UkSkU
T
k ,
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where Sk is upper triangular. The vectors qi then converge to the Schur vector ui

of A.
If interior eigenvalues are wanted then we can consider the spectral trans-

formation (see Section 9.4.2)

Â = (A− µI)−1.

The eigenvalues of Â and A are related through λ̂i = 1/(λi − µ). Hence, the eigen-
values λ in a neighborhood of µ will correspond to outer eigenvalues of Â, and can
be determined by applying subspace iteration to Â. To perform the multiplication
Âq we need to be able to solve systems of equations of the form

(A− µI)p = q. (9.8.11)

This can be done, e.g., by first computing an LU factorization of A− µI or by an
iterative method.

9.8.3 Krylov Subspaces

Of great importance for iterative methods are the subspaces of the form

Km(v,A) = span
(
v,Av, . . . , Am−1v

)
, (9.8.12)

generated by a matrix A and a single vector v. These are called Krylov sub-
spaces11 and the corresponding matrix

Km =
(
v,Av, . . . , Am−1v

)

is called a Krylov matrix. If m ≤ n the dimension of Km usually equals m unless v
is specially related to A.

Many methods for the solving the eigenvalue problem developed by Krylov
and others in the 1930’s and 40’s aimed at bringing the characteristic equation
into polynomial form. Although this in general is a bad idea, we will consider
one approach, which is of interest because of its connection with Krylov subspace
methods and the Lanczos process.

Throughout this section we assume that A ∈ Rn×n is a real symmetric matrix.
Associated with A is the characteristic polynomial (9.1.5)

p(λ) = (−1)n(λn − ξn−1λ
n−1 − · · · ξ0) = 0.

The Cayley–Hamilton theorem states that p(A) = 0, that is

An = ξn−1A
n−1 + · · · ξ1A+ ξ0. (9.8.13)

In particular we have

Anv = ξn−1A
n−1v + · · · ξ1Av + ξ0v

= [v,Av, . . . , An−1v]x,

11Named after Aleksei Nikolaevich Krylov (1877–1945) Russian mathematcian. Krylov worked
at the Naval Academy in Saint-Petersburg and in 1931 published a paper [30] on what is now
called “Krylov subspaces”.
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where x = (ξ0, ξ1, . . . , ξn−1)
T .

Consider the Krylov sequence of vectors, v0 = v,

vj+1 = Avj , j = 0 : n− 1. (9.8.14)

We assume in the following that v is chosen so that vi 6= 0, i = 0 : n− 1, Then we
may write (9.8.14) as

xBx = vn, B = [v0, v1, . . . , vn+1] (9.8.15)

which is a linear equations in n unknowns.
Multiplying (9.8.15) on the left with BT we obtain a symmetric linear system,

the normal equations

Mx = z, M = BTB, z = BT vn.

The elements mij of the matrix M are

mi+1,j+1 = vT
i vj = (Aiv)TAjv = vTAi+jv.

They only depend on the sum of the indices and we write

mi+1,j+1 = µi+j , i+ j = 0; 2n− 1.

Unfortunately this system tends to be very ill-conditioned. For larger values of
n the Krylov vectors soon become parallel to the eigenvector associated with the
dominant eigenvalue.

The Krylov subspace Km(v,A) depends on both A and v. However, it is
important to note the following simply verified invariance properties:

• Scaling: Km(αv, βA) = Km(v,A), α 6= 0, β 6= 0.

• Translation: Km(v,A− µI) = Km(v,A).

• Similarity: Km(QT v,QTAQ) = QTKm(v,A), QTQ = I.

These invariance can be used to deduce some important properties of methods using
Krylov subspaces. Since A and −A generate the same subspaces the left and right
part of the spectrum of A are equally approximated. The invariance with respect
to shifting shows, e.g, that it does not matter if A is positive definite or not.

We note that the Krylov subspace K(v,A) is spanned by the vectors generated
by performing k − 1 steps of the power method starting with v. However, in the
power method we throw away previous vectors and just use the last vector Akv to
get an approximate eigenvector. It turns out that this is wasteful and that much
more powerful methods can be developed which work with the complete Krylov
subspace.

Any vector x ∈ Km(v) can be written in the form

x =

m−1∑

i=0

ciA
iv = Pm−1(A)v,
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where Pm−1 is a polynomial of degree less than m. This provides a link between
polynomial approximation and Krylov type methods, the importance of which will
become clear in the following.

A fundamental question is: How well can an eigenvector of A be approximated
by a vector in K(v,A)? Let Πk denote the orthogonal projector onto the Krylov
subspace K(v,A). The following lemma bounds the distance ‖ui − Πkui‖2, where
ui is a particular eigenvector of A.

Theorem 9.8.4.
Assume that A is diagonalizable and let the initial vector v have the expansion

v =

n∑

k=1

αkuk (9.8.16)

in terms of the normalized eigenvectors u1, . . . , un. Let Pk−1 be the set of polyno-
mials of degree at most k − 1 such that p(λi) = 1. Then, if αi 6= 0 the following
inequality holds:

‖ui − Πkui‖2 ≤ ξiǫ
(k)
i , ξi =

∑

j 6=i

|αj |/|αi|, (9.8.17)

where
ǫ
(k)
i = min

p∈Pk−1

max
λ∈λ(A)−λi

|p(λ)|. (9.8.18)

Proof. We note that any vector in Kk can be written q(A)v, where q is a polynomial
q ∈ Pk−1. Since Πk is the orthogonal projector onto Kk we have

‖(I − Πk)ui‖2 ≤ ‖ui − q(A)v‖2.

Using the expansion (9.8.16) of v it follows that for any polynomial p ∈ Pk−1 with
p(λi) = 1 we have

‖(I − Πk)αiui‖2 ≤
∥
∥
∥αiui −

n∑

j=1

αjp(λj)uj

∥
∥
∥

2
≤ max

j 6=i
|p(λj)

∣
∣
∣

∑

j 6=i

|αj

∣
∣
∣.

The last inequality follows noticing that the component in the eigenvector ui is zero
and using the triangle inequality. Finally dividing by |αi| establishes the result.

To obtain error bounds we use the properties of the Chebyshev polynomials.
We now consider the Hermitian case and assume that the eigenvalues of A are simple
and ordered so that λ1 > λ2 > · · · > λn. Let Tk(x) be the Chebyshev polynomial
of the first kind of degree k. Then |Tk(x)| ≤ 1 for |x| ≤ 1, and for |x| ≥ 1 we have

Tk(x) =
1

2

[

(x +
√

x2 − 1)k + (x−
√

x2 − 1)k
]

. (9.8.19)



108 Chapter 9. Matrix Eigenvalue Problems

Now if we take

x = li(λ) = 1 + 2
λ− λi+1

λi+1 − λn
, γi = li(λi) = 1 + 2

λi − λi+1

λi − λn
. (9.8.20)

the interval λ = [λi+1, λn] is mapped onto x = [−1, 1], and γ1 > 1. In particular,
for i = 1, we take

p(λ) =
Tk−1(l1(λ))

Tk−1(γ1)
.

Then p(λ1) = 1 as required by Theorem 9.8.4. When k is large we have

ǫ
(k)
1 ≤ max

λ∈λ(A)−λi

|p(λ)| ≤ 1

Tk−1(γ1)
≈ 2
/(

γ1 +
√

γ2
1 − 1

)k−1

. (9.8.21)

The steep climb of the Chebyshev polynomials outside the interval [−1, 1] explains
the powerful approximation properties of the Krylov subspaces. The approximation
error tends to zero with a rate depending on the gap λ1 − λ2 normalized by the
spread of the rest of the eigenvalues λ2 − λn. Note that this has the correct form
with respect to the invariance properties of the Krylov subspaces.

By considering the matrix −A we get analogous convergence results for the
rightmost eigenvalue λn of A. In general, for i > 1, similar but weaker results can
be proved using polynomials of the form

p(λ) = qi−1(λ)
Tk−i(li(λ))

Tk−i(γi)
, qi−1(λ) =

i−1∏

j=1

λj − λ

λj − λi
.

Notice that qi−1(λ) is a polynomial of degree i−1 with qi−1(λj) = 0, j = 1, . . . , i−1,
and qi−1(λi) = 1. Further

max
λ∈λ(A)−λi

|qi−1(λ)| ≤ |qi−1(λn)| = Ci. (9.8.22)

Thus when k is large we have

ǫ
(k)
i ≤ Ci/Tk−i(γi). (9.8.23)

This indicates that we can expect interior eigenvalues and eigenvectors to be less
well approximated by Krylov-type methods.

9.8.4 The Lanczos Process

We will now show that the Rayleigh–Ritz procedure can be applied to the sequence
of Krylov subspaces Km(v), m = 1, 2, 3, . . ., in a very efficient way using the Lanc-
zos process. The Lanczos process, developed by Lanczos [33, ], can be viewed
as a way for reducing a symmetric matrix A to tridiagonal form T = QTAQ. Here
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Q = (q1, q2, . . . , qn) is orthogonal, where q1 can be chosen arbitrarily, and

T = Tn =










α1 β2

β2 α2 β3

β3
. . .

. . .
. . . αn−1 βn

βn αn










. (9.8.24)

is symmetric tridiagonal.
Equating the first n− 1 columns in A(q1, q2, . . . , qn) = (q1, q2, . . . , qn)T gives

Aqj = βjqj−1 + αjqj + βj+1qj+1, j = 1, . . . , n− 1.

where we have put β1q0 ≡ 0. The requirement that qj+1 ⊥ qj gives

αj = qT
j (Aqj − βjqj−1),

(Note that since qj ⊥ qj−1 the last term could in theory be dropped; however, since a
loss of orthogonality occurs in practice it should be kept. This corresponds to using
the modified rather than the classical Gram-Schmidt orthogonalization process.)

Further solving for qj+1,

βj+1qj+1 = rj+1, rj+1 = Aqj − αjqj − βjqj−1,

so if rj+1 6= 0, then βj+1 and qj+1 is obtained by normalizing rj+1. Given q1 these
equations can be used recursively to compute the elements in the tridiagonal matrix
T and the orthogonal matrix Q.

Algorithm 9.8.3
The Lanczos Process.
Let A be a symmetric matrix and q1 6= 0 a given vector. The following algorithm
computes in exact arithmetic after k steps a symmetric tridiagonal matrix Tk =
trid (βj , αj , βj+1) and a matrix Qk = (q1, . . . , qk) with orthogonal columns spanning
the Krylov subspace Kk(q1, A):

r0 = q1; q0 = 0;

β1 = ‖r0‖2 = 1;

for j = 1, 2, 3 . . .

qj = rj−1/βj;

rj = Aqj − βjqj−1;

αj = qT
j rj ;

rj = rj − αjqj ;

βj+1 = ‖rj‖2;

if βj+1 = 0 then exit;

end
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Note that A only occurs in the matrix-vector operationAqj . Hence, the matrix
A need not be explicitly available, and can be represented by a subroutine. Only
three n-vectors are needed in storage.

It is easy to see that if the Lanczos algorithm can be carried out for k steps
then it holds

AQk = QkTk + βk+1qk+1e
T
k . (9.8.25)

The Lanczos process stops if βk+1 = 0 since then qk+1 is not defined. However, then
by (9.8.25) it holds that AQk = QkTk, and thus Qk spans an invariant subspace of
A. This means that the eigenvalues of Tk also are eigenvalues of A. (For example,
if q1 happens to be an eigenvector of A, the process stops after one step.) Further
eigenvalues of A can the be determined by restarting the Lanczos process with a
vector orthogonal to q1, . . . , qk.

By construction it follows that span(Qk) = Kk(A, b). Multiplying (9.8.25)
by QT

k and using QT
k qk+1 = 0 it follows that Tk = QT

kAQk, and hence Tk is the
generalized Rayleigh quotient matrix corresponding to Kk(A, b). The Ritz values
are the eigenvalues θi of Tk, and the Ritz vectors are yi = Qkzi, where zi are the
eigenvectors of Tk corresponding to θi.

In principle we could at each step compute the Ritz values θi and Ritz vectors
yi, i = 1, . . . , k. Then the accuracy of the eigenvalue approximations could be
assessed from the residual norms ‖Ayi − θiyi‖2, and used to decide if the process
should be stopped. However, this is not necessary since using (9.8.25) we have

Ayi − yiθi = AQkzi −Qkziθi = (AQk −QkTk)zi = βk+1qk+1e
T
k zi.

Taking norms we get

‖Ayi − yiθi‖2 = βk+1|eT
k zi|. (9.8.26)

i.e., we can compute the residual norm just from the bottom element of the normal-
ized eigenvectors of Tk. This is fortunate since then we need to access the Q matrix
only after the process has converged. The vectors can be stored on secondary stor-
age, or often better, regenerated at the end. The result (9.8.26) also explains why
some Ritz values can be very accurate approximations even when βk+1 is not small.

So far we have discussed the Lanczos process in exact arithmetic. In practice,
roundoff will cause the generated vectors to lose orthogonality. A possible remedy
is to reorthogonalize each generated vector qk+1 to all previous vectors qk, . . . , q1.
This is however very costly both in terms of storage and operations.

A satisfactory analysis of the numerical properties of the Lanczos process was
first given by C. C. Paige [36, ]. He showed that it could be very effective
in computing accurate approximations to a few of the extreme eigenvalues of A
even in the face of total loss of orthogonality! The key to the behaviour is, that
at the same time as orthogonality is lost, a Ritz pair converges to an eigenpair of
A. As the algorithm proceeds it will soon start to converge to a second copy of the
already converged eigenvalue, and so on. The effect of finite precision is to slow
down convergence, but does not prevent accurate approximations to be found!
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The Lanczos process is also the basis for several methods for solving large
scale symmetric linear systems, and least squares problems, see Section 10.4.

9.8.5 Golub–Kahan Bidiagonalization.

A Lanczos process can also be developed for computing singular values and sin-
gular vectors to a rectangular matrix A. For this purpose we consider here the
Golub–Kahan bidiagonalization (GKBD) of a matrix A ∈ Rm×n, m ≥ n. This has
important applications for computing approximations to the large singular values
and corresponding singular vectors, as well as for solving large scale least squares
problems.

In Section 8.4.8 we gave an algorithm for computing the decomposition

A = U

(
B
0

)

V T , UTU = Im, V TV = In, (9.8.27)

where U = (u1, . . . , um) and V = (v1, . . . , vn) are chosen as products of Householder
transformations and B is upper bidiagonal. If we set U1 = (u1, . . . , un) then from
(9.8.27) we have

AV = U1B, ATU1 = V BT . (9.8.28)

In an alternative approach, given by Golub and Kahan [19, ], the columns of
U and V are generated sequentially, as in the Lanczos process.

A more useful variant of this bidiagonalization algorithm is obtained by instead
taking transforming A into lower bidiagonal form

Bn =










α1

β2 α2

β3
. . .
. . . αn

βn+1










∈ R(n+1)×n. (9.8.29)

(Note that Bn is not square.) Equating columns in (9.8.28) we obtain, setting
β1v0 ≡ 0, αn+1vn+1 ≡ 0, the recurrence relations

ATuj = βjvj−1 + αjvj ,

Avj = αjuj + βj+1uj+1, j = 1, . . . , n. (9.8.30)

Starting with a given vector u1 ∈ Rm, ‖u1‖2 = 1, we can now recursively generate
the vectors v1, u2, v2, . . . , um+1 and corresponding elements in Bn using, for j =
1, 2, . . . , the formulas

rj = ATuj − βjvj−1, αj = ‖rj‖2, vj = rj/αj , (9.8.31)

pj = Avj − αjuj , βj+1 = ‖pj‖2, uj+1 = pj/βj+1. (9.8.32)

For this bidiagonalization scheme we have

uj ∈ Kj(AA
T , u1), vj ∈ Kj(A

TA,ATu1).
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There is a close relationship between the above bidiagonalization process and
the Lanczos process applied to the two matrices AAT and ATA. Note that these
matrices have the same nonzero eigenvalues σ2

i , i = 1, . . . , n, and that the corre-
sponding eigenvectors equal the left and right singular vectors of A, respectively.

The GKBD process (9.8.31)–(9.8.32) generates in exact arithmetic the same
sequences of vectors u1, u2, . . . and v1, v2, . . . as are obtained by simultaneously
applying the Lanczos process to AAT with starting vector u1 = b/‖b‖2, and to
ATA with starting vector v1 = AT b/‖AT b‖2.

In floating point arithmetic the computed Lanczos vectors will lose orthog-
onality. In spite of this the extreme (largest and smallest) singular values of the
truncated bidiagonal matrix Bk ∈ R(k+1)×k tend to be quite good approximations
to the corresponding singular values of A, even for k ≪ n. Let the singular value
decomposition of Bk be Bk = Pk+1ΩkQ

T
k . Then approximations to the singular

vectors of A are
Ûk = UkPk+1, V̂k = VkQk.

This is a simple way of realizing the Ritz–Galerkin projection process on the sub-
spaces Kj(A

TA, v1) and Kj(AA
T , Av1). The corresponding approximations are

called Ritz values and Ritz vectors.
Lanczos algorithms for computing selected singular values and vectors have

been developed, which have been used, e.g., in information retrieval problems and
in seismic tomography. In these applications typically, the 100–200 largest singular
values and vectors for matrices having up to 30,000 rows and 20,000 columns are
required.

9.8.6 Arnoldi’s Method.

Arnoldi’s method is an orthogonal projection method onto Krylov subspace Km for
general non Hermitian matrices. The procedure starts by building an orthogonal
basis for Km

Algorithm 9.8.4
The Arnoldi process.
Let A be a matrix and v1, ‖v1‖2 = 1, a given vector. The following algorithm
computes in exact arithmetic after k steps a Hessenberg matrix Hk = (hij) and a
matrix Vk = (v1, . . . , vk) with orthogonal columns spanning the Krylov subspace
Kk(v1, A):

for j = 1 : k

for i = 1 : j

hij = vH
i (Avj);

end

rj = Avj −
j
∑

i=1

hijvi;

hj+1,j = ‖rj‖2;
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if hj+1,j = 0 then exit;

vj+1 = rj/hj+1,j ;

end

The Hessenberg matrix Hk ∈ Ck×k and the unitary matrix Vk computed in
the Arnoldi process satisfy the relations

AVk = VkHk + hk+1,kvk+1e
H
k , (9.8.33)

V H
k AVk = Hk. (9.8.34)

The process will break down at step j if and only if the vector rj vanishes. When
this happens we have AVk = VkHk, and so R(Vk) is an invariant subspace of A. By
(9.8.33) Hk = V H

k AVk and thus the Ritz values and Ritz vectors are obtained from
the eigenvalues and eigenvectors of Hk. The residual norms can be inexpensively
obtained as follows (cf. (9.8.26))

‖(A− θiI)yi‖2 = hm+1,m|eT
k zi|. (9.8.35)

The proof of this relation is left as an exercise.

Review Questions

1. Tell the names of two algorithms for (sparse) symmetric eigenvalue problems,
where the matrix A need not to be explicitly available but only as a subrou-
tine for the calculation of Aq for an arbitrary vector q. Describe one of the
algorithms.

2. Tell the names of two algorithms for (sparse) symmetric eigenvalue problems,
where the matrix A need not to be explicitly available but only as a subrou-
tine for the calculation of Aq for an arbitrary vector q. Describe one of the
algorithms.

Problems

1. (To be added.)

9.9 Generalized Eigenvalue Problems

9.9.1 Introduction

In this section we consider the generalized eigenvalue problem of computing
nontrivial solutions (λ, x) of

Ax = λBx, (9.9.1)
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where A and B are square matrices of order n. The family of matrices A − λB is
called a matrix pencil.12 It is called a regular pencil if det(A − λB) 6≡ 0, else it
is a singular pencil. A simple example of a singular pencil is

A =

(
1 0
0 0

)

, B =

(
2 0
0 0

)

,

where A and B have a null vector e2 in common.
If A − λB is a regular pencil, then the eigenvalues λ are the zeros of the

characteristic equation
det(A− λB) = 0. (9.9.2)

If the degree of the characteristic polynomial is n− p, then we say that A−λB has
p eigenvalues at ∞.

Example 9.9.1.
The characteristic equation of the pencil

A− λB =

(
1 0
0 1

)

− λ

(
0 0
0 1

)

is det(A − λB) = 1 − λ and has degree one. There is one eigenvalue λ = ∞
corresponding to the eigenvector e1.

Note that infinite eigenvalues of A− λB simply correspond to the zero eigen-
values of the pencil B − λA.

If S and T are nonsingular matrices then (9.9.2) is equivalent to

detS(A− λB)T = det(SAT − λSBT ) = 0.

The two pencils A− λB and SAT − λSBT are said to be equivalent. They have
the same eigenvalues and the eigenvectors are simply related.

If A and B are symmetric, then symmetry is preserved under congruence
transformations in which T = ST . The two pencils are then said to be congruent.
Of particular interest are orthogonal congruence transformations, S = QT and
T = Q, where Q is orthogonal. Such transformations are stable since they preserve
the 2-norm,

‖QTAQ‖2 = ‖A‖2, ‖QTBQ‖2 = ‖B‖2.

9.9.2 Canonical Forms

The algebraic and analytic theory of the generalized eigenvalue problem is much
more complicated than for the standard problem, and a complete treatment is
outside the scoop of this book. There is a canonical form for regular matrix pencils
corresponding to the Jordan canonical form, Theorem 9.2.7, which we state without
proof.

12The word “pencil” comes from optics and geometry, and is used for any one parameter family
of curves, matrices, etc.
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Theorem 9.9.1. Kronecker’s Canonical Form.
Let A − λB ∈ Cn×n be a regular matrix pencil. Then there are nonsingular

matrices X,Z ∈ Cn×n, such that X−1(A− λB)Z = Â− λB̂, where

Â = diag (Jm1(λ1), . . . , Jms
(λs), Ims+1 , . . . , Imt

), (9.9.3)

B̂ = diag (Im1 , . . . , Ims
, Jms+1(0), . . . , Jmt

(0)),

and where Jmi
(λi) are Jordan blocks and the blocks s+1, . . . , t correspond to infinite

eigenvalues. The numbers m1, . . . ,mt are unique and
∑t

i=1mi = n.

The disadvantage with the Kronecker Canonical Form is that it depends dis-
continuously on A and B and is unstable. There is also a generalization of the
Schur Canonical Form (Theorem 9.2.1), which can be computed stably and more
efficiently.

Theorem 9.9.2. Generalized Schur Canonical Form.
Let A − λB ∈ Cn×n be a regular matrix pencil. Then there exist unitary

matrices U and V so that

UAV = TA, UBV = TB,

where both TA and TB are upper triangular. The eigenvalues of the pencil are the
ratios of the diagonal elements of TA and TB.

Proof. See Stewart [1973, Ch. 7.6].

As for the standard case, when A and B are real, then U and V can be
chosen real and orthogonal if TA and TB are allowed to have 2 × 2 diagonal blocks
corresponding to complex conjugate eigenvalues.

9.9.3 Reduction to Standard Form

When B is nonsingular the eigenvalue problem (9.9.1) is formally equivalent to the
standard eigenvalue problem B−1Ax = λx. However, when B is singular such a
reduction is not possible. Also, if B is close to a singular matrix, then we can expect
to lose accuracy in forming B−1A.

Of particular interest is the case when the problem can be reduced to a sym-
metric eigenvalue problem of standard form. A surprising fact is that any real square
matrix F can be written as F = AB−1 or F = B−1A where A and B are suitable
symmetric matrices. For a proof see Parlett [38, Section 15-2] (cf. also Problem 1).
Hence, even if A and B are symmetric the generalized eigenvalue problems embod-
ies all the difficulties of the unsymmetric standard eigenvalue problem. However, if
B is also positive definite, then the problem (9.9.1) can be reduced to a standard
symmetric eigenvalue problem. This reduction is equivalent to the simultaneous
transformation of the two quadratic forms xTAx and xTBx to diagonal form.
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Theorem 9.9.3.
Let A and B be real symmetric square matrices and B also positive definite.

Then there exists a nonsingular matrix X such that

XTAX = DA, XTBX = DB (9.9.4)

are real and diagonal. The eigenvalues of A− λB are given by

Λ = diag (λ1, . . . , λn) = DAD
−1
B .

Proof. Let B = LLT be the Cholesky factorization of B. Then

L−1(A− λB)L−T = Ã− λI, Ã = Ã = L−1AL−T , (9.9.5)

where Ã is real and symmetric. Let Ã = QTDAQ be the eigendecomposition of Ã.
Then we have

XT (A− λB)X = DA − λDB , X = (QL−1)T ,

and the theorem follows.

Given the pencil A−λB the pencil Â−λB̂ = γA+σB−λ(−σA+γB), where
γ2 + σ2 = 1 has the same eigenvectors and the eigenvalues are related through

λ = (γλ̂+ σ)/(−σλ̂+ γ). (9.9.6)

Hence, for the above reduction to be applicable, it suffices that some linear combi-
nation −σA+ γB is positive definite. It can be shown that if

inf
x 6=0

(

(xTAx)2 + (xTBx)2
)1/2

> 0

then there exist such γ and σ.
Under the assumptions in Theorem 9.9.3 the symmetric pencil A− λB has n

real roots. Moreover, the eigenvectors can be chosen to be B-orthogonal, i.e.,

xT
i Bxj = 0, i 6= j.

This generalizes the standard symmetric case for which B = I.
Numerical methods can be based on the explicit reduction to standard form

in (9.9.5). Ax = λBx is then equivalent to Cy = λy, where

C = L−1AL−T , y = LTx. (9.9.7)

Computing the Cholesky decomposition B = LLT and forming C = (L−1A)L−T

takes about 5n3/12 flops if symmetry is used, see Wilkinson and Reinsch, Contribu-
tion II/10, [53]. If eigenvectors are not wanted, then the transform matrix L need
not be saved.
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If A and B are symmetric band matrices and B = LLT positive definite,
then although L inherits the bandwidth of A the matrix C = (L−1A)L−T will
in general be a full matrix. Hence in this case it may not be practical to form
C. Crawford [7] has devised an algorithm for reduction to standard form which
interleaves orthogonal transformations in such way that the matrix C retains the
bandwidth of A, see Problem 2.

The round-off errors made in the reduction to standard form are in general
such that they could be produced by small perturbations in A and B. When
B is ill-conditioned then the eigenvalues λ may vary widely in magnitude, and a
small perturbation in B can correspond to large perturbations in the eigenvalues.
Surprisingly, well-conditioned eigenvalues are often given accurately in spite of the
ill-conditioning of B. Typically L will have elements in its lower part. This will
produce a matrix (L−1A)L−T which is graded so that the large elements appear
in the lower right corner. Hence, a reduction to tridiagonal form should work from
bottom to top and the QL-algorithm should be used.

Example 9.9.2. Wilkinson and Reinsch [53, p. 310].
The matrix pencil A− λB, where

A =

(
2 2
2 1

)

, B =

(
1 2
2 4.0001

)

,

has one eigenvalue ≈ −2 and one O(104). The true matrix

(L−1A)L−T =

(
2 −200

−200 10000

)

is graded, and the small eigenvalue is insensitive to relative perturbation in its
elements.

9.9.4 Methods for Generalized Eigenvalue Problems

We first note that the power method and inverse iteration can both be extended to
the generalized eigenvalue problems. Starting with some q0 with ‖q0‖2 = 1, these
iterations now become

Bq̂k = Aqk−1, qk = q̂k/‖q̂k‖,
(A− σB)q̂k = Bqk−1, qk = q̂k/‖q̂k‖, k = 1, 2, . . .

respectively. Note that B = I gives the iterations in equations (9.5.4) and (9.5.7).
The Rayleigh Quotient Iteration also extends to the generalized eigenvalue problem:
For k = 0, 1, 2, . . . compute

(A− ρ(qk−1)B)q̂k = Bqk−1, qk = q̂k/‖qk‖2, (9.9.8)

where the (generalized) Rayleigh quotient of x is

ρ(x) =
xHAx

xHBx
.
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In the symmetric definite case the Rayleigh Quotient Iteration has asymptotically
cubic convergence and the residuals ‖(A− µkB)xk‖B−1 decrease monotonically.

The Rayleigh Quotient method is advantageous to use when A and B have
band structure, since it does not require an explicit reduction to standard form.
The method of spectrum slicing can be used to count eigenvalues of A− λB in an
interval.

Theorem 9.9.4.
Let A− σB have the Cholesky factorization

A− σB = LDLT , D = diag (d1, . . . , dn),

where L is unit lower triangular. If B is positive definite then the number of eigen-
values of A greater than σ equals the number of positive elements π(D) in the
sequence d1, . . . , dn.

Proof. The proof follows from Sylvester’s Law of Inertia (Theorem 7.3.8) and the
fact that by Theorem 9.9.1 A and B are congruent to DA andDB with Λ = DAD

−1
B .

For a nearly singular pencil (A,B) it may be preferable to use the QZ algo-
rithm of Moler and Stewart which is a generalization of the implicit QR algorithm.
Here the matrix A is first reduced to upper Hessenberg form HA and simultane-
ously B to upper triangular form RB using standard Householder transformations
and Givens rotations. Infinite eigenvalues, which correspond to zero diagonal ele-
ments of RB are then eliminated. Finally the implicit shift QR algorithm is applied
to HAR

−1
B , without explicitly forming this product. This is achieved by comput-

ing unitary matrices Q and Z such that QAZ is upper Hessenberg, QBZ upper
triangular and choosing the first column of Q proportional to the first column of
HAR

−1
B − σI. A double shift technique can also be used if A and B are real. The

matrix HA will converge to upper triangular form and the eigenvalues of A − λB
will be obtained as ratios of diagonal elements of the transformed HA and RB. For
a more detailed description of the algorithm see Stewart [43, Chapter 7.6].

The total work in the QZ algorithm is about 15n3 flops for eigenvalues alone,
8n3 more for Q and 10n3 for Z (assuming 2 QZ iterations per eigenvalue). It avoids
the loss of accuracy related to explicitly inverting B. Although the algorithm is
applicable to the case when A is symmetric and B positive definite, the transfor-
mations do not preserve symmetry and the method is just as expensive as for the
general problem.

9.9.5 The Generalized SVD.

We now introduce the generalized singular value decomposition (GSVD) of
two matrices A ∈ Rm×n and B ∈ Rp×n with the same number of columns. The
GSVD has applications to, e.g., constrained least squares problems. The GSVD is
related to the generalized eigenvalue problem ATAx = λBTBx, but as in the case
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of the SVD the formation of ATA and BTB should be avoided. In the theorems
below we assume for notational convenience that m ≥ n.

Theorem 9.9.5. The Generalized Singular Value Decomposition (GSVD). Let
A ∈ Rm×n, m ≥ n, and B ∈ Rp×n be given matrices. Assume that

rank (M) = k ≤ n, M =

(
A
B

)

.

Then there exist orthogonal matrices UA ∈ Rm×m and UB ∈ Rp×p and a matrix
Z ∈ Rk×n of rank k such that

UT
AA =

(
DA

0

)

Z, UT
BB =

(
DB 0
0 0

)

Z, (9.9.9)

where

DA = diag(α1, . . . , αk), DB = diag(β1, . . . , βq), q = min(p, k).

Further, we have

0 ≤ α1 ≤ · · · ≤ αk ≤ 1, 1 ≥ β1 ≥ · · · ≥ βq ≥ 0,

α2
i + β2

i = 1, i = 1, . . . , q, αi = 1, i = q + 1, . . . , k,

and the singular values of Z equal the nonzero singular values of M .

Proof. We now give a constructive proof of Theorem 9.9.5 using the CS decompo-
sition, Let the SVD of M be

M =

(
A
B

)

= Q

(
Σ1 0
0 0

)

PT ,

where Q and P are orthogonal matrices of order (m+ p) and n, respectively, and

Σ1 = diag(σ1, . . . , σk), σ1 ≥ · · · ≥ σk > 0.

Set t = m+ p− k and partition Q and P as follows:

Q =

(

Q11 Q12

Q21
︸︷︷︸

k

Q22
︸︷︷︸

t

)
}m
}p , P = ( P1

︸︷︷︸

k

, P2
︸︷︷︸

n−k

).

Then the SVD of M can be written
(
A
B

)

P =

(
AP1 0
BP1 0

)

=

(
Q11

Q21

)

(Σ1 0 ) . (9.9.10)

Now let

Q11 = UA

(
C
0

)

V T , Q21 = UB

(
S 0
0 0

)

V T
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be the CS decomposition of Q11 and Q21. Substituting this into (9.9.10) we obtain

AP = UA

(
C
0

)

V T (Σ1 0 ) ,

BP = UB

(
S 0
0 0

)

V T (Σ1 0 ) ,

and (9.9.9) follows with

DA = C, DB = S, Z = V T (Σ1 0 )PT .

Here σ1 ≥ · · · ≥ σk > 0 are the singular values of Z.

When B ∈ Rn×n is square and nonsingular the GSVD of A and B corresponds
to the SVD of AB−1. However, when A or B is ill-conditioned, then computing
AB−1 would usually lead to unnecessarily large errors, so this approach is to be
avoided. It is important to note that when B is not square, or is singular, then the
SVD of AB† does not in general correspond to the GSVD.

9.9.6 The CS Decomposition.

The CS decomposition is a special case of the generalized SVD (GSVD) which is of
interest in its own right.

Theorem 9.9.6. CS Decomposition. Let Q ∈ R(m+p)×n have orthonormal columns,
and be partitioned as

Q =

(
Q1

Q2

)
}m
}p ∈ R(m+p)×n, m ≥ n, (9.9.11)

i.e., QTQ = QT
1Q1 +QT

2Q2 = In. Then there are orthogonal matrices U1 ∈ Rm×m,
U2 ∈ Rp×p, and V ∈ Rn×n, and square nonnegative diagonal matrices

C = diag (c1, . . . , cq), S = diag (s1, . . . , sq), q = min(n, p), (9.9.12)

satisfying C2 + S2 = Iq such that

(
UT

1 0
0 UT

2

)(
Q1

Q2

)

V =

(
UT

1 Q1V
UT

2 Q2V

)

=

(
Σ1

Σ2

)
}m
}p (9.9.13)

has one of the following forms:

p ≥ n :






C
0
S
0






}n
}m− n
}n
}p− n

, p < n :






C 0
0 I
0 0
S
︸︷︷︸

p

0
︸︷︷︸

n−p






}p
}n− p
}m− n
}p

.

The diagonal elements ci and si are

ci = cos(θi), si = sin(θi), i = 1, . . . , q,
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where without loss of generality, we may assume that

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θq ≤ π/2.

Proof. To construct U1, V , and C, note that since U1 and V are orthogonal and
C is a nonnegative diagonal matrix, (9.9.13) is the SVD of Q1. Hence the elements
ci are the singular values of Q1. If we put Q̃2 = Q2V , then the matrix





C
0
Q̃2



 =

(
UT

1 0
0 Ip

)(
Q1

Q2

)

V

has orthonormal columns. Thus C2 + Q̃T
2 Q̃2 = In, which implies that Q̃T

2 Q̃2 =

In − C2 is diagonal and hence the matrix Q̃2 = (q̃
(2)
1 , . . . , q̃

(2)
n ) has orthogonal

columns.
We assume that the singular values ci = cos(θi) of Q1 have been ordered

according to (9.9.6) and that cr < cr+1 = 1. Then the matrix U2 = (u
(2)
1 , . . . , u

(2)
p )

is constructed as follows. Since ‖q̃(2)j ‖2
2 = 1 − c2j 6= 0, j ≤ r we take

u
(2)
j = q̃

(2)
j /‖q̃(2)j ‖2, j = 1, . . . , r,

and fill the possibly remaining columns of U2 with orthonormal vectors in the or-
thogonal complement of R(Q̃2). From the construction it follows that U2 ∈ Rp×p

is orthogonal and that

UT
2 Q̃2 = U2Q2V =

(
S 0
0 0

)

, S = diag(s1, . . . , sq)

with sj = (1 − c2j)
1/2 > 0, if j = 1, . . . , r, and sj = 0, if j = r + 1, . . . , q.

In the theorem above we assumed that m ≥ n. The general case gives rise to
four different forms corresponding to cases where Q1 and/or Q2 have too few rows
to accommodate a full diagonal matrix of order n.

The proof of the CS decomposition is constructive. In particular U1, V , and
C can be computed by a standard SVD algorithm. However, the above algorithm
for computing U2 is unstable when some singular values ci are close to 1.

Review Questions

1. What is meant by a regular matrix pencil? Give examples of a singular pencil, and
a regular pencil that has an infinite eigenvalue.

2. Formulate a generalized Schur Canonical Form. Show that the eigenvalues of the
pencil are easily obtained from the canonical form.
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3. Let A and B be real symmetric matrices, and B also positive definite. Show that
there is a congruence transformation that diagonalizes the two matrices simultane-
ously. How is the Rayleigh Quotient iteration generalized to this type of eigenvalue
problems, and what is its order of convergence?

Problems

1. Show that the matrix pencil A − λB where

A =

„

0 1
1 0

«

, B =

„

1 0
0 −1

«

has complex eigenvalues, even though A and B are both real and symmetric.

2. Let A and B be symmetric tridiagonal matrices. Assume that B is positive definite
and let B = LLT , where the Cholesky factor L is lower bidiagonal.

(a) Show that L can be factored as L = L1L2 · · ·Ln, where Lk differs from the unit
matrix only in the kth column.

(b) Consider the recursion

A1 = A, Ak+1 = QkL−1
k AkL−T

k QT
k , k = 1, . . . , n.

Show that if Qk are orthogonal, then the eigenvalues of An+1 are the same as those
for the generalized eigenvalue problem Ax = λBx.

(c) Show how to construct Qk as a sequence of Givens rotations so that the matrices
Ak are all tridiagonal. (The general case, when A and B have symmetric bandwidth
m > 1, can be treated by considering A and B as block-tridiagonal.)

Notes

Complex Givens rotations and complex Householder transformations are treated in
detail by Wilkinson [52, pp. 47–50]. For implementation details of complex House-
holder transformations, see the survey by R. B. Lehoucq [34, 1996].

For a more complete treatment of matrix functions see Chapter V in Gant-
macher [15, ] and Lancaster [32, ]. Stewart and Sun [45] is a lucid treatise
of matrix perturbation theory, with many historical comments and a very useful
bibliography. Ward 1977 analyzed the method based on scaling and squaring for
computing the exponential of a matrix and gave an a posteriori error bound. Moler
and Van Loan 1978 gave a backward error analysis covering truncation error in the
Padé approximation.

An analysis and a survey of inverse iteration for a single eigenvector is given
by Ipsen [26]. The relation between simultaneous iteration and the QR algorithm
and is explained in Watkins [50].

A still unsurpassed text on computational methods for the eigenvalue problem
is Wilkinson [52, ]. Also the Algol subroutines and discussions in Wilkinson and
Reinsch [53, ] are very instructive. An excellent discussion of the symmetric
eigenvalue problem is given in Parlett [38, ]. Methods for solving large scale
eigenvalue problems are treated by Saad [41, ].
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The monograph by Bhatia [5] on perturbation theory for eigenspaces of Her-
mitian matrices is a valuable source of reference.

A stable algorithm for computing the SVD based on an initial reduction to
bidiagonal form was first sketched by Golub and Kahan in [19]. The adaption of
the QR algorithm, using a simplified process due to Wilkinson, for computing the
SVD of the bidiagonal matrix was described by Golub [18]. The “final” form of the
QR algorithm for computing the SVD was given by Golub and Reinsch [20]. The
GSVD was first studied by Van Loan [21, ]. Paige and Saunders [37, ]
extended the GSVD to handle all possible cases, and gave a computationally more
amenable form.

For a survey of cases when it is possible to compute singular values and singular
vectors with high relative accuracy; see [8].

Many important practical details on implementation of eigenvalue algorithms
can be found in the documentation of the EISPACK and LAPACK software; see
Smith et al. [42, ], B. S. Garbow et al. [16, ], and E. Anderson et al. [1,
].
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adjoint matrix, 2
Aitken extrapolation, 50
algorithm

Givens rotations, 68
Lanczos, 109
orthogonal iteration, 103
Rayleigh–Ritz procedure, 102
singular values by spectrum slic-

ing, 99
svd, 60, 65
The Arnoldi process, 112
tridiagonal spectrum slicing, 76

analytic function
of matrix, 22

Arnoldi’s method, 112–113
arrowhead matrix, 74

Bauer–Fike’s theorem, 38
bidiagonal decomposition

Lanczos process, 111

canonical form
Kronecker, 115
Schur, 11–14

Cayley–Hamilton theorem, 18, 105
characteristic equation, 3
characteristic polynomial, 3
CS decomposition, 120–121

decomposition
block diagonal, 16
CS, 120–121
GSVD, 118

deflation, 51–52
deflation of matrix, 7, 52
departure from normality, 14
divide and conquer

tridiagonal eigenproblem, 74–75
dominant

invariant subspace, 57

eigenvalue
algebraic multiplicity, 7
by spectrum slicing, 75–77
defective, 8
dominant, 49
error bound, 43–46
geometric multiplicity, 8
Jacobi’s method, 59–62
of Kronecker product, 9
of Kronecker sum, 9
perturbation, 38–46
power method, 49–57
subspace iteration, 56–57

eigenvalue of matrix, 3
eigenvalue problem

large, 101–113
eigenvector

of matrix, 3
perturbation, 38–46

elementary rotations
unitary, 66

exponential of matrix, 21

field of values, 43
Fischer’s theorem, 41
flop count

QR algorithm for SVD, 97
QR step, 84
reduction to Hessenberg form, 69,

72
functions

matrix-valued, 21–29

gap
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of spectrum, 102
generalized eigenvalue problem, 113–

118
generalized SVD, 118–120
Gerschgorin disks, 36
Gerschgorin’s theorem, 36, 37
Givens rotation

unitary, 67
GKBD, see Golub–Kahan bidiagonal-

ization
Golub–Kahan bidiagonalization, 111–

112
in finite precision, 112

grade
of vector, 9

graded matrix, 73
graph

connected, 6
directed, 6

growth ratio, 71

Hermitian matrix, 2
Hessenberg form

reduction to, 69–72
Hessenberg matrix

unreduced, 10, 70
Hotelling, 51
Householder reflection

unitary, 67, 68

instability
irrelevant, 70

invariant subspace, 5
inverse iteration, 52–55

shift, 52

Jacobi transformation, 60
Jacobi’s method

classical, 61
cyclic, 61
for SVD, 62
sweep, 61
threshold, 61

Jordan block, 9
Jordan canonical form, 15–18

Kronecker

product, 9
sum, 9

Kronecker’s canonical form, 115
Krylov

subspaces, 105–108

Lanczos bidiagonalization, see Golub–
Kahan bidiagonalization, 112

Lanczos process, 108–111
Lyapunov’s equation, 15

Markov chain, 29
matrix

adjoint, 2
defective, 8
derogatory, 17
diagonalizable, 5
eigenvalue of, 3
eigenvector of, 3
elementary divisors, 18
exponential, 21
functions, 21–29
graded, 73
Hermitian, 2
irreducible, 6
non-negative irreducible, 28
normal, 13
quasi-triangular, 12
reducible, 6
row stochastic, 29
scaled diagonally dominant, 73
square root, 27
trace, 3
unitary, 2

matrix exponential
hump, 24

matrix pencil, 114
congruent, 114
equivalent, 114
regular, 114
singular, 114

minimal polynomial, 17
of vector, 9

minimax characterization
of eigenvalues, 41

Newton’s interpolation formula
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for matrix functions, 35
Non-negative matrices, 28–29

one-sided Jacobi SVD, 64–65
orthogonal iteration, 56, 103

Padé approximant, 25
Perron–Frobenius theorem, 28
perturbation

of eigenvalue, 38–46
of eigenvector, 38–46

power method, 49–57
principal vector, 17

QR algorithm, 79–92, 98
explicit-shift, 84
for SVD, 92–96
Hessenberg matrix, 84–88
implicit shift, 85
perfect shifts, 92
rational, 91
Rayleigh quotient shift, 85
symmetric tridiagonal matrix, 89–

92
Wilkinson shift, 90

QZ algorithm, 118

radius of convergence, 19
Rayleigh quotient, 43

iteration, 55, 117
matrix, 102, 110

Rayleigh–Ritz procedure, 101–103
reduction

to standard form, 115–117
reduction to

Hessenberg form, 69–72
symmetric tridiagonal form, 72–

74
residual vector, 44
Ritz values, 102
Ritz vectors, 102
row stochastic matrix, 29
RQI, see Rayleigh quotient iteration

scaled diagonally dominant, 73
Schur

canonical form, 11–14

generalized, 115
vectors, 12

Schur decomposition, 27
secular equation, 48, 74
similarity transformation, 4
singular values

by spectrum slicing, 99
relative gap, 97

spectral abscissa, 4, 22
spectral radius, 4, 19
spectral transformation, 52, 105
spectrum of matrix, 3
spectrum slicing, 75–77
square root of matrix, 27
subspace

invariant, 5
subspace iteration, 103–105
SVD

generalized, 118–120
Sylvester’s

equation, 14
law of inertia, 118

symmetric tridiagonal form
reduction to, 72–74

theorem
Cayley-Hamilton, 18
implicit Q, 70, 89

transformation
similarity, 4

tridiagonal matrix, 48
unreduced, 89

two-side Jacobi-SVD, 63
two-sided Jacobi-SVD, 65

unreduced
Hessenberg matrix, 10

vector
principal, 17

Wielandt–Hoffman theorem, 42

zero shift QR algorithm, 98


