
Numerical Linear Algebra for

Signals Systems and Control

Paul M. Van Dooren
University of Louvain, B-1348 Louvain-la-Neuve, Belgium

Draft notes prepared for the

Graduate School in Systems and Control

Spring 2003

ii

Contents

1 SCOPE AND INTRODUCTION 1

1.1 Scope of the Course . 1
1.2 About Errors . 3
1.3 Numerical Background . 6
1.4 Basic Problems in Numerical Linear Algebra . 13

2 IDENTIFICATION 23

2.1 SISO identification from the impulse response . 23
2.2 State-space realizations . 29
2.3 Balanced realizations . 33
2.4 Padé algorithm . 38
2.5 Multi-input multi-output impulse response . 44
2.6 Input-Output Pairs . 47
2.7 Recursive least squares . 53
2.8 MIMO identification via I/O pairs . 54
2.9 Linear prediction . 60

3 STATE SPACE ANALYSIS 67

3.1 Orthogonal State-Space Transformations . 67
3.2 Condensed Forms . 69
3.3 Controllability, Observability and Minimality . 72
3.4 Staircase form . 75
3.5 Subspaces and Minimal Realizations . 80
3.6 Poles and Zeros . 85

4 STATE SPACE DESIGN 91

4.1 State feedback and pole placement . 91
4.2 Multi-input feedback . 96
4.3 Observers . 102
4.4 Lyapunov and Sylvester Equations . 106
4.5 Algebraic Riccati Equation . 111

5 KALMAN FILTERING 123

5.1 Kalman filter implementations . 123
5.2 Error analysis . 127
5.3 Experimental evaluation of the different KF’s . 134
5.4 Comparison of the different filters . 137

6 POLYNOMIAL VERSUS STATE-SPACE MODELS 139

6.1 System Models And Transformation Groups . 140
6.2 Stabilized Transformations . 142
6.3 State-Space Realizations Of Polynomials . 143
6.4 Fast Versus Slow Algorithms . 145
6.5 Conclusion . 150

iii

Chapter 1

SCOPE AND INTRODUCTION

1.1 Scope of the Course

This course looks at numerical issues of algorithms for signals, systems and control. In doing that a
clear choice is made to focus on numerical linear algebra techniques for linear time-invariant, finite
dimensional systems. At first hand, this may look as narrowing down the subject quite a bit, but
there are simple reasons for this.

The fact that we deal only with numerical methods for linear time-invariant, finite dimen-
sional systems is not really as restrictive as it seems. One encounters in fact very much the same
numerical problems when relaxing these constraints:

• problems in time varying systems are often based on the time-invariant counterpart because
of the recursive use of time-invariant techniques or because one uses a reformulation into a
time-invariant problem. There is e.g., hardly any difference between Kalman filtering for time-
varying and time-invariant systems since they both lead to recursive least squares problems.
Another typical example is that of periodic systems which can be rewritten as a time-invariant
problem by considering the “lifted” system

• nonlinear systems are typically approximated by a sequence of linearized models for which
standard techniques are then applied. Also the approximation is sometimes using techniques
borrowed from linear systems theory

• infinite dimensional systems typically arise from partial differential equations. One then
uses discretizations such as finite elements methods to represent the underlying operator
by a (typically large and sparse) matrix. For both the approximation and the subsequent
treatment of the finite dimensional problem one then uses matrix techniques.

So in other words, this course deals with signals that can be modeled by sets of differential
equations

P (
d

dt
)y(t) = Q(

d

dt
)u(t),

or difference equations

P (E)y(k) = Q(E)u(k),

1

where P (.) and Q(.) are polynomial matrices of appropriate dimensions and where u(.) is an m-
vector of controls or inputs, and y(.) is an p-vector of outputs, and both are functions of time.
When the time variable is the continuous time t, the operator is the differential operator d

dt , when
the time variable is the discrete variable k, the operator is the advance operator E (often s and z
are used instead of the above two). These models thus describe the following input-output behavior

System

x(.)

u(.) =⇒ =⇒ y(.)

Other “standard” linear models use the n-vector of states x(.), leading to so-called state-space
models:

d

dt
x(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) + Du(t), (1.2)

and

xk+1 = Axk + Buk (1.3)

yk = Cxk + Duk, (1.4)

where the constant matrices A, B, C and D are of appropriate dimensions. Of course, other models
are also possible, such as transfer functions and generalized state-space models, but we will focus
on the above two.

The second restriction in the title of the course is the fact that we focus on numerical linear
algebra techniques. The reasons for this are the following:

• once we decide to focus on linear time-invariant, finite dimensional systems, it is clear that
we are dealing with numerical linear algebra problems since the models consist of polynomial
and constant matrices

• there has been a lot of interaction between signals, systems and control and numerical linear
algebra over the last 25 years and significant advances were made as a result of this

• due to the new developments in this interdisciplinary area, software tools like libraries (SLI-
COT) and interactive packages (MATLAB, Matrixx, SCILAB) have been developed that have
made these ideas ready to use.

Although we do not cover here methods and problems of optimization, approximation, ordinary
differential equations, two point boundary value problems, and so on, we feel that this is not really
a restriction. Indeed, numerical linear algebra methods are again at the heart of each of these other
areas.

2

In view of all this, we believe the material in this course is a kind of greatest common denomi-
nator of what anybody interested in numerical methods for signals, systems and control, ought to
know. As the reader will see, that already covers quite a lot of material. That is also the reason why
this course avoids specialized topics as e.g., implementation aspects on specialized architectures,
or software aspects. Since the course is meant to educate the reader rather than to provide him
with a basic set of routines, we have chosen to base the course as much as possible on MATLAB
for illustrating the numerical issues being discussed.

1.2 About Errors

The systems, control, and estimation literature is replete with ad hoc algorithms to solve the
computational problems which arise in the various methodologies. Many of these algorithms work
quite well on some problems (e.g., “small order” matrices) but encounter numerical difficulties,
often severe, when “pushed” (e.g., on larger order matrices). The reason for this is that little or
no attention has been paid to how the algorithms will perform in “finite arithmetic,” i.e., on a
finite-word-length digital computer.

A simple example due to Moler and Van Loan [95] will illustrate a typical pitfall. Suppose it
is desired to compute the matrix eA in single precision arithmetic on a computer which gives 6
decimal places of precision in the fraction part of floating-point numbers. Consider the case

A =

[
−49 24
−64 31

]

and suppose the computation is attempted using the Taylor series formula

eA =
+∞∑

k=0

1

k!
Ak. (1.5)

This is easily coded and it is determined that the first 60 terms in the series suffice for the com-
putation, in the sense that terms for k > 60 are of the order of 10−7 and no longer add anything
significant to the sum. The resulting answer is

[
−22.2588 −1.43277
−61.4993 −3.47428

]

.

Unfortunately, the true answer is (correctly rounded)

[
−0.735759 0.551819
−1.47152 1.10364

]

and one sees a rather alarming disparity. What happened here was that the intermediate terms
in the series got very large before the factorial began to dominate. In fact, the 17th and 18th
terms, for example, are of the order of 107 but of opposite signs so that the less significant parts
of these numbers—while significant for the final answer—are “lost” because of the finiteness of the
arithmetic.

Now for this particular example various fixes and remedies are available. But in more realistic
examples one seldom has the luxury of having the “true answer” available so that it is not always

3

easy simply to inspect or test an answer such as the one obtained above and determine it to be in
error. Mathematical analysis (truncation of the series, in the example above) alone is simply not
sufficient when a problem is analyzed or solved in finite arithmetic (truncation of the arithmetic).
Clearly, a great deal of care must be taken.

When one thinks of the fact that the “response” of the system (1.3) is:

x(t) = eAtx(0) +

∫ t

0
eA(t−s)Bu(s)ds

then it is clear that even more problems must be expected when approximating the exponential
with truncated Taylor expansions in this expression.

The finiteness inherent in representing real or complex numbers as floating-point numbers on
a digital computer manifests itself in two important ways: floating-point numbers have only finite
precision and finite range. In fact, it is the degree of attention paid to these two considerations
that distinguishes many reliable algorithms from more unreliable counterparts. Wilkinson [147]
still provides the definitive introduction to the vagaries of floating-point computation while [90]
and the references therein may be consulted to bring the interested reader up to date on roundoff
analysis.

The development in systems, control, and estimation theory, of stable, efficient, and reliable
algorithms which respect the constraints of finite arithmetic began in the 1970’s and is ongoing.
Much of the research in numerical analysis has been directly applicable, but there are many com-
putational issues (e.g., the presence of hard or structural zeros) where numerical analysis does not
provide a ready answer or guide. A symbiotic relationship has developed, particularly between
numerical linear algebra and linear system and control theory, which is sure to provide a continuing
source of challenging research areas.

The abundance of numerically fragile algorithms is partly explained by the following observation
which will be emphasized by calling it a “folk theorem”:

If an algorithm is amenable to “easy” hand calculation, it is probably a poor method if implemented in

the finite floating-point arithmetic of a digital computer.

For example, when confronted with finding the eigenvalues of a 2 × 2 matrix most people
would find the characteristic polynomial and solve the resulting quadratic equation. But when
extrapolated as a general method for computing eigenvalues and implemented on a digital computer,
this turns out to be a very poor procedure indeed for a variety of reasons (such as roundoff and
overflow/underflow). Of course the preferred method now would generally be the double Francis
QR algorithm (see [35, 36], [120], and [148] for the messy details) but few would attempt that by
hand—even for very small order problems.

In fact, it turns out that many algorithms which are now considered fairly reliable in the
context of finite arithmetic are not amenable to hand calculations (e.g., various classes of orthogonal
similarities). This is sort of a converse to the folk theorem. Particularly in linear system and
control theory, we have been too easily seduced by the ready availability of closed-form solutions
and numerically naive methods to implement those solutions. For example, in solving the initial
value problem

ẋ(t) = Ax(t); x(0) = x0 (1.6)

it is not at all clear that one should explicitly want to compute the intermediate quantity etA.
Rather, it is the vector etAx0 that is desired, a quantity that may be computed more reasonably

4

by treating (1.6) as a system of (possibly stiff) differential equations and using, say, an implicit
method for numerical integration of the differential equation. But such techniques are definitely
not attractive for hand computation.

Awareness of such numerical issues in the mathematics and engineering community has increased
significantly in the last fifteen years or so. In fact, some of the background material that is well
known to numerical analysts, has already filtered down to undergraduate and graduate curricula
in these disciplines. A number of introductory textbooks currently available (e.g., [63, 21, 33, 62,
111, 112]) also reflect a strong software component. The effect of this awareness and education has
been particularly noticeable in the area of system and control theory, especially in linear system
theory. A number of numerical analysts were attracted by the wealth of interesting numerical
linear algebra problems in linear system theory. At the same time, several researchers in the area
of linear system theory turned their attention to various methods and concepts from numerical linear
algebra and attempted to modify and use them in developing reliable algorithms and software for
specific problems in linear system theory. This cross-fertilization has been greatly enhanced by the
widespread use of software packages and by recent developments in numerical linear algebra. This
process has already begun to have a significant impact on the future directions and development
of system and control theory, and applications, as is evident from the growth of computer-aided
control system design as an intrinsic tool. Algorithms implemented as mathematical software are
a critical “inner” component of such a system.

Before proceeding further we shall list here some notation to be used in the sequel:

IFn×m the set of all n×m matrices with coefficients in the field IF
(IF will generally be IR orC)

AT the transpose of A ∈ IRn×m

AH the complex-conjugate transpose of A ∈Cn×m

A+ the Moore-Penrose pseudoinverse of A

diag (a1, · · · , an) the diagonal matrix






a1 0
. . .

0 an






Λ(A) the set of eigenvalues λ1, · · · , λn (not necessarily distinct) of A ∈ IFn×n

λi(A) the ith eigenvalue of A
Σ(A) the set of singular values σ1, · · · , σm (not necessarily distinct) of A ∈ IFn×m

σi(A) the ith singular value of A.

Finally, let us define a particular number to which we shall make frequent reference in the sequel.
The machine epsilon or relative machine precision can be defined, roughly speaking, as the smallest
positive number ε which, when added to 1 on our computing machine, gives a number greater than 1.
In other words, any machine representable number δ less than ε gets “ rounded off” when (floating-
point) added to 1 to give exactly 1 again as the rounded sum. The number ε, of course, varies
depending on the kind of computer being used and the precision with which the computations are
being done (single precision, double precision, etc.). But the fact that there exists such a positive
number ε is entirely a consequence of finite word length.

5

1.3 Numerical Background

In this section we give a very brief discussion of two concepts of fundamental importance in numer-
ical analysis: numerical stability and conditioning. While this material is standard in textbooks
such as [46, 54, 122, 128] it is presented here both for completeness and because the two concepts
are frequently confused in the systems, control, and estimation literature.

Suppose we have some mathematically defined problem represented by f which acts on data
x belonging to some set of data D, to produce a solution y = f(x) in a solution set S. These
notions are kept deliberately vague for expository purposes. Given x ∈ D we desire to compute
f(x). Suppose x∗ is some approximation to x. If f(x∗) is “near” f(x) the problem is said to be
well-conditioned. If f(x∗) may potentially differ greatly from f(x) even when x∗ is near x, the
problem is said to be ill-conditioned. The concept of “near” can be made precise by introducing
norms in the appropriate spaces.

A norm (usually denoted by ‖.‖) is a real scalar function defined on a vector space V, with the
following properties

• ‖x‖ > 0, ∀x ∈ V

• ‖x‖ = 0⇐⇒ x = 0

• ‖αx‖ = |α|‖x‖, ∀x ∈ V, α ∈C

• ‖x + y‖ 6 ‖x‖+ ‖y‖, ∀x, y ∈ V

For vectors inCn one typically uses the 2-norm:

‖x‖2 .
=

√
√
√
√

n∑

i=1

|xi|2

and for matrices inCm×n one typically uses the induced 2-norm:

‖A‖2 .
= sup

‖x‖6=0

‖Ax‖2
‖x‖2

= sup
‖x‖2=1

‖Ax‖2

or the Frobenius norm:

‖A‖F .
=

√
√
√
√

m∑

i=1

n∑

j=1

|aij |2

These norms have the following useful properties:

• ‖Ux‖2 = ‖x‖2 if UHU = In

• ‖UAV H‖2,F = ‖A‖2,F if UHU = Im, V HV = In

• ‖AB‖2,F 6 ‖A‖2,F · ‖B‖2,F

6

which are used a lot in the sequel. We can then define the condition of the problem f with respect
to these norms as

κ(f, x) = lim
δ→0

sup
d2(x,x∗)=δ

[
d1(f(x), f(x∗))

δ

]

where di (.,.) are distance functions in the appropriate spaces. This can be “visualized” by the
following picture

Data Result

ε

x
6

-

&%
'$r���

-map f(.) f(x)
r6

-

kε
�

�
��

We see that an ε ball around x here is mapped by the function f(.) to a region around f(x) of
smallest radius kε. For infinitesimally small ε, the ratio k of both radii tends to the condition
number κ(f, x). When f(.) has an expansion around x one can write

f(x + δx) = f(x) +∇xf.δx + O(‖δx‖2)

where ∇xf is the Fréchet derivative of f at x. The condition number κ(f, x) is then also the norm
‖∇xf‖ of the Fréchet derivative. When κ(f, x) is infinite, the problem of determining f(x) from
x is ill-posed – as opposed to well-posed – and the Fréchet derivative is thus not bounded. When
κ(f, x) is finite and relatively large (or relatively small), the problem is said to be ill-conditioned
(or well-conditioned). Further details can be found in [110].

We now give two simple examples to illustrate these concepts.

Example 1.1.

Consider the n× n matrix

A =











0 1 0 · · · 0
· · · · · · ·
· · · · · ·
· · · · 0
· · · 1
0 · · · · · 0











with n eigenvalues at 0. The characteristic polynomial of this matrix is

χ(λ)
.
= det.(λI −A) = λn.

7

Now consider the perturbed matrix Aδ with a small perturbation of the data (the n2 elements of
A) consisting of adding δ to the first element in the last (nth) row of A. This perturbed matrix
then has the following characteristic polynomial:

χδ(λ)
.
= det.(λI −Aδ) = λn − δ

which has n distinct roots λ1, · · · , λn with λk = δ1/n exp(2kπj/n). Denoting the vector of eigenval-
ues by Λ we have thus

‖A−Aδ‖2 = δ, ‖Λ− Λδ‖2 =
√

nδ1/n.

Related examples can be found in [148], where it is also shown that this is the worst possible
perturbations that can be imposed on A. For this case we thus have:

κΛ(A) = lim
δ→0

‖A−Aδ‖
‖Λ− Λδ‖

= lim
δ→0

δ√
nδ1/n

=∞

and the problem is thus ill-conditioned.

Example 1.2.

Take now a symmetric diagonal matrix A=diag (λ1, · · · , λn). For such matrices it is known that the
worst place to put a δ perturbation in order to move an eigenvalue as much as possible is actually
on the diagonal. Without loss of generality, let us perturb the first diagonal entry by δ, then clearly
it is only λ1 that is perturbed to λ1 + δ and hence

‖A−Aδ‖2 = δ, ‖Λ− Λδ‖2 = δ.

Therefore we have

κΛ(A) = lim
δ→0

‖A−Aδ‖
‖Λ− Λδ‖

= lim
δ→0

δ

δ
= 1

and the problem is thus very well conditioned.

These two examples illustrate well that the conditioning of a problem (the eigenvalue problem of
a n×n matrix, in our case) depends as well on the data point x of our function f(.) (the matrix A,
in our case). Note that we have thus far made no mention of how the problem f above (computing
Λ(A) in the example) was to be solved. Conditioning is a function solely of the problem itself. We
now turn our attention the the stability of an algorithm. Each algorithm performs little errors all
along the computational process. Hence we do not implement the function f(x) but rather the
function f(x). Thus, given x, f(x) represents the result of applying the algorithm to x.

8

If we want to characterize the amount of errors incurred by this erroneous function, we need
to relate it to f(x). A standard way to do that in numerical linear algebra is to write f(x) as the
effect of f(.) on perturbed data x = x + δx, i.e.,

f(x) = f(x) = f(x + δx). (1.7a)

Notice that rigorously speaking, such a rewrite may not always be possible, especially when the
data space D has smaller dimension than the solution space S, but we will not dwell here on these
aspects. An algorithm is now said to be (backward) stable when for all data points x one can
guarantee that δx in the above rewrite, will be of the order of the machine accuracy ε. In pictures
this means the following :

D S

δx

x
6

-

&%
'$r���

-map f(.)

-map f(.)

f(x)
r6

-

f(x)

Here the computed f(x) also corresponds to the mapping f(x) = f(x + δx) of some nearby point
x+δx. In words this means that what we computed is actually the exact result of slightly perturbed
data. In practice this is about as much as one could hope, since we can also assume that the collected
data are usually not of full accuracy anyway. Roughly speaking, one has then the following property:

‖f(x)− f(x)‖ = ‖f(x)− f(x)‖ ≈ ‖x− x‖κ(f, x). (1.7b)

The first equality comes from the rewrite of f(x) as f(x), the second approximation comes from
the Taylor expansion of f(x) = f(x + δx), provided it exists of course. So, the algorithm f is said
to be numerically (backward) stable if, for all x ∈ D, there exists x ∈ D near x such that f(x)
equals f(x) (= the exact solution of a nearby problem). Near in this context should be interpreted
as ‖x − x‖ 6 ε‖x‖, i.e., of the order of the machine precision times the norm of the data point x.
If the problem is (backward) stable, we thus have

‖f(x)− f(x)‖ = ‖f(x)− f(x)‖ ≈ ε‖x‖κ(f, x). (1.7c)

This implies that a backward stable algorithm does not introduce any more errors in the result than
what is expected from the sensitivity of the problem. If moreover the problem is well-conditioned,
this implies that then f(x) will be near f(x).

Of course, one cannot expect a stable algorithm to solve an ill-conditioned problem any more
accurately than the data warrant but an unstable algorithm can produce poor solutions even to
well-conditioned problems. Example 1.3, below, will illustrate this phenomenon.

Roundoff errors can cause unstable algorithms to give disastrous results. However, it would be
virtually impossible to account for every roundoff error made at every arithmetic operation in a

9

complex series of calculations such as those involved in most linear algebra calculations. This would
constitute a forward error analysis. The concept of backward error analysis based on the definition
of numerical stability given above provides a more practical alternative. To illustrate this, let us
consider the singular value decomposition of a n× n matrix A with coefficients in IR orC [46]

A = UΣV H . (1.8)

Here U and V are n× n unitary matrices, respectively, and Σ is an n× n matrix of the form

Σ = diag{σ1, · · · , σn} (1.9)

with the singular value σi being positive and satisfying σ1 > σ2 · · · > σn > 0. The computation of
this decomposition is, of course, subject to rounding errors. Denoting computed quantities by an
overbar, we generally have for some error matrix EA:

A = A + EA = U Σ V
H

(1.10)

The computed decomposition thus corresponds exactly to a perturbed matrix A. When using the
SVD algorithm available in the literature[46], this perturbation can be bounded by:

‖ EA ‖6 πε ‖ A ‖, (1.11a)

where ε is the machine precision and π some quantity depending on the dimensions m and n, but
reasonably close to 1 (see also [71]). Thus, the backward error EA induced by this algorithm, has
roughly the same norm as the input error Ei that results, for example, when reading the data A
into the computer. Then, according to the definition of numerical stability given above, when a
bound such as that in (1.11a) exists for the error induced by a numerical algorithm, the algorithm
is said to be backward stable [148], [23]. Notice that backward stability does not guarantee any
bounds on the errors in the result U, Σ, and V . In fact this depends on how perturbations in the
data (namely EA = A− A) affect the resulting decomposition (namely EU = U − U, EΣ = Σ− Σ,
and EV = V − V). As pointed out earlier, this is commonly measured by the condition κ(f, A)
[110]. For the singular values Σ of a matrix A one shows [46] that

κ(Σ, A) = 1 (1.11b)

independently of the matrix A ! Together with (1.11a) and (1.7b,1.7c) we then obtain a forward
error bound on the computed singular values:

‖Σ− Σ‖2 6 ‖A−A‖2 = ‖EA‖2 6 πε‖A‖2. (1.11c)

In a sense this can be considered as an indirect forward error analysis by merely bounding the
conditioning and the backward error analysis independently and using (1.7b,1.7c).

It is important to note that backward stability is a property of an algorithm while conditioning
is associated with a problem and the specific data for that problem. The errors in the result depend
on both the stability of the algorithm used and the conditioning of the problem solved. A good
algorithm should therefore be backward stable since the size of the errors in the result is then
mainly due to the condition of the problem, not to the algorithm. An unstable algorithm, on the
other hand, may yield a large error even when the problem is well-conditioned.

Bounds of the type (1.11a) are obtained by an error analysis of the algorithm used; see, e.g.,
[148], [149]. The condition of the problem is obtained by a sensitivity analysis; see, e.g., [148], [142],
[122], [127] for some examples. Two simple examples will illustrate further some of the concepts
introduced above.

10

Example 1.3.

Let x and y be two floating-point computer numbers and let fl(x∗y) denote the result of multiplying
them in floating-point computer arithmetic. In general, the product x∗y will require more precision
to be represented exactly than was used to represent x or y. But what can be shown for most
computers is that

fl(x ∗ y) = x ∗ y(1 + δ) (1.12)

where |δ| < ε (= relative machine precision). In other words, fl(x ∗ y) is x ∗ y correct to within a
unit in the last place. Now, another way to write (1.12) is as

fl(x ∗ y) = x(1 + δ)1/2 ∗ y(1 + δ)1/2 (1.13)

where |δ| < ε. This can be interpreted as follows: the computed result fl(x∗y) is the exact product
of the two slightly perturbed numbers x(1+ δ)1/2 and y(1+ δ)1/2. Note that the slightly perturbed
data (not unique) may not even be representable floating-point numbers. The representation (1.13)
is simply a way of accounting for the roundoff incurred in the algorithm by an initial (small)
perturbation in the data.

The above example is actually the error analysis of the basic operation of multiplying two scalar
numbers. One shows [148], [46] that present day machines satisfy the following basic error bounds
for the elementary arithmetic operations:

fl(x ∗ y) = (x ∗ y)(1 + δ1) (1.14a)

fl(x± y) = (x± y)(1 + δ2) (1.14b)

fl(x/y) = (x/y)(1 + δ3) (1.14c)

fl(
√

x) = (
√

x)(1 + δ4) (1.14d)

where |δi| < ε (= relative machine precision). The reader ought to check that this implies in fact
that these elementary operations are both backward and forward stable.

Example 1.4.

Gaussian elimination with no pivoting for solving the linear system of equations

Ax = b (1.15)

is known to be numerically unstable. The following data will illustrate this phenomenon. Let

A =

[
0.0001 1.000
1.000 −1.000

]

, b =

[
1.000
0.000

]

.

All computations will be carried out in four-significant-figure decimal arithmetic. The “true answer”
x = A−1b is easily seen to be

[
0.9999
0.9999

]

.

11

Using row 1 as the “pivot row” (i.e., subtracting 10,000 × row 1 from row 2) we arrive at the
equivalent triangular system

[
0.0001 1.000

0 −1.000× 104

] [
x1

x2

]

=

[
1.000

−1.000× 104

]

.

Note that the coefficient multiplying x2 in the second equation should be -10,001, but because
of roundoff, becomes -10,000. Thus, we compute x2 = 1.000 (a good approximation), but back-
substitution in the equation

0.0001x1 = 1.000− fl(1.000 ∗ 1.000)

yields x1 = 0.000. This extremely bad approximation to x1 is the result of numerical instability.
The problem itself can be shown to be quite well-conditioned.

This discussion only gives some indications about stability and conditioning but does not indi-
cate how to prove these properties, or better how to find tight bounds for them. Below, we now
give some indications about this, without going into too much details.

Sensitivity analysis

A sensitivity analysis is typically done from bounding first order perturbations. We give an example
for the symmetric eigenvalue problem. Let A have the decomposition A = UΛUH where the
columns ui of U are the eigenvectors of A and the diagonal elements λi of the diagonal matrix Λ
are the eigenvalues of A. Now perturb A by δA and consider the perturbed equation

A + δA = (U + δU)(Λ + δΛ)(UH + δUH).

Equating the first order terms on both sides of this equation yields

δA = UδΛUH + δUΛUH + UΛδUH

or also

UHAU = δΛ + UHδUΛ + +ΛδUHU.

One then shows [148] that the two last terms in this equation are zero on the diagonal and hence
that the perturbation of the diagonals of Λ are just the diagonal elements of UHAU , i.e.,

δλi = uH
i Aui

From this identity one now easily derives the sensitivity of the symmetric eigenvalue problem
(see [148] for more details). All this of course implied that the above first order perturbation
decomposition exists. It is well known [148] that for the case of multiple eigenvalues with Jordan
blocks such a first order expansion does not exist. The analysis can thus in general be much more
involved than this simple general principle described above.
Another way to proceed experimentally is to run a stable algorithm on the given problem. Errors on
the result will then essentially be due to the sensitivity of the problem, which can then be measured
by artificially perturbing the data and comparing differences in the result.

12

Stability analysis

One uses bounds of the type (1.14a, 1.14b, 1.14c, 1.14d) for the elementary operations to start with.
As shown above these bounds are good. Then one checks the propagation and accumulation of these
bounds during the evolution of the algorithm. In a sense this is comparable to the stability analysis
of a dynamical system. When is the propagation of certain quantities stable ? One easily checks
that error propagation is a nonlinear phenomenon, but luckily one is only interested in bounds for
the errors, which makes the analysis more tractable. It is difficult to give a general methodology
for performing an error analysis: therefore it is often referred to as an art in which J. H. Wilkinson
certainly excelled [148]. Let us just mention the importance of unitary matrices in the stability
proof of algorithms using them. Elementary orthogonal transformations such as Givens rotations
and Householder transformations have been shown to be backward stable (see [148] and also next
section). Since these transformations (as well as their inverse) have 2-norm equal to 1, one typically
manages to prove stability of algorithms that only use orthogonal transformations. This relies on
the fact that errors performed in previous steps of such algorithms propagate in a bounded fashion
and can then be mapped back to the original data without increase in norm. How this is precisely
done differs of course for each algorithm.
Also for stability analysis there is an experimental way of checking it. When running an algorithm
on a well conditioned problem, it should give errors on the result which are proportional to the
backward error of the algorithm. This does not guarantee stability of the algorithm in general,
since then this ought to hold for all data, but usually it is a pretty good test.

1.4 Basic Problems in Numerical Linear Algebra

In this section we give a brief overview of some of the fundamental problems in numerical linear
algebra which serve as building blocks or “tools” for the solution of problems in systems, control,
and estimation. For an elementary but very pleasant introduction to this material we refer to [122].
For a more elaborate discussion on this material we refer to [46]. The latter is also an invaluable
source of further references to the rather extended literature in this field.

A. Elementary Linear Algebraic Operations

All of the decompositions in this section are based on three types of matrix transformations only:
elementary transformations (Gaussian type), Givens rotations and Householder transformations.
We quickly review here their properties and complexity.

Elementary transformations are matrices that differ from the identity only in one element
(typically below the diagonal). We depict one here with an element α in the bottom left corner:

E =












1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0
. . .

. . . 0
α 0 · · · · · · 1












.

13

Applying such a matrix transformation E to an m × n matrix A e.g., adds row 1 times α to the
last row. If α is chosen equal to −an,1/a1,1 then this “eliminates” the corresponding (n, 1) element
in the product EA. The complexity of this operation measured in flops (1 flop = 1 addition + 1
multiplication) is n. The elimination procedure is backward stable provided |α| 6 1, or equivalently,
if |an,1| 6 |a1,1|, i.e., if the eliminated element is smaller than the element used to annihilate it (also
called the “pivot”). When this is not satisfied, one typically interchanges the two concerned rows
first, an operation which is called “pivoting”. See [148], [122] for more details.

Givens rotations are matrices that differ from the identity only in four elements at positions (i, i),
(i, j), (j, i) and (j, j):

G =













1 . . 0 . . 0 . . 0
: : : :
0 . . cos θ . . sin θ . . 0
: : : :
0 . . − sin θ . . cos θ . . 0
: : : :
0 . . 0 . . 0 . . 1













.

Applying such a matrix G to an m× n matrix A “rotates” rows i and j of A. Again, if θ is chosen
such that tan θ = aj,1/ai,1, then this annihilates the element aj,1 in the product GA. The complexity
of this operation measured in flops is now 4n. but the elimination procedure is always backward
stable, i.e., no pivoting is required. See [148], [122] for more details.

Householder transformations are matrices that differ from the identity by a rank one matrix:

H = Im − 2uuT , uT u = 1.

Notice that for this reason the matrix has typically no nonzero elements, but multiplying a given
m × n matrix A with H is still relatively cheap, since HA = A + u(2uT A).This is implemented
by multiplying out first uT A, then multiplying this vector by 2 and then adding u(2uT A) to A.
The total complexity of this is 2mn if u has m nonzero elements, and it allows to eliminate m− 1
elements in A. E.g., all but 1 element in the first column a.,1 of A are annihilated if u = v/‖v‖
where v equals this first column a.,1 except for the first element v1 = a1,1 − sign(a1,1)‖a.,1‖. The
total complexity is therefore 2n per zero element created in HA. The algorithm is also proven to
be backward stable irrespective of A. See [148, 122] for more details.

For the above three basic matrix operations E, G and H we note that in terms of complexity
for creating a single zero element in a transformed matrix A, E is the cheapest, then H is twice as
expensive, and G is four times as expensive.

B. Linear Algebraic Equations and Linear Least Squares Problems

Probably the most fundamental problem in numerical computing is the calculation of a vector x
which satisfies the linear system

Ax = b (1.16)

where A ∈ IRn×n(or Cn×n) and has rank n. A great deal is now known about solving (1.16) in
finite arithmetic both for the general case and for a large number of special situations. Some of the
standard references include [28, 34, 59, 122], and [46].

14

The most commonly used algorithm for solving (1.15) with general A and small n (say n 6

200) is Gaussian elimination with some sort of pivoting strategy, usually “partial pivoting.” This
essentially amounts to factoring some permutation P of the rows of A into the product of a unit
lower triangular matrix L and an upper triangular matrix U :

PA = LU. (1.17)

The algorithm uses a sequence of elementary transformations to achieve this and it is effectively
stable, i.e., it can be proved that the computed solution is near the exact solution of the system

(A + E)x = b (1.18)

with ‖E‖ 6 π(n) γ ‖A‖ε where π(n) is a modest function of n depending on details of the arithmetic
used, γ is a “growth factor” (which is a function of the pivoting strategy and is usually—but not
always—small), and ε is the machine precision. In other words, except for moderately pathological
situations, E is “small”—on the order of ε ‖A‖. The total complexity of the decomposition (1.14a)
is 2/3n3 and the backsubstitutions for finding x have a lower order complexity than that of the
decomposition. See [122], [46] for further details.

The following question now arises. If, because of roundoff errors, we are effectively solving
(1.16) rather than (1.15), what is the relationship between (A + E)−1b and A−1b? A condition
number for the problem (1.15) is given by

κ(A) : = ‖A‖ ‖A−1‖. (1.19a)

Simple perturbation results can be used to show that perturbation in A and/or b can be magnified
by as much as κ(A) in the computed solution. Estimation of κ(A) (since, of course, A−1 is unknown)
is thus a crucial aspect of assessing solutions of (1.15) and the particular estimation procedure used
is usually the principal difference between competing linear equation software packages. One of
the more sophisticated and reliable condition estimators presently available is based on [20] and is
implemented in LINPACK [28] and its successor LAPACK [2].

A special case of the above decomposition is the Cholesky decomposition for symmetric definite
matrices A.

A = LLT (1.19b)

Because of properties of positive definite matrices, one shows that this decomposition can be com-
puted in a backward stable manner without pivoting. Because of symmetry the complexity of this
decomposition is now 1/3n3. The sensitivity of the solution is still the same as that for the general
case. In the case of the positive definite matrices, one is also interested in the sensitivity of the de-
composition itself, i.e., in κ(L, A). The sensitivity of this factorization has been studied by Stewart
in [125] and boils down essentially to that of a Sylvester like equation (we refer to [125] for more
details).

Another important class of linear algebra problems and one for which codes are available in
LINPACK and LAPACK is the linear least squares problem

min ‖Ax− b‖2 (1.20)

where A ∈ IRm×n and has rank k, with (in the simplest case) k = n 6 m. The solution of (1.18) can
be written formally as x = A+b. Here, standard references include [28], [78], [46], and [122]. The
method of choice is generally based upon the QR factorization of A (for simplicity, let rank(A) = n)

A = QR (1.21)

15

where R ∈ IRn×n is upper triangular and Q ∈ IRm×n has orthonormal columns, i.e., QT Q = I.
With special care and analysis the case k < n can also be handled similarly. The factorization is
effected through a sequence of Householder transformations Hi applied to A. Each Hi is symmetric
and orthogonal and of the form I − 2uuT /uT u where u ∈ IRm is specially chosen so that zeros are
introduced at appropriate places in A when it is premultiplied by Hi. After n such transformations
we have

HnHn−1 · · ·H1A =

[
R
0

]

from which the factorization (1.19a,1.19b) follows. Defining c and d by

[
c
d

]

= HnHn−1 · · ·H1b

where c ∈ IRn, it is easily shown that the least squares solution x of (1.18) is given by the solution
of the linear system of equations

Rx = c . (1.22)

The above algorithm can be shown to be numerically stable and has complexity 2n2(m−n/3) when
using Householder transformations and 4n2(m− n/3) when using Givens transformations. Again,
a well-developed perturbation theory exists from which condition numbers for the solution can be
obtained, this time in terms of

κ(A) : = ‖A‖ ‖A+‖.

We refer to [130] [47] for more details. Least squares perturbation theory is fairly straightforward
when rank(A) = n, but is considerably more complicated when A is rank-deficient. The reason for
this is that while the inverse is a continuous function of the data (i.e., the inverse is a continuous
function in a neighborhood of a nonsingular matrix), the pseudoinverse is discontinuous. For
example, consider

A =

[
1 0
0 0

]

= A+

and perturbations

E1 =

[
0 0
δ 0

]

and

E2 =

[
0 0
0 δ

]

with δ small. Then

(A + E1)
+ =

[
1

1+δ2
δ

1+δ2

0 0

]

16

which is close to A+ but

(A + E2)
+ =

[
1 0
0 1

δ

]

which gets arbitrarily far from A+ as δ is decreased towards 0. For a complete survey of perturbation
theory for the least squares problem and related questions, see [125], [127].

Instead of Householder transformations, Givens transformations (elementary rotations or re-
flections) may also be used to solve the linear least squares problem. Details can be found in
[28, 78, 107, 124], and [147]. Recently, Givens transformations have received considerable attention
for the solution of both linear least squares problems as well as systems of linear equations in a
parallel computing environment. The capability of introducing zero elements selectively and the
need for only local interprocessor communication make the technique ideal for “parallelization.”
Indeed, there have been literally dozens of “parallel Givens” algorithms proposed and we include
[41, 53, 79, 117, 81], and [94] as representative references.

C. Eigenvalue and Generalized Eigenvalue Problems

In the algebraic eigenvalue/eigenvector problem for A ∈ IRn×n, one seeks nonzero solutions x ∈Cn

and λ ∈C which satisfy
Ax = λx. (1.23)

The classic reference on the numerical aspects of this problem is Wilkinson [148] with Parlett [107]
providing an equally thorough and up-to-date treatment of the case of symmetric A (in which
x ∈ IRn, λ ∈ IR). A more brief textbook introduction is given in [122] [46].

It is really only rather recently that some of the computational issues associated with solving
(1.23) — in the presence of rounding error — have been resolved or even understood. Even now
some problems such as the invariant subspace problem continue to be active research areas. For
an introduction to some of the difficulties which may be encountered in trying to make numerical
sense out of mathematical constructions such as the Jordan canonical form, the reader is urged to
consult [48].

The most common algorithm now used to solve (1.23) for general A is the QR algorithm of
Francis [35, 36]. A shifting procedure (see [122, 46] for a brief explanation) is used to enhance
convergence and the usual implementation is called the double-Francis-QR algorithm. Before the
QR process is applied, A is initially reduced to upper Hessenberg form AH(aij = 0 if i−j > 2) [84].
This is accomplished by a finite sequence of similarities which can be chosen to be of the Householder
form discussed above. The QR process then yields a sequence of matrices which are orthogonally
similar to A and which converge (in some sense) to a so-called quasi-upper-triangular matrix S
which is also called the real Schur form (RSF) of A. The matrix S is block-upper-triangular with
1×1 diagonal blocks corresponding to real eigenvalues of A and 2×2 diagonal blocks corresponding
to complex-conjugate pairs of eigenvalues. The quasi-upper-triangular form permits all arithmetic
done to be real rather than complex as would be necessary for convergence to an upper triangular
matrix. The orthogonal transformations from both the Hessenberg reduction and the QR process
may be accumulated into a single orthogonal transformation U so that

UT AU = R (1.24)

compactly represents the entire algorithm. It is known that the algorithm for this decomposition is
backward stable and has a complexity of kn3, where k accounts for the iteration in the algorithm

17

and may vary between 10and25. For the sensitivity of eigenvalues, eigenvectors and eigenspaces we
refer to [148, 123] and [46]. For the computation of the Jordan normal form there are no results
of guaranteed backward stability around and the complexity of the decomposition is much higher
than that of the Schur decomposition. For this reason, we strongly recommend not to use this
decomposition whenever one can use instead the more reliable Schur form.

An analogous process can be applied in the case of symmetric A and considerable simplifications
and specializations result. Moreover, [107, 148, 46], and [127] may be consulted regarding an
immense literature concerning stability of the QR and related algorithms, and conditioning of
eigenvalues and eigenvectors. Both subjects are vastly more complex for the eigenvalue/eigenvector
problem than for the linear equation problem.

Quality mathematical software for eigenvalues and eigenvectors is available; the EISPACK [39],
[120] collection of subroutines represents a pivotal point in the history of mathematical software.
This collection is primarily based on the algorithms collected in [149]. The successor to EISPACK
(and LINPACK) is the recently released LAPACK [2] in which the algorithms and software have
been restructured to provide high efficiency on vector processors, high performance workstations,
and shared memory multiprocessors.

Closely related to the QR algorithm is the QZ algorithm [96] for the generalized eigenvalue
problem

Ax = λMx (1.25)

where A, M ∈ IRn×n. Again, a Hessenberg-like reduction, followed by an iterative process are
implemented with orthogonal transformations to reduce (1.25) to the form

QAZy = λQMZy (1.26)

where QAZ is quasi-upper-triangular and QMZ is upper triangular. For a review and references
to results on stability, conditioning, and software related to (1.25) and the QZ algorithm see [46].
The generalized eigenvalue problem is both theoretically and numerically more difficult to handle
than the ordinary eigenvalue problem, but it finds numerous applications in control and system
theory [131, 132], [141]. The algorithm is again backward stable and its complexity is kn3 where k
varies between 30 and 70.

D. The Singular Value Decomposition and Some Applications

One of the basic and most important tools of modern numerical analysis, particularly numerical
linear algebra, is the singular value decomposition (SVD). We make a few comments about its
properties and computation as well as its significance in various numerical problems.

Singular values and the singular value decomposition have a long history particularly in statistics
and more recently in numerical linear algebra. Even more recently the ideas are finding applica-
tions in the control and signal processing literature, although their use there has been overstated
somewhat in certain applications. For a survey of the singular value decomposition, its history,
numerical details, and some applications in systems and control theory, see [71].

Theorem 1.1. Let A ∈Cm×n with rank(A) = r. Then there exist unitary matrices U ∈Cm×m

and V ∈Cn×n such that
A = UΣV H (1.27)

where

Σ =

[
Σr 0
0 0

]

18

is real and Σr = diag {σ1, · · · , σr} with σ1 > · · · > σr > 0. If A is real instead of complex, U and
V will be real orthogonal.

The proof of Theorem 1.1 is straightforward and can be found in, for example, [43, 46], and [122].
Geometrically, the theorem says that bases can be found (separately) in the domain and codomain
spaces of a linear map with respect to which the matrix representation of the linear map is diagonal.
The numbers σ1, · · · , σr together with σr+1 = 0, · · · , σn = 0 are called the singular values of A and
they are the positive square roots of the eigenvalues of AHA. The columns {uk, k = 1, . . . , m} of U
are called the left singular vectors of A (the orthonormal eigenvectors of AAH), while the columns
{vk, k = 1, · · · , n} of V are called the right singular vectors of A (the orthonormal eigenvectors of
AHA). The matrix A can then also be written (as a dyadic expansion) in terms of the singular
vectors as follows:

A =

r∑

k=1

σkukv
H
k .

The matrix AH has m singular values, the positive square roots of the eigenvalues of AAH . The
r [= rank (A)] nonzero singular values of A and AH are, of course, the same. The choice of
AHA rather than AAH in the definition of singular values is arbitrary. Only the nonzero singular
values are usually of any real interest and their number, given the SVD, is the rank of the matrix.
Naturally, the question of how to distinguish nonzero from zero singular values in the presence
of rounding error is a nontrivial task. The standard algorithm for computing the SVD is based
on a preliminary bidiagonalization obtained by Householder transformations followed by a further
iteration to diagonalize the matrix. The overall process requires kn3 operations where k lies between
4 and 26. Another algorithm due to Kogbetliantz [72] uses only Givens transformations and is
usually slower but is better suited for matrices with small off-diagonal elements to start with. Both
algorithms are backward stable.

It is not generally advisable to compute the singular values of A by first finding the eigenvalues
of AHA (remember the folk theorem!), tempting as that is. Consider the following real example
with µ a real number with |µ| <

√
ε (so that fl(1 + µ2) = 1 where fl(·) denotes floating-point

computation). Let

A =





1 1
µ 0
0 µ



 .

Then

fl(AT A) =

[
1 1
1 1

]

so we compute σ̂1 =
√

2, σ̂2 = 0 leading to the (erroneous) conclusion that the rank of A is 1. Of
course, if we could compute in infinite precision we would find

AT A =

[
1 + µ2 1

1 1 + µ2

]

with σ1 =
√

2 + µ2, σ2 = |µ| and thus rank (A) = 2. The point is that by working with AT A we
have unnecessarily introduced µ2 into the computations. The above example illustrates a potential

19

pitfall in attempting to form and solve the normal equations in a linear least squares problem, and
is at the heart of what makes square root filtering so attractive numerically. Very simplistically
speaking, square root filtering involves working directly on an “A-matrix,” for example updating
it, as opposed to working on (updating, say) an “AT A-matrix.” See [10] for further details and
references.

Square root filtering is usually implemented using the QR factorization (or some closely related
algorithm) as described previously rather than SVD. The key thing to remember is that in most
current computing environments, the condition of the least-squares problem is squared unnecessarily
in solving the normal equations. Moreover, critical information may be lost irrecoverable by simply
forming AT A.

Returning now to the SVD there are two features of this matrix factorization that make it
so attractive in finite arithmetic: First, it can be computed in a numerically stable way, and
second, singular values are well-conditioned. Specifically, there is an efficient and numerically
stable algorithm due to Golub and Reinsch [45] (based on [43]) which works directly on A to give
the SVD. This algorithm has two phases: In the first phase, it computes unitary matrices U1 and
V1 such that B = U1

HAV1 is in bidiagonal form, i.e., only the elements on its diagonal and first
super-diagonal are non-zero. In the second phase, the algorithm uses an iterative procedure to
compute unitary matrices U2 and V2 such that U2

HBV2 is diagonal and non-negative. The SVD
defined in (1.27) is then given by Σ = UHBV , where U = U1U2 and V = V1V2. The computed U
and V are unitary to approximately the working precision, and the computed singular values can be
shown to be the exact σi’s for A+E where ‖E‖/‖A‖ is a modest multiple of ε. Fairly sophisticated
implementations of this algorithm can be found in [28] and [39]. The well-conditioned nature of
the singular values follows from the fact that if A is perturbed to A+E, then it can be proved that

|σi(A + E)− σi(A)| 6 ‖E‖.

Thus, the singular values are computed with small absolute error although the relative error of
sufficiently small singular values is not guaranteed to be small. A new algorithm for computing the
singular values of a bidiagonal matrix [26] overcomes this deficiency to the extent that it computes
the singular values of a bidiagonal matrix to the same relative precision as that of the individual
matrix entries. In other words, the algorithm will obtain accurate singular values from accurate
bidiagonal matrices. However, one cannot in general guarantee high accuracy in the reduction to
bidiagonal form.

It is now acknowledged that the singular value decomposition is the most generally reliable
method of determining rank numerically (see [48] for a more elaborate discussion). However, it
is considerably more expensive to compute than, for example, the QR factorization which, with
column pivoting [28], can usually give equivalent information with less computation. Thus, while
the SVD is a useful theoretical tool, its use for actual computations should be weighed carefully
against other approaches.

Only rather recently has the problem of numerical determination of rank become well-understood.
A recent treatment of the subject can be found in the paper by Chan [18]; see also [126]. The essen-
tial idea is to try to determine a “gap” between “zero” and the “smallest nonzero singular value”
of a matrix A. Since the computed values are exact for a matrix near A, it makes sense to consider
the rank of all matrices in some δ-ball (with respect to the spectral norm ‖ · ‖, say) around A. The
choice of δ may also be based on measurement errors incurred in estimating the coefficients of A,
or the coefficients may be uncertain because of roundoff errors incurred in a previous computation

20

to get them. We refer to [126] for further details. We must emphasize, however, that even with
SVD, numerical determination of rank in finite arithmetic is a highly nontrivial problem.

That other methods of rank determination are potentially unreliable is demonstrated by the
following example which is a special case of a general class of matrices studied by Ostrowski [101].
Consider the matrix A ∈ IRn×n whose diagonal elements are all −1, whose upper triangle elements
are all +1, and whose lower triangle elements are all 0. This matrix is clearly of rank n, i.e., is
invertible. It has a good “solid” upper triangular shape. All of its eigenvalues (= −1) are well away
from zero. Its determinant is (−1)n—definitely not close to zero. But this matrix is, in fact, very
nearly singular and gets more nearly so as n increases. Note, for example, that















−1 +1 · · · · · · +1

0
. . .

. . .
...

...
. . .

. . .
. . .
. . .

. . .
...

...
. . .

. . . +1
0 · · · · · · 0 −1






















1
2−1

...
2−n+1








=








−2−n+1

−2−n+1

...
−2−n+1







→








0
0
...
0








(n→ +∞).

Moreover, adding 2−n+1 to every element in the first column of A gives an exactly singular matrix.
Arriving at such a matrix by, say Gaussian elimination, would give no hint as to the near-singularity.
However, it is easy to check that σn(A) behaves as 2−n+1. A corollary for control theory: eigenvalues
do not necessarily give a reliable measure of “stability margin.” As an aside it is useful to note here
that in this example of an invertible matrix, the crucial quantity, σn(A), which measures nearness
to singularity, is simply 1/‖A−1‖, and the result is familiar from standard operator theory. There is
nothing intrinsic about singular values in this example and, in fact, ‖A−1‖ might be more cheaply
computed or estimated in other matrix norms. This is precisely what is done in estimating the
condition of linear systems in LINPACK where ‖ · ‖1 is used [20].

Since rank determination, in the presence of roundoff error, is a nontrivial problem, all the same
difficulties will naturally arise in any problem equivalent to or involving rank determination, such
as determining the independence of vectors, finding the dimensions of certain subspaces, etc. Such
problems arise as basic calculations throughout systems, control, and estimation theory. Selected
applications are discussed in more detail in [71].

Finally, let us close this section with a brief example illustrating a totally inappropriate use of
SVD. The rank condition

rank [B, AB, · · · , An−1B] = n (1.28)

for the controllability of (1.1) is too well-known. Suppose

A =

[
1 µ
0 1

]

, B =

[
1
µ

]

21

with |µ| < √ε. Then

fl[B, AB] =

[
1 1
µ µ

]

and now even applying SVD, the erroneous conclusion of uncontrollability is reached. Again the
problem is in just forming AB; not even SVD can come to the rescue after that numerical faux pas.

22

Chapter 2

IDENTIFICATION

In this chapter we present a number of identification techniques for linear time invariant systems.
Such techniques exist for both continuous-time and discrete-time systems, but since we start from
input/output signals, it is much more convenient to treat the discrete-time case. In practice the
continuous-time case if often solved via the (discrete) sampled versions of the signals anyway. So
here we treat the discrete-time case only and we will make a few remarks about the continuous-time
case when appropriate. We will consider the cases when the data collected from the system are

• the impulse response of the system

• an input output pair of the system

• covariance data from the system excited by white noise.

In each of these cases we will consider both the single-input single-output (SISO) case and the
multi-input multi-output (MIMO) case. We do not stress the theory of the identification problem
but rather the various aspects of the underlying matrix problems, such as numerical accuracy,
sensitivity and complexity of the algorithms.

2.1 SISO identification from the impulse response

Suppose a system can be modeled by the transfer function

h(z) =
n(z)

d(z)
, (2.1)

where n(z) and d(z) are scalar polynomials satisfying the condition

n
.
= deg.d(z) > deg.n(z)

.
= m.

This amounts to say that the system is assumed to be causal. Moreover we assume the impulse
response of the system is given, i.e., the response of

(dnzn + . . . + d1z + d0) yi = (nmzm + . . . + n1z + n0) ui, (2.2)

23

where {ui} = {1, 0, 0, 0, . . .}. If we denote by 1 the z-transform of this input sequence, the the
output sequence {yi} has a z-transform equal to

y(z) =
n(z)

d(z)
· 1. (2.3)

This is nothing but the transfer function (2.1) and thus the outputs yi are the coefficients hi of the
expansion of (2.1) in z−1:

h0 + h1z
−1 + h2z

−2 + h3z
−3 + . . . = h(z) =

n(z)

d(z)
. (2.4)

Rewriting this as

h(z).d(z) = n(z), (2.5)

and equating terms of equal powers of z yields the semi-infinite system:





















0 0 h0

... ..
.

..
.

h0 h1

... ..
.

..
.

..
. ...

0 h0 h1 ..
.

hn−1

h0 h1 ..
.

hn

h1 h2 ..
.

hn+1

h2 ..
.

..
. ...

... ..
.

..
. ...





















·










d0

d1
...

dn−1

dn










=





















nn

nn−1

...

n1

n0

0

...

...





















(2.6)

If we normalize n(z)/d(z) such that dn = 1, then the bottom part of the above system can be
rewritten as:


















h1 h2 ..
.

hn

h2 ..
.

..
.

hn+1

... ..
.

..
. ...

hn hn+1 ..
.

h2n−1

hn+1 h2n−1 h2n

... ..
.

..
.

h2n h2n+1

... ..
.

..
.

..
. ...


















·








d0

d1
...

dn−1








+



















hn+1

hn+2

...

h2n

h2n+1

...

...



















= 0 (2.7)

This system is solvable if the left matrix has full column rank n. Once the coefficients of d(z) are
known it is clear that those of n(z can be found from the top n+1 equations of (2.6). Also if some
of the leading parameters h0, h1, . . . are zero (i.e., if there is a delay in the response) then clearly
the degree m of n(z) will be lower than the degree n of d(z). One proves the following result:

24

Theorem 2.1. If n is the order of the system with impulse response {hi, i = 0, 1, 2, . . .} then
the semi-infinite matrix


















h1 h2 ..
.

hi

h2 ..
.

..
.

hi+1

... ..
.

..
. ...

hi hi+1 ..
.

h2i−1

hi+1 h2i−1 h2i

... ..
.

..
.

h2i h2i+1

... ..
.

..
.

..
. ...


















(2.8)

has rank n for all i > n.

Proof. This property follows from the Hankel structure of that matrix. Since there is an n-th
order system describing the input output behavior, (2.7) holds and the rank of the matrix (2.8)
can then be at most n since each column i > n of (2.8) is also a subcolumn of the right hand side
of (2.7), and equation (2.7) says that it is a linear combination of the n previous columns in the
matrix (2.8). For i = n the rank must be equal to n otherwise we would find a model of order lower
than n using (2.7). �

We will also prove later on that if n is the correct order of the system, it actually follows that
the leading n×n matrix in (2.7) (above the horizontal line) is in fact invertible. This thus suggests
the following identification algorithm.

Algorithm 2.1.

Construct

A =









h1 h2 ..
.

hn

h2 ..
.

..
.

hn+1

... ..
.

..
. ...

hn hn+1 ..
.

h2n−1









, B =









0 . . . 0 h0

... ..
.

h0 h1

0 ..
.

..
.

..
.

h0 h1 ..
.

hn









, b = −










hn+1

hn+2

...

h2n










then one solves the unknown vectors

d =








d0

d1
...

dn−1








, n =








nn
...

n1

n0








using

d = A−1b, n = B

[
d
1

]

.

One checks that the following MATLAB commands actually implement this, where the column
vector h is assumed to contain the impulse response {h1, i = 0, 1, 2, . . .} of the system.

25

A=hankel(h(2:n+1),h(n+1,2*n)); b=-h(n+2:2*n+1);

B=hankel([zeros(1,n),h(1)],h(1:n+1)); d=A\b; d=[d;1]; n=B*d;

�This algorithm only uses the first 2n + 1 samples of the impulse response to
determine the 2n + 1 unknown parameters of d(z) and n(z). But what should we do if we have to
our disposal the impulse response {h0, h1, . . . , hN} up to sample N where N � 2n + 1 ? It makes
sense to try to use as much information as possible for determining the polynomials d(z) and n(z).
Since the system (2.7) is compatible, we can as well define

A=hankel(h(2:n+1),h(n+1,N-1)); b=-h(n+2:N);

and compute then

B=hankel([zeros(1,n),h(1)],h(1:n+1)); d=A\b; d=[d;1]; n=B*d;

This now solves Ad = b in least squares sense. Can we say anything about the numerical reliability
of one approach versus the other ? The sensitivity bounds we find e.g., in [46] say the following.
The sensitivity of the square system

An,nd = bn

has sensitivity

‖d− d‖ 6 κ(An,n)‖d‖
(‖δAn,n‖
‖An,n‖

+
‖δbn‖
‖bn‖

)

where all norms are 2-norms. For the least squares problem

AN,nd = bN

the comparable formula is

‖d− d‖ 6 κ(AN,n)‖d‖
(‖δAN,n‖
‖AN,n‖

+
‖δbN‖
‖bN‖

) (

c1 + c2κ(AN,n)
‖r‖
‖b‖

)

where c1 and c2 are scalars close to 1 and r is the residual vector of the least squares system.
Although it appears from this that the least squares problem may have a condition number which
is essentially the square of the linear system, it happens here that ‖r‖ = 0 and then both formulas
look essentially the same. In practice, it just happens that the linear system is often much more
sensitive than the least squares problem. The reason for this is twofold. First, since An,n is a
submatrix of AN,n its singular values can only be smaller ([46]) and hence typically its condition
number is larger. Secondly, if the data in the interval 0 6 i 6 2n happen to be much smaller
than in the complete interval, the relative errors on these samples are typically larger as well. An
example of this poorer behaviour of the linear system is given below, where indeed it appears that
the least squares problem behaves much better.

26

0 100 200 300 400 500 600 700
-10

-8

-6

-4

-2

0

2

4

Figure 2.1: Impulse response of a lightly damped system.

Example 2.1.

The following example is a 8-th order system with impulse response as given by the plot in Figure
2.1.

Clearly the system is lightly damped and it makes sense to reconstruct the transfer function
from all available data since the first few samples are much smaller than the rest of the data. The
two graphs in Figure 2.2 give the errors obtained from simulating the original impulse response
from the two reconstructed systems. The first one is from the linear system, the second one is from
the least squares system.

For each system we first slightly perturbed the given impulse response with noise of size 10−9

before identifying the system, in order to estimate the sensitivity of the reconstruction. For the
linear system that seems to be around 104 whereas for the least squares problem it is about 101. �

Example 2.2.

Take {ui} = {1, 0, 0, 0, . . .} and {yi} = {0, 0, 1, 0, 0, . . .}, i.e., the system acts as a double delay and
we should find n = 2. Then the square system is just as good as the semi-infinite one since all data
beyond 2n = 4 is zero. So we solve:

[
0 1
1 0

] [
d0

d1

]

= 0

which gives indeed the polynomial d(z) = z2. The numerator then is found from





0 0 0
0 0 0
0 0 1









d0

d1

1



 =





n2

n1

n0





and we find n(z) = 1. The transfer function h(z) = n(z)/d(z) is thus a double delay h(z) = 1/z2

as expected. �

27

0 100 200 300 400 500 600 700
-4

-3

-2

-1

0

1

2

3
x 10

-5

0 100 200 300 400 500 600 700
-6

-5

-4

-3

-2

-1

0

1

2

3

4
x 10

-8

Figure 2.2: Errors for the reconstructed signals.

Remark

Notice that the equation AN,nd = bN may also be weighted by a diagonal matrix diag(w1, . . . , wN)
which gives different weight to each individual equation. This is typically done in recursive least
squares where N is steadily increasing to infinity. The weighting matrix cares for the triangular
factor to remain bounded, but can also be used to obtain better “tracking” capabilities (see later).
�

So far we have assumed that the order of the system was given. In practice, this is another
important parameter to be determined from the data. Theorem 2.1 in fact gives an important
indication about this: the rank of the Hankel matrices of growing dimensions ought to be bounded
by the order of the underlying system. But rank determination is something that can be done
reliably using the singular value decomposition [47] (or a rank revealing QR decomposition [18]).
The idea of this decomposition is the following. The complexity of the SVD is about 10Nn2,
whereas that of the QR decomposition is only 2n2(N −n/3), for a N ×n matrix. One can actually
preprocess any N × n matrix AN,n where N � n by a QR decomposition:

AN,n = Q

[
R
0

]

and then apply a SVD to R:

R = UΣV H

to obtain the SVD of A:

AN,n = Q

[
U 0
0 I

] [
Σ
0

]

V H .

This “trick” already reduces the amount of work to 2n2(N −n/3) + 10n3 = 2n2N + 91
3n3, which is

a lot of saving when N � n (these operation counts are with the construction of Q included). In
combination with this the QR decomposition has the possibility to estimate the rank of the matrix

28

via several techniques [18], without actually computing the singular values. This shows that when
e.g., N = 1000 samples of the impulse response are given then the order of the system should rather
be checked on a tall thin matrix rather than on a square one. If e.g., the suspected order is, say
8, then the rank property of Theorem 2.1 could as well be checked on a 999 × 10 matrix as on a
500× 500 one. The complexity of the first approach is roughly 10.(500)3 whereas for the second it
is roughly 2(10)2(990) + 91

3(10)3. In this particular case the latter is about 6,000 times faster !
We terminate this section with a statistical interpretation of the problem or order determination

using singular values. When equating the inputs and outputs of a system as

(dnzn + . . . + d1z + d0) yi = (nmzm + . . . + n1z + n0) ui

one normally has no exact match (either due to noise on the date, or just due to rounding errors
in these equations). Let us now rewrite this as

(dnzn + . . . + d1z + d0) yi = (nmzm + . . . + n1z + n0) ui + ei (2.9)

where ei is some kind of “noise process”. The bottom part of equation (2.6) which was used to
determine d(z) now becomes















h1 h2 ..
.

hn+1

h2 ..
.

..
. ...

... hn+1 ..
. ...

hn+1 ..
.

..
.

h2n+1

... ..
.

..
. ...

hN−n ..
.

..
.

hN















·








d0

d1
...

dn








=













en+1

en+2

...

...

eN













.

Now this equation says that there is a linear combination of the columns of the Hankel matrix
HN−n,n+1 on the left that is “nearly” zero, or just noise ei. What the singular value decomposition
does is give the smallest possible perturbation e

.
= [en+1, . . . , eN]T which can be obtained with a

vector d = [d0, . . . , dn]T normalized to have unit length. In terms of the singular value decom-
position of the matrix HN−n,n+1, the vector d is then in fact the last right singular vector vn+1 of
the Hankel matrix, and the vector e then equals σn+1un+1, the last left singular vector scaled by
the smallest singular value. In other words, the smallest singular value is the norm (or variance)
you need to allow in (2.9) to make the equation hold, with a polynomial d(z) normalized to have
a coefficient vector d of unit norm. When normalizing the polynomial with dn = 1 as suggested
earlier, this has to be scaled with the factor dn/‖d‖.

2.2 State-space realizations

Single input single output systems can also be represented by state-space realizations

xk+1 = A.xk + b.uk (2.10)

yk = c.xk + d.uk, (2.11)

where A is n× n, b and c are n-vectors and d is a scalar. In z-transforms language, this becomes:

(zI −A)xk = b.uk

yk = c.xk + d.uk.

29

When eliminating the variable xk from this, we find the transfer function h(z) of the system as

h(z) = c(zI −A)−1b + d.

For the pair of polynomials d(z) and n(z) with transfer function and with impulse response as given
in (2.4), we actually can derive immediately a state-space realization as follows:

A =













0 1 0 . . . 0

...
. . .

. . .
. . .

...

...
. . .

. . . 0

0 0 1

−d0 −d1 −dn−1













, b =












h1

h2

...

...

hn












, c =
[

1 0 0
]
, d = h0. (2.12)

A proof of this is found by equating the two expressions for the transfer function [65], but a
simple intuitive way of checking this is to compute the impulse response of the above state space
model, say for the first n samples. With zero initial state x0 = 0 and input ui = 1, 0, 0, . . . it is

obvious that x1 = A.x0 + b.u0 = b =
[

h1 h2 . . . hn

]T
and y0 = d.u0 = h0. For the subsequent

steps 1 < k 6 n one easily checks that xk = A.xk−1 =
[

hk . . . hn ∗ . . . ∗
]T

. Since the output
yk for 0 < k is just the first entry of xk one indeed checks that the outputs are matched for the
first n samples. A more rigorous proof is given later on.

Notice that if a realization {A, b, c, d} of a transfer function is given, then for any invertible
tranformation T the quadruple {Â, b̂, ĉ, d̂} .

= {T−1AT, T−1b, cT, d} also realizes the same transfer
function. One easily checks that indeed their transfer functions are identical:

ĉ(zI − Â)−1b̂ + d̂ = cT (zI − T−1AT)−1T−1b + d = c(zI −A)−1b + d. (2.13)

Another way to check the relation between the system {A, b, c, d} and the transfer function
h(z) is by expanding the expression c(zI − A)−1b + d in powers of z−1 as in (2.4) for the transfer
function. Using the Neumann expansion of (zI −A)−1:

(zI −A)−1 = z−1(I − z−1A)−1 = z−1I + z−2A + z−3A2 + z−4A3 + . . .

we easily find

h(z) = d + cbz−1 + cAbz−2 + cA2bz−3 + cA3bz−4 + . . .
= h0 + h1z

−1 + h2z
−2 + h3z

−3 + h4z
−4 + . . .

So we have the identities:

h0 = d; hi = cAi−1b, i > 1. (2.14)

These can now be arranged in an infinite Hankel matrix:

H .
=










h1 h1 h2 h3 . . .
h2 h2 h3 ..

.
. . .

h2 h3 ..
.

..
.

. . .
h3 ..

.
..

.
..

.

...
...

...










=










c
cA
cA2

cA3

...










·
[

b Ab A2b A3b . . .
]

(2.15)

30

Notice that this again says that the infinite Hankel matrix can indeed be factorized into a product
of two rank n matrices, where n is the dimension of the smallest possible realization {A, b, c, d}.
The left and right matrices in this product are also known as the observability matrix and the
controllability matrices of the system {A, b, c, d} and we will denote them by O and C, respectively.
It is well known from the control literature that if a system {A, b, c, d} is minimal (i.e., its transfer
function can not be represented by a smaller dimensional system), then O and C have full rank n
[65]. Moreover, the finite dimensional matrices On and Cn:

On
.
=








c
cA
...

cAn−1








, Cn .
=

[
b Ab . . . An−1b

]
(2.16)

have rank n as well. Notice that this implies that the leading n × n hankel matrix in (2.17)
is invertible, as mentioned earlier after Theorem 2.1. Also notice that any system {Â, b̂, ĉ, d̂} .

=
{T−1AT, T−1b, cT, d} has also the same impulse response

hi = cAi−1b = (cT)(T−1AT)i−1(T−1b) = ĉÂi−1b̂.

The matrices O and C, on the other hand, are transformed as

Ô .
=








ĉ

ĉÂ

ĉÂ2

...








=








c
cA
cA2

...








T, Ĉ .
=

[

b̂ Âb̂ Â2b̂ . . .
]

= T−1
[

b Ab A2b . . .
]

(2.17)

which is easily checked by inspection. So we have:

H = ÔĈ = OT · T−1C

Both the expressions on the right hand side are rank factorizations of the hankel matrix H, and
the above discussion also indicates that to each factorization into some observability matrix O and
controllability matrix C there actually corresponds a particular realization {A, b, c, d}. We now
make this explicit in the following theorem.

Theorem 2.2. Let

H = ÔĈ = OC

be rank factorizations of H, i.e., the matrices Ô, Ĉ, O and C have full rank n, then these matrix
factorization are related by

Ô = OT, Ĉ = T−1C

Proof. From the rank condition it follows that Ô and O have a left inverse and that the matrices
Ĉ and C have a right inverse. Denoting generalized inverses with a .+, we have:

O+Ô = CĈ+

31

Defining the resulting matrix to be equal to T , then

Ô+O = ĈC+

equals T−1 and the result readily follows. �

From this theorem it appears that to each rank factorization one can associate a particular
realization {A, b, c, d}. The following construction shows that this is indeed the case.

Algorithm 2.2

Construct a rank factorization OiCj of the i×j hankel matrix Hi,j , where both i and j are assumed
larger than n. Then

Hi,j = OiCj =








c
cA
...

cAi−1








.
[

b Ab . . . Aj−1b
]

Then define the submatrices

O−
.
=








c
cA
...

cAi−2








, O+
.
=








cA
cA2

...
cAi−1








,

C− .
=

[
b Ab . . . Aj−2b

]
, C+ .

=
[

Ab A2b . . . Aj−1b
]
,

Since i, j > n these matrices all have full rank n and we can find A from either of the following
equations:

O−A = O+, AC− = C+
Both these systems are compatible and hence solvable, yielding

A = O+
−O+ = C+C+

− .

The vectors b and c are just found as the first column and row of the matrices C, respectively O.�

Exercise 2.1.

Prove that the realization obtained under (2.14) in fact immediately follows when using the factor-
ization

H =















1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 1

ln+1,1 ln+1,n

...
...

...
...















·









h1 h2 ..
.

hn hn+1 . . .

h2 ..
.

..
.

hn+1 . . .

... ..
.

..
.

hn hn+1 ..
.

h2n−1 h2n . . .









32

Hint: using the construction of Algorithm 2.2, you need only to prove that the vector [ln+1,1 ln+1,n]
is in fact the vector [−d0 − dn−1]. �

We know of several factorizations in linear algebra and the one of the above exercise is in fact
not a recommended one. It essentially amounts to “block LU” without pivoting and requires the
leading principal n×n minor Hn,n of H to be easy to invert (i.e., a good condition number). Notice
that we know this matrix has to be invertible from the discussion before Theorem 2.2, but this may
still be delicate from a numerical point of view. Other factorizations that can be considered are
LU with pivoting, QR factorizations and the Singular Value Decomposition.

Exercise 2.2.

Prove that if we choose a QR factorization of the matrix H into a form

H =















q1,1 q1,n

...
...

...
...

qn,1 qn,n

qn+1,1 qn+1,n

...
...

...
...















·










r1,1 r1,2 . . . r1,n r1,n+1 . . .

0 r2,2
. . .

...
... . . .

...
. . .

. . .
...

... . . .

0 . . . 0 rn,n rn,n+1 . . .










where the leading n×n matrix in R is upper triangular and invertible, then the realization {A, b, c, d}
will have A in upper Hessenberg form and b will have only the first element non-zero (this is called
a controller-Hessenberg form). �

2.3 Balanced realizations

We now show that using the SVD actually leads to realizations with very particular properties for
the quadruple {A, b, c, d}. The particular factorization we consider is described by the following
algorithm (see [152] for a preliminary version of this).

Algorithm 2.3

Decompose the n1 × n2 matrix Hn1,n2 of rank n into the SVD:

Hn1,n2 =

















u1,1 u1,n

...
...

...
...

un,1 un,n

un+1,1 un+1,n

...
...

un1,1 un1,n

















·










σ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 σn










·










v1,1 vn,1 . . . vn2,1

...
...

...

...
...

...

v1,n vn,n . . . vn2,n










33

Now define the factors O and C as follows:

On1,n
.
=

















u1,1 u1,n

...
...

...
...

un,1 un,n

un+1,1 un+1,n

...
...

un1,1 un1,n

















·











σ
1
2
1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 σ
1
2
n











.
= Un1,nΣ

1
2
n

Cn2,n
.
=











σ
1
2
1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 σ
1
2
n











·










v1,1 vn,1 vn+1,1 . . . vn2,1

...
...

...
...

...
...

...
...

v1,n vn,n vn+1,n . . . vn2,n










.
= Σ

1
2
nV H

n2,n

Now derive the system {A, b, c, d} from this factorization using the standard approach of Algorithm
2.2. �

The following MATLAB code actually implements this method:

function[a,b,c,d]=balss(h,n,n1,n2)

%

% function[a,b,c,d]=balss(h,n,n1,n2)

%

% this realizes a quadruple {a,b,c,d} of order n for the siso system

% defined by the impulse response h{0}, h{1}, ...h{N} contained

% in the column vector h=[h{0}, ..., h{N}]’ where N>n1+n2-1

% The method makes a n1 x n2 Hankel matrix from h{1}

% to h{n1+n2-1} and then gets the SVD from that. We assume

% n1 geq n2 and n leq n1,n2.

H=hankel(h(2:n1+1),h(n1+1:n1+n2));

[q,r]=qr(H);[u,s,v]=svd(r);sq=sqrt(s(1:n,1:n));

c=q(1,:)*u(:,1:n)*sq;b=sq*v(1,1:n)’;d=h(1);

h1=q(1:n1-1,:)*u(:,1:n)*sq;h2=q(2:n1,:)*u(:,1:n)*sq;a=h1\h2;

Notice that we have assumed here that n < n1, n2 and the the order n is correct. In normal
circumstances the order has to be determined and the SVD is one of the more reliable ways to
determine this. Such things depend though on a user specified threshold of what ought to be
considered as noise when deciding about the order of the system.

The realizations obtained by the above scheme are called balanced realizations. We now derive
some properties of these realizations.

Diagonal Gramians. First of all it is easy to see that

OH
n1,nOn1,n = Σn = Cn2,nCH

n2,n (2.18)

34

This follows automatically from the expressions for these matrices and the fact that

UH
n1,nUn1,n = In = V H

n2,nVn2,n.

Moreover from the relation with the observability and controllability matrices we also have that

OH
n1,nOn1,n =

n1−1∑

i=0

AiHcHc Ai .
= Go(0, n1 − 1), (2.19)

Cn2,nCH
n2,n =

n2−1∑

i=0

Aib bHAiH .
= Gc(0, n2 − 1), (2.20)

where Go(0, n1 − 1) and Gc(0, n2 − 1) are the observability and controllability Gramians over the
finite intervals (0, n1− 1) and (0, n2− 1), respectively. So, balanced realizations are realizations for
which the (finite horizon) Gramians are equal and diagonal. Such realizations are well known for
the case of infinite horizon Gramians, in which case some additional properties are obtained. The
Gramians Go and Gc are then also the solutions to the following Lyapunov equations:

AHGoA + cHc = Go, AGcA
H + b bH = Gc

Sign symmetry. From these relations one proves [108] that the matrices of the quadruple {A, b, c, d}
actually have some nice symmetry properties. Arranging the quadruple into the matrix

E .
=

[
A b

c d

]

we have that this matrix is symmetric up to some sign changes, i.e., there exist a diagonal matrix
S of ±1 such that

ES = SEH

Such property is not met when considering the finite horizon Gramians instead, but the following
exercise indicates that we should not be very far from it.

Exercise 2.3.

Prove that the finite horizon Gramians are the solution to the following equations:

AHGo(0, n1 − 1)A + cHc−An1HcHcAn1 = Go(0, n1 − 1)

AGc(0, n2 − 1)AH + b bH −An2b bHAn2H = Gc(0, n2 − 1)

�

Clearly if A is stable and n1 and n2 are sufficiently large the finite horizon Gramians will be
close to the infinite horizon ones, and the same sign symmetry ought to be observed. In practice,
this occurs if one uses a Hankel matrix Hn1,n2 of which the elements have started to “die out”, i.e.,
which is a reasonable approximation of the infinite horizon Hankel matrix.

35

0 100 200 300 400 500 600
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2.3: Impulse response of a 5-th order lightly damped system.

Below we show the elements of the realization of a 5-th order system identified from the first
100 samples of the impulse response given in Figure 2.3.

The matrix resulting from this is:

E .
=

[
A b

c d

]

=











0.7787 0.6258 −0.0148 −0.0207 0.0157 0.1553
−0.6258 0.7569 −0.0206 −0.0273 0.0219 0.4308

0.0148 −0.0206 −0.2016 0.9682 −0.0695 0.2607
−0.0207 0.0273 −0.9682 −0.1834 −0.0740 −0.2420
−0.0157 0.0219 −0.0695 0.0740 0.9871 −0.2081

−0.1553 0.4308 0.2607 0.2420 −0.2081 0.1304











which clearly has sign symmetry. When executing in MATLAB the command

s=diag([-1 1 1 -1 1 1]); norm(s*e-e’*s)/norm(e)

one gets the response 1.7212e − 14 which shows how close we are to a sign symmetric matrix,
although we have hardly waited for the response to die out (we used only 100 samples of the
impulse response).

Computation of poles and zeros. One possible preliminary step in many eigenvalues solvers
for an arbitrary matrix M is to perform first a diagonal scaling to insure that rows and columns
have equal norm. This avoids a possible “imbalance” in the elements of the matrix M and improves
the accuracy of the computed eigenvalues. For the above matrix A this step is superfluous since
sign symmetry implies that row i and column i have equal norms already. So the computation of
the poles of the transfer function – i.e., the zeros of d(z) – from the eigenvalues of A ought to have
small sensitivity. The zeros of the transfer function – i.e., the zeros of the n(z) – are in fact the
eigenvalues of Az

.
= A− bd−1c which for the above model is again sign symmetric. So the balanced

realization has the nice property that the computation of poles and zeros of the transfer function

36

should have good sensitivity properties. For the above model the zero matrix is:

Az =









0.9637 0.1127 −0.3253 −0.3089 0.2635
−0.1127 −0.6663 −0.8819 −0.8268 0.7094

0.3253 −0.8819 −0.7228 0.4844 0.3465
−0.3089 0.8268 −0.4844 0.2657 −0.4602
−0.2635 0.7094 0.3465 0.4602 0.6550









and the poles and zeros are: −0.1940 ± 0.9708i, 0.7679 ± 0.6249i, 0.9900 and −1.7323, 1.0015 ±
0.3022i, 0.1123± 1.0242i, which all turn out to have reasonably low sensitivity.

Low sensitivity to noise propagation. The paper that actually introduced balanced realizations [99]
did so for minimizing the sensitivity of the models to various types of noise propagation. Without
going into details, we give an indication here of this property. Let us write again the evolution of
the state space equation as

[
xk+1

yk

]

=

[
A b

c d

]

.

[
xk

uk

]

then errors in the inputs, state and output propagate in the same manner:
[

δxk+1

δyk

]

=

[
A b

c d

]

.

[
δxk

δuk

]

0 100 200 300 400 500 600 700
-10

-8

-6

-4

-2

0

2

4

6
x 10

-9

Figure 2.4: Impulse response of a 5-th order lightly damped system.

and the size of this propagation will be diminished if the norm of the evolution operator E can be
kept as small as possible. It turns out that for balanced realizations, this norm is nearly minimized
over all possible realization. E.g., taking again the perturbed data of Example 2.1 yields a balanced
realization with an evolution matrix of norm close to 1 whereas the companion form (2.14) for this
model has norm close to 10. Partly as a result of this the reconstructed impulse response from the
balanced realization gives errors that are about a factor 10 smaller as well (see Figure 2.4).

37

2.4 Padé algorithm

If we do not know from beforehand what the order of the system will be one can take the viewpoint
to try to identify a family of realizations of growing orders 1, 2, 3, This would amount to
finding the following polynomials from the following Hankel matrices:

[
h1

]
,
[

h2

]
⇒

n(1)(z)

d(1)(z)
=

n0

z + d0

[
h1 h2

h2 h3

]

,

[
h3

h4

]

⇒
n(2)(z)

d(2)(z)
=

n1z + n0

z2 + d1z + d0





h1 h2 h3

h2 h3 h4

h3 h4 h5



 ,





h4

h5

h6



 ⇒
n(3)(z)

d(3)(z)
=

n2z
2 + n1z + n0

z3 + d2z2 + d1z + d0

and so on, where degree.n(i)(z) < degree.d(i)(z) because we do not use the parameter h0 in this
process. Notice that there are as many parameters on each side of the above arrows, namely 2i

at stage i of the above process. So we can match the functions
n(i)(z)

d(i)(z) to the given parameters

h1, . . . , h2i in each stage . In fact, given the original transfer function (without h0 again):

n(z)

d(z)
= h1z

−1 + h2z
−2 + h3z

−3 + . . . (2.21)

the above rational functions
n(i)(z)

d(i)(z) match the Taylor series (2.23) in z−1 in its first 2i terms. It will

be shown below that in fact what is now known as the Padé algorithm solves for all of these partial
realizations from degree 1 to n in only O(n2) operations !

Some history.

This problem is actually known as the Padé approximation problem [15]. The relations of this
problem to that of Hankel matrices was already observed in the late 1800’s by people like H. Hankel
(1862), G. F. Frobenius (1886) and T. J. Stieltjes (1894) (see [14] for more history on this). In the
system theory literature the relation of partial realizations to Hankel matrices were rediscovered
– and extended to the multi-input multi-output case – by Ho-Kalman [56], Youla-Tissi [151] and
Silverman[118]. The O(n2) algorithms for these partial realizations were rediscovered by Massey
and Berlekamp [85] in the context of convolutional codes, and later on by Rissanen [113] in the
context of identification. Several years later, de Jong [24] showed that these algorithms all suffer
from numerical instability.

Example 2.3.

Consider the Taylor series

h(z) = 1z−1 + 2z−2 + 3z−3 + 3z−4 + 1z−5 − 4z−6 − 8z−7 + . . .

38

then we find the partial realizations:

[
1

]
,
[

2
]

⇒
n(1)(z)

d(1)(z)
=

1

z − 2

[
1 2
2 3

]

,

[
3
3

]

⇒
n(2)(z)

d(2)(z)
=

z − 1

z2 − 3z + 3





1 2 3
2 3 3
3 3 1



 ,





3
1
−4



 ⇒
n(3)(z)

d(3)(z)
=

z2

z3 − 2z2 + z + 1

Exercise 2.4.

Check with MATLAB that the above i-th order partial realizations fit the Taylor series in the first
2i coefficients. Also check the poles and zeros of the partial realizations. Repeat the same for the
series

h(z) = 1/2z−1 + 1/2z−2 + 3/8z−3 + 3/16z−4 + 1/32z−5 − 1/16z−6 − 1/16z−7 + . . .

obtained from replacing z by 2z. Results ought to be related to the previous ones. Use the
identification algorithm 2.1 with the minimum amount of data for finding the partial realizations.
�

We now derive a simplified version of the Padé algorithm to show how the Hankel structure of
the underlying matrices leads to an O(n2) algorithm. We first need the following theorem about
the existence of LU decompositions.

Theorem 2.3. A n × n invertible matrix M has a LU decomposition (without pivoting on
rows or columns)

M = L · U

iff all its leading principal minors are invertible.

Proof. The only if part is simple. Since the LU decomposition exists, L and U must be invertible,
otherwise M would be singular. But then the leading principal submatrices L(1 : i, 1 : i) and
U(1 : i, 1 : i) of L and U are also invertible, and since

M(1 : i, 1 : i) = L(1 : i, 1 : i)U(1 : i, 1 : i)

the result follows.
For the if part we construct L and U as follows. Since M(1 : i, 1 : i) is non-singular for i =
1, . . . , n− 1, we can solve for a vector x(i+1) in

M(1 : i, 1 : i)x(i+1) = −M(1 : i, i + 1), or also M(1 : i, 1 : i + 1)








x1,i+1
...

xi,i+1

1








= 0. (2.22)

39

Arranging this into an array we find

M ·









1 x1,1 . . . x1,n

0 1 . . . x2,n

...
. . .

. . .
...

0 . . . 0 1









=









× 0 . . . 0

× × . . .
...

...
. . .

. . . 0

× . . . × ×









Since the two matrices on the left are invertible, so is the lower triangular matrix on the right.
From the above equation we clearly see that we have in fact constructed the factors L (on the
right) and U as the inverse of the matrix with the xi,j elements. �

Corollary 2.1. A n × n matrix M has a LU decomposition (without pivoting on rows or
columns)

M = L · U

iff its leading principal minors of order 1 to n − 1 are invertible. In this decomposition one can
normalize either L or U to have 1’s on the diagonal. Moreover, if M is symmetric, L and U are
equal up to a diagonal scaling S:

M = MT = LSLT .

In this latter case one can always normalize L to be unit upper triangular.

Proof. We refer to [46] for this extension of the above theorem. �

Using these results we have the following theorem.
Theorem 2.4. Let the Hankel matrix Hn+1,n+1 have non-singular leading principal minors of

order 1 to n, then:

Hn+1,n+1 = LSLT

with L chosen to be unit lower triangular. Defining the unit lower triangular matrix XT = L−1,
we also have:

XTHn+1,n+1X = S (2.23)

and column i + 1 of X contains then the coefficients of the polynomials d(i)(z) of the partial
realizations of the corresponding impulse response.

Proof. Using a similar argument as in (2.24) we find that column i + 1 of X has its i + 1 leading
coefficients satisfying:

H(1 : i, 1 : i + 1)








x1,i+1
...

xi,i+1

1








= 0. (2.24)

This is precisely the equation for the denominator d(i)(z) of the partial realization built on the
i× i + 1 Hankel matrix H(1 : i, 1 : i + 1) (see Algorithm 2.1). �

40

Example 2.4.

One easily checks the following identity in MATLAB:







1 2 3 3
2 3 3 1
3 3 1 −4
3 1 −4 −8







=







1
2 1
3 3 1
3 5 2 1













1
−1

1
4













1 2 3 3
1 3 5

1 2
1







= LT SL

from which the polynomials in Example 2.4 are recovered via

L−T =







1 2 3 3
1 3 5

1 2
1







−1

=







1 −2 3 1
1 −3 1

1 −2
1







−1

= X

�

So far we showed that the LSLT decomposition of H, or rather the inverse X of LT , gives all
the partial realizations but such a decomposition typically requires O(n3) flops. We now derive a
fast algorithm that only requires O(n2) flops and is in fact a rewrite of the Padé algorithm. The
original Padé algorithm involves polynomials but we prefer to use the decomposition (2.25) instead.
Suppose we have this factorization up to step i, i.e.,

X(1 : i, 1 : i)H(1 : i, 1 : i)X(1 : i, 1 : i)T = S(1 : i, 1 : i)

then we have to find the next column of X in O(i) flops in order to wind up with an total of O(n2)
flops after n steps ! So the next columns must be very simple to compute indeed. Let us try for
column I = 1 of X the shifted version of column i, i.e., the polynomial d̂(i)(z) is approximated by
the shifted polynomial zd(i−1)(z). In other words:

X̂(1 : i + 1, 1 : i + 1) =










X(1 : i, 1 : i)

0
x1,i
...

xi−1,i

1










Then it follows that

X̂(1 : i + 1, 1 : i + 1)H(1 : i + 1, 1 : i + 1)x̂(1 : i + 1, 1 : i + 1) =











s1,1 0 . . . 0 0

0 s2,2
. . .

...
:
0

...
. . .

. . . 0 ai

0 . . . 0 si,i bi

0 .. 0 ai bi ci











or a matrix that is almost diagonal, except for the elements ai and bi. In order to prove this we
look at the last columns of H(1 : i + 1, 1 : i + 1)X̂(1 : i + 1, 1 : i + 1) and H(1 : i, 1 : i)X(1 : i, 1 : i).
Because of the last columns of X̂(1 : i + 1, 1 : i + 1) and X(1 : i, 1 : i) are shifted with respect
to each other and since the Hankel matrix has shifted rows as well, it follows that only the last

41

3 elements of that column are nonzero. Multiplying this now with X̂T (1 : i + 1, 1 : i + 1) on the
left hand side does not change the zero pattern of that column, which proves ai and bi are the
only nonzero off-diagonal elements. In fact one checks that ai = si,i. So starting from the right
hand side of this result, one needs only two additional elementary eliminations to reduce this to a
diagonal matrix:











1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 1 0

0 .. 0 αi βi 1





















s1,1 0 . . . 0 0

0 s2,2
. . .

...
:
0

...
. . .

. . . 0 ai

0 . . . 0 si,i bi

0 .. 0 ai bi ci





















1 0 . . . 0 0

0 1
. . .

...
:
0

...
. . .

. . . 0 αi

0 . . . 0 1 βi

0 0 1





















s1,1 0 . . . 0 0

0 s2,2
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 si,i 0

0 0 si+1,i+1











where αi = −ai/si−1,i−1 and βi = −bi/si,i. From this it finally follows that the last column of the
correct X(1 : i + 1, 1 : i + 1) is a linear combination of the last three columns of X̂:

X̂(1 : i + 1, i− 1 : i + 1)





αi

βi

1



 .

In terms of polynomials this can also be written as:

d(i)(z) = (z + βi)d(i−1)(z) + αid(i−2)(z),

where we have used d̂(i+1)(z) = zd(i)(z). This is the well known three term recurrence of the
polynomials in the Padé table, which is also connected with orthogonal polynomials over the real
line [50].

Example 2.5.

Consider again Example 2.4 and the partial decomposition




1
−2 1

3 −3 1









1 2 3
2 3 3
3 3 1









1 −2 3
1 −3

1



 =





1
−1

1





then the larger system with shifted column/row yields:







1
−2 1

3 −3 1
0 3 −3 1













1 2 3 3
2 3 3 1
3 3 1 −4
3 1 −4 −8













1 −2 3 0
1 −3 3

1 −3
1







=







1
−1 1

1 −1
1 −1 4







42

From this we find α3 = β3 = 1 and

d(3)(z) = (z + 1)d(2)(z) + d(1)(z) = z3 − 2z2 + z + 1

�

The complexity of the i-th update of the algorithm is 4i: two inner products for computing bi

and ci (ai = si−1,i−1 is already known), and two scalar-vector multiplies in (2.27). Summing this
for i = 1, . . . , n then yields 2n2 for the total complexity of the algorithm. We have only described
here the “regular form” of the Padé algorithm since we assumed non-singularity of all minors as
needed by the algorithm. There exist many modifications of the above algorithm which are still
O(n2) and hence exploit the Hankel structure in the case that singular minors are encountered.
Since it is not our purpose here to enter in such details, we refer the reader to [14, 113, 24] for this.

Numerical stability. This very performant algorithm has a major drawback: it has been proven
to be numerically unstable [24]. This is in a sense not surprising since the algorithm amounts
to Gaussian elimination without pivoting. Example 1.3 we gave in Chapter1 to illustrate the
numerical instability of Gaussian elimination without pivoting, is in fact a 2 × 2 Hankel matrix
with the Padé algorithm applied to it. Applying pivoting to the Hankel matrix would destroy the
shift structure of the matrix which then results again in a O(n3) algorithm. We have thus sacrificed
stability for a lower complexity. Yet, recent papers [17], [37] have shown that one can cleverly mix
both approaches to yield an algorithm that is O(n2) “in most cases” and has yet good numerical
properties. Numerical stability in a strict sense has not been proved yet, but the modified algorithm
tries to avoid small pivots, which is the main reason of instability.

Connection to state-space realizations. Since the Padé algorithm produces a LU factorization of
the Hankel matrixH it will eventually detect its rank. If the order of the underlying system is n then
the (n+1)× (n+1) Hankel matrix must be singular and this will result in a zero diagonal element
sn+1,n+1. We thus have a rank factorization of Hn+1,n+1 and we may wonder what realization
corresponds to this. This is explained in the following theorem.

Theorem 2.5. Let the Hankel matrix Hn+1,n+1 corresponding to an n-th order system have
non-singular leading principal minors of order 1 to n, then Hn+1,n+1 has a rank factorization

Hn+1,n+1 = Ln+1,n · Un,n+1 =











l1,1 0 . . . 0

l2,1 l2,2
. . .

...
...

. . . 0
ln,1 ln,n

ln+1,1 ln+1,n











·









u1,1 u1,2 . . . u1,n u1,n+1

0 u2,2
...

...
...

. . .
. . .

...
...

0 . . . 0 un,n un,n+1









and the corresponding realization {A, b, c, d} is such that

[
d c

b A

]

=












h0 x1 0 . . . 0

y1 z1 x2
. . .

...

0 y2 z2
. . . 0

...
. . .

. . .
. . . xn

0 . . . 0 yn zn












is tridiagonal.

43

Proof. The result is trivial for d = h0 as well as for b and c, since these are the first column of
U and first row of L, respectively (i.e., x1 = l1,1 and z1 = u1,1). For the matrix A, it follows from
Algorithm 2.2 that A satisfies both

L(1 : n, 1 : n)−1L(2 : n + 1, 1 : n) = A = U(1 : n, 2 : n + 1)U(1 : n, 1 : n)−1.

From the left equality it follows that A must be lower Hessenberg and from the right equality it
follows that A must be upper Hessenberg. Together this shows that A must be tridiagonal. �

Corollary 2.2. If in the above LU factorization L is chosen to have 1’s on diagonal then all
xi = 1; if U is chosen to have 1’s on diagonal then all yi = 1. �

This corollary shows that there are only 2n + 1 “parameters” in {A, b, c, d}, just as in a poly-
nomial pair n(z)/d(z). In fact one shows that once e.g., xi = 1, the other parameters zi and yi are
closely related to the recurrence parameters αi and βi for the polynomials d(i)(z) of (27). The dual
result holds of course when normalizing yi = 1.

Comparison of SISO identification methods via the impulse response. In the previous 4 sections
we saw several techniques for identifying a SISO system from its impulse response (also called the
Markov parameters of the system) {hi, i = 0, 1, 2, . . .}. Ordered by increasing complexity they
are:

1. the LU decomposition via the Padé algorithm. This requires only 2n2 flops but is an unstable
algorithm. Stabilized algorithms with a similar complexity are being proposed these days.

2. the PLU decomposition with pivoting P . A numerically stable and a reasonable complexity:
2/3n3.

3. the QR decomposition on a n1 × n + 1 matrix. Numerically stable and a complexity of
2n2

1(n1 − n/3). This algorithm usually has better sensitivity properties than LU and PLU
because more data are involved in the identification.

4. the SV D on a n1 × n2 matrix (n1 6 n2). The algorithm is numerically stable and has
complexity 2n1n

2
2 + 10n3

1 when using a preliminary QR decomposition for the SV D. This
has the most reliable order estimation of the system and has the additional advantage to give
balanced realizations.

2.5 Multi-input multi-output impulse response

Here we look at how to extend the SISO algorithms to systems with several inputs and outputs,
i.e., we assume a system of the form

System

x(.)

y1(.)←−
y2(.)←−
...

yp(.)←−

←− u1(.)

←− u2(.)
...

←− um(.)

44

where the input vector u(.) is thus m-dimensional and the output vector is p-dimensional. For this
system one could of course always identify the SISO systems hi,j(z)

.
= ni,j(z)/di,j(z) corresponding

to the impulse response of input uj(.) to output yi(.). The global transfer function between the
input vector u(.) and output vector y(.) would then be the transfer matrix

Hm,p(z)
.
=







n1,1(z)
d1,1(z) . . .

n1,m(z)
d1,m(z)

...
...

np,1(z)
dp,1(z) . . .

np,m(z)
dp,m(z)







(2.25)

But this approach has a major disadvantage. If the multivariable system has a transfer function
Hp,m(z) of degree n, then it is very likely that each scalar transfer function hi,j(z) has degree n as
well. This is e.g., the case when all the dynamics of the system are present in each input/output
pair. As a consequence of this, all polynomials di,j(z), if normalized to be monic, ought to be equal.
But under rounding errors or any other noise source, we can hardly expect this to happen. The
identified transfer function Hp,m(z) would then have a resulting degree that is likely to be mnp,
i.e., mp times too large. Of course part of this would be detected by model reduction techniques
applied to this composite model, but this would be an unnecessary detour.

Since the correct approach is to identify directly the multivariable system H(z), we first have
to define what is meant by the impulse response of such a system. Denote the ith unit vector by ei

and consider the response of the input sequence u(j)(.) = {ej , 0, 0, 0, . . .}, i.e., all components of
u(j)(.) are zero except the j-th one which is an impulse. Denote the corresponding output vector

sequence by y(j)(.) = {h(j)
0 , h

(j)
1 , h

(j)
2 , . . .}. Now assemble the p-vectors h

(j)
0 into the matrix H0,

the p-vectors h
(j)
1 into the matrix H1, etc. Then we call the matrix sequence {H0, H1, H2, . . .} the

impulse response of the system H(z). One checks that the (i, j) elements of this matrix sequence
is in fact the impulse response of the j-th component of the vector u(.) to the i-th component of
the vector y(.), provided all other components of the input vector u(.) are kept zero. As a result of
this we have again the relation that the matrices Hi are the coefficients of the Taylor expansion of
H(z) around z−1 :

H(z) = H0 + H1z
−1 + H2z

−2 + H3z
−3 + . . .

If one wants now to identify the system H(z) from this expansion then one can try to extend
the SISO techniques to this case. Early attempts [27] to extend the polynomial identification
techniques lead to techniques where several nested rank checks have to be performed in order to
reconstruct particular columns of polynomial matrix pairs D(z) and N(z). These methods will not
be described here because of the simple reason that their numerical reliability is very poor. Not
only is this approach unstable, but the algorithm is also very complex.

A much more reliable approach is that of identifying directly a state space model

xk+1 = Axk + Buk (2.26)

yk = Cxk + Duk,

where the constant matrices A, B, C and D are of dimensions n × n, n × p, m × n, and m × p,
respectively. Using again the Neumann expansion of (zI − A)−1 we obtain very similar identities
to the SISO case:

H(z) = D + CBz−1 + CABz−2 + CA2Bz−3 + CA3Bz−4 + . . .

= H0 + H1z
−1 + H2z

−2 + H3z
−3 + H4z

−4 + . . .

45

So we have the identities:

H0 = D; Hi = CAi−1B, i > 1, (2.27)

which can be arranged in an infinite Hankel matrix:

H .
=










H1 H1 H2 H3 . . .
H2 H2 H3 ..

.
. . .

H2 H3 ..
.

..
.

. . .
H3 ..

.
..

.
..

.

...
...

...










=










C
CA
CA2

CA3

...










·
[

B AB A2B A3B . . .
]
. (2.28)

As before (see Algorithm 2.2) a rank factorization OiCj of a finite block Hankel matrix Hi,j , where
both i and j are assumed large enough, will yield an observability and controllability matrix from
which the matrices A, B and C can be recovered. The number of blocks i and j ought to be chosen
such that in

Hi,j = OiCj =








C
CA
...

CAi−1








.
[

B AB . . . Aj−1B
]

both Oi and Cj have full rank n, assuming of course the underlying model is minimal. It is well
known from state space theory that the minimum for i is the largest observability index and the
minimum for j is the largest controllability index, and both of these are bounded by n [65]. This
of course does not prevent to take larger values of i or j, since then the rank of these matrices does
not change anymore. From this rank factorization one then defines the submatrices

O−
.
=








C
CA
...

CAi−2








, O+
.
=








CA
CA2

...
CAi−1








,

C− .
=

[
B AB . . . Aj−2B

]
, C+ .

=
[

AB A2B . . . Aj−1B
]
.

Since i, j are large enough, these matrices all have full rank n and we can find A from either of the
following equations:

O−A = O+, AC− = C+

Both these systems are compatible and hence solvable, yielding

A = O+
−O+ = C+C+

− .

The matrices B and C are found again as the first block column and block row of the matrices Cj ,
respectively Oi.

46

One checks readily that when using the singular value decomposition for this rank factorization,
one obtains again Gramians Go(0, i−1) and Gc(0, j−1) over the finite intervals (0, i−1) and (0, j−1):

OH
i,nOi,n =

i−1∑

i=0

AiHCHC Ai .
= Go(0, i− 1), (2.29)

Cj,nCH
j,n =

j−1
∑

i=0

AiB BHAiH .
= Gc(0, j − 1), (2.30)

that are equal and diagonal, since

OH
j,nOi,n = Σn = Cj,nCH

j,n. (2.31)

So, balanced realizations in the MIMO case are realizations for which the (finite horizon) Gramians
are equal and diagonal.

In the SISO case we had nice additional properties which only hold to a certain extent in the
MIMO case. We still have that the infinite horizon Gramians are also the solutions to Lyapunov
equations:

AHGoA + CHC = Go, AGcA
H + B BH = Gc

but this does not imply any sign symmetry anymore for the realization. Yet, it is still true that
these realizations have good numerical properties in terms of eigenvalue sensitivity (for computing
poles and zeros) and in terms of round-off noise propagation (for simulation purposes). Roughly
speaking, these realization have very similar numerical advantages in the MIMO case as what we
showed for the SISO case.

The sensitivity of the balanced realization algorithm depends directly on the sensitivity of the
singular value decomposition. The matrices B and C are just submatrices of this rank factorization
and the dependency on the factorization is thus obvious. For the matrix A one essentially solves

O−A = O+

in each identification method, but the coordinate system used for balanced realizations typically
gives a low norm solution ‖A‖, which then also results in a lower perturbation ‖δA‖ for the same
sensitivity. One notices this typically in the computation of the eigenvalues of A, which are the
poles of the system and are thus invariant for each identification. The best precision of these poles
are usually obtained from the balanced realization.

2.6 Input-Output Pairs

In many circumstances we do not have access to the impulse response of a system. A typical
examples is a system which is operational and for which it is too costly to affect the input (let
alone apply an impulse as input) in order to measure the corresponding output. In some other
examples it is physically impossible to affect the input and one can only observe (or measure)
inputs and outputs.

47

So the problem of determining a linear time invariant finite dimensional system

H(z) = D−1(z)N(z) (2.32)

or

H(z) = C(zI −A)−1B + D (2.33)

from input output measurements is certainly an important one. A first problem that immediately
occurs here is that some input output pairs generated by an irreducible (or minimal) system (2.32)
or (2.33) of a certain order, could as well have been generated by a lower order one. The input-
output pair then essentially behaves as that of a lower order system. So we need to assume that
this does not happen. The standard assumption made in this context is that of persistence of
excitation, which we define loosely as follows.

Definition 2.1. An input-output pair {ui}, {yi} is said to be persistently exciting with respect
to the underlying model (2.32)-(2.33) if the same pair can not be generated by a lower order
model. �

Depending on the context in which persistence of excitation is being used, different definitions
occur, but they amount to the same idea. The dynamical interpretation of this is that when a pair
{ui} {yi} is not persistently exciting, then not all the characteristic modes of the system are being
“excited” or triggered. We will see below that impulse responses are always persistently exciting,
which is why this concept was not introduced earlier.

We start by considering the single input single output case:

d(z)y(z) = n(z)u(z) (2.34)

or:

(dnzn + · · ·+ d1z + d0)yi = (nmzm + · · ·+ n1z + n0)ui (2.35)

where we assume the input to start at some time t = 0. We can rewrite this into a semi-infinite
matrix vector equation
















0 · · · 0 y0
... ..

.
..

.
y1

0 ..
.

..
.

y2

y0 ..
.

..
. ...

y1 ..
.

..
.

y2 ..
.

...
























d0
...
...

dn
























0 · · · 0 u0
... ..

.
..

.
u1

0 ..
.

..
.

u2

u0 ..
.

..
. ...

u1 ..
.

..
.

u2 ..
.

...
























n0
...
...

nn









(2.36)

where we assumed deg n(z) = m 6 deg d(z) = n and hence dn 6= 0. Normalizing again to dn = 1,

48

we have a system
















0 · · · 0 u0
... ..

.
..

.
u1

0 ..
.

..
.

u2

u0 ..
.

..
. ...

u1 ..
.

..
.

u2 ..
.

...

0 · · · · · · 0
... ..

.
..

.
y0

0 ..
.

..
.

y1

y0 ..
.

..
. ...

y1 ..
.

..
.

y2 ..
.

...
















︸ ︷︷ ︸

n+1
︸ ︷︷ ︸

n













n0
...

nn

−d0
...

−dn−1













=













y0

y1

y2
...

...













(2.37)

which we can solve for the other coefficients of n(z) and d(z) provided the matrix on the left hand
side has full column rank. We prove the following theorem in this context.

Theorem 2.6. Let n be the order of the system generating the causal input output pair {ui}
{yi}. If the pair is persistently exciting then

[U:,n+1 | Y:,n+1] =
















0 · · · 0 u0
... ..

.
..

.
u1

0 ..
.

..
.

u2

u0 ..
.

..
. ...

u1 ..
.

..
.

u2 ..
.

...

0 · · · 0 y0
... ..

.
..

.
y1

0 ..
.

..
.

y2

y0 ..
.

..
. ...

y1 ..
.

..
.

y2 ..
.

...
















︸ ︷︷ ︸

n+1
︸ ︷︷ ︸

n+1

(2.38)

is singular and

[U:,n+1 | Y:,n] =
















0 · · · 0 u0
... ..

.
..

.
u1

0 ..
.

..
.

u2

u0 ..
.

..
. ...

u1 ..
.

..
.

u2 ..
.

...

0 · · · · · · 0
... ..

.
..

.
y0

0 ..
.

..
.

y1

y0 ..
.

..
. ...

y1 ..
.

..
.

y2 ..
.

...
















︸ ︷︷ ︸

n+1
︸ ︷︷ ︸

n

(2.39)

has full column rank.

Proof. Because of the assumption made, (2.36) holds and hence (2.38) is singular since the vector
[n0, . . . , nn,−d0, . . . ,−dn]T is in its kernel. The second part is proved by contradiction. Assume

49

[U:n+1 | Y:,n] would not have full column rank. Then there exists a vector [n0, . . . , nn,−d0, . . . ,−dn−1]
T

in its kernel. But the first row of this equation then reduces to

u0nn = 0. (2.40)

Causality implies that the sequence yi is zero as long as ui is zero, so we can assume without
loss of generality that u0 6= 0. But then (2.40) implies nn = 0. This now implies we also have
a solution [n0, . . . , nn−1,−d0, . . . ,−dn−1]

T for a system (2.35) of order n − 1 instead of n, which
contradicts the assumption of persistence of excitation. �

Remark

1. An impulse is always persistently exciting. This follows from (2.36) which becomes

















0 · · · 0 1
... ..

.
..

.
0

0 ..
.

..
. ...

1 0 . . . 0

0 0
...

...

0 · · · 0 h0
... ..

.
..

. ...

0 ..
.

..
. ...

h0 hn

h1 h2 . . . hn+1

h2
...

...




























u0
...

nn

−d0
...
−dn












= 0 (2.41)

which is the standard equation we had in (2.6) and for which no assumption of persistence of
excitation was needed.

2. The assumption of minimality of a system is different from persistence of excitation since
that is a property of a system, not of a signal pair. These should not be confused with each other.

Exercise 2.5.

Consider the pair {ui} = {1, 0, 0, 0, . . .} and {yi} = {1, 0,−1, 0, 0, . . .}, which is assumed to be a
second order signal pair. Then














0 0 1
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
...

...
...

0 0 1
0 1 0
1 0 −1
0 −1 0
−1 0 0

0 0 0
...

...
...
























−1
0
1

0
0
−1











= 0

and from this we find n(z)/d(z) = (z2 − 1)/z2 = 1 − z−2. Clearly the matrix containing the first
five columns has full column rank. �

50

The columns of the above matrix pair can be rearranged into a block Hankel matrix, i.e. a
Hankel matrix with blocks hn+i+1 = [ui yi] as elements :

H =


















[0, 0] · · · [0, 0] [u0y0]
... ..

.
..

.
[u1y1]

[0, 0] ..
.

..
.

[u2y2]
[0, 0] ..

.
..

.
[u2y2]

[u0y0] ..
.

..
. ...

[u1y1] ..
.

..
.

[u2y2] ..
.

...


















=
















h1 h2 · · · hn+1

h2 ..
.

hn+2
... ..

.
..

.
hn+3

hn+1 ..
.

..
. ...

hn+2 ..
.

..
.

hn+3 ..
.

...
















(2.42)

If the maximum rank in this matrix is 2n+1, then a 2(n+1)×2(n+2) matrix ought to be sufficient
to detect the order of the system. Using MIMO Hankel matrix ideas, one shows that the system
can be identified from a minimum number of 2n + 1 rows of the above Hankel matrix. This proves
again that the minimum number of equations needed to construct n(z) and d(z) is 2n + 1:

[U2n+1,n+1 | Y2n+1,n]












n1
...

nn

−d0
...

−dn−1












=












y0
...
...
...

y2n












. (2.43)

This always yields a solvable system, if n is the correct order of the underlying system.

Exercise 2.6.

Check that 2n + 1 equations are sufficient for the case of the impulse response, by using results of
earlier sections. �

Remarks

1. The LU decomposition of (2.43) satisfies for identifying the system n(z), d(z).

2. If more data are available, the larger least squares problem involving the matrix [UN,n+1 |
YN,n] ought to be preferred for reasons of lower sensitivity.

3. For a more reliable order estimation one should use the singular value decomposition rather
than the QR or LU decomposition. On the system

MN,2n+2
.
= [UN,n+1 | YN,n+1] (2.44)

the following interpretation can be given to this decomposition. Although the order indicates
that this system only has rank 2n + 1 and hence ought to have one singular value σ2n+2 = 0,
this cannot be expected in practice due to noise on the data as well as roundoff noise in

51

the computations. The SVD of this matrix can now be interpreted in terms of perturbed
equations

d(z)y(z) = n(z)u(z) + e(z) (2.45)

or

[UN,n+1 | YN,n+1]












n0
...

nn

−d0
...
−dn












=












−e0
...
...
...
−eN












. (2.46)

Indeed, let

MN,2n+2 = UΣV T (2.47)

be the SVD of M , where U is N ×N , V is (2n + 2) × (2n + 2) and Σ is N × (2n + 2) with
the singular values σi on diagonal. Let σ2n+2 be the smallest of these singular values, then it
follows from the properties of this decomposition that

min
‖v‖=1

‖Mv‖ = σ2n+2 (2.48)

and equality is met for

Mv2n+2 = σ2n+2 · u2n+2 (2.49)

where u2n+2 and v2n+2 are the singular vectors corresponding to σ2n+2 in this decomposition.
This implies that if one chooses

[n0, . . . , nn,−d0, . . . ,−dn]T = v2n+2 (2.50)

then this is the choice of polynomials n(z) and d(z) with norm ‖n‖2 + ‖d‖2 = 1, which
minimizes the error

‖e‖2 =
N∑

i=0

e2
i (2.51)

among all such polynomials. This can be interpreted as minimizing the variance of the residual
error (or noise process) over all possible models of a given order. The least squares solution
has the interpretation that it orthogonalizes the error e to previous “data vectors”.

The SVD can not be used here anymore to construct a balanced realization from I/O pairs.
A construction using more involved concepts is given later.

4. The equations to be solved still display some structure (block Hankel) which could be exploited
to yield a fast algorithm. Extensions of the Padé algorithm have been proposed to such
matrices but they are very complex and unstable like the basic form of the Padé algorithm.
Stabilized version have not been proposed yet.

52

5. The complexities for identifying an n-th order system (i.e., the polynomials n(z) and d(z) of
order n) are thus

• 16/3n3 for the LU decomposition on a minimal matrix M2n+1,2n+1

• 8Nn2 for the QR decomposition on MN,2n+1 where N � 2n + 1

• 8Nn2 + 91
3(2n)3 on the same matrix using the economic SVD approach (first a QR

decomposition followed by an SVD on R).

2.7 Recursive least squares

When input output data {ui}, {yi} are being collected in real time, (i.e., newer data are available
at later time instants) we would like to have the best possible estimate of the system at each
time instant. If we use least squares approximations then we want to solve for a family of QR
decompositions. If we use minimum variance approximations we what to solve for a family of SVD’s.
In both cases, Givens transformation play a crucial role in the updating of such decompositions.

We explain first the QR updating problem. Consider the (weighted) least squares problem

AN =








w0a
T
0

w1a
T
1

...
wnaT

N








(2.52)

where wi = λN−i and |λ| < 1 is an exponential weighting factor (also called forgetting factor), and
where aT

i is a column vector of the matrix [UN,n+1 | YN,n+1].

We assume we have a QR decomposition of AN :

AN = QNRN = QN








R−

0T

...
0T








(2.53)

where R− is an upper triangular matrix, and we want to find the corresponding decomposition of
the updated matrix

AN+1 = QN+1RN+1 = QN+1








R+

0T

...
0T








. (2.54)

We have the following relation between AN+1 and AN :

AN+1
.
=

[

λAN

aT
N+1

]

=

[
QN

1

]




λR−

0

aT
N+1



 (2.55)

53

and it follows from this that solving for the QR decomposition of AN+1 involves only the updating
decomposition :

[

λR−

aT
N+1

]

= QupRup. (2.56)

From (2.53)-(2.54) one derives indeed that

Rup =

[
R+

0T

]

(2.57)

and QN+1 is a mere block product of QN and Qup
.
=

[
Q11 q12

qT
21 q22

]

, padded with identities :

QN+1 =

[
QN

1

]

·





Q11 q12

I

qT
21 q22



 . (2.58)

Since orthogonal transformations can be discarded in least squares problems – once the matrix and
the right hand side have been updated with it – we can leave details about storing Q behind here,
and concentrating on updating R−. Solving (2.54) can be done via a sequence of Givens relations
and this involves n Givens rotations if the vector aT

N+1 has n elements in it. The order in which
the elements are eliminated is indicated in the matrix below by the index i of each ⊗i (illustrated
for n = 5):











× × × × ×
× × × ×

× × ×
× ×

×
⊗1 ⊗2 ⊗3 ⊗4 ⊗5











. (2.59)

Each element ⊗i is eliminated by a Givens rotation between rows i and n + 1 of the matrix. The
flop count for these operations is

4n + 4(n− 1) + · · · 4(1) = 4
n∑

i=1

i ≈ 2n2

When applying this to a N ×n matrix we have a total of 2Nn2. For the N × 2n matrix considered
in the previous section this would be 2N(2n)2 = 8Nn2. The Householder method for the same
matrix is 8Nn2 but it constructs both Q and R. If only R is requested, the Householder method
reduces to 4Nn2, i.e., half of the work of the recursive least squares decomposition only. And the
recursive approach meanwhile also constructed the QR decompositions of all intermediate sizes !

2.8 MIMO identification via I/O pairs

We now assume the system to be identified has m inputs and p outputs, so uk ∈ IRm and yk ∈ IRp.

54

System

x(.)

y1(.)←−
y2(.)←−
...

yp(.)←−

←− u1(.)

←− u2(.)
...

←− um(.)

We want to identify a system of order n given in state space coordinates:
{

xk+1 = Axk + Buk

yk = Cxk + Duk
(2.60)

explaining the I/O measurements {ui} {yi} for i = 1, . . . , N , where N of course has to be large
enough to be able to reconstruct the model {Ann, Bnm, CpnDpm}. As before we have to assume
persistence of excitation of the I/O signals. The componentwise identification of the polynomials
nij(z)/dij(z) of the transfer function between input j and output i leads to an overestimate of
the order when assembling these scalar systems into the p × m transfer function. So identifying
scalar models nij(z)/dij(z) or {A, bj , ci, dij} has to be abandoned in favor of a direct identification
of {A, B, C, D}.

We start by noting that the problem would be much simpler if the sequence of states xk would
be known as well. From

[
xk+1

yk

]

=

[
A B

C D

] [
xk

uk

]

(2.61)

we can indeed write the concatenated matrix
[

x2 x3 · · · xN

y1 y2 · · · yN−1

]

=

[
A B
C D

] [
x1 x2 · · · xN−1

u1 u2 · · · uN−1

]

. (2.62)

Under the assumption of persistence of excitation one shows that the right “data matrix” in (2.62)
has full column rank n + m and has thus a right inverse. Equivalently, (2.62) can be solved in a
least squares sense for the evolution matrix

E =

[
A B
C D

]

. (2.63)

So the problem is solved as soon as the states xi are determined. But those depend on the choice
of coordinates chosen for the state space model. Replace indeed xi by x̂i = T−1xi, then (2.62)
becomes the related problems

[
x̂2 x̂3 · · · x̂N

y1 y2 · · · yN−1

]

=

[
Â B̂

Ĉ D

] [
x̂1 x̂2 · · · x̂N−1

u1 u2 · · · uN−1

]

. (2.64)

or
[

T−1x2 T−1x3 · · · x̂N

y1 y2 · · · yN−1

]

=

[
T−1AT T−1B

CT D

] [
T−1x1 T−1x2 · · · T−1xN−1

u1 u2 · · · uN−1

]

.

(2.65)

55

So each sequence of states

X1,N = [x1 x2 . . . xN] (2.66)

can only be expected to be known up to an invertible row transformation corresponding to the
particular coordinate system of the reconstructed model {A, B, C, D}. Also the rank condition
for (2.62) to be solvable implies that (2.63) must be full rank n since this is a submatrix of the
righthand side matrix in (2.62). We now try to derive equations with the vectors {ui} {yi} and
{xi} from which we might reconstruct (2.63). By combining

{
xk+2 = Axk+1 + Buk+1

yk+2 = Axk+1 + Buk+1

with (2.60) at an earlier instant and eliminating xk+1 from this, we find:

xk+2 = A2xk + [AB B]

[
uk

uk+1

]

[
yk

yk+1

]

=

[
C

CA

]

xr +

[
D 0

CD D

] [
uk

uk+1

]

.

Repeating the same process i times we find the compound equations

xk+i = Aixk + BiUk,i

Yk,i = Cixk + DiUk,i
(2.67)

where

[
Ai Bi

Ci Di

]

=










Ai Ai−1B . . . AB B

C D
CA CD D
...

...
. . .

CAi−1 CAi−2B D










(2.68)

and

Uk,i
.
=






uk
...

uk+i−1




 ; Yk,i

.
=






yk
...

yk+i−1




 . (2.69)

Now stacking several of these vectors Uk,i and Yk,i next to each other yields

Yk,i,j
.
=






yk yk+1 · · · yk+j−1
...

...
...

yk+i−1 yk+i · · · yk+i+j−2




 (2.70)

Uk,i,j
.
=






uk uk+1 · · · yk+j−1
...

...
...

uk+i−1 uk+i · · · yk+i+j−2




 (2.71)

56

which are both block Hankel matrices. Together with

Xk,j
.
= [xk xk+1 . . . xk+j−1] (2.72)

we have from (2.64), (2.65), and (2.66) that

Yk,i,j = CiXk,j + DiUk,i,j (2.73)

which says that the rows of Yk,i,j are linear combinations of the row of Xk,j and Uk,i,j . This then
leads to the following theorem.

Theorem 2.7. Let

Hk,i,j =

[
Yk,i,j

Uk,i,j

]

(2.74)

be a block Hankel matrix of input output pairs. Provided i > n, j > (m + p)i and {ui} {yi} is a
persistently exciting pair, then

rank(Hk,i,j) = rank(Uk,i,j) + rank(Xk,j) = mi + n (2.75)

Proof. If i > n then Ci is full column rank n. If j > (m + p)i then Yk,i,j , Xk,j and Uk,i,j are all
matrices with more columns than rows. From (2.73)-(2.74) we find then that

rank(Hk,i,j) 6 rank(Uk,i,j) + rank(Xk,j)

since the rows of Yk,i,j are linear combinations of those of Uk,i,j and Xk,j . If persistence of excitation
is present then the rows of Uk,i,j and Xk,j are linearly independent, as well as the way they enter
via the matrix Yk,i,j in (2.73) and then we have

rank(Hk,i,j) = rank(Uk,i,j) + rank(Xk,j)

which completes the proof. �

We now use this result to determine a basis for the rows of Xk+i,j . Consider two equations as
in (2.73) shifted over i time steps. So in addition to (2.73) we have

Yk+i,i,j = CiXk+i,j + DiUk+i,i,j . (2.76)

Hence

rank(Hk+i,i,j) = rank(Uk+i,i,j) + rank(Xk+i,j) = mi + n. (2.77)

This leads to the following theorem.
Theorem 2.8. Define

Xk+i,j
.
= [xk+i xk+i+1 . . . xk+i+j−1] , (2.78)

then

Im
[
XT

k+i,j

]
= Im

[
HT

k,i,j

]
∩ Im

[
HT

k+i,i,j

]
(2.79)

57

provided the underlying I/O pair is persistently exciting and i > n, j > (m + p)i.

Proof. The notation Im
[
MT

]
stands for the row space of a matrix M . From (2.74)-(2.77) we find

rank(Hk,i,j) = rank(Hk+i,i,j) = mi + n.

But theorem 2.7 applies also to the larger Hankel matrix Hk,2i,j :

rank(Hk,2i,j) = 2mi + n.

And since Hk,2i,j is just a row permutation P of the rows of Hk,i,j and Hk+i,i,j :

Hk,2i,j = P

[
Hk,i,j

Hk+i,i,j

]

,

it follows that

dim(Im
[
HT

k,i,j

]
∩ Im

[
HT

k+i,i,j

]
) = n. (2.80)

This follows from the general theorem that

dim(Im [M1 |M2]) = dim(Im [M1]) + dim(Im [M2])− dim(Im [M1] ∩ Im [M2]).

So the dimension of the intersection (2.80) has the assumed dimension of (2.78). In order to prove
the theorem, we thus only have to prove that

Im
[
XT

k+i,j

]
⊂ Im

[
HT

k,i,j

]
∩ Im

[
HT

k+i,i,j

]

or in other words, that the row space of Xk+i,j lies in both row spaces of Hk,i,j and Hk+i,i,j . Now
(2.76) and the fact that Ci has full column rank, indicates that

Im
[
XT

k+i,j

]
⊂ Im

[
HT

k,i,j

]
.

Also from an appropriate concatenation of (2.67) we find

Im
[
XT

k+i,j

]
⊂ Im

[
HT

k+i,i,j

]

because of (2.72). This completes the proof of the theorem. �

In practice, due to perturbations on the data, the row spaces typically do not intersect. An
approximate intersection, using the singular value decomposition or some rank revealing QR de-
composition has thus to be constructed. A possible implementation of this idea is the following
decomposition :

[
Hk,i,j

Hk+i,i,j

]

=

[
I 0

0 Q

]




A11 A12 01

A21 03 02

× × A33



 V T (2.81)

where :

• [A11A12] has full column rank equal to the rank of Hk,i,j (or mi + n under the assumption of
persistence of excitation)

58

• A33 has full row rank which must be smaller than mi + n if an intersection is to be detected

• A21 has full row rank equal to the dimension of the intersection, hence n.

The order in which this decomposition is constructed is as follows. First the transformation V T is
constructed to compress the columns of Hk,i,j , yielding the trailing zero matrix 01. Then the rows
of the trailing bottom matrix are compressed with the transformation Q, yielding 02 and a full
row rank A33. Then V T is updated to yield the full column rank matrix A21 and the trailing zero
matrix 03. Notice that all three steps involve arank factorization which essentially can be done with
QR decompositions. The center matrix in this decomposition has a form which trivially displays
the intersection of row spaces of the top and bottom parts, namely :

Im





AT
11

AT
12

0



 ∩ Im





AT
21 ×
0 ×
0 AT

33



 = Im





In

0
0



 .

Because of the transformation V T in (2.81) one derives that

Im(HT
k.i.j) ∩ Im(HT

k+i.i.j) = V · Im





In

0
0



 ,

i.e., the first n rows of V T are a representation of Xk+i,j . From this we can now construct
{A, B, C, D} as explained in (2.62)-(2.65). An alternative and slightly more expensive method
based on SVD’s is proposed in [97] and matlab codes are appended below.

function [H]=bhankel(M,Nr,Nc,nr,nc)

%

% The function [H]=bhankel(M,Nr,Nc,nr,nc) constructs

% a block hankel matrix H from a given matrix M.

% The matrix H will have Nr block rows and Nc block

% columns, each block being nr x nc. The blocks are

% given in M either columnwise (M has then nc columns)

% or rowwise (M has then nr rows). M must contain at

% least Nr+Nc-1 such blocks.

%

[mr,mc]=size(M);

if mr*mc < (Nc+Nr-1)*nr*nc, disp(’Data matrix too small’); return, end

H=zeros(Nr*nr,Nc*nc);

if mr==nr,

for i=1:Nr, H((i-1)*nr+1:i*nr,:)=M(:,(i-1)*nc+1:(i+Nc-1)*nc); end

else

if mc==nc,

for i=1:Nc, H(:,(i-1)*nc+1:i*nc)=M((i-1)*nr+1:(i+Nr-1)*nr,:); end

else

disp(’Wrong dimensions’);

end

end

59

function [a,b,c,d]=abcdio(H,m,p,tol)

%

% The function [a,b,c,d]=abcdio(H,m,n,tol) determines a system

% {a,b,c,d} which reproduces the io pairs u(k) y(k) corresponding

% to

% x(k+1) = a x(k) + b u(k)

% y(k) = c x(k) + d u(k)

%

% from a given hankel matrix H containing the io pairs

%

% H(i,j)=z(i-j+1) with z(k)’=[u(k)’ y(k)’]

%

% The input and output dimensions are m and p respectively.

% The tolerance tol is used to find an appropriate state

% dimension for x(.) in order to fit the data.

%

[mh,nh]=size(H);mh2=mh/2;i=mh2/(m+p);

if mh2 ~= i*(m+p), disp(’Incorrect dimensions’); return, end

[u,s,v]=svd(H(1:mh2,:));pp=rank(s,tol);n=pp-m*i;

if n < 1 , disp(’Zero or negative state dimension’); return, end

uu=H(mh2-m-p+1:mh2-p,2:nh);yy=H(mh2-p+1:mh2,2:nh);

H=H*v;h3=H(mh2+1:mh,pp+1:nh);[u3,s3,v3]=svd(h3);

H(mh2+1:mh,:)=u3’*H(mh2+1:mh,:);h2=H(mh2+m*i+1:mh,1:pp);

[u2,s2,v2]=svd(h2);H(:,1:pp)=H(:,1:pp)*v2;

x=v(:,1:pp)*v2(:,1:n);x=x’;

B=[x(:,2:nh);yy];A=[x(:,1:nh-1);uu];M=B/A;

a=M(1:n,1:n);b=M(1:n,n+1:n+m);

c=M(n+1:n+p,1:n);d=M(n+1:n+p,n+1:n+m);

2.9 Linear prediction

In this section we try to identify a system with transfer function H(z) from its response to an input
signal which is a stationary white noise process:

System

h(z)

yk ⇐= ⇐= uk

60

So the input signal uk is not known to us, but we know that

E{ukuk−i} = δikn

where we assume n = 1 for simplicity. Since we do not have access to {uk}, we can only try to find
a transfer function h(z) such that the output of the above system has a cross correlation

E{ykyk−i} = r(k, k − i)

which is compatible with this picture. If one restricts the system h(z) to be an “all pole” (also
called autoregressive) system,

h(z) =
zn

d(z)

where d(z) is a certain polynomial of degree n, then this problem turns out to have a simple
recursive solution. Write d(z)/zn as

d(z)

zn
=

1 + a1z
−1 + · · ·+ anz−n

c

then one tries to find a system of the type

h(z) =
c

a(z−1)
=

c

1 +
∑n

i−1 aiz−i

where a(·) is an nth order polynomial. The response to the system is thus:

yk = cuk −
n∑

i=1

aiyk−i. (2.82)

If the ai and c coefficients are fixed, then {yk} is again a stationary process. Therefore,

E{yk, yk−j} = rj = r−j

is only function of the distance i between the samples. Multiplying (2.82) by yk−j and taking
expected values yields

rj = −
n∑

i=1

airj−i, for 1 6 |j| 6∞

and

r0 = c−
n∑

i=1

airi

because we know that ur is uncorrelated with yk−j for j > 0. One can put this together in the
matrix equation






r0 . . . rn−1
...

. . .
...

rn−1 . . . r0













a1

a2
...

an







≡






r1
...

rn




 , (2.83)

61

which is a system of equations that has a lot of similarity with the Hankel equation for identifying
a system from its impulse response (see [82] for more details on this).

The above matrix Tn is called a Toeplitz matrix and is known to be positive definite because it
is the autocorrelation matrix of {yk}. From (2.83) one sees that the vector [1, a1, . . . , an]T /c is in
fact the first column of the inverse of Tn+1, since






r0 . . . rn
...

. . .
...

rn . . . r0













1
a1
...

an








=








c
0
...
0








. (2.84)

In order to solve (2.83) or (2.84) we thus need a factorization of Tn+1. Since it is positive definite
and symmetric there exist matrices L and X such that

Tn+1 = LSLT (2.85)

and

XT Tn+1X = S (2.86)

where L is unit lower triangular, XT = L−1 is unit lower triangular and S is diagonal. This follows
from Corollary 2.1 and the fact that any positive definite matrix has positive principal minors
(see [46]). Notice that this implies also that the diagonal elements of Sare positive.

There are two fast algorithms for computing the above decomposition. The Levinson algorithm
goes back to (1949) and computes X in 0(n2) operations. The Schur algorithm goes back to (18..)
and computes L in 0(n2) operations.

We derive here the simplest one of both algorithms but MATLAB codes for both are given in
Appendix. Just us for the Padé algorithm, the key idea in the Levinson algorithm is recursivity.
We assume that we have a solution to (2.84) for Ti+1, i.e.,






r0 . . . ri
...

. . .
...

ri . . . r0














1

a
(i)
1
...

a
(i)
i









=








ci

0
...
0








. (2.87)

Because Ti is symmetric with respect to both the diagonal and the anti-diagonal (this is called
centre symmetry) we can flip around this equation and get the identity






r0 . . . ri
...

. . .
...

ri . . . r0














a
(i)
i
...

a
(i)
1

1









=








0
...
0
ci








. (2.88)

For the solution of the system (2.87), (2.88) incremented by 1 we just try out the shifted vectors

62

first, and get,






r0 . . . ri+1
...

. . .
...

ri+1 . . . r0
















1 0

a
(i)
1 a

(i))
i

...
...

a
(i)
i a

(i))
1

0 1











=








ci γi

0 0
...

...
γi ci








. (2.89)

where γi = ri+1
∑i

j=1 a
(i)
j ri+1−j . Now define a little 2 × 2 transformation

[
1 ρi

ρi 1

]

, ρi = −γi/ci

and apply it to the right hand side of (2.89) to get








ci γi

0 0
...

...
γi ci








[
1 ρi

ρi 1

]

=








ci+1 0
0 0
...

...
0 ci+1








with ci+1 = ci(1− γ2
i /c2

i) = ci(1− ρ2
i). Since the right hand sides are now in the form required by

(2.87)-(2.88), the same must hold for the left hand side, i.e.,











a
(i+1)
i+1

a
(i+1)
i
...

a
(i+1)
1

1











=











1 0

a
(i)
1 a

(i)
i

...
...

a
(i)
i a

(i)
1

0 1











[
ρi

1

]

(2.90)

which is the requested update formula. The link with the decomposition (2.86) is that the last
column of X in (2.86) satisfies an equation like (2.88) as easily follows from taking the last column
of Tn+1X = X−T S. The recurrence (2.90) thus generates the column of X. The complexity of
the i-th step is 2i flops, i for computing γi and i for (2.90). Summed over n steps this yields an
operation count of

∑n
i=1 2i = n2 flops.

The coefficients ρi are called the reflection coefficients and have important physical meaning
in seismic data analysis and in speech processing. They are bounded by 1 but can get close to 1
when Tn is nearly singular. This follows from the determinant of Tn which equals the product of
the coefficients Li.

The numerical stability of the Levinson algorithm (in a weak sense) has been proved by Cy-
benko [22] and that of Schur algorithm by Bultheel [16]. Both results prove that the errors in the
computed decompositions are proportional to ε · κ(Tn), i.e., can only be big when the problem is
badly conditioned. This does not mean that the algorithms are backward stable, but it does say
that the forward errors are comparable in size to what a backward algorithm would imply. Since
bad conditioning is indicated by reflection coefficients being close to 1, it is easy to detect when
the problem is badly conditioned.

Instead of deriving the Schur algorithm we just give the algorithm without proof and refer
to [25] for an elegant matrix proof. We first assume Tn to be scaled such that r0 = 1, which is

63

obtained by dividing Tn by r0. This scaling is easily absorbed in the diagonal matrix S. Then we
start with the 2× (n + 1) array:

G =

[
1 r1 · · · rn

0 r1 · · · rn

]

·
=

[

1 l
(1)
2 · · · l

(1)
n+1

0 g
(1)
2 · · · g

(1)
n+1

]

.

Each step of the Schur algorithm consists of the following operations. First shift the bottom row
to the left to fill the zero element and also drop the last element of the top row:

G :=

[

1 l
(1)
2 · · · l

(1)
n

g
(1)
2 g

(1)
3 · · · g

(1)
n+1

]

.

Then perform a little 2× 2 transformation 1/(1− ρ2
1)

[
1 ρ1

ρ1 1

]

1

(1− ρ2
1)

[
1 ρ1

ρ1 1

]

G =

[

1 l
(2)
2 · · · l

(2)
n

0 g
(2)
2 · · · g

(2)
n

]

and then repeat the same procedure until the array G is empty (i.e., after n + 1 steps). One shows

that the rows
[

1, l
(i)
2 , . . . l

(i)
n−i+2

]

are in fact the rows of L in (2.90). The complexity can again

be shown to be n2 flops when approximately implementing the 2 × 2 transformation. It can be
shown as well that the coefficients ρi are again those of the Levinson algorithm, which indicates
the relation between both algorithms.

Vector processes can also be dealt with in the above problem. We then start from an input
sequence which is stationary white noise, meaning

E{uk uT
k−i} = δikIm.

The cross correlation of the output process is measured

E{yk yT
k−i} = Ri

and a predictor polynomial matrix

A(z−1) = I +
n∑

i=1

Aiz
−i

is found from the decomposition of the block Toeplitz matrix

Tn+1 =









R0 R1 . . . Rn

R1
. . .

. . .
...

...
. . .

. . . R1

Rn . . . R1 R0









.

Both the Levinson and the Schur algorithm have block versions which have complexity n2m3 instead
of n3m3 for a general method for decomposing Tn+1.

64

Some Remarks

The covariance ri or Ri is usually estimated from the data sequence {yk}. This implies switching
from expectation to time averages, which only holds if the process is ergodic. Moreover, time
averages are typically taken over a finite or windowed interval :

Ri =
∑

k

wkyky
T
k−i,

∑

k

wk = 1.

The above algorithms all extend to non definite Toeplitz matrices but breakdowns may then
occur and the algorithms are then unstable in general. The stability for the definite case is linked
to the fact that for positive definite matrices no pivoting is required in the LU decomposition.

The Levinson recurrence has also polynomial versions, which are:

a(i+1)(z) = za(i1)(z) + ρiâ(i)(z)

where â(i)(z) is the “reversed” polynomial of a(i)(z), i.e., the polynomial obtained by flipping the
order of the coefficients. One checks that this is nothing but equation (2.90) in polynomial language.

65

66

Chapter 3

STATE SPACE ANALYSIS

3.1 Orthogonal State-Space Transformations

In this chapter we present a number of more reliable methods for analysis and design of a control
systems using state space representations. A common factor is all these methods is the use of
orthogonal state-space transformations rather than just invertible ones. We illustrate the use of
orthogonal (or unitary state-space transformation in the complex case) via the concept of condensed
forms introduced in [140].

If one applies a general state space transformation T to a system

Transform to

x(t) = T · x̂(t)

y(t)⇐= ⇐= u(t)

with y ∈ IRm, x ∈ IRn and u ∈ IRp, then the new coordinates give the system

{
λx̂(t) = Âx̂(t) + B̂u(t)

y(t) = Ĉx̂(t) + Du(t)
(3.1)

with {Â, B̂, Ĉ, D} = {T−1AT, T−1B, CT, D}.
Since an invertible matrix T has essentially n2 degrees of freedom (only one inequality constraint

det. T 6= 0 is imposed) we can use these degrees of freedom to assign a number of zeros in the
transformed system {Â, B̂, Ĉ, D}. We illustrate this for m = p = 1 and n = 5 and for a system
with unrepeated poles. The transformation T can be chosen to obtain one of the following forms:

67

a) the Jordan canonical form

[
b̂j Âj

d ĉj

]

=











× × 0 0 0 0
× 0 × 0 0 0
× 0 0 × 0 0
× 0 0 0 × 0
× 0 0 0 0 ×
× 1 1 1 1 1











, (3.2)

b) the controller canonical form

[
b̂c Âc

d ĉc

]

=











1 × × × × ×
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

× × × × × ×











, (3.3)

c) the observer canonical form

[
b̂o Âo

d ĉo

]

=











× 0 0 0 0 ×
× 1 0 0 0 ×
× 0 1 0 0 ×
× 0 0 1 0 ×
× 0 0 0 1 ×
× 0 0 0 0 1











. (3.4)

Notice that each of these forms has n2 elements assigned either to 0 or to 1. If one now uses
orthogonal transforms instead, then the best one can hope for is to create n(n − 1)/2 zeros since
these are the degree of freedom in an orthogonal transformation U . The (symmetric) equation
UT U = In indeed imposes n(n + 1)/2 constraints on the elements of U . The equivalent orthogonal
forms to the three above ones would be:

a) the Schur form

[
b̂s Âs

d ĉs

]

=











× × × × × ×
× 0 × × × ×
× 0 0 × × ×
× 0 0 0 × ×
× 0 0 0 0 ×
× × × × × ×











, (3.5)

68

b) the controller Hessenberg form

[
b̂c Âc

d ĉc

]

=











× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
× × × × × ×











, (3.6)

c) the observer Hessenberg form

[
b̂o Âo

d ĉo

]

=











× × × × × ×
× × × × × ×
× 0 × × × ×
× 0 0 × × ×
× 0 0 0 × ×
× 0 0 0 0 ×











. (3.7)

Clearly each of these forms have a strong similarity to their non-orthogonal counterpart. The
“canonical forms” have been used a lot in textbooks because of their simplicity and their use in
several analysis and synthesis problems. The orthogonal forms, which we will call “condensed
forms”, will be shown to be just as useful for analysis and synthesis problems, and moreover they
have other major advantages from a numerical point of view.

Remark. Canonical forms arise whenever one defines a transformation group, i.e., a set of trans-
formation which is closed under inversion and multiplication. Clearly invertible transformations T
form a group, but so do the unitary transformations. One shows that in fact the condensed forms
are canonical forms under the transformation group of orthogonal transforms.

3.2 Condensed Forms

The choice of unitary or orthogonal state-space transformations is governed by the following items

i) the cost of these transformations in reasonable, namely O(n3) for each of them,

ii) they do not affect the sensitivity of most underlying problems, because condition numbers are
usually invariant under unitary transformations,

iii) they go along with bounded error propagation, or can be implemented in a numerically stable
manner,

iv) they put the state-space model in a condensed form which simplifies the subsequent control
problem.

In practice, n is considerably larger than m and p and most of the zeros will therefore be
obtained in Â. The four main condensed forms encountered in the literature are:

i) the state-Hessenberg form, where Â is upper Hessenberg,

69

ii) the state-Schur form, where Â is upper Schur,

iii) the controller-Hessenberg form, where the compound matrix [B̂ | Â] is upper trapezoidal,

iv) the observer-Hessenberg form, where the compound matrix
[

Â
Ĉ

]

is upper trapezoidal.

These forms are illustrated below for m = 2, n = 7, p = 3.

i) state Hessenberg form (complex arithmetic)

[

B̂h Âh

D Ĉh

]

=



















× × × × × × × × ×
× × × × × × × × ×
× × 0 × × × × × ×
× × 0 0 × × × × ×
× × 0 0 0 × × × ×
× × 0 0 0 0 × × ×
× × 0 0 0 0 0 × ×
× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×



















, (3.8)

ii) state Schur form (complex arithmetic)

[

B̂s Âs

D Ĉs

]

=



















× × × × × × × × ×
× × 0 × × × × × ×
× × 0 0 × × × × ×
× × 0 0 0 × × × ×
× × 0 0 0 0 × × ×
× × 0 0 0 0 0 × ×
× × 0 0 0 0 0 0 ×
× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×



















, (3.9)

iii) controller Hessenberg form

[

B̂c Âc

D Ĉc

]

=



















× × × × × × × × ×
0 × × × × × × × ×
0 0 × × × × × × ×
0 0 0 × × × × × ×
0 0 0 0 × × × × ×
0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × ×
× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×



















, (3.10)

70

iv) observer Hessenberg form

[

B̂o Âo

D Ĉo

]

=



















× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×
× × 0 × × × × × ×
× × 0 0 × × × × ×
× × 0 0 0 × × × ×
× × 0 0 0 0 × × ×
× × 0 0 0 0 0 × ×
× × 0 0 0 0 0 0 ×



















. (3.11)

The complexity of constructing the forms (i), (iii) and (iv) is n2(5/3n + m + p) for computing
the new state space system {Â, B̂, Ĉ, D} and an additional n3 for computing the transformation
U itself. The form (ii) also involves an iterative process (the eigenvalues of A are computed) and
this requires n2

(
5
2kn + m + p

)
for computing {Â, B̂, Ĉ, D} and an additional 5

2kn3 for computing
U as well. Here k is the average number of iteration steps for finding each eigenvalue up to machine
accuracy, and typically lies between 1 and 2.

We note here that there are many variants of the above forms. First of all, to every “upper”
form there is a corresponding “lower” form, which we did not show here. Then, the Schur form
shown above implies the use of complex arithmetic. Under real (orthogonal) transformations one
can not triangularize a matrix as shown under ii) if it has complex conjugate eigenvalues. Instead
one can always obtain a quasi-triangular form with 1 × 1 or 2 × 2 diagonal block corresponding
to the real and complex conjugate eigenvalues, respectively. Finally forms (i), (iii) and (iv) have
variants in which some of the pivot elements, (i.e., the elements directly above and to the right of
the triangle of zeros) are zero as well (see later).

The construction of these condensed forms is now illustrated for the controller Hessenberg form
and for m = 1. Essentially, we have to find here an orthogonal transform such that

UHb =








x
0
...
0








; UHAU =








x x . . . x
x x . . . x
...

...
. . .

...
x x . . . x








.

It is easy to see that one can find a first orthogonal transformation U1 such that

UH
1 b =








x1

0
...
0








; UH
1 AU1 =








x x . . . x

x x . . . x
...

...
. . .

...
x x . . . x








.

In fact U1 is just a Householder transformation H1 putting b in the required form (see Chapter 1).
If one now redefines the matrices b and A as b1 and A1 and the bottom two blocks of UH

1 AU1 as
b2 and A2, then one sees that the additional transformation

UH
2 =

[
1

HH
2

]

71

applied to

UH
2 UH

1 b1 =








x1

0
...
0








UH
2 UH

1 AU1U2 =

[
x x . . . x

HH
2 b2 HH

2 A2H2

]

in fact applies H2 to b2 and A2 in a similar manner as H1 was applied to b1 and A1 whereby
previously created zeros in UH

1 b1 remain unaffected. So we can now choose H2 such that

UH
2 UH

1 b1 =








x1

0
...
0








UH
2 UH

1 A1U1U2 =










x x x

x2 x x . . . x
0
...
0

b3 A3










.

The same process now continues on the subsystem (b3, A3) using

U3

[
I2

H3

]

and so on, until the required controller Hessenberg form is obtained. All transformations are also
applied to the vector c which does not play a role in the above construction.

For the derivation of the general forms (i), (iii) and (iv) essentially the same ideas apply. For
the derivation of form (ii) one uses the construction of the Schur form explained in Chapter 2. In
the following sections, we show how these condensed forms are now exploited for the derivation of
efficient algorithms.

3.3 Controllability, Observability and Minimality

It is well known that a state space realization
{

λx = Ax + Bu
y = Cx + Du

(3.12)

with state dimension n, input dimension m and output dimension p, is minimal if and only if it is
controllable and observable. The most used algebraic definition for these two conditions are:

C1: rank
[

B AB · · · An−1B
]

= n (3.13)

and

O1: rank








C
CA
. . .

CAn−1








= n (3.14)

but one encounters also conditions

C2: rank [B A− λI] = n ∀λ (3.15)

O2: rank

[
A− λI

C

]

= n ∀λ. (3.16)

72

Exercise 3.1

Prove that conditions C1 and C2 are equivalent (or equivalently conditions O1 and O2). �

A third condition of more practical relevance is:

C3: ∃F ⇒ λ(A + BF) ∩ λ(A) = φ (3.17)

O3: ∃K ⇒ λ(A + KC) ∩ λ(A) = φ (3.18)

in other words, eigenvalues can all be moved by feedback or feedforward operations. This last
condition is the relevant one for design purposes. We now indicate that each of these conditions
is rather questionable from a numerical point of view. Since observability and controllability are
dual to each other we focus on controllability.

Example 3.1

We take the following matrix pair:

A =










1
20 2

. . .
. . .

20 19
20 20










b =











20
0
...
...
0











. (3.19)

When constructing the controllability matrix of this example we have to take up to power 19 of
the matrix A. Let us look at the singular values of the matrix in C1, using MATLAB:

A = diag([1:20]) + diag(ones (1,19),-1) * 20;

b = [zeros(19,1);20];

C1 = ctrb(A,b);

svd(C1)

which yields

ans =

2.6110e+28

2.1677e+28

.

.

.

4.0545e+04

7.8271e+01

2.0000e+01

which indicates a singular matrix for all practical purposes. Yet test C2 gives as rank text for
eigenvalue 20 (the worst one):

73

svd([a-20*eye(size(a)),b])

ans =

3.6313e+01

.

.

.

5.9214e+00

which is far from being singular. �

This shows that test C1 is not that reliable. But test C2 also suffers from difficulties for the
above matrix A. Let us perturb A in position (1, 20) with a small value δ = 10−12 then it is well
known for this matrix [147, 148, 149] that the eigenvalues 1, 2, . . . , 20 change in their first or second
digit. As a consequence of this, test C2 will not be computed in the true eigenvalues of Â but
in strongly perturbed ones. This is independent of the vector b and will be incurred by stable
eigenvalue algorithms as well. If we now take a b̂ vector which is such that a particular eigenvalue,
say 1, is not controllable, i.e.,

rank
[

Â− I | b̂
]

< 20

then rank test C2 applied to the computed eigenvalue of Â will give completely erroneous results.

The same can be said about test C3. If Â, b̂ is uncontrollable in eigenvalue λ = 1, then a
feedback f will not be able to move the eigenvalue λ = 1 in Â + b̂f . Yet since the eigenvalues of A
(and Â) are so sensitive it is very unlikely that Â and Â+ b̂f will both have a very close eigenvalue
to λ = 1.

Table 3.1: .

Eigenvalues λi(A) Eigenvalues µ1(A + b̂f) K(b̂; A− λiI)

-.32985±j1.06242 .99999 .002
.92191±j3.13716 -8.95872±j3.73260 .004
3.00339±j4.80414 -5.11682±j9.54329 .007
5.40114±j 6.17864 -.75203±j14.148167 .012
8.43769±j 7.24713 5.77659±j 15.58436 .018
11.82747±j 7.47463 11.42828±j14.28694 .026
15.10917±j 6.90721 13.30227±j 12.90197 .032
18.06886±j 5.66313 18.59961±j 14.34739 .040
20.49720±j 3.81950 23.94877±j 11.80677 .052
22.06287±j 1.38948 28.45618±j 8.45907 .064

32.68478

The following table was obtained for tests C2 and C3 using b̂ = [0, 1, 1, . . . , 1]T and Â as in (3.19).
Instead of perturbing an element of Â we perform a random orthogonal state-space transformation
Q on the system (Â, b). The resulting eigenvalues of Â + b̂f for a random f and the condition

numbers of
[

b̂ | Â− λiI
]

in the computed eigenvalues λi of Â are given in Table 3.1. The machine

precision for the test was ε ∼ 10−8 [102].

74

When using instead of λi(Â), the correct values λi(A), test C2 gives κ
[

b̂ | Â− λ1I
]

∼ 10−8

which indicates that the trouble here lies indeed in the eigenvalue sensitivity.

3.4 Staircase form

We now propose a method that avoids several of the above drawbacks and is based on an orthogonal
state-space transformation.

Theorem 3.1. There always exist an orthogonal state-space transformation U such that

[UHB‖UHAU] =












X1 A1,1 A1,2 · · · A1,k A1,k+1

0 X2 A2,2
...

...
...

. . .
. . .

. . .
...

...
...

. . . Xk Ak,k Ak,k+1

0 · · · · · · 0 0 Ak+1,k+1












(3.20)

where
– Ai,i, i = 1, . . . , k, are ρi × ρi matrices
– xi, i = 1, . . . , k, are ρi × ρi−1 matrices of full row rank ρi (with ρ0

.
= m).

As a consequence

m = ρ0 > ρi > · · · > ρk > 0

and Ak+1,k+1 is a square matrix of dimension (n− σk)× (n− σk) with σk =
∑k

i=1 ρi.

Proof: This form is a block version of the controller Hessenberg form, stopping as soon as a “zero”
pivot is encountered, at step k + 1 in this case. The proof is thus constructive. At each step
i = 1, . . . , k a QR factorization is performed of the current Bi matrix yielding Xi of full row rank.
If a zero rank matrix Bi is encountered (at step k + 1 here) then we obtain the form (3.20). If not,
then the method terminates with n = σk and the bottom matrix Ak+1,k+1 is void. �

A MATLAB code for the above decomposition is given below. It also contains a variant in
which the “rank carrying stairs” Xi are themselves in the special form

Xi =






0 · · · 0 × · · · ×
...

. . .
. . .

...
0 0 ×












ρi. (3.21)

One shows that in general this also requires an input transformation V that can be chosen orthog-
onal as well.

function [a1,b1,k,u,v] = stair(a,b,u,v)

% [A1,B1,K,U,V]=STAIR(A,B,U,V) performs the staircase reduction of

% the pair (A,B). It updates the state-space transformation U and

% input transformation V such that the transformed pair (A1,B1) has

% the typical staircase form (here with 4 "stairs") :

%

75

% | X : * * * * * | } K(1)

% | : X * * * * | } K(2)

% (B1:A1):=(U’*B*V:U’*A*U) = | : X * * * | } K(3)

% | : X * * | } K(4)

% | : Z |

%

% where each "stair" X has full row rank K(i) and has a triangular

% form (right adjusted). Matrices U and V must be given as input

% parameters and may be initialized with the identity matrix.

% In case V is not given, this transformation is not performed

% and the "stairs" X have just full row rank. The square matrix

% Z (if present) contains the uncontrollable modes of (A,B).

%

size(b);n=ans(1);m=ans(2);

[q,r,e]=qr(b);b1=r*e’;a1=q’*a*q;u=u*q;

k(1)=rank(r);k1=1;k2=k(1)+1;

if (k2 <= n) , b1(k2:n,1:m)=zeros(n-k2+1,m); end

for i=2:n,

bh=a1(k2:n,k1:k2-1);ah=a1(k2:n,k2:n);[q,r,e]=qr(bh);

q=[eye(k2-1),zeros(k2-1,n-k2+1);zeros(n-k2+1,k2-1),q];

a1=q’*a1*q;a1(k2:n,k1:k2-1)=r*e’;u=u*q;r=rank(r,eps);

if (k2+r <= n) , a1(k2+r:n,k1:k2-1)=zeros(n-k2-r+1,k2-k1); end

if r == 0 , break , end

k(i)=r;k1=k2;k2=k2+r;

if k2 > n , break, end

end

kmax=prod(size(k));nmax=sum(k);

if nargin == 4 ,

k3=nmax;k2=k3-k(kmax)+1;k1=k2;

if kmax > 1 ,

for i=kmax:-1:2,

k1=k1-k(i-1);

if k2 > k1+1,

[q,r]=qr(pert(a1(k2:k3,k1:k2-1)));q=pert(q)’;

a1(k1:k2-1,:)=q’*a1(k1:k2-1,:);a1(:,k1:k2-1)=a1(:,k1:k2-1)*q;

u(:,k1:k2-1)=u(:,k1:k2-1)*q;a1(k2:k3,k1:k2-1)=pert(r);

end

k3=k2-1;k2=k1;

end

if k3 > k2, b1(k2:k3,:)=q’*b1(k2:k3,:); end

end

[q,r]=qr(pert(b1(k2:k3,:)));q=pert(q)’;

v=v*q;b1=b1*q;b1(k2:k3,:)=pert(r);

end

76

History

A nonorthogonal version of this result was first obtained by Tse et al. (1978) [129]. The orthogonal
version is due to Van Dooren (1979) [131, 132] and was redrived by several authors in subsequent
years (Boley, Eldin, Eising, Konstantinov et.al., Paige, Patel, Skelton et.al., Varga), each with a
particular application in mind. �

The staircase form is now shown to be relevant for the determination of the controllability of a
pair (A, B).

Theorem 3.2. The rank of the controllability submatrix

C(j)(A, B)
.
= [B, AB, · · · , Aj−1B] (3.22)

is σj =
∑j

i=1 ρi and that of the full matrix is σk.

Proof. A state space transformation U applied to the system (3.12) results in a left transformation
of the matrix C(j)(A, B), since

C
(j)
U (UHAU, UHB) = [UHB, UHAUUHB, . . . , (UHAU)j−1UHB]

= UH [B, AB, . . . , Aj−1B]

= UHC(j)(A, B). (3.23)

Since an invertible transformation does not change the rank of a matrix one can as well check the

rank of C
(j)
U (UHAU, UHB) which is of the form

CU =










X1,1 × . . . × × . . . ×
0 X2,1

. . .
...

...
...

...
. . . Xk,1 × × . . . ×

0 . . . 0 0 0










}ρ1
...
}ρk

(3.24)

where the matrices

Xi,1
.
= Xi ·Xi−1 · · ·X1

are full row rank since they are the product of full row rank matrices. But the very form of (3.24)
indicates that Cu has row rank σk = ρ1 + · · · + ρk and similarly the requested result also follows

for C
(j)
U . �

Remark.

a) In the case of m = 1, the staircase form is nothing but the controller Hessenberg form where one
checks for nonzero diagonal elements along the pivot elements. All ρi are thus equal to 1 and
k is obtained from the first zero pivot element xk+1 = 0. The corresponding controllability
matrix is then in trapezium form and would have been the result of the QR factorization of

77

the matrix C(A, B):

[bk‖Ak] =
















×1 × × ×
0 ×2

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 . . . 0 ×k × ×
0
...
0

.

0
...
0

Ak+1,k+1
















C(A, b) = UCU (Ak, bk)

= U











× × . . . × ×
0 × . . . × × . . . ×
...

. . .
. . .

...
0 . . . 0 × × . . . ×
0 0 0 . . . 0











b) In the multi-put case the form (3.24) is a block version of a QR factorization. It is important
to notice here that the rank is found form submatrices of the matrices A and B and that no
powers of A have to be computed explicitly. Also no eigenvalues of A are involved here. So
this approach avoids the pitfalls of all three methods explained in Section 3.3.

c) The controllability indices {ci, i = 1, . . . , m} defined for multi-input systems can be retrieved
from the rank increases {ρj , j = 1, . . . , k} (see [131, 132, 141]) one proves that they in fact
form a dual partition of each other (see [65]).

Example 3.2

Take again the matrices (3.19) of Example 3.4. We see that this pair is already in staircase form
with ρ1 = ρ2 = . . . ρ20 = 1 and σ20 = 20. All “stairs” are 20 and clearly nonsingular. So the system
is controllable. �

By duality all the above comments about controllability in fact also apply to that of observability
by simply interchanging A with AT and B with CT . The staircase form for testing observability
though, is slightly different since again one prefers the form to be upper triangular. This is given
in the following theorem.

Theorem 3.3. There always exists an orthogonal state-space transformation U such that

[

UHAU

CU

]

=










Ak+1,k+1 Ak,k+1 · · · A1,k+1

0 Ak,k · · · A1,k

0 Yk · · · A1,2
...

. . . Y2 A1,1

0 . . . 0 Y1










78

where
– Ai.i i = 1, . . . , k are ρi × ρi matrix
– Yi i = 1, . . . , k are ρi−1 × ρi matrices of full column ρi (with ρ0 = p).

As a consequence

p = ρ0 > ρ1 > · · · > ρk > 0

and Ak+1,k+1 is a square matrix of dimension (n− σk)× (n− σk) with σk =
∑k

i=1 ρi.

Proof. Dual to that of Theorem 3.1. �

Distance to controllability
So it appears that the staircase form is a reliable direct method to test controllability of the multi
input system. But the form can still be sensitive to perturbations and may therefore fail in certain
pathological cases [131, 132, 141]. The most reliable method for checking controllability is to convert
the rank test into a distance problem. Let us define Sc to be the set of uncontrollable (A, B) pairs:

Sc = {(A, B) | rankC(A, B) < n} .

Then the following distance function

µ = min {‖[∆A | ∆B]‖ | (A + ∆A, B + ∆B) ∈ Sc}

gives the distance of the pair (A, B) to the set of uncontrollable pairs. By definition this is a robust
measure of controllability since a small perturbation in (A, B) give a small perturbation in µ (prove
this!). This definition was introduced by Eising [29] was discerns between the real distance µr and
complex distance µc by allowing only real or complex perturbations [29].

Exercise 3.2

Prove that both µr and µc are robust measures and that µc 6 µr.
Use the staircase form to derive simple upper bounds for µr and µc. �

To compute µr and µc one has to solve a minimization problem for which various algorithms
exist [12, 30]. Below we give a MATLAB code of the method of Boley which is based on eigenvalue
computations of an embedded square system. We refer to [12] for more details on the method.

function [upper2,upper1,lower0,location,radius]=dist(F,G);

%

% function [upper2,upper1,lower0,location,radius]=dist(F,G);

% find distance from (F,G) to nearest uncontrollable pair

% according to method of Boley SIMAX Oct 1990.

%

%form matrices used in paper.

A=[F’;G’];

[nrows,ncols]=size(A);

E=eye(nrows);

B=E(:,1:ncols);

D=E(:,ncols+1:nrows);

79

% get random orthonormal columns to append

C=rand(nrows,nrows-ncols)-.5*ones(nrows,nrows-ncols);

[Q,R]=qr(C);

C=Q(:,1:nrows-ncols);

%get eigenvalues/vectors;

[V,Lambda]=eig([A,C]);

%scale eigenvectors to "optimize" condition number

for i=1:nrows,

V(:,i)=V(:,i)/norm(V(:,i));

end;

K=cond(V);

%separate head and tail from each vector

X=V(1:ncols,:);

Y=V(ncols+1:nrows,:);

%compute easy upper bound beta1 for every case and extract smallest one.

for i=1:nrows,

upp0(i)=norm(C*Y(:,i)-Lambda(i,i)*D*Y(:,i))/norm(X(:,i));

end;

[SortedUpp0,indices]=sort(upp0);

first=indices(1);

%compute all the other bounds based on the one picked above.

location=Lambda(first,first);

upper1=upp0(first);

ans=svd(A-location*B);

upper2=ans(ncols);

lower0=upper2/(K+1);

radius=upper2*K;

3.5 Subspaces and Minimal Realizations

For a discrete time system
{

xk+1 = Axk + Buk

yk = Cxk + Duk
(3.25)

one can also associate certain spaces with the input to state map and with the state to output
maps. One defines the following geometrical concepts to these respective mappings:

{uk} =⇒ {xk} : controllability, reachability

{xk} =⇒ {yk} : observability, reconstructability.

80

Precise definition of these concepts are:

Controllable subspace

The set Ck(A, B) is the set of states x0 ∈ X that can be driven to zero in k steps (i.e. xk = 0)
by an appropriate choice of inputs {ui, i = 0, . . . , k − 1}. �

Reachable subspace

The set Rk(A, B) is the set of states xk ∈ X that can be reached from the zero initial state (i.e.
x0 = 0) in k steps by an appropriate choice of inputs {ui, i = 0, . . . , k − 1}. �

Unobservable subspace

The set Ok(A, C) is the set of states x0 ∈ X that with absence of inputs (i.e. ui = 0, i =
0, . . . , k − 1) will produce zero output during k steps {yi = 0, i = 0, . . . , k − 1}. �

Unreconstructable subspace

The set Sk(A, C) is the set of states xk ∈ X that with absence of inputs (i.e. ui = 0, i =
0, . . . , k − 1) has produced zero output during k steps {yi = 0, i = 0, . . . , k − 1}. �

The best way to analyze these concepts is to use again the stacked up notation for inputs and
outputs over an interval of time 0, . . . , k − 1:

Uk
.
=






u0
...

uk−1




 ; Yk

.
=






y0
...

yk−1




 . (3.26)

As shown earlier, recursive substitution of (3.25) yields

xk = Akx0 + BkUk

Yk = Ckx0 + DkUk (3.27)

where

[
Ak Bk

Ck Dk

]

=










Ak Ak−1B · · · AB B

C D
CA CB D
...

...
. . .

CAk−1 CAk−2B · · · · · · D










(3.28)

The following theorems now express directly the above spaces in forms of the matrices in (3.27).

Theorem 3.4. The subspaces Rk(A, B) and Ok(A, C) are given by

Rk(A, B) = ImBk (3.29)

Ok(A, C) = KerCk (3.30)

Proof. For zero initial state x0 = 0 we find from (3.27)-(3.28)

xk = [Ak−1B . . . AB B]Uk.

81

Clearly the states xk that can be reached from arbitrary Uk is Rk(A, B) = ImBk. For Ok(A, C)
there are no inputs (i.e., Uk = 0) and hence

Yk =








C
CA
. . .

CAk−1








x0.

Thus the set Ok(A, C) of initial states x0 that produce a zero output Yk is clearly KerCk. �

Similarly for the controllable and unreconstructable subspaces we have:
Theorem 3.5. The subspaces Ck(A, B) and Sk(A, C) are given by

Ck(A, B) = A−kRk(A, B) (3.31)

Sk(A, C) = AkOk(A, C). (3.32)

Proof. In the equation (3.27) we now want xk = 0 hence

0 = Akx0 + [Ak−1B . . . AB B]Uk

with Uk arbitrary. Hence Akx0 must lie in the image of [Ak−1B . . . AB, B] or Rk(A, B) which
proves (3.31). For (3.32) we have zero input Uk and hence

xk = Akx0; Yk =








C
CA
. . .

CAk−1








x0.

For zero output Yk we need x0 ∈ Ok(A, C) and the states xk corresponding to this are clearly given
by (3.32). �

From the above theorem it follow that the spaces Rk(A, B) and Ok(A, C) are in fact constructed
by the staircase algorithm applied to (A, B) and (AT , CT), respectively. From the definition it
follows easily that the spacesRk(A, B) and Ck(A, B) grow with k, whereas the dual spaces Ok(A, C)
and Sk(A, C) decrease with k. From the staircase algorithm it also follows that these spaces
“converge” to a fixed set at an index k smaller or equal to n. Orthogonal bases for these spaces are
in fact constructed by the staircase algorithm as well.

Theorem 3.6. Let ρi be the rank increases of the staircase algorithm applied to the pair (A, B)
and define ρi = 0 for i > k, the index of the last “stair”. Then

Rj(A, B) = U · Im

[
Iσj

0

]

(3.33)

with σj =
∑j

i=1 ρi and U the n × n transformation constructed by the staircase algorithm of
Theorem 3.1.

Proof. This follows from (3.23) indicating that

UHRj(A, B) = Im

[
Iσj

0

]

.

82

and the invertibility of the transformation U . �

The dual result of this is given without proof.
Theorem 3.7. Let ρi be the rank increases of the staircase algorithm applied to the pair

(AT , CT) and define ρi = 0 for i > k, the index of the last “stair”. Then

Oj(A, C) = U · Im

[
Iτj

0

]

(3.34)

with τj = n −∑j
i=1 ρi and U the n × n transformation constructed by the staircase algorithm of

Theorem 3.3.

Proof. Dual to that of the previous theorem. �

Since these spaces converge in less than n steps to the “steady state” results R(A, B) and
O(A, C) we thus computed orthogonal basis for these respective spaces in 0(n2(5/3n + m + p)) op-
erations at most. This follows from the fact that the staircase forms never requires more operations
than the corresponding condensed forms.

Remark.

a) The concept of reachability has the same meaning for a continuous time system as that of
controllability. For a discrete time system, both concepts are different, though. It would be
more appropriate to always use reachability instead of controllability since usually, this is
what one refers to.

b) It follows from theorems 3.4 and 3.5 that if A is invertible, then,

dimCk(A, B) = dimRk(A, B)

dimSk(A, C) = dimOk(A, C).

�

When A is not invertible, the concepts of reachability and constructability can indeed be very
different as shown by the following simple example.

Example 3.3

Let

A =

[
1 1
0 0

]

, B =

[
1
0

]

.

The matrix [B AB] =

[
1 1
0 0

]

has image Im

[
1
0

]

and this is the only vector that can be

“reached”. On the other hand, any vector x0 =

[
α
β

]

can be driven to zero by an input u0 =

−(α + β) as is seen from

x1 =

[
1 1
0 0

] [
α
β

]

+

[
1
0

]

(−α− β) = 0.

83

So C1(A1B) = C2. Although the dimensions of C1(A, B) and R1(A, B) differ, one easily checks also
that

AC1(A, B) = R1(A, B).

�

The above results now lead to the construction of minimal realizations. We first note that the
staircase form of applied to (A, B) yields a new system (Â, B̂) of the form

[UHB | UHAU] = [B̂ | Â] =

[
Br Ar ×
0 0 Ar

]

(3.35)

where the subsystem (Ar, Br) is reachable. The number of rows/columns of Ar is σk and the first
σk columns of U span R(A, B). Similarly, the staircase algorithm applied to (A, C) yields a new
system (Â, Ĉ) of the form

[
UHAU

CU

]

=

[

Â

Ĉ

]

=





Ao ×
0 A0

0 C0



 (3.36)

where the subsystem (A0, C0) is observable. The number of rows/columns of Ao is τk and the first
τk columns of U span O(A, C).

Combining intersections and completions of the above decompositions yields a coordinate system
(Â, B̂, Ĉ) where

[

Â B̂

Ĉ D

]

=







A11 A12 A13 B1

0 A22 A23 B2

0 0 A33 0

0 C2 C3 D







and where the subsystem {A22, B2, C2, D} is both observable and reachable (i.e., minimal). More-
over the transfer functions of {Â, B̂, Ĉ, D} and {A22, B2, C2, D} are equal. This is obtained by
the following construction. Start with a decomposition (3.35) displaying the reachable part of the
system (apply the transformation also to C):

[
UH

r AUr UH
r B

CUr D

]

=





Ar × Br

0 Ar 0

Cr Cr D



 .

Then take the subsystem (Ar, Cr) and perform the decomposition (3.36) (apply again the trans-
formation to B as well):

[
UH

o ArUo UoBr

CrUo D

]

=





Aro × Bro

0 Aro Bro

0 Cro D





then define

U
.
= Ur

[
Uo

Ir

]

84

Â
.
= UHAU ; B̂

.
= UHB; Ĉ

.
= CU

to obtain

[

Â B̂

Ĉ D

]

=







Aro × × Bro

0 Aro × Bro

0 0 Ar 0

0 Cro Cr D







.

The transfer function of such a state space system is:

Ĉ(zI − Â)−1B̂ + D = [0 Cro Cr]





zI −Aro × ×
0 zI −Aro ×
0 0 zI −Ar





−1 



Bro

Bro

0



 + D =

[0 Cro Cr]





(zI −Aro)
−1 × ×

0 zI −Aro
−1 ×

0 0 (zI −Ar)
−1





−1 



Bro

Bro

0



 + D =

Cro(zI −Aro)
−1Bro + D,

which finally leads to the following theorem.
Theorem 3.8. (Kalman Decomposition) There always exists an orthogonal state space trans-

formation U such that

[
UHAU UHB

CU D

]

=







A11 A12 A13 B1

0 A22 A23 B2

0 0 A33 0

0 C2 C3 D







.

where A11 contains unobservable modes, A33 contains unreachable modes and the subsystem
(A22, B2, C2) is both reachable and observable. Moreover the latter subsystem has the same transfer
function as the original system (A, B, C). �

3.6 Poles and Zeros

Poles and zeros are rather classical concepts when single input single output systems are concerned.
They are then typically defined in terms of the transfer function of the system:

y(·) = h(λ) · u(·). (3.37)

For the class of systems we consider h(λ) is a rational function

h(λ) = n(λ)/d(λ) (3.38)

and the poles are thus the zeros of the polynomial d(λ), while the zeros are the zeros of the
polynomial u(λ). A natural way to extend this to multi-input multi-output systems with transfer
function

y(·) = H(λ)u(·) (3.39)

85

is to say that the poles of H(λ) are those values of λ in the complex phase where (some entry of)
H(λ) becomes infinite, whereas the zeros of H(λ) are those values of λ in the complex plane where
the rank of H(λ) drops below its normal value. It is easy to see that this reduces to the definition
for the scalar case.

But this definition fails in identifying coalescent poles and zeros and also fails in giving more
detailed information about multiplicities of poles and zeros. A precise definition is based on a
decomposition that essentially reduces the matrix case to the scalar case.

Theorem 3.9. (McMillan Form) Every rational transfer matrix H(λ) has a decomposition into
the product of matrices:

Hpm(λ) = Mpp(λ)Dpm(λ)Nmm(λ) (3.40)

where M(λ) and N(λ) are polynomial matrices with constant determinant (i.e., unimodular) and

D(λ) =









e1(λ)
f1(λ)

. . . 0
lr(λ)
fr(λ)

0p−r,m−r









(3.41)

with ei(λ) and fi(λ) polynomials that divide each other as follows
{

ei+1(λ) divides ei(λ)
fi+1(λ) divides fi(λ)

for i = 1, . . . , r − 1. (3.42)

Proof. See [65] for a constructive proof. �

Notice that in this decomposition M(λ) and N(λ) are invertible and finite for any λ in the
complex plane. So if H(λ) has poles and zeros they must be poles and zero of the quasidiagonal
matrix D(λ). This thus leads to the following definitions.

Definition 3.1. The zeros of H(λ) are the zeros of the polynomials ei(λ), i = 1, . . . , r. The
multiplicities of each zero λ0 are those of λ0 in each polynomial ei(λ). �

Definition 3.2. The poles of H(λ) are the zeros of the polynomials fi(λ), i = 1, . . . , r. The
multiplicities of each pole λ0 are those of λ0 in each polynomial fi(λ). �

This definition is very elegant and close to that of the scalar case, but unfortunately it relies on
the McMillan form which requires unstable transformations on the coefficients of rational matrices
(see [136, 137]). The following theorem now reduces everything to that of computing eigenvalues
and their multiplicities. The new definition are based on minimal realizations and on corresponding
eigenvalue and generalized eigenvalue problems.

Theorem 3.10. Let {A, B, C, D} be a minimal realization of the transfer function H(λ), i.e.,

H(λ) = C(λI −A)−1B + D (3.43)

where (A, B) is controllable (reachable) and (A, C) observable. Then the poles of H(λ) are the
eigenvalues of A and their mulplicities are the lengths of the corresponding Jordan chains; and the
zeros of H(λ) are the generalized eigenvalues of

S(λ) =

[
λI −A B

−C D

]

(3.44)

86

and their multiplicities are the lengths of the corresponding Jordan chains.

Proof. See [114] and [143] for more details. �

It is interesting to notice that this definition has a nice interpretation in terms of eigenfrequencies
“undriven” by the input and eigenfrequencies “blocked” at the output. The most natural way to
describe this is in the continuous time case. So consider the system (3.43) where λ = d

dt .

Then the poles of the system are the frequencies of the eigensolutions undriven by u(t), but
appearing in y(t). So since u(t) = 0 we have

ẋ(t) = Ax(t); x(0) = x0.

If we choose x0 and eigenvector of A with eigenvalue λ0 then Ax0 = λ0x0 and

x(t) = x0e
λ0t; y(t) = Cx0e

λ0t.

For the zeros we consider

[
0

y(t)

]

=

[
d
dtI −A B

−C D

] [−x(t)

u(t)

]

and require y(t) = 0. So choosing
[
−x0
u0

]

as a generalized eigenvector of S(λ) with generalized

eigenvalue λ0, then

[−x(t)

u(t)

]

=

[−x0

u0

]

eλ0t

and
[

λ0I −A B
−C D

] [−x0

u0

]

= 0.

This interpretation only agrees with the definitions given earlier when the transfer function H(λ)
is square and invertible. In that case we also have that S(λ) is square and invertible since

[
I 0

−C(λI −A)−1 I

]

S(λ) =

[
λIn −A B

0 H(λ)

]

. (3.45)

So rank drops in S(λ) and H(λ) must occur at the same points λ0, as long as they are not eigenvalues
of A (or poles of H(λ)). In this case we have that

det .S(λ) 6≡ 0

and since the coefficient of λ is

[
In 0
0 0

]

, this is a polynomial of degree at most n. If the constant

matrix D is invertible, then one sees that

S(λ)

[
I 0

D−1C I

]

=

[
λIn −A + BD−1C B

0 D

]

(3.46)

87

and det .S(λ) = det .D, det .(λI − (A−BD−1C)) which implies that the zeros of det .S(λ) are the
eigenvalues of the matrix

Ã = A−BD−1C. (3.47)

A better way to compute the zeros of S(λ), through, is to use a unitary transformation on S(λ),
rather than the invertible transformation (3.46).

One can always construct a transformation W which is orthogonal and reduces the columns of

the matrix [−C | D] to
[

0 | D̂
]

where D̂ is of full column rank. Applying this transformation to

S(λ) yields:

S(λ)W =

[
λI −A B

−C D

]

W =

[

λÊ − Â x

0 D̂

]

(3.48)

where D̂ is square invertible since S(λ) is. One shows (see [141, 133]) that in fact

(λI − Ã) = (λÊ − Â)Ê−1 (3.49)

and that the eigenvalues of Ã are in fact the generalized eigenvalues of the pencil (λÊ − Â). These
are then found via the QZ algorithm:

QH(λÊ − Â)Z = λ









e11 × . . . ×
. . .

. . .
...

. . . ×
enn









−









a11 × . . . ×
. . .

. . .
...

. . . ×
ann









(3.50)

and the solutions of det .(λÊ− Â) are obviously the ratios λi = aii/eii. Notice that if det .S(λ) 6≡ 0
then it can not occur that both aii and eii are simultaneously zero, so the ratio λi is well defined.
But λi can be infinite if eii = 0, and it is known [32] that this occurs when the matrix D is singular.
In such case there will be less than n finite zeros.

If we want to extend the above results to arbitrary systems {A, B, C, D} then the above approach
does not apply anymore. Yet Theorem 3.10 indicates that the generalized eigenvalues of S(λ) are
the finite zeros of the system. The following staircase like decomposition now reduces the general
problem to one we can solve again via QZ techniques.

Theorem 3.11. Any system matrix

S(λ) =

[
λI −A B

−C D

]

88

can be transformed via orthogonal row and column transformations to

V S(λ)W =




























X1 × ×
0

. . .
...

... Xk
[

λI −Af Bf

−Cf Df

]

Y`
...

...
. . . ×

0 0 Y1




























. (3.51)

where the Xi are full row rank matrices, the Yi are full column rank matrices, and Df is invertible.

Moreover the finite zeros of S(λ) are those of

Sf (λ) =

[
λI −Af Bf

−Cf Df

]

and are the eigenvalues of Af −BfD−1
f Cf .

Proof. See [32]. �

This algorithm is also implemented in MATLAB in the function tzero.m((A, B, C, D) which
performs the preliminary reduction (3.51) and then uses (3.48) and (3.50) to find the finite general-
ized eigenvalues of {A, B, C, D}. Below is a practical example which was solved via this technique.

Example 3.3

This is a 9th order model of a boiler [3].

A =

















-3.93 -3.15E-3 0 0 0 4.03E-5 0 0 0
3.68E2 -3.05 3.03 0 0 -3.77E-3 0 0 0
2.74E1 7.87E-2 -5.96E-2 0 0 -2.81E-4 0 0 0
-6.47E-2 -5.20E-5 0 -2.55E-1 -3.35E-6 3.60E-7 6.33E-5 1.94E-4 0
3.85E3 1.73E1 -1.28E1 -1.26E4 -2.91 -1.05E-1 1.27E1 4.31E1 0
2.24E4 1.80E1 0 - 3.56E1 -1.04E-4 -4.14E-1 9.00E1 5.69E1 0
0 0 2.34E-3 0 0 2.22E-4 -2.03E-1 0 0
0 0 0 -1.27 -1.00E-3 7.86E-5 0 -7.17E-2 0
-2.20 -1.77E-3 0 -8.44 -1.11E-4 1.38 E-5 1.49E-3 6.02E-3 -1.00E-10

















89

B =

















0 0
0 0

1.56 0
0 −5.13E − 6

8.28 −1.55
0 1.78

2.33 0
0 −2.45E − 2
0 2.94E − 5

















, C =

[
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

]

, D = 0.

The computed zeros and the relative backward residuals σ11(s(λi))/σ1(S(λi)) were

Zeros σ11
σ1

-26.39513728882773 < ε
-2.957771985292096 ± .3352657201870191 < ε

.74860641907556 < ε

.09403261020202233 < ε
- .009546070612163396 < ε

Notice that there are only 6 finite zeros. Also, the normal rank of the transfer function is 2 and
that of S(λ) is 11. So, in order to check the reliability of the computed eigenvalues λi we check if
the 11-th singular value σ11(S(λi) is indeed ε small with respect to the 1st singular value σ1(S(λi).
For each of the computed eigenvalues, this was the case �

Remarks.

1. Because of the use of orthogonal transformations only, we can prove that the above algorithm
for computing zeros is backward stable. Moreover, its complexity is O(n(n+m)(n+ p)) flops
(see [32]).

2. The method can be applied to systems {A, B, C, D} where m 6= p, i.e., with different number
of inputs and outputs. In fact, when m = 0 it actually performs the staircase decomposition
(3.27) and finds the eigenvalues of Ao in (3.40), i.e., the unobservable modes of the system.
When p = 0 it finds the staircase decomposition (3.20) and finds the eigenvalues of Ar in
(3.33), i.e., the unreachable modes of the system. Notice that in both cases the system does
not need to be minimal.

90

Chapter 4

STATE SPACE DESIGN

4.1 State feedback and pole placement

A typical “control action” used to influence the behaviour of the system, is linear state feedback.
It consists of “feeding back” a linear function Fx(·) of the state to the input u(·) :

- -⊕ - - -⊕ -

-

6vk

-⊕

�

6

F

�

?

u(·) y(·)λx(·) x(·)

A

B λ−1 C

D

If we redefine the input u(·) as Fx(·) + u(·), then the system becomes:
{

λx(·) = (A + BF)x(·) + Bu(·)
y(·) = (C + DF)x(·) + Du(·) . (4.1)

This control action is typically used to modify the dynamics of the system, and more particularly,
the eigenvalues of the matrix A + BF . The problem to be solved in this context is :

Given (A, B), what eigenvalues of A + BF can be obtained by an appropriate choice of F?
Moreover, what Jordan structure of the multiple eigenvalues can be obtained?

First we notice that a similarity transformation T does not affect the solution of this problem.
Indeed, the feedback Ft

.
= FT applied to the transformed pair

(At, Bt)
.
= (T−1AT, T−1B) (4.2)

yields the closed loop matrix

At + BtFt = T−1(A + BF)T (4.3)

91

which has the same eigenvalues and Jordan structure as A + BF since there is only a similarity
transformation between both. We can therefore choose T so that the new coordinate system
simplifies the construction of Ft (and F) and also makes explicit its possible solution(s). Let us
start to put (A, B) in the form

[At | Bt] =

[
Ar × Br

0 Ar 0

]

(4.4)

where Ar contains the unreachable modes and (Ar, Br) is reachable (T can be chosen unitary).
Then one easily sees that Ft = [Fr | Fr] can only affect the spectrum of Ar:

[At + BtFt] =

[
Ar + BrFr ×

0 Ar

]

. (4.5)

While the eigenvalues of Ar are unchanged, the corresponding eigenvectors can be modified [70]. We
show below that by construction that the spectrum of Ar + BrFr can always be chosen arbitrarily,
but we will indicate constraints on the choice of Jordan structure. We first consider the single input
case, where (At, bt) is in controller canonical form:

At =











−an−1 −an−2 · · · −a1 −a0

1 0
. . .

. . .

. . .
. . .

1 0











, bt =











b0

0
...
...
0











(4.6)

with characteristic polynomial

det(zIn −At) = zn + an−1z
n−1 + · · ·+ a1z + a0

.
= a(z). (4.7)

It is clear that when choosing

f =
1

b0
[an−1 − fn−1, . . . , a0 − f0] (4.8)

then At − btft has the same form as At, but with ai replaced by fi. Hence

det(zIn − (At + btft)) = zn + fn−1z
n−1 + · · ·+ f0

.
= f(z). (4.9)

This discussion leads to the following theorem.
Theorem 4.1. Let (A, b) be a reachable single input pair, then a feedback vector f can be

found to assign any desired spectrum to A + bf . Multiple eigenvalues of A + bf correspond to a
single Jordan block and if A, b, f are real then only a spectrum that is symmetric to the real axis
Λ = Λ can be assigned.

Proof. The part of the theorem related to Λ is obvious from (4.9) : any desired characteristic
polynomial can be assigned and if A, b, f are real then the polynomial is real as well which implies
Λ = Λ. For multiple eigenvalues in Af = A + bf we point out that in an appropriate coordinate
system Af is a companion matrix and that therefore Af − λ0I has rank n − 1 for any eigenvalue
λ0 of Af . Hence there is only one eigenvector corresponding to λ0 and one Jordan block as well. �

92

The above discussion also suggests a simple method for constructing f . The method is known
as Ackerman’s formula and is also implemented in MATLAB in the function acker(A,b,l). The
algorithm goes as follows. First construct the controllability matrix

T1 = [b Ab · · · An−1b] (4.10)

which transforms (A, b) to

(A1, b1)
.
=

[
T−1

1 AT1 | T−1
1 b

]
=









−a0 1

1
... 0

. . .
...

...
1 −an−1 0









(4.11)

giving the characteristic polynomial of A. Then transform this with

T2 =









1 an−1 . . . a1

. . .
. . .

...
. . . an−1

1









(4.12)

to

(A2, b2) =
[
T−1

2 A1T2 | T−1
2 b1

]
=











an−1 −a0 1
1 0

. . .
...

. . .
...

1 0











. (4.13)

Now compute f2 in this coordinate system and transform back to f = f2T
−1
2 T−1

1 .

This is a typical example of the use of canonical forms and badly conditioned transformations
in order to construct the solution of a problem in a trivial coordinate system. It is well known
that the transformation T1 can be very badly conditioned for random system of moderate size.
Although the problem is trivial in this coordinate system, the transformation has turned a possibly
insensitive problem into a very sensitive one. So we recommend instead to use the staircase form

[At, bt] =












× × ×1

×2
. . .

... 0

0
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
0 . . . 0 ×n × 0












. (4.14)

A very simple method to solve the pole placement problem is to compute the eigenvectors xi of

At + btft = XΛX−1 (4.15)

93

first. The equation

(At + btft)xi = xiλi (4.16)

indeed defines xi from its last (n− 1) rows, which do not contain btft. So we have:






×2 ×− λi . . . ×
. . .

. . .
...

×n ×− λi






︸ ︷︷ ︸

n

xi = Ãixi = 0. (4.17)

Since Ãi is a rank n − 1 matrix, this defines xi up to a scale factor, which we choose such that
‖xi‖ = 1. This normalized vector is easily computed from the RQ decomposition of Ãi:

Ãi =






0 × · · · ×
...

. . .
. . .

...
0 · · · 0 ×




 QH

i =






0
... Ri

0




 QH

i (4.18)

The first column of Qi is indeed in the null space of Ai and has norm 1. Decomposition (4.18) only
requires n−1 Givens rotations and 2n2 flops, so computing all eigenvectors requires 2n3 flops. The
feedback vector f is then solved from the top row of

At −XΛX−1 = btft (4.19)

yielding

ft = ×−1
1 eT

1 (At −XΛX−1). (4.20)

We illustrate the relative performance of these two simple algorithms in an example.

Example 4.1.

Take a random system (A, B) (n=10) and assign random eigenvalues L symmetric with the real
axis

L =









−0.5013± 0.6173i
−0.3504± 0.3844i
−1.1269± 0.1590i
−0.0905± 0.0763i
−0.1749± 0.0403i









.

First use Ackerman’s formula (Control Toolbox):

F1 = −acker(A, B, L).

The gap between prescribed and computed eigenvalues is:

L1 = eig(A + B ∗ F1); norm(sort(L1)− sort(L),′ inf ′)

ans = 0.0045

94

which shows computed eigenvalues of poor quality! Then use the method computing the eigenvector
matrix X of the matrix (A + BF) to be constructed. This is implemented in the MATLAB file
rplace.m :

[F2, X] = rplace(A, B, L); F2

The ordered difference is this time:

L2 = eig(A + B ∗ F2); norm(sort(L2)− sort(L),′ inf ′)

ans = 2.510210−10

which shows much better results! This example is rather difficult for two reasons. The eigenvalues
of A are “stiff” as seen from the following ratio :

abs(eig(A)); stiff = max(ans)/min(ans)

stiff = 17.5797

ctr = cond(ctrb(A, B)), cx = cond(X)

ctr = 7.1746109

cx = 1.8978106.

The controllability matrix is then poorly conditioned and Ackerman’s method usually fails for
n > 10. The sensitivity of the eigenvalues after placement is also large:

sens = 1.0 106



















0.0011
0.0011
0.0026
0.0026
0.0196
0.0196
0.3441
0.3441
1.1930
1.1930



















which explains the loss of at least 6 digits using any method as is also observed in the eigenvector
method. �

The above eigenvector method uses the orthogonal decomposition (4.14) but then computes the
resulting feedback using the Jordan form (4.15). This of course is from a numerical point of view
not that appealing when the decomposition is sensitive. Moreover, it certainly fails when requiring
multiple eigenvalues since these automatically belong to a single Jordan block as pointed out by
Theorem 4.1. The following modification, due to [91, 92] avoids these drawbacks.

Algorithm 4.1. Put (A, b) in the form (4.14). Construct Ã1 as in (4.17) and then decompose Ã1

as in (4.18). Since A− bf − λ1I is singular, so must be

(A− bf − λ1I)Q1 =








a1 × · · ·×
0
... Ri

0








(4.21)

95

where a1 depends linearly on f . Choose f1 such that a1 = 0. Using the first column x1 of Q, this
is:

eT
1 (A− λ1I)x1 − eT

1 bfx1 = 0 (4.22)

or taking f = β1x1 we have β1 = eT
1 (A− λ1I)x1/e

T
1 b. One then shows that

QH
1 (A− bf)Q1 =











λ1 × · · · · · · ×
0 × · · · · · · ×
0 ×3

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 ×n ×











(4.23)

QH
1 b =










×
×1

0
...
0










(4.24)

with ×i 6= 0 for i = 2, . . . , n. So the bottom (n− 1)× (n− 1) subsystem is again in staircase form
and the next eigenvalue can be assigned using the same procedure. �

Remarks.

1. The same algorithm was essentially derived independently by several authors in different
contexts [91, 92], [93], [73], [131, 132]. Each of these algorithms has a O(n3) complexity
but stability results are not as strong as one would like except when the eigenvalues λi are
bounded by the norm of the original matrix A [73] [131, 132].

2. The first proposed method [91, 92] does not require the explicit subtraction of λi in (4.21)
but finds Qi from implicit shift techniques. It also has an elegant implementation of these
ideas in case of complex conjugate roots, by avoiding complex arithmetic altogether.

4.2 Multi-input feedback

Very similar ideas to the above ones apply for the multi input case. The following theorem holds.
Theorem 4.2. Let (A, B) be a reachable multi input pair, then a feedback matrix F exists to

assign any desired spectrum Λ to AF
.
= A+BF . If all matrices are real then Λ must be symmetric

with respect to the real axis Λ = Λ̂. A multiple eigenvalue λ0 of AF corresponds to at most ρ1

Jordan blocks and

rank(AF − λ0I)i
> n−

i∑

j=1

ρj = n− σi

where ρi are the rank increases of the staircase form.

96

Proof. Follows from Rosenbrock’s structure theorem. [114] �

We will see that this theorem has important implications in deadbeat control. Yet in general
one does not want multiple eigenvalues since they have infinite sensitivity if associated with a same
Jordan block. A method that tries to use the degrees of freedom in this spirit, is due to Kautsky,
Nichols and Van Dooren [68]. In multi-input feedback we can minimize the sensitivity κ(λi) of
λi(AF) versus perturbations in A, B, F . Let xi and yT

i be right and left eigenvectors corresponding
to the eigenvalue λi then the sensitivity of λi equals:

κ(λi) =
‖ xi ‖2‖ yi ‖2
|yT

i xi|
. (4.25)

Only when A + BF is diagonalizable all κ(λi) are finite:

A + BF = X Λ X−1

where Λ = diag{λ1, . . . , λn}, X = [x1 | x2 | · · · | xn] and X−1 = Y T = [y1 | y2 | · · · |yn]T .

If in the above formula we choose to normalize ‖ xi ‖2= 1 then κ(λi) = ‖ yi ‖2 and a “global”
robustness measure is ‖ [κ(λ1), . . . , κ(λn)] ‖2=‖ Y ‖F . Minimizing ‖Y ‖F is then obtained by simple
updating techniques [68]. The possible choices for xi are found from the staircase form:

[
Bc Ac

]
=













0 X × × × × × × × ×
0 0 X × × × × × × ×
0 0 0 X × × × × × ×
0 0 0 0 X × × × × ×
0 0 0 0 0 0 X × × ×
0 0 0 0 0 0 0 X × ×
0 0 0 0 0 0 0 0 X ×













=

[
B1 A1

0 A2

]

, (4.26)

where B1 is of full row rank ρ1 and A2 has n − ρ1 rows. Then for each eigenvector xi of A + BF
we have

(A + BF)xi = λixi

and from the bottom n− ρ1 equations, again :

xi ∈ Si
.
= Ker(A2 − λi [0 I]). (4.27)

Computing an orthogonal basis for each Si is cheap when the pair is in staircase form and is done
via an RQ decomposition as in (4.18). This requires O(mn2) for each Si and O(mn3) for all of
them. The subsequent optimization for selecting the best xi in these spaces is of the same order of
complexity, and the feedback matrix F is then found in a similar manner to (4.20)

F = B+(A−XΛX−1). (4.28)

The following example illustrates the different methods in [68] with earlier optimization methods.
Method1 is also implemented in MATLAB in the routine place.m of the Control Toolbox.

97

Example 4.2.

Distillation column (Klein and Moore 1982)

n = 5, m = 2

A =









−0.1094 0.0628 0 0 0
1.306 −2.132 0.9807 0 0

0 1.595 −3.149 1.547 0
0 0.0355 2.632 −4.257 1.855
0 0.00227 0 0.1636 −0.1625









BT =

[
0 0.0638 0.0838 0.1004 0.0063
0 0 −0.1396 −0.206 −0.0128

]

EIG(A) = −0.07732,−0.01423,−0.8953,−2.841,−5.982

λj Method 1 Method 2/3 Method KM† Method GR‡
-0.2 1.8% 1.5% 2.5% 73%
-0.5 0.1% 0.2% 1.2% 85%
-1.0 0.2% 5.0% 0.3% 40%

-1±1i 2.4% 1.9% 3.0% 130%

†Klein and Moore (1982)

‡Gourishanker and Ramar (1976)

Percentage errors for .01% perturbation in F.

Methods GR and KM are complex optimization techniques. Methods 1, 2, 3 are simple updating
techniques based on unitary transformations. �

Another way to exploit the degrees of freedom in multi input control is to place all eigenvalues
on the same location and choose the Jordan structure. This is done in deadbeat control, which
only applies to discrete time systems. There the closed loop equation is

xk+1 = (A + BF)xk + Buk (4.29)

where we require λ(A + BF) = {0, 0, . . . , 0}. We have the following theorem in this context.
Theorem 4.3. Let ` be the size of the largest Jordan block of A + BF , then (A + BF)` = 0

and (A + BF)`+1 6= 0. This is also called the index of nilpotency [57] of A + BF .

Proof. Write down the Jordan canonical form of A + BF :

A + BF = T








J1

J`

. . .

Jk








T−1

98

where each Ji is a `i × `i matrix of the form

Ji =









0 1

0
. . .
. . . 1

0















`i

then

(A + BF)` = T






J1

. . .

Jk






`

T−1

= T






J `
1

. . .

J `
k




 T−1.

But now J `
i = 0 iff ` > `i which completes the proof. �

Achieving a small index of nilpotency has the following advantage. Define AF = A + BF then
the response of the closed loop system is

xk = Ak
F x0 + [Ak−1

F B . . . AF B B]






u0
...

uk−1




 . (4.30)

If now A`
F = 0 then only the last ` inputs uk−i for i = 1, . . . ` affect the state the xk. All inputs

previous to that do not enter into the equation (4.30) because they are “beaten to death” by the
transition matrix AF raised to a power higher than `. This property is applied in observer design
as will be shown later on. Theorem 4.2 now says that

rank(AF − λ0I)i
> n−

i∑

j=1

ρj = n− σi (4.31)

for any eigenvalue λ0 of AF . So if we want to have Ai
F = 0 at the eigenvalue λ0 = 0 then clearly

we must have

n−
i∑

j=1

ρj = 0 (4.32)

which is only possible for i = k, the last index for which ρk 6= 0. This value k happens to be the
largest controllability index of the pair (A, B) (see [65]). The following example illustrates this.

Example 4.3

Consider the pair

[A‖B] =





0 1 0 0 0

0 1 1 1 0
0 0 2 0 1





99

which is in staircase from with indices ρ1 = 2, ρ2 = 1. A has eigenvalues {0, 1, 2} and we perscribe
all λi = 0. Two feedbacks performing this are:

F1 =

[
0 1 0
0 0 2

]

, A + BF1 =





0 1
0 1

0





F2 =

[
0 1 1
0 0 2

]

, A + BF2 =





0 1
0 0

0



 .

Clearly (A + BF1) has index of nilpotency 3 while (A + BF2) has index of nilpotency 2 only. An
index of nilpotency of 1 is impossible according to (4.31). This would in fact imply (A + BF) = 0
which is easily seen to be impossible for this example. �

We thus have proven meanwhile the following Corollary to Theorem 4.2.
Corollary 4.1. The smallest index of nilpotency ` of A + BF for a reachable (A, B) pair with

staircase sizes ρi, i = 1, . . . , k is k. �

An algorithm for constructing a feedback F that achieves this is described in [134] and is based
on a preliminary reduction to staircase form. The algorithm is analogous in spirit to that of Miminis
and Paige [91, 92]. In fact, it constructs the minimum norm feedback F that achieves this deadbeat
control. The numerical stability (weak form) of this algorithm is also proven in [134].

What can be said about the sensitivity of the deadbeat control problem? According to the
results of eigenvalue sensitivity of Jordan block it should be infinite. Indeed, example 1.3 showed
that the sensitivity of an eigenvalue 0 of a Jordan block of size ` is

κ(λ, J`) = lim
δ→0

δ√
`δ1/`

=∞.

For the smallest perturbation δ, the multiple eigenvalue “explodes” in a cluster of ` eigenvalues at
the complex `-th roots δ1/` of δ.

But for the deadbeat control, the key issue is not the location of the eigenvalues, but the fact
that (A + BF)` = 0. An indication that this property is not as sensitive is that the eigenvalues of
(A + BF)` are the `-th powers of those of A + BF :

λi[(A + BF)`] = λ`
i [A + BF] ≈ δ

which thus are again of the order of δ. From this, one proves then that

lim
δ→0

‖(Aδ + BδFδ)
`‖

δ
= c

is actually bounded. As a result of this we still have that

xk = [A`−1
F B · · ·AF B B]









uk−`
...
...

uk−1









+ rk, ‖rk‖ ≈ δ

i.e., xk “essentially” depends on the last ` inputs only.

100

Figure 4.1: Perturbed eigenvalue cluster of a Jordan block.

Example 4.4.

This example takes a random 5 × 5 matrix A and 5 × 1 vector b and places a fifth order Jordan
block at 0.

format long

a=rand(5,5);b=rand(5,1);u=eye(5);v=1;

[a1,b1,k,u0,v0]=stair(a,b,u,v);

[f,u1]=deadbeat(a1,b1,k,u);

e=eig(af1)

naf5=norm(af1^5,’fro’)

e =

1.0e-03 *

-0.35497696756525 + 0.25791119622289i

-0.35497696756525 - 0.25791119622289i

0.13559429295592 + 0.41729341088988i

0.13559429295592 - 0.41729341088988i

0.43876534921829

naf5 =

3.808289238413386e-15

101

Although the absolute values of the eigenvalues are of the order of ε
1
5 it is clear that ‖A + BF‖ is

of the order of ε. �

A MATLAB code for the method constructing this minumum norm deadbeat control F from
the staircase form is given below.

function [f,u] = deadbeat(a1,b1,kr,u)

%

% DEADBEAT(A,B,K,U)

% Computes the feedback matrix F and the state-space transformation

% U such that A+B*(F*U’) is nilpotent with minimal index size(K).

%

% PS : Perform previous to this one [U,V,K,AB]=stair(A0,B0,U0,V0)

%

k=prod(size(kr));size(b1);f=zeros(ans(2),ans(1));dim=ans(1);k1=1;

for i=1:k,

dimk=dim-k1+1;k2=k1+kr(i)-1;

[ui,ar]=qr(a1(dim:-1:k1,dim:-1:k1)’);

ui=ui(dimk:-1:1,dimk:-1:1);a1(:,k1:dim)=a1(:,k1:dim)*ui;

ai=a1(k1:k2,k1:k2);bi=b1(k1:k2,:);g=-pinv(bi)*ai;

a1(:,k1:k2)=a1(:,k1:k2)+b1*g;a1(k1:dim,:)=ui’*a1(k1:dim,:);

b1(k1:dim,:)=ui’*b1(k1:dim,:);u(:,k1:dim)=u(:,k1:dim)*ui;

f(:,k1:k2)=g;k1=k2+1;

end

Remarks.

1. The sensitivity of the pole placement problem depends on what is called the solution of the
problem. Is it F the feedback matrix, or A + BF , the closed loop matrix, or Λ(A + BF)
the closed loop spectrum. In either of the three cases one can analyze the sensitivity of the
function that calculates the solution by looking at the Fréchet derivative. Bounds for this
have been derived in [87], [88], [74], [109].

2. Since the pole placement problem is so sensitive, it makes more sense to solve a robust version
of it, which is to construct F such that the eigenvalues of A + BF lie in a prescribed set
(say eigenvalues with a given decay rate). Techniques that fall in this class are H∞ control
and stability radius minimization [19], [100]. These methods typically guarantee a certain
robustness margin of the problem.

4.3 Observers

In many instances the state is not available for feedback and one has to estimate it first. This is
done via an observer, which uses the input and output of the plant to try to reconstruct its state.
The observer itself is also a dynamical system. The corresponding equations are

102

Plant

- -⊕ - - -⊕ -

-

6

?

�

?
u(.) y(.)λx(.) x(.)

A

B λ−1 C

D

Observer

- -
z(.)≈ Tx(.)

?
6

- -

Ko

Bo λ−1

�Ao

⊕







λx(·) = Ax(·) + Bu(·)
y(·) = Cx(·) + Du(·)

λz(·) = Aoz(·) + Bou(·) + Koy(·)
(4.33)

One would like asymptotic convergence of z(·) to Tx(·) so that x̂(·) .
= T−1z(·) can be used as

estimate of x(·) in some feedback design. The following theorem is due to Luenberger [80] and
gives an algebraic solution to the problem.

Theorem 4.4. Let T satisfy the equation

TA−AoT −KoC = 0. (4.34)

Then putting

Bo = TB −KoD (4.35)

we have

λ(z(·)− Tx(·)) = Ao(z(·)− Tx(·)). (4.36)

If (A, C) is observable an invertible T always exists for any choice of spectrum for Ao and conver-
gence is obtained when choosing Ao stable.

Proof. Multiply the top equation in (4.33) with T and subtract it from the bottom equation, then
eliminate y(·) using the middle equation to get

λ[z(·)− Tx(·)] = Aoz(·)− [TA−KoC]x(·)− [TB −KoD −Bo]u(·). (4.37)

103

Now use (4.34), (4.35) to simplify this and obtain (4.36). If (A, C) is observable then one can
always choose T = I and solve

Ao = A−KoC (4.38)

via pole placement. Since this is the transpose of a standard feedback problem AT
o = AT −CT KT

o

we can always stabilize Ao via appropriate choice of Ko. �

The above proof already suggests how to solve these equations. Notice that (4.34) is a nonlinear
equation in the unknowns T , Ao and Ko. Also there are less equations than unknowns so we can
choose some variables first. Two standard approaches are

1. choose T = I and solve Ao = A−KoC via pole placement

2. choose Ao stable and Ko arbitrary. Then solve for T from (4.34). Solvability of this equation
is discussed in the next section.

Once (4.34) is solved we just assign Bo as in (4.35).
The observer problem depends on the exact solution of the algebraic equations (4.34)-(4.35).

But since there are always residual errors (due to round off, or due to inaccuracies in the data A, B,
C, D), the observer equation (4.36) will not be satisfied and z(·) does not converge asymptotically
to Tx(·).

Instead, we have

λ[z(·)− Tx(·)] = Ao[z(·)− Tx(·)] + Ex(·) + Fu(·) (4.39)

where ‖E‖ and ‖F‖ are small. This is essentially a stable difference/differential equation driven
with a small input and its response will not go asymptotically to zero, but rather quickly converge
to a residual signal of norm comparable to the residual input Ex(·) + Fu(·).

In the discrete time case, one is tempted to choose Ao nilpotent, since then exact convergence
is obtained after a finite number of steps. In analogy to the results for pole placement, we have the
following result.

Corollary 4.2. Let {Ao, Bo, Ko} be an observer of the observable system {A, B, C, D}. Then
there exists a solution Ao with degree of nilpotency `, where ` is the largest observability index of
the pair (A, C). No observer can reconstruct xk exactly after less time instants than `. �

The following example illustrates this.

Example 4.5.

Let the system {A, B, C, D} be given by:

[
A B

C D

]

=









0 0 0 1 0
1 1 0 0 1
0 1 2 0 0

0 1 0 0 0
0 0 1 0 0









.

The observer problem has a solution

T = I3, Ao =





0 0 0
1 0 0
0 0 0



 , Ko =





0 0
1 0
1 2



 , Bo = B

104

Ao is nilpotent with degree of nilpotency 2, i.e. A2
o = 0. We should have convergence after 2 steps,

independently of the starting vector z0. Start the observer with zero initial state z0, and let the
plant be governed by:

x0 =





1
1
1



 ; u0 =

[
1
0

]

; u1 =

[
0
1

]

Then at step k = 0 we have:

x1 = Ax0 + Bu0 =





1
2
3



 , y0 = Cx0 + Du0 =

[
1
1

]

, z1 = Aoz0 + Bou0 + Koy0 =





1
1
3





Clearly x1 − z1 = Ao(x0 − z0) 6= 0. But at time k = 1, we have






x2 = Ax1 + Bu1 =





0
4
8





y1 = Cx1 + Du1 =

[
2
3

]

z2 = Aoz1 + Bou1 + Koy1 =





0
4
8





and z2 = x2, which is maintained for all k > 2. �

The fact that the observer equation is not exact and that the reconstructed state does not
converge asymptotically to the true state is not really harmful when the reconstructed state T −1z(·)
is used to perform feedback on the original system. To see this we embed both systems into one.







[
λx(·)
λz(·)

]

=

[
A 0

KoC Ao

] [
x(·)
z(·)

]

+

[
B

Bo + KoD

]

u(·),

y(·) =
[

C 0
]

[
x(·)
z(·)

]

+ Du(·).
(4.40)

Apply u(·) = Fx̂(·) + v(·) = FT−1z(·) + v(·):
[

λx(·)
λz(·)

]

=

[
A BFT−1

KoC Ao + (Bo + KoD)FT−1

] [
x(·)
z(·)

]

+

[
B

Bo + KoD

]

v(·)

y(·) =
[

C DFT−1
]

[
x(·)
z(·)

]

+ Dv(·).
(4.41)

Use now the observer identities to get an extended state transition matrix :

Â =

[
A BFT−1

TA−AoT Ao + TBFT−1

]

.

which, up to a similarity transformation, yields:
[

I
−T I

]

Â

[
I
T I

]

=

[
A + BF BFT−1

0 Ao

]

.

105

This equation is the extended state transition matrix of
[

λx(·)
λe(·)

]

=

[
A + BF BFT−1

0 Ao

] [
x(·)
e(·)

]

+

[
B
0

]

v(·)

y(·) = [C + DF DFT−1]

[
x(·)
e(·)

]

+ Dv(·)
(4.42)

where e(·) .
= z(·) − Tx(·) is supposed to go to zero at t → ∞. The left over system essentially

undergoes a standard feedback A + BF . If now the observer equations (4.34)(4.35) have residuals
E and F , then all matrices in (4.42) get perturbed by matrices of roughly the same norm. But
since both A + BF and Ao are stable, Â is stable as well and the perturbed Â + ∆Â will remain
stable provided ‖E‖ and ‖F‖ are not too large. This indicates the importance to use robust pole
placement techniques here for the construction of both Ao and A + BF .

4.4 Lyapunov and Sylvester Equations

Certain matrix equations arise naturally in linear control and system theory. Among those fre-
quently encountered in the analysis and design of continuous-time systems are the Lyapunov equa-
tion

AX + XAT + Q = 0, (4.43)

and the Sylvester equation

AX + XF + Q = 0. (4.44)

The appropriate discrete-time analogs are

AXAT −X + Q = 0 (4.45)

and

AXF −X + Q = 0. (4.46)

It is important to notice that all these equations are linear in the elements xij of the unknown
matrix X. So, using the vector notation

vec(X) = [X(:, 1); X(:, 2); . . . ; X(:, m)] (4.47)

for the n× n matrix X we should be able to write any of the above equation in the form

Mvec(X) = vec(Q). (4.48)

We show how to do this for the Sylvester equation (4.44) from which all others can be derived. For
this we introduce the Kroneder product of two matrices X and Y , denoted as X

⊗
Y .

In MATLAB notation Kron (X, Y) = X
⊗

Y represents the matrix

[x11 ∗ Y, x12 ∗ Y, . . . , x1m ∗ Y ;
x21 ∗ Y, x22 ∗ Y, . . . , x2m ∗ Y ;

...
xn1 ∗ Y, xn2 ∗ Y, . . . , xnm ∗ Y].

(4.49)

106

Using this notation we have an equivalent reformulation of the Sylvester equation (4.44) where we
assume A and F to be n× n and m×m, respectively.

Theorem 4.5. The Sylvester equation AX + XF + Q = 0 is equivalent to

[(Im ⊗A) + (F T ⊗ In)]vec(X) + vec(Q) = 0. (4.50)

The eigenvalues of [(Im
⊗

A) + (F T
⊗

In)] are the differences

(αi − γi) i = 1, . . . , n; j = 1, . . . , m. (4.51)

Proof. We only give a sketch of a proof here and refer to [46] for details. Clearly we have

vec(AX) + vec(XF) + vec(Q) = 0.

Now

(I ⊗A)vec(X) =








A
A

. . .

A















X(:, 1)
X(:, 2)

...
X(:, m)








=








AX(:, 1)
AX(:, 2)

...
AX(:, m)








= vec(AX)

and

(F T ⊗ I)vec(X) =







f11I . . . fm1I

...
. . .

...

f1mI . . . fmmI













X(:, 1)

...

X(:, m)







=







XF (:, 1)

...

XF (:, m)







= vec(XF)

which yields the required result. For the eigenvalue identity, one proves essentially that in an
appropriate coordinate system the matrix in (4.50) is upper triangular with the differences (4.51)
on diagonal. �

It is important to notice that such a rewrite can be done for each of the equations, by just
replacing F by AT in (4.43) and by inverting AT and F in (4.45) and (4.46). We thus have

Corollary 4.3. The equations (4.43)-(4.46) are all linear equations in the elements of X and
they have a unique solution if and only if

Λ(A) ∩ Λ(−A) = ∅ for (4.43)

Λ(A) ∩ Λ(−F) = ∅ for (4.44)

Λ(A) ∩ Λ(A−1) = ∅ for (4.45)

Λ(A) ∩ Λ(F−1) = ∅ for (4.46).

�

For the Lyapunov equation, when A is stable, the solutions of the above equations are also equal
to the reachability and observability Grammians Gr(T) and Go(T), respectively, for T = +∞ for
the system {A, B, C}:

Gr =

∫ ∞

0
etABBT etAT

dt; Go =

∫ ∞

0
etAT

CT CetAdt (4.52)

Gr =
∞∑

k=0

AkBBT (AT)k; Go =
∞∑

k=0

(AT)kCT CAk. (4.53)

107

Since A is stable in these cases one clearly satisfies the conditions of Corollary 4.2 and the solutions

AGr + GrA
T + BBT = 0; GoA + AT Go + CT C = 0 (4.54)

AGrA
T −Gr + BBT = 0; AT G− 0A−Go + CT C = 0. (4.55)

Notice that for general A, one can determine the number of stable and unstable eigenvalues of A.
We define first the inertia of a matrix as a triple of integers (s, m, u) indicating the numbers of
stable, marginal and unstable eigenvalues of that matrix. Notice that for continuous time systems
and discrete-time systems, this has a different meaning in terms of the eigenvalue locations.

Theorem 4.6. Let (A, B) be reachable and (A, C) be observable then

In(A) = In(Gr) = In(Go). (4.56)

Proof. See [58] or [38]. �

This shows the relevance of the Lyapunov equation in various types of stability tests. Another
important application is that of balancing. Suppose we have a state space model {A, B, C} with
Grammians Gr and Go, then a state space transformation {T−1AT, T−1B, CT} affects the Gram-
mians as T−1GrT

−T and T T GoT , which is sometimes called a contradgradient transformation. It
is well known that such a transformation T can be chosen to make both matrices diagonal and
equal

T−1GrT
−T = Σ = T T GoT (4.57)

which is exactly the balanced coordinate system. From (4.43) it follows that

T−1GrGoT = Σ2 (4.58)

and hence the eigenvector matrix T that diagonalizes the product GrGo is also the transformation
that balances the system {A, B, C}. This in fact only holds up to a diagonal scaling (scaling of the
eigenvectors) and is accurate only when there are no repeated eigenvalues (in this case T is defined
up to a diagonal scaling). A better way to choose T is to start from the Cholesky factorization of
Gr and Go;

Gr = L1L
T
1 ; Go = LT

2 L2 (4.59)

where L1 and L2 are both lower triangular. One then constructs the singular value decomposition
of the upper triangular matrix LT

1 LT
2 :

LT
1 LT

2 = UΣV T . (4.60)

Then, defining T = L1UΣ−1/2; T−1 = Σ−1/2V T L2 one checks that

TT−1 = L1UΣ−1V T L2 = L1(L
T
1 LT

2)−T L2 = I

and

T−1GrT
−T = Σ1/2UT L−1

1 (L1L
T
1)L−T

1 UΣ1/2 = Σ

T−1GoT
−T = Σ1/2V T L−T

2 (LT
2 L2)L

−1
2 V Σ1/2 = Σ.

108

An efficient algorithm to find the singular value decomposition of a product of two upper triangular
matrices is described in [52].

For the Sylvester equations we have already seen an application in observer design, but there
it was possible to circumvent the equation by solving a pole placement problem instead (this is in
fact also a set of linear equations in an appropriate coordinate system). The following extension to
reduced order observers does not allow to reduce the problem directly to a pole placement problem
and here we have indeed to solve a Sylvester equation where T is nonsquare.

Theorem 4.7. Let
{

λx = Ax + Bu
y = Cx + Du

(4.61)

be a plant with unknown state. Then the reduced order observer of state dimension n−m

λz = Aoz + Bou + Koy (4.62)

satisfies the error equation

λ(z − Tx) = Ao(z − Tx) (4.63)

provided
{

TA−AoT −KoC = 0
TB −Bo −KoD = 0

. (4.64)

If (A, C) is observable then (4.64) always has a solution where Ao is stable and
[

T
C

]
invertible. �

In order to solve the above equations one actually does not use the system of linear equations
because that involves m× n equations in m× n unknowns and would require typically O(m3 · n3)
operations. Instead one performs unitary transformations U and V on the matrices A and F :

Au = UHAU ; Fv = V HFV (4.65)

resulting in

AuXuv + XuvFv + Quv = 0 (4.66)

where

Xuv = UHXV ; Quv = UHQV. (4.67)

Notice that because unitary transformations were chosen, the sensitivity of the problem has not
changed. We now choose U and V appropriately such that the equation (4.66) is easy to solve.
In [7] it is recommended to take Au in upper Schur form and Fv in lower Schur form. Once this is
chosen one can partition the system as follows:

[
A11 a12

0 α22

] [
X11 x12

x21 x22

]

+

[
X11 x12

x21 x22

] [
F11 0

f21 γ22

]

+

[
Q11 q12

q21 q22

]

= 0.

From this we find

(α22 + γ22)x22 + q22 = 0 (4.68)

109

which has a solution if a22 + γ22 6= 0 (notice that α22 and γ22 are eigenvalues of A and F , respec-
tively). Then we find

x21(α22I + F11) = q21 − x22f21 (4.69)

(A11 + γ22I)x12 = q12 − x22a21 (4.70)

which again is solvable if −α22 is not an eigenvalue of F and −γ22 is not and eigenvalue of A. From
here on we can then perform the same procedure recursively until all of X is determined.

The complexity of this algorithm is O(n3) + O(m3) for the Schur decomposition and then of
the same order of magnitude for the subsequent backsubstitution step. The algorithm is shown to
be “weakly stable” in [44].

Remarks

1. In the case of real arithmetic, the Schur forms may have 2× 2 diagonal blocks, in which case
one may have to solve a 2× 2 subsystem in (4.68) rather than a scalar one. Also the systems
(4.69) and (4.70) will be more involved but may be solved using the Korenecker product
approach. This will not increase the order of magnitude of the complexity but will increase
its coefficient.

2. For the Lyapunov equation (4.69) and (4.70) are identical and the complexity is essentially
halved.

3. In the case of a Sylvester equation it is more economical to choose the Hessenberg form for
one of the two matrices (the largest one). The recurrence is then essentially the same for the
rest except that one has to solve Hessenberg systems at each step rather than triangular ones.
This method is explained in [44].

4. In the reduced observer problem one has in fact a quadratic equation in the unknown T , Ao

and Ko. Using the Schur form for Ao and the staircase form for (A, C) it is shown in [135]
that one of these equations is linear and can always be solved in least squares sense. Once
this solution is filled in, there is another equation that becomes linear, and this process can
be continued to solve the complete system of equations.

5. Algorithms and software for the more general Sylvester equation

A1XF T
1 + A2XF T

2 + Q = 0

and it symmetric Lyapunov counterparts

AXF T + FXAT + Q = 0

and

AXAT + FXF T + Q = 0

occur in implicit systems of difference and differential equations. Algorithms are given in [44]
and [40].

110

6. Since the Sylvester equation can be viewed as a linear equation one can compute its sensitivity.
But this implies writing a large structured matrix M and computing the condition number of
M . Simplified bounds are obtained for various special cases in the literature. For the stable
Lyapunov equation see e.g. [55]. Relatively cheap “black box” condition estimators can be
obtained using a few multiplications with the structured matrix M .

4.5 Algebraic Riccati Equation

We consider the ARE as it occurs in the optimal control problem. The equation for the Kalman
filter are dual and essentially the same techniques hold there as well. The equations considered now
are thus in continuous time:

PA + AT P − PBR−1BT P + Q = 0 (4.71)

and in discrete time:

P = AT [P − PB(R + BT PB)−1BT P]A + Q
= AT [P−1 + BR−1BT]−1A + Q.

(4.72)

We first consider the continuous time problem and leave the discrete time case for later since it
merely consists of transforming all techniques for the continuous time case to the analogous discrete
time problem.

The origin of the ARE for the continuous time problem is the solution of the optimal feedback
u = Fx minimizing the functional (where we assume Q > 0, R > 0):

J =

∫ ∞

0
{xT (t)Qx(t) + uT (t)Ru(t)}dt

subject to ẋ(t) = Ax(t) + Bu(t); x(0) = x0.

Theorem 4.8. If A, B is reachable then the optimal cost will be bounded. Otherwise there
always exist an initial state x0 which can make the cost unbounded if Q > 0. �

Proof. If A, B is reachable then there exists a feedback F0 such that

u(t) = F0x(t); ẋu = (A + BF0)xu; xu(0) = x0

and then

J0 =

∫ ∞

0
xT

u (t)[Q + F T
0 RF0]xu(t)dt

=

∫ ∞

0
xT

0 e(A+BF0)T t(Q + F T
0 RF0)e

(A+BF0)tx0dt

6 ‖x0‖22
∥
∥
∥
∥

∫ ∞

0
e(A+BF0)T t(Q + F T

0 RF0)e
(A+BF0)tdt

∥
∥
∥
∥

2

= c‖x0‖22

where c is bounded. The “optimal” solution J∗ is thus bounded from above by c‖x0‖22 and since
R > 0, Q > 0, J is always positive. So J∗ is clearly bounded. If (A, B) is not reachable, there
exist an initial state x0 (with a nonzero component along unreachable eigenvalue/eigenvector pairs)
which will make the cost factor xT (t)Qx(t) grow unbounded if Q > 0. �

111

It is thus natural to assume (A, B) reachable. In a dual manner (A, C) observable is typically
assumed for the Kalman filter in order to ensure bounded variance for the difference x(t)− x̂(t). In
the sequel we will typically make these assumptions. We will see that this also guarantees existence
of particular solutions of the ARE.

Remark.

The conditions of reachability and observability can be weakened to those of stabilizability and
detectability [150]. �

Most of the methods that are numerically reliable and of reasonable complexity are based on
the Hamiltonian matrix

H =

[
A −BR−1BT

−Q −AT

]

(4.73)

which shows up in the state/costate equations
[

ẋ

λ̇

]

=

[
A −BR−1BT

−Q −AT

] [
x
λ

]

= H

[
x
λ

]

. (4.74)

This equation is derived from variational principles and its solution with suitable boundary condi-
tions also solves the optimal control problems (see [116] for details). The term Hamiltonian comes
from the following property.

Lemma 4.1. Let J =

[
0 I
−I 0

]

then JH = −HT J .

Proof. Premultiplying J with H we obtain JH =

[
−Q −AT

−A BR−1BT

]

which is symmetric, hence

JH = (JH)T = HT JT . Since J = −JT we have the required result. �

The above property is often referred to as H being “J symmetric” or “Hamiltonian”.
Lemma 4.2. If (λ, x) is an eigenvalue/vector pair of H then, (−λ, Jx) is an eigenvalue/vector

pair of HT .

Proof. Let Hx = λx then apply x to JH = −HT J . This yields JHx = λ(Jx) = −HT (Jx) which
is the required result. �

Corollary 4.4. If λ is an eigenvalue of H, then so is −λ, since H and HT have the same
eigenvalues.

If follows from the assumption made earlier that H has no eigenvalues on the jω axis.
Lemma 4.3. If (A, B) is reachable or (A, Q) is observable then H has no eigenvalues on the

jω-axis.

Proof. See [77]. �

The ARE is then derived from imposing λ = Px in this homogeneous differential equation.
Inserting this in (4.74) yields

[
I
P

]

ẋ = H

[
I
P

]

x. (4.75)

112

Premultiplying this with [−P, I] yields the condition

[−P I] H

[
I
P

]

x(t) = 0, ∀x(t)

from which we obtain

[−P I] H

[
I
P

]

= 0 (4.76)

which is precisely the ARE (4.71). Writing this into the matrix product

[
I 0
−P I

]

H

[
I
P I

]

.
= Ht

we find that Ht has the block form (if P = P T)

T−1HT = Ht =

[
AF −BR−1BT

0 −AT
F

]

(4.77)

with AF = A−BR−1BT P = A+BF (when defining F = −R−1BT P). This last equation amounts
to splitting the eigenvalues of H into two groups (those of AF and those of −AT

F) which appear to
be symmetric with respect to the jω-axis.

In order to get into more details of the solution method we introduce the concept of invariant
subspace at a matrix.

Definition 4.1. An invariant subspace X of a matrix A is any space X such that Ax ∈ X for
any x ∈ X . This is typically denoted by

AX ⊂ X . (4.78)

Theorem 4.8. If X is a k-dimensional invariant subspace of the n× n matrix A, then for any
basis Xnk of X , there exists a k × k matrix Â such that

AX = XÂ. (4.79)

Proof. Denote by xi the i-th column of X. Since Axi lies in the space spanned by X there exist
a column âi such that Axi = Xâi. Putting these columns together yields what we needed. �

This now leads to the following basic theorem.

Theorem 4.9. Let X be an invariant subspace of A and X1 be a basis for it. Then there exists
a “completion” of X1 to an invertible matrix X = [X1 | X2]. For each such X we have

X−1AX =

[
A11 A12

0 A22

]

. (4.80)

If we choose X to be a unitary basis U1 then the completion can always be chosen unitary: U =
[U1 | U2], UHU = I.

113

Proof. Let X1 be a basis for the invariant subspace then AX1 = X1Â for some Â. Completing
X = [X1 | X2] then yields:

X−1X =

[
Y1

Y2

]

[X1 | X2] =

[
In1 0

0 In2

]

if we partition X−1 and X conformably. Apply now X−1, X to A to get

X−1AX =

[
A11 A12

A21 A22

]

where Aij
.
= YiAXj .

But AX1 = X1Â implies A21 = Y2AX1 = Y2X1Â = 0 which yields (4.80). The rest of the theorem
is trivial. �

Remark

1. The concept of invariant subspace is a direct extension of that of eigenvector. An eigenvector
x also spans a 1 dimensional space X . It satisfies indeed

AX ⊂ X (4.81)

and there exists a scalar λ for each basis vector x of X such that

Ax = xλ. (4.82)

These are the 1 dimensional equivalents of (4.78)(4.79).

2. One shows that any space spanned by eigenvectors is an invariant subspace. Invariant sub-
spaces can be slightly more general than just that when A has Jordan blocks.

Theorem 4.10. To every solution P of the ARE there corresponds a n-dimensional invariant

subspace Im

[
I
P

]

of H. To every n-dimensional invariant subspace Im

[
X1

X2

]

of H, there

corresponds a solution P = X2X
−1
1 of the ARE, provided X1 is invertible.

Proof. The first part follows from (4.77) since it implies

H

[
I
P

]

=

[
I
P

]

AF .

The second part follows from

H

[
X1

X2

]

=

[
X1

X2

]

Ĥ.

If we assume X1 invertible, then we have

H

[
I
P

]

=

[
I
P

]

X1ĤX−1
1

.
=

[
I
P

]

AF

114

which is a solution to the ARE. �

One shows easily that the eigenvalues of H are symmetric with respect to the jω axis and
that every decomposition of the type (4.77) corresponds to a real symmetric solution P , while
Theorem 4.5 in fact holds for general P .

Finding the real symmetric solution to the ARE amounts to finding groupings of eigenvalues in
two sets that are symmetric to each other (with respect to the jω axis). The solution P0 of interest
in optimal control is that which selects all the stable eigenvalues.

-4 -3 -2 -1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.2: Eigenvalue pattern of a Hamiltonian matrix

A simple explanation for this is that AF in

H

[
I
P

]

=

[
I
P

]

AF

is then stable and this is also the closed loop matrix in the optimal regulator. All this leads to the
following construction of the stablizing solution of the ARE.

Theorem 4.11. Let

UHHU =









h11 × . . . ×
. . .

. . .
...

. . . ×
h2n,2n









=

[
H11 H12

0 H22

]

(4.83)

be the Schur decomposition of the Hamiltonian matrix H, where we ordered the eigenvalues hii of
H such that h11, . . . , hn,n are stable and the others unstable. Then partitioning U as

U =

[
U11 U12

U21 U22

]

(4.84)

115

we have that

P0 = U21U
−1
11

is the stablizing solution of the ARE. �

Remarks

1. We have assumed that H has no eigenvalues on the jω-axis. One shows that they can in
fact only occur when the conditions of reachability and observability are violated. Under the
same conditions one shows that P0 is the only positive definite solution of the ARE.

2. The QR algorithm for finding the Schur decomposition with reordered eigenvalues is backward
stable. Its complexity is O(n3) even with reordering (which implies updating U as well). [46]
[124].

3. The inversion of U11 is O(n3) and can be done in a stable manner as well but the concatenation
of both steps has not been proved to be stable, although experience shows this is a very reliable
method.

4. The sensitivity of the decomposition (4.83) is well known. It is shown in [122] that the
invariant subspace (and any orthogonal basis for it) has sensitivity

κ

([
U11

U21

])

= 1/ sep (H11, H22)

where sep (H11, H22) is “essentially” the minimum distance between the eigenvalues of H11

and H22. In other words, when eigenvalues occur very close to the jω axis, the solution to
the Riccati equation will be very sensitive.

5. The inversion of U11 depends more on the controllability of the system. When the system
is poorly controllable, U11 is badly conditioned and P will have a large norm. This is to be
expected since in order to stabilize A + BF = A − BR−1BT one requires a large feedback
gain. The bad conditioning of U11 will also affect the sensitivity of P .

6. When all matrices are real, P is also real and it should be computed using the real Schur
form which is a variant of (4.83) with possibly 2× 2 diagonal blocks in H11 and H22.

We now give similar results for the discrete time Riccati equation, without giving new proofs
since they are all similar. The problem is to minimize the functional

{

J =
∑∞

0 xT
k Qxk + uT

k Ruk

subject to xk+1 = Axk + Buk, x0 given

Stabilizability is again needed to have a bounded solution for all x. From variational calculus [116],
one obtains the equations

[
xk+1

λr

]

=

[
A −BR−1BT

Q AT

] [
xk

λk+1

]

116

or also

[
I BR−1BT

0 AT

] [
xr+1

λk+1

]

=

[
A 0
−Q I

] [
xk

λk

]

(4.85)

with boundary conditions specified for x0 and λ∞. This can be rewritten as

[
xk+1

λk+1

]

=

[
I BR−1BT

0 AT

] [
A 0
−Q I

]

︸ ︷︷ ︸

S

[
xk

λk

]

= S

[
xk

λk

]

(4.86)

Theorem 4.12. The matrix S in (4.86) satisfies SJST = J and is called sympletic.

Proof. One needs to prove

[
A 0
−Q I

]

J

[
AT −Q
0 I

]

=

[
I BR−1BT

0 AT

]

J

[
I 0

BR−1BT A

]

but

both sides equal

[
0 A
−AT 0

]

which proves the result. �

Notice that we then also have ST JS = J since

(ST J)SJST (JST)−1 = (ST J)J(JST)−1 = J.

We then have

Lemma 4.4. If λ is an eigenvalue of S then λ−1 is an eigenvalue of ST .

Proof. Similar to Hamiltonian. �So the eigenvalues lie in a symmetric fashion with respect to
the unit circle. The figure 4.3 was in fact generated via random matrices as follows :

a=randn(5);q=randn(5);q=q*q’;z=zeros(5,5);e=eye(5);b=rand(5,2);

l=eig([a z ;-q e],[e b*b’;z a’])

plot(real(l),imag(l),’x’,cos([0:30]*pi/15),sin([0:30]*pi/15),’--’)

As in the continuous time case we have a lemma ruling out eigenvalues of S on the unit circle.

Lemma 4.5. If (A, B) is reachable or (A, Q) is observable, then S has no eigenvalues on the
unit circle.

Proof. See [105]. �

One way to see the relation of this eigenvalue problem with the original ARE (4.72) is to
rewrite it as a quadratic equation in P by getting rid of the inversion in (4.72). Multiply the
bottom equation by [P−1 + BR−1BT]A−T on the left to obtain

(P−1 + BR−1BT)A−T (P −Q)−A = 0

and after another multiplication with P and some regrouping:

−A−T Q− P (BR−1BT A−T Q + A) + A−T P + PBR−1BT A−T P = 0

117

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 4.3: Eigenvalue pattern of a symplectic matrix

which is

[−P I]

[
A + BR−1BT A−T Q −BR−1BT A−T

−AT Q A−T

] [
I
P

]

= 0. (4.87)

Since the matrix in the middle is in fact S:

S =

[
I BR−1BT

0 AT

]−1 [
A 0
−Q I

]

=

[
A + BR−1BT A−T Q −BR−1BT A−T

−A−T Q A−T

]

(4.88)

we see that the discrete time ARE is again equivalent to finding an invariant subspace of a matrix S,
which this time is symplectic instead of Hamiltonian. We now show that underlying this eigenvalue
problem, there is a generalized eigenvalue problem which ought to be solved instead. Notice that
when A is singular, the matrix S does not exist, whereas the matrices

E =

[
I BR−1BT

0 AT

]

; F =

[
A 0
−Q I

]

(4.89)

do exist. So the question arises if we can formulate definitions of eigenvalues, eigenvectors and
invariant subspaces of S = E−1F directly in terms of E and F , without having to invert E.

It is easy to see that the definition of eigenvalue and eigenvector of E−1F :

det(λiI − E−1F) = 0; (λiI − E−1F)xi = 0 (4.90)

is equivalent to

det(λiE − F) = 0; (λiE − F)xi = 0 (4.91)

when E is invertible. The important point here is that definition (4.91) even exists when E is
singular and is well defined when det(λE − F) 6= 0. When this last condition is met the pencil

118

λE−F is called regular. The concept of an invariant subspace X of E−1F now generalizes to that
of a deflating subspace [122] of λE − F as follows.

Definition 4.2. A deflating subspace X of a regular matrix pencil λE − F is any subspace X
such that

dim(EX + FX) = dimX . (4.92)

�

Notice that if E is invertible then dim(EX +FX) = dim(X +E−1FX) and hence (4.92) implies
then

E−1FX ⊂ X .

The matrix decomposition of Theorem 4.5 also carries over to generalized eigenvalue problems.
Theorem 4.13. If X is a k-dimensional deflating subspace of the n×n regular pencil λE−F ,

then for any basis Xnk of X , there exist k × k matrices Ê and F̂ and a matrix Ynk such that

EX = Y Ê; FX = Y F̂ . (4.93)

Proof. Let Y be a basis for Y = EX + FX then the above equations just express that EX ⊂ Y
and FX ⊂ Y. But this is precisely expressed by the matrix equations (4.93), which proves the
result. �

This now again leads to a block triangular decomposition.
Theorem 4.14. Let X be a deflating subspace of a regular pencil λE−F and let X1 be a basis

for X and Y1 a basis for Y = EX + FX . Then there exist completions of X1 and Y1 to invertible
matrices X = [X1 | X2] and Y = [Y1 | Y2]. For each such matrices X and Y we have

Y −1EX =

[
E11 E12

0 E22

]

; Y −1FX =

[
F11 F12

0 F22

]

. (4.94)

If the bases X1 and Y1 are chosen unitary then the completions can also be chosen unitary.

Proof. Define Z as the inverse of Y and partition it as follows

ZY =

[
Z1

Z2

]

[Y1 | Y2] =

[
In1

In2

]

. (4.95)

What ought to be the E21 and F21 blocks in (4.94) equal then

E21 = Z2EX1, F21 = Z2FX1.

But Theorem 4.5 implies that EX1 = Y1Ê, FX1 = Y1F̂ . Filling this in we then have

E21 = Z2Y1Ê = 0; F21 = Z2Y1F̂ = 0

because of (4.95). The orthogonal completions are trivial. �

Because of the similarities with the continuous time case we state the following theorem without
proof.

119

Theorem 4.15. To every solution P of the discrete time ARE there corresponds an n-

dimensional deflating subspace of λE − F . To every n-dimensional deflating subspace Im

[
X1

X2

]

of λE − F , there corresponds a solution P = X2X
−1
1 of the discrete time ARE, provided X1 is

invertible.

Proof. See [105]. �

Just as in the standard eigenvalue problem, one constructs deflating subspaces from the gener-
alized Schur form of a regular pencil λE − F .

Theorem 4.16. Let

QHEU =









`11 × . . . ×
. . .

. . .
...

. . . ×
e2n,2n









=

[
E11 E12

0 E22

]

,

QHFU =









f11 × . . . ×
. . .

. . .
...

. . . ×
f2n,2n









=

[
F11 F12

0 F22

]

, (4.96)

be the generalized Schur decomposition of the simpletic pencil λE − F , where we ordered the
generalized eigenvalues fii/eii such that the first n ones are stable and the others unstable. Then
partitioning U as

U =

[
U11 U12

U21 U22

]

we have that

P0 = U21U
−1
11

is the stabilizing solution of the discrete time ARE. �

Remarks

1. The QZ algorithm with reordering [96] [133] is backward stable and has complexity O(n3).
For the inversion of U11 the same comments apply as for the ARE. The same holds also for the
sensitivity issues of the discrete time ARE. For real pencils, there is again a real generalized
Schur from which solves the ARE in real arithmetic.

2. Just as the inversion of A and E was avoided in the discrete-time ARE, we can avoid the
inversion of R in both schemes. The generalized eigenvalue problems that occur in this context
are

λ





I 0 0
0 I 0
0 0 0



 −





A 0 B
−Q −AT 0
0 −BT −R





120

and

λ





I 0 0
0 AT 0
0 BT 0



 −





A 0 B
−Q I 0
0 0 −R





for the continuous-time and discrete-time case, respectively. In both cases one shows that
these generalized eigenvalue problems can be used for the construction of the solution of the
ARE. The major advantage of this approach is that these eigenvalue problems are formulated
directly in terms of the data of the problem, namely A, B, Q and R. This approach e.g.,
allows to solve the problem when R is singular whereas the ARE do not exit in this case [133]
[31]. Similar enlarged pencils for solving spectral factorization problems are also described in
[133]. The spirit of this approach is to solve problems directly in terms of its data whenever
possible, without reducing it to a derived problem.

3. The sensitivity of the algebraic Riccati equation has been studied in [13], [69], [75]. It is
important to see that this is different from just the perturbation analysis of eigenspaces of
the underlying Hamiltonian or symplectic pencils.

4. There is a lot of structure in the eigenvalue problems that one considers to solve the Riccati
equations. New methods were developed that exploit this structure to yield faster algorithms.
Remarkably, one can ensure at the same time that the backward error of these methods are
structured as well [9]. Moreover these methods have forward errors that are then compatible
with the sensitivity analysis of the previous point.

5. Several references address particular numerical issues of optimal control [119] and related
problems such as the singular case [86].

121

122

Chapter 5

KALMAN FILTERING

5.1 Kalman filter implementations

Since the appearance of Kalman’s 1960 paper [66], the so-called Kalman filter (KF) has been applied
successfully to many practical problems, especially in aeronautical and aerospace applications. As
applications became more numerous, some pitfalls of the KF were discovered such as the problem
of divergence due to the lack of reliability of the numerical algorithm or to inaccurate modeling of
the system under consideration [61].

In this section we reconsider the numerical robustness of existing KF’s and derive some results
giving new and/or better insights into their numerical performance. Here we investigate four “basic”
KF implementations: the Conventional Kalman Filter (CKF), the Square Root Covariance Filter
(SRCF), the Chandrasekhar Square Root Filter (CSRF) and the Square Root Information Filter
(SRIF).

We first introduce some notation. We consider the discrete time-varying linear system,

xk+1 = Akxk + Bkwk + Dkuk (5.1)

and the linear observation process,

yk = Ckxk + vk (5.2)

where xk, uk and yk are, respectively, the state vector to be estimated (∈ Rn), the deterministic
input vector (∈ Rr) and the the measurement vector (∈ Rp), where wk and vk are the process noise
(∈ Rm) and the measurement noise (∈ Rp) of the system, and, finally, where Ak, Bk, Ck and Dk

are known matrices of appropriate dimensions. The process noise and measurement noise sequences
are assumed zero mean and uncorrelated:

E{wk} = 0 , E{vk} = 0 , E{wkv
T
j } = 0 (5.3)

with known covariances:

E{wjw
T
k } = Qkδjk , E{vjv

T
k } = Rkδjk (5.4)

where E{.} denotes the mathematical expectation and Qk and Rk are positive definite matrices.

The SRF algorithms use the Cholesky factors of the covariance matrices or their inverse in
order to solve the optimal filtering problem. Since the process noise covariance matrix Qk and the

123

measurement noise covariance matrix Rk are assumed to be positive definite, the following Cholesky
factorizations exist :

Qk = Q
1/2
k [Q

1/2
k]T , Rk = R

1/2
k [R

1/2
k]T (5.5)

where the factors Q
1/2
k and R

1/2
k may be chosen upper or lower triangular. This freedom of choice

is exploited in the development of the fast KF implementations presented later. The problem is
now to compute the minimum variance estimate of the stochastic variable xk, provided y1 up to yj

have been measured:

x̂k|j = x̂k|y1,...,yj
. (5.6)

When j = k this estimate is called the filtered estimate and for j = k − 1 it is referred to as the
one-step predicted or, shortly, the predicted estimate. The above problem is restricted here to these
two types of estimates except for a few comments in the concluding remarks. Kalman filtering is a
recursive method to solve this problem. This is done by computing the variances Pk|k and/or Pk|k−1

and the estimates x̂k|k and/or x̂k|k−1 from their previous values, this for k = 1, 2, Thereby one
assumes P0|−1 (i.e. the covariance matrix of the initial state x0) and x̂0|−1 (i.e. the mean of the
initial state x0) to be given.

The Conventional Kalman Filter (CKF)

The above recursive solution can be computed by the CKF equations, summarized in the fol-
lowing “covariance form” [1]:

Re
k = Rk + CkPk|k−1C

T
k (5.7)

Kk = AkPk|k−1C
T
k [Re

k]
−1 (5.8)

Pk+1|k = Ak[I − Pk|k−1C
T
k [Re

k]
−1Ck]Pk|k−1A

T
k + BkQkB

T
k (5.9)

x̂k+1|k = Akx̂k|k−1 −Kk[Ckx̂k|k−1 − yk] + Dkuk (5.10)

This set of equations has been implemented in various forms, see [1]. An efficient implementation
that exploits the symmetry of the different matrices in (7-10) requires per step 3n3/2 + n2(3p +
m/2) + n(3p2/2 + m2) + p3/6 “flops” (where 1 flop = 1 multiplication + 1 addition). By not
exploiting the symmetry of the matrices in equations (7-10) one requires (n3/2 + n2m/2 + np2/2)
more flops. In the error analysis, it is this “costly” implementation that is initially denoted as the
CKF for reasons that are explained there. We also give some other variants that lead to further
improvements in the number of operations.

The Square Root Covariance Filter (SRCF)

Square root covariance filters propagate the Cholesky factors of the error covariance matrix
Pk|k−1:

Pk|k−1 = Sk.S
T
k (5.11)

where Sk is chosen to be lower triangular. The computational method is summarized by the
following scheme [1]:

[

R
1/2
k CkSk 0

0 AkSk BkQ
1/2
k

]

︸ ︷︷ ︸

(prearray)

.U1 =

[

R
e1/2
k 0 0
Gk Sk+1 0

]

︸ ︷︷ ︸

(postarray)

, (5.12)

124

x̂k+1|k = Akx̂k|k−1 −GkR
−1/2
e,k (Ckx̂k|k−1 − yk) + Dkuk (5.13)

where U1 is an orthogonal transformation that triangularizes the prearray. Such a triangularization
can e.g. be obtained using Householder transformations [46]. This recursion is now initiated with
x̂0|−1 and the Cholesky factor S0 of P0|−1 as defined in (11). The number of flops needed for (12) and
(13) is 7n3/6+n2(5p/2+m)+n(p2+m2/2). In order to reduce the amount of work, we only compute
here the diagonal elements of the covariance matrix Pk+1|k, since usually diag{Pk+1|k} carries
enough information about the estimate x̂k+1|k (namely the variance of the individual components).
For this reason our operation counts differ e.g. from those of [67]. Below, we shortly discuss some
other variants that lead to further improvements in the number of operations.

The Chandrasekhar Square Root Filter (CSRF)
If the system model (1-2) is time-invariant, the SRCF described above may be simplified to

the Chandrasekhar square root filter, described in [98], [64]. Here one formulates recursions for the
increment of the covariance matrix, defined as:

inc.Pk = Pk+1|k − Pk|k−1 (5.14)

In general this matrix can be factored as:

inc.Pk = Lk.

[
In1 0
0 −In2

]

︸ ︷︷ ︸

Σ

.LT
k (5.15)

where the rank of inc.Pk is n1 + n2 and Σ is called its signature matrix. The CSRF propagates
recursions for Lk and x̂k+1|k using [98]:

[

R
e1/2
k−1 CLk−1

Gk−1 ALk−1

]

︸ ︷︷ ︸

(prearray)

.U2 =

[

R
e1/2
k 0
Gk Lk

]

,

︸ ︷︷ ︸

(postarray)

(5.16)

x̂k+1|k = Ax̂k|k−1 −GkR
−1/2
e,k (Cx̂k|k−1 − yk) + Duk (5.17)

with L0ΣLT
0 = P1|0 − P0|−1. Here U2 is a Σp - unitary transformation, i.e. U2ΣpU

T
2 = Σp with

Σp =

[
Ip 0
0 Σ

]

(5.18)

Such transformations are easily constructed using “skew Householder” transformations (using an
indefinite Σp-norm) and require as many operations as the classical Householder transformations
[98]. For this implementation the operation count is (n1 + n2)(n

2 + 3np + p2) flops.

The Square Root Information Filter (SRIF)
The information filter accentuates the recursive least squares nature of filtering [10][1]. The

SRIF propagates the Cholesky factor of P−1
k|k using the Cholesky factor of the inverses of the

process- and measurement noise covariance matrices:

P−1
k|k = T T

k .Tk (5.19)

125

Q−1
k = [Q

−1/2
k]T .Q

−1/2
k (5.20)

R−1
k = [R

−1/2
k]T .R

−1/2
k (5.21)

where the right factors are all chosen upper triangular. We now present the Dyer & McReynolds
formulation of the SRIF (except for the fact that the time and measurement updates are combined
here as in [1]) which differs from the one presented by Bierman (see [10] for details). One recursion
of the SRIF algorithm is given by [1]:

U3.






Q
−1/2
k 0 0

TkA
−1
k Bk TkA

−1
k Tkx̂k|k

0 R
−1/2
k+1 Ck+1 R

−1/2
k+1 yk+1






︸ ︷︷ ︸

(prearray)

=






Q
e−1/2
k+1 ? ?

0 Tk+1 ξ̂k+1|k+1

0 0 rk+1






︸ ︷︷ ︸

(postarray)

(5.22)

and the filtered state estimate is computed by,

x̂k+1|k+1 = T−1
k+1ξ̂k+1|k+1 + Dkuk (5.23)

An operation count of this filter is 7n3/6+n2(p+7m/2)+n(p2/2+m2) flops. Here we did not
count the operations needed for the inversion and/or factorization of Qk, Rk and Ak (for the time-
invariant case e.g. these are computed only once) and again (as for the SRCF) only the diagonal
elements of the information matrix P−1

k|k are computed at each step.
Variants of the above basic KF implementations have been developed which mainly exploit some

particular structure of the given problem in order to reduce the amount of computations. E.g. when
the measurement noise covariance matrix Rk is diagonal, it is possible to perform the measurement
update in p scalar updates. This is the so-called sequential processing technique, a feature that is
exploited by the UDUT -algorithm to operate for the multivariable output case. A similar processing
technique for the time update can be formulated when the process noise covariance matrix Qk is
diagonal, which is then exploited in the SRIF algorithm. Notice that no such technique can be used
for the CSRF. The UDUT -algorithm also saves operations by using unit triangular factors U and
a diagonal matrix D in the updating formulas for which then special versions can be obtained [10].
By using modified Givens rotations [42] one could also obtain similar savings for the updating of
the usual Cholesky factors, but these variants are not reported in the sequel.

For the time-invariant case, the matrix multiplications and transformations that characterize the
described KF implementations can be made more efficient when the system matrices {A, B, C} are
first transformed by unitary similarity transformations to so-called condensed form, whereby these
system matrices {At, Bt, Ct} contain a lot of zeros. From the point of view of reliability, these forms
are particularly interesting here, because no loss of accuracy is incurred by these unitary similarity
transformation [140]. The following types of condensed forms can be used to obtain considerable
savings in computation time in the subsequent filter recursions [140]: the Schur form, where At is
in upper or lower Schur form, the observer-Hessenberg form, where the compound matrix

(
AT

t , CT
t

)

126

is upper trapezoidal and the the controller-Hessenberg form, where the compound matrix (At, Bt)
is upper trapezoidal. In [140], an application is considered were these efficient implementations
are also valid for the time varying case. Note that the use of condensed forms and “sequential
processing” could very well be combined to yield even faster implementations.

The operation counts for particular mechanizations of these variants are all given in table 5.1
and indicated by respectively the “seq.”, “Schur”, “o-Hess.” and “c-Hess.” abreviations, while
“full” refers to the implementations described in previous sections where the full implementation
of the CKF exploits symmetry.

filter type complexity

CKF full (3/2)n3 + n2(3p + m/2) + n(3p2/2 + m2) + p3/6
seq. (3/2)n3 + n2(3p + m/2) + n(p2 + m2)
Schur (3/4)n3 + n2(5p/2 + m/2) + n(3p2/2 + m2) + p3/6
o-Hess. (3/4)n3 + n2(7p/2 + m/2) + n(2p2 + m2) + p3/6

SRCF full (7/6)n3 + n2(5p/2 + m) + n(p2 + m2/2)
seq. (7/6)n3 + n2(5p/2 + m) + n(m2/2)
Schur (1/6)n3 + n2(5p/2 + m) + n(2p2)
o-Hess. (1/6)n3 + n2(3p/2 + m) + n(2p2) + 2p3/3

SRIF full (7/6)n3 + n2(p + 7m/2) + n(p2/2 + m2)
seq. (7/6)n3 + n2(p + 7m/2) + n(p2/2)
Schur (1/6)n3 + n2(p + 5m/2) + n(2m2)
c-Hess. (1/6)n3 + n2(3m/2 + p) + n(m2 + p2/2)

CSRF full (n1 + n2)(n
2 + 3np + p2)

Schur (n1 + n2)(n
2/2 + 3np + p2)

o-Hess. (n1 + n2)(n
2/2 + 3np + p2)

Table 5.1: Operation counts for the different KF’s

5.2 Error analysis

In this section we analyze the effect of rounding errors on Kalman filtering in the four different
implementations described above. The analysis is split in three parts: (1) what bounds can be
obtained for the errors performed in step k, (2) how do errors performed in step k propagate
in subsequent steps and (3) how do errors performed in different steps interact and accumulate.
Although this appears to be the logical order in which one should treat the problem of error build-
up in KF, we first look at the second aspect, which is also the only one that has been studied in the
literature so far. Therefore, we first need the following lemma which is easily proved by inspection.

Lemma 1:

Let A be a square non-singular matrix with smallest singular value σmin and let E be a perturbation
of the order of δ = ‖E‖2 << σmin(A) with ‖.‖2 denoting the 2-norm. Then

(A + E)−1 = A−1 + ∆1 = A−1 −A−1EA−1 + ∆2 (5.24)

where
‖∆1‖2 6 δ/σmin(σmin − δ) = O(δ) (5.25)

‖∆2‖2 6 δ2/σ2
min(σmin − δ) = O(δ2) (5.26)

127

Notice that when A and E are symmetric, these first and second order approximations (25) and
(26) are also symmetric.

We now thus consider the propagation of errors from step k to step k + 1 when no additional
errors are performed during that update. We denote the quantities in computer with an upperbar,

i.e. P k|k−1, x̂k|k−1, Gk, Sk, T k, R
e1/2
k , F k, Kk, or Lk, depending on the algorithm.

For the CKF, let δPk|k−1 and δxk|k−1 be the accumulated errors in step k, then:

P k|k−1 = Pk|k−1 + δPk|k−1 , x̂k|k−1 = x̂k|k−1 + δx̂k|k−1 (5.27)

By using Lemma 1 for the inverse of R
e
k = Re

k + CkδPk|k−1C
T
k we find

[R
e
k]

−1 = [Re
k]

−1 − [Re
k]

−1CkδPk|k−1C
T
k [Re

k]
−1 + O(δ2) (5.28)

From this one then derives:

Kk = AkP k|k−1C
T
k R

−1
e,k

δKk = FkδPk|k−1C
T
k R−1

e,k + O(δ2)
(5.29)

where

Fk = Ak(I − Pk|k−1C
T
k R−1

e,kCk) = Ak −KkCk (5.30)

and (assuming P k|k−1 is not necessarily symmetric, which would e.g. occur when applying (9)
bluntly):

P k+1|k = Ak(P k|k−1 − P
T
k|k−1C

T
k R

−1
e,kCkP k|k−1)A

T
k + BkQkB

T
k

δPk+1|k = FkδPk|k−1F
T
k + Ak(δPk|k−1 − δP T

k|k−1)A
T
k −Ak(δPk|k−1 − δP T

k|k−1)F
T
k + O(δ2)

(5.31)
For the estimate x̂k+1|k we have:

x̂k+1|k = F kx̂k|k−1 + Kkyk + Dkuk

δx̂k+1|k = Fk[δx̂k|k−1 + δPk|k−1C
T
k R−1

e,k(yk − Ckx̂k|k−1)] + O(δ2)
(5.32)

When on the other hand δPk|k and x̂k|k are given, one derives analogously,

δPk+1|k+1 = F̃kδPk|kF̃
T
k + Ak(δPk|k − δP T

k|k)A
T
k −Ak(δPk|k − δP T

k|k)F̃
T
k + O(δ2) (5.33)

δx̂k+1|k+1 = F̃k[δx̂k|k + δPk|kA
T
k CT

k+1R
e−1
k+1(yk+1 − Ck+1Akx̂k|k)] + O(δ2) (5.34)

where F̃k = (I − Pk+1|kC
T
k+1R

e−1
k+1Ck+1)Ak has the same spectrum as Fk+1 in the time-invariant

case, since Fk+1Ak = Ak+1F̃k [38].

We thus find that when δPk|k−1 or δPk|k is symmetric, only the first term in (31) or (33) remains
and the error propagation behaves roughly as:

||δPk+1|k||2 ≈ ||Fk||22.||δPk|k−1||2 = γ2
k .||δPk|k−1||2 (5.35)

||δPk+1|k+1||2 ≈ ||F̃k||22.||δPk|k||2 = γ̃2
k .||δPk|k||2 (5.36)

128

which are decreasing in time when Fk and F̃k are contractions (i.e. when γk and γ̃k < 1). The
latter is usually the case when the matrices Ak, Bk, Ck, Qk and Rk do not vary too wildly in time
[1]. For the time-invariant case one can improve on this by saying that Fk and F̃k tend to the
constant matrices F∞ and F̃∞ respectively, with (equal) spectral radius ρ∞ < 1 and one then has
for some appropriate matrix norm [8]:

||δPk+1|k|| ≈ ρ2
∞.||δPk|k−1|| (5.37)

||δPk+1|k+1|| ≈ ρ2
∞.||δPk|k|| (5.38)

for sufficiently large k. Notice that ρ∞ is smaller than γ∞ or γ̃∞ , whence (37-38) are better bounds
than (35-36). Using this, it then also follows from (37-38) that all three errors δPk|k−1, δKk and
δx̂k|k−1 are decreasing in time when no additional errors are performed. The fact that past errors
are weighted in such a manner is the main reason why many Kalman filters do not diverge in
presence of rounding errors.

The property (35-38) was already observed before [61], but for symmetric δPk|k−1. However if
symmetry is removed, divergence may occur when Ak (i.e. the original plant) is unstable. Indeed,
from (31)(33) we see that when Ak is unstable the larger part of the error is skew symmetric:

δPk+1|k ≈ Ak.(δPk|k−1 − δP T
k|k−1).A

T
k (5.39)

δPk+1|k+1 ≈ Ak.(δPk|k − δP T
k|k).A

T
k (5.40)

and the lack of symmetry diverges as k increases. This phenomenon is well known in the extensive
literature about Kalman filtering and experimental experience has lead to a number of different
“remedies” to overcome it. The above first order perturbation analysis in fact explains why they
work :

1. A first method to avoid divergence due to the loss of symmetry when Ak is unstable, is to
symmetrize P k|k−1 or P k|k at each recursion of the CKF by averaging it with its transpose.
This makes the errors on P symmetric and hence the largest terms in (31)(33) disappear!

2. A second method to make the errors on P symmetric, simply computes only the upper (or
lower) triangular part of these matrices, such as indicated by the implementation in table 5.1.

3. A third technique to avoid the loss of symmetry is the so-called (Joseph’s) stabilized KF [11].
In this implementation, the set of equations for updating P are rearranged as follows:

Pk+1|k = FkPk|k−1F
T
k + KkRkK

T
k + BkQkB

T
k (5.41)

A similar first order perturbation study as for the CKF above, learns that no symmetrization
is required in order to avoid divergence since here the error propagation model becomes :

δPk+1|k = FkδPk|k−1F
T
k + O(δ2) (5.42)

where there are no terms anymore related to the loss of symmetry.

Since for the moment we assume that no additional errors are performed in the recursions, one
inherently computes the same equations for the SRCF as for the CKF. Therefore, starting with
errors δSk and δx̂k|k−1 equations (29),(31),(32),(35) and (37) still hold, whereby now

δPk|k−1 = Sk.δS
T
k + δSk.S

T
k + δSk.δS

T
k (5.43)

129

is clearly symmetric by construction. According to (31) this now ensures the convergence to zero
of δPk|k−1 and hence of δSk, δKk and δx̂k|k−1 if γk is sufficiently bounded in the time-varying case.

For the SRIF we start with errors δTk and δx̂k|k and use the identity

δP−1
k|k = T T

k .δTk + δT T
k .Tk + δT T

k .δTk (5.44)

δxk|k = (Tk + δTk)
−1δξ̂k|k (5.45)

to relate this problem to the CKF as well. Here one apparently does not compute x̂k+1|k+1 from x̂k|k

and therefore one would expect no propagation of errors between them. Yet, such a propagation
is present via the relation (45) with the errors on δξ̂k+1|k+1 and δξ̂k|k, which do propagate from
one step to another. This in fact is reflected in the recurrence (34) derived earlier. Since the SRIF
update is inherently equivalent to an update of Pk|k and x̂k|k as in the CKF, the equations (33)(36)
still hold where now the symmetry of δPk|k is ensured because of (44). From this it follows that

δPk|k and δx̂k|k, and therefore also δTk and δξ̂k|k, converge to zero as k increases, provided γ̃k is
sufficiently bounded in the time-varying case.

Finally, for the CSRF we start with errors δLk−1, δGk−1, δR
e1/2
k−1 and δx̂k|k−1. Because of these

errors, (16) is perturbed exactly as follows:

[

R
e1/2
k−1 + δR

e1/2
k−1 C(Lk−1 + δLk−1)

Gk−1 + δGk−1 A(Lk−1 + δLk−1)

]

.U2 =

[

R
e1/2
k + δR

e1/2
k 0

Gk + δGk Lk + δLk

]

(5.46)

where U2 is also Σp-unitary. When λ = ‖C.Lk−1‖ << ‖Re1/2
k−1 ‖ (which is satisfied when k is

sufficiently large), Lemma A.3 yields after some manipulations:

[

δR
e1/2
k−1 CδLk−1

δGk−1 AδLk−1

]

.U2 =

[

δR
e1/2
k 0

δGk δLk

]

+ O(δ.λ) (5.47)

Now the (1, 1) and (1,2) blocks of UT
2 are given by R

e−1/2
k .R

e1/2
k−1 and R

e−1/2
k .C.Lk−1.Σ, respectively.

From this, one then derives that for k sufficiently large

δR
e1/2
k = δR

e1/2
k−1 .[R

e−1/2
k .R

e1/2
k−1]T + C.δLk−1.[R

e−1/2
k .C.Lk−1.Σ]T + O(δ.λ)

= δR
e1/2
k−1 .[R

e−1/2
k .R

e1/2
k−1]T + O(δ.λ)

(5.48)

δGk = δGk−1.[R
e−1/2
k .R

e1/2
k−1]T + A.δLk−1.[R

e−1/2
k .C.Lk−1.Σ]T + O(δ.λ)

= δGk−1.[R
e−1/2
k .R

e1/2
k−1]T + O(δ.λ)

(5.49)

Here again thus the errors δR
e1/2
k−1 and δGk−1 are multiplied by the matrix [R

e−1/2
k .R

e1/2
k−1]T at each

step. When Σ is the identity matrix (i.e. when inc.Pk is non-negative) this is a contraction since
Re

k = Re
k−1 + C.Lk−1.L

T
k−1.C

T . From this, we then derive similar formulas for the propagation of

δKk and δx̂k+1|k. Using Lemma 1 for the perturbation of the inverse in Kk = Gk.R
e−1/2
k , we find:

δKk = δGk.R
e−1/2
k −Gk.R

e−1/2
k .δR

e1/2
k .R

e−1/2
k + O(δ2)

= δGk.R
e−1/2
k −Kk.δR

e1/2
k .R

e−1/2
k + O(δ2)

(5.50)

130

Using (49)(50) and the fact that for large k, Kk = Kk−1 + O(λ), we then obtain

δKk = δGk−1.[R
−1/2
e,k .R

e1/2
k−1]T .R

−1/2
e,k

−Kk−1.δR
e1/2
k−1 .[R

−1/2
e,k .R

e1/2
k−1]T .R

−1/2
e,k + O(δ.λ)

= δGk−1.R
e−1/2
k−1 .[Re

k−1.R
−1
e,k]

−Kk−1.δR
e1/2
k−1 .R

e−1/2
k−1 .[Re

k−1.R
−1
e,k] + O(δ.λ)

(5.51)

which because of (50) decremented by 1 becomes:

δKk = δKk−1.[R
e
k−1.R

−1
e,k] + O(δ.λ) (5.52)

Using (17) we then also obtain from this:

δx̂k+1|k = Fk.δx̂k|k−1 + δKk.(yk − C.x̂k|k−1) + O(δ2) (5.53)

For the same reason as above, the matrix [Re
k−1.R

−1
e,k] is a contraction when Σ = I, which guarantees

the convergence to zero of δKk and δx̂k+1|k. Notice however, that here the contraction becomes
closer to the identity matrix as k increases, which suggests that the inherent decaying of errors
performed in previous steps will be less apparent for this filter. Besides that, nothing is claimed
about δLk or δPk+1|k, but apparently these are less important for this implementation of the KF
since they do not directly affect the precision of the estimate x̂k+1|k. Moreover, when Σ is not the
identity matrix, the above matrix has norm larger than 1 and divergence may be expected. This
has also been observed experimentally.

We now turn our attention to the numerical errors performed in one single step k. Bounds for
these errors are derived in the following theorem.

Theorem 5.1.
Denoting the norms of the absolute errors due to round-off during the construction of Pk+1|k, Kk,

x̂k+1|k, Sk, Tk, P−1
k+1|k+1 and x̂k|k by ∆p, ∆k, ∆x, ∆s, ∆t, ∆pinv and ∆x, respectively, we obtain

the following upper bounds (where all norms are 2-norms):
1. CKF

∆p 6 ε1.σ
2
1/σ

2
p.‖Pk+1|k‖

∆k 6 ε2.σ
2
1/σ

2
p.‖Kk‖

∆x 6 ε3.(‖Fk‖.‖x̂k|k−1‖+ ‖Kk‖.‖yk‖+ ‖Dk‖.‖uk‖)
+∆k.(‖Ck‖.‖x̂k|k−1‖+ ‖yk‖)

2. SRCF
∆s 6 ε4.(1 + σ1/σp).‖Sk+1‖/cosφ1

∆p 6 ε5.(1 + σ1/σp).‖Pk+1|k‖/cosφ1

∆k 6 ε6/σp.(σ1/σp.‖Sk+1‖+ σ1.‖Gk‖+ ‖Sk+1‖/cosφ1)
∆x 6 ε7.(‖Fk‖.‖x̂k|k−1‖+ ‖Kk‖.‖yk‖+ ‖Dk‖.‖uk‖)

+∆k.(‖Ck‖.‖x̂k|k−1‖+ ‖yk‖)
3. CSRF

∆k 6 ε8.κ(U2)/σp.(σ1/σp.‖Lk‖+ σ1.‖Gk‖+ ‖Lk‖/cosφ2)
∆x 6 ε9.(‖Fk‖.‖x̂k|k−1‖+ ‖Kk‖.‖yk‖+ ‖D‖.‖uk‖)

+∆k.(‖C‖.‖x̂k|k−1‖+ ‖yk‖)

131

4. SRIF
∆t 6 ε10.{κ(Ak) + κ(R

1/2
k) + τ1/τm.[κ(Q

1/2
k) + κ(Ak)]}.‖Tk+1‖/cosφ3

∆pinv 6 ε11.{κ(Ak) + κ(R
1/2
k) + τ1/τm.[κ(Q

1/2
k) + κ(Ak)]}.‖P−1

k+1|k+1‖/cosφ3

∆p 6 ∆pinv.‖Pk+1|k+1‖2
∆x 6 ε12.‖Dk‖.‖uk‖

+∆t.[κ
2(Tk+1).‖rk+1‖+ κ(Tk+1).‖x̂k+1|k+1‖+ ‖rk+1‖/cosφ4]

where σi and τi are the i-th singular value of R
1/2
e,k and Q

−1/2
e,k+1 respectively, εi are constants close

to the machine precision ε and cosφi are defined as follows

cosφ1 = ‖Sk+1‖/‖ [Gk|Sk+1] ‖

cosφ2 = ‖Lk‖/‖ [Gk|Lk] ‖

cosφ3 = ‖Tk+1‖/‖
[

TkA
−1
k

R
−1/2
k+1 Ck+1

]

‖

cosφ4 = ‖rk+1‖/‖
[

ξ̂k+1|k+1

rk+1

]

‖

and are usually close to 1.

Proof: see [144] �

These bounds are crude simplifications of the complicated process of rounding errors in linear
algebra, but are often a good indication of what can go wrong in these problems (see e.g. [125] and
[130]). This will be investigated more precisely in the experimental analysis of the next section. It is
interesting to note here that the bounds derived in Theorem 5.1 disprove in a certain sense a result
that was often used to claim the numerical supremacy of the SRF’s, namely that the sensitivity
of Pk+1|k, Kk and x̂k+1|k (which according to Theorem 5.1 depends mainly on the singular values
of Re

k) as computed by the SRF’s is the square root of that of the same quantities computed via
the CKF. As far as the error analysis is concerned, this can only be claimed for Pk+1|k and not
for Kk or x̂k+1|k, as follows from a quick comparison of the CKF and the SRF’s in Theorem 5.1.
Therefore, we conclude that for situations that allow the application of the CKF, the SRF’s do
not necessarily improve the calculations of the Kalman gain or filtered estimates, although such a
behavior is often observed.

Note also that when κ(Re
k) = 1 all quantities are computed with roughly the same accuracy

in the CKF and the SRCF. This particular situation arises e.g. when appropriately scaling the
output measurements (this is also a known technique [11] to improve the performance of the CKF)
or when using the “sequential processing” technique [89], described in the introduction.

Corollary 1: The above theorem also gives bounds on the errors due to model deviations δAk,
δBk, δCk, δDk, δQk and δRk, assuming that the latter are sufficiently small, as follows. Let η
be the relative size of these errors, i.e. ‖δM‖ 6 η‖M‖ for M equal to each of the above model
matrices, then the above bounds hold when replacing the εi by numbers ηi which are now all of the
order of η.

Proof: The model errors can indeed be interpreted as backward errors on the matrices Ak, etc.,
but then on a machine of precision η. The same analysis then holds, but with ε replaced by η. �

Note that other modelling errors, such as bias errors on the input signals, discretization errors,
etc. do not fall under this category and a separate analysis or treatment is required for each of
them see e.g. [10].

132

The above theorem is now used together with the analysis of the propagation of errors through
the recursion of the KF to yield bounds on the total error of the different filters at a given step k,
which we denote by the prefix δtot instead of δ.

For this we first turn to the (symmetrized) CKF. For the total error δtotPk+1|k we then have
according to (29)(31)(33)(35) and Theorem 5.1 (for any consistent norm [123]):

‖δtotPk+1|k‖ 6 γ2
k .‖δtotPk|k−1‖+ ∆p (5.54)

‖δtotKk‖ 6 c1.γk.‖δtotPk|k−1‖+ ∆k (5.55)

‖δtotx̂k+1|k‖ 6 γk.{‖δtotx̂k|k−1‖+ c2.‖δtotPk|k−1‖}+ ∆x (5.56)

Here the upperbar on the ∆’s indicate that these are not the exact bounds of Theorem 5.1 (which
are derived under the assumption that the computations up to step k are exact), but analogous
bounds derived for the perturbed results stored in computer at step k. Under the assumption that
at step k the accumulated errors are still of the order of the local errors performed in one step (i.e.
those estimated in Theorem 5.1), one easily finds that the ∆- and ∆-quantities are O(δ2)-close to
each other. It is thus reasonable to assume that they are equal to each other. Denoting by ∆tot.
the norm of the corresponding matrix δtot. , then finally yields:





∆totPk+1|k

∆totKk

∆totx̂k+1|k



 6 γk.





γk 0 0
c1 0 0
c2 0 1



 .





∆totPk|k−1

∆totKk−1

∆totx̂k|k−1



 +





∆p

∆k

∆x



 (5.57)

where the inequality is meant elementwise. From this one then easily sees that the total errors
will remain of the order of the local errors as long as the norms γk do not remain too large for a
long period of time. This is also confirmed by the experimental results of the next section. For a
time-invariant system, γk can be replaced by ρk — if the norm is chosen appropriately as discussed
in (37) —, which then becomes eventually smaller than 1. Comparable results can also be stated
about the γk if the time variations in the model are sufficiently smooth.

Using the above inequality recursively from 0 to ∞ one finally obtains





∆totP∞

∆totK∞

∆totx̂∞



 6





1/(1− γ̂2) 0 0
c1γ̂/(1− γ̂2) 1 0

c2γ̂/((1− γ̂2)(1− γ̂)) 0 1/(1− γ̂)



 .





∆p

∆k

∆x



 (5.58)

if γ̂ < 1, where γ̂ is the largest of the γk’s. When γk tends to a fixed value γ∞ it is easily shown
that γ̂ can be replaced by γ∞ in (58), since the contributing terms to the summation are those
with growing index k. For a time-invariant system, finally, this can then be replaced by ρ∞ as was
remarked earlier, and the condition γ̂ = ρ∞ < 1 is then always satisfied.

For the SRCF, one uses the relation to the CKF (as far as the propagation of errors from one
step to another is concerned) to derive (58) in an analogous fashion, but now with ∆p, ∆k and ∆x

appropriately adapted for the SRCF as in Theorem 5.1. For the SRIF one also obtains analogously
the top and bottom inequalities of (57) for ∆p and ∆x adapted for the SRIF as in Theorem 5.1
and where now γ̂ is the largest of the γ̃k’s. Upon convergence, the same remarks hold as above for
replacing γ̂ by γ̃∞ and ρ∞. Finally for the CSRF, we can only derive from (52)(53) a recursion of
the type:

[
∆totKk

∆totx̂k+1|k

]

6

[
βk 0
c2 γk

]

.

[
∆totKk−1

∆totx̂k|k−1

]

+

[
∆k

∆x

]

(5.59)

133

where βk = ‖Re
k−1.R

−1
e,k‖2. Recursive summation of these inequalities as was done to obtain (58),

only converges here — for both ∆totK∞ and ∆totx̂∞ — when the βk increase sufficiently slow
to 1 as k grows. We remark here that these are only upper bounds (just as the bounds for the
other filters), but the fact that they may diverge does indeed indicate that for the CSRF numerical
problems are more likely to occur.

Notice that the first order analysis of this section collapses when O(δ2) and O(δ) errors become
comparable. According to lemma 1, this happens when κ(Re

k) ≈ 1/δ, but in such cases it is highly
probable that divergence will occur for all filter implementations.

5.3 Experimental evaluation of the different KF’s

We show a series of experiments reflecting the results of our error analysis. For these examples
the upper bounds for numerical round-off developed in the previous section are reasonably close
to the true error build up. The simulations are performed for a realistic flight-path reconstruction
problem, described in [145]. This analysis indicated the key relevant parameters κ(Re

k), the spectral
norm γk and spectral radius ρk = ρ(Fk), which in turn can be affected by ρ(A). For details on the
experiments, we refer to [145]. Because of the inclusion of the CSRF, only the time-invariant case
is considered here. The SRCF and the SRIF algorithms are closely related from numerical point of
view. They are therefore first compared to the CKF and secondly to the CSRF.

Comparing the SRCF/SRIF with the CKF

Two test were performed to analyze the effect of κ(Re
k) and ρ(Fk), which turn out to be very

close to κ(R) and ρ(A).

Test 1 - Fig.5.1a: (ρ(A) = 1.0 and κ(R) = 102)

Since symmetry of the error state covariance matrix P is not preserved by the CKF, the round-off
error propagation model for the local error δPk|k−1 says that divergence will occur if the original
system is unstable. This experiment confirms this also when ρ(A) = 1.0, as is the case for the
considered flight-path reconstruction problem [145]. Furthermore, it is observed from Fig.5.1a
that the error on P with the CKF is almost completely determined by the loss of symmetry

||P k|k−1 − P
T
k|k−1|| = ∆symPk|k−1. Different methods have been proposed to solve this problem.

One particular method consists in forcing a symmetric error by averaging the off-diagonal elements
of P after each recursion. The behavior of ∆totPk|k−1 for this implementation, denoted by CKF(S)
in Fig.5.1a, indicates that this implementation becomes again competitive, even when the original
system is unstable. On the other hand, the behavior of ∆totPk|k−1 for Joseph’s stabilized CKF,
denoted by (J)CKF in Fig.5.1a, confirms that the round-off errors do not diverge even when the
symmetry of P is not retained. We also observe from Fig.5.1a that the round-off error on P with
these modified CKF remains 10 times higher than the SRCF/SRIF combination.

Test 2 - Fig.5.1b: (ρ(A) = 0.9 and κ(R) = 102)

If we make the original system stable, the CKF is numerically stable. Moreover, the accuracy with
which the Kalman gain is computed is of the same order as that of the SRCF. This is in contrast
with a general opinion that SRF’s improve the calculations of the Kalman gain or filtered estimates.
We can state that they don’t make accuracy poorer. From Fig.5.1b it is observed that only the
error covariance matrix P is computed more accurately, which confirms the upperbounds for the
round-off errors obtained earlier.

134

A comparison of the (a) and (b) bounds indicates that when the accuracy of the Kalman gain
is considered no preference should exist for the SRF’s to the CKF when Ak is stable and time-
invariant. However, the experimental results demonstrate that for the latter conditions the loss of
accuracy with the CKF(S) is still higher than the SRF’s. Here we only want to draw the attention
to the clear difference to be expected (and also reflected by the experiments) between the accuracy
of Pk|k−1 and Kk in the CKF(S) implementation with respect to those of SRF filters.

Fig. 5.1 (a and b) Comparison SRCF/SRIF and CKF

Comparison SRCF/SRIF with CSRF

The upperbounds for the local errors ∆k and ∆x given in Theorem 5.1 indicate that the error
propagation is convergent when βk = ||Re

k−1.(R
e
k)

−1|| < 1, which is the case only if the signature
matrix Σ is the identity matrix I. Note that the error variation ∆totKk is now weighted by βk

(instead of γk for the other filters), which even for Σ = I becomes very close to 1 for large k. This
is also the main reason of the poor numerical behavior of this filter. When Σ 6= I (which depends
on the choice of P0|−1 6= 0) βk is larger than 1 and κ(U2) may also become large. The influence of
the choice of P0|−1 is analyzed by the following two tests.

Test 3 - Fig.5.2a: (P0|−1 6= 0, ρ(A) = 1.0 and κ(R) = 1.0)

The choice of P0|−1 6= 0 influences the CSRF implementation negatively. First, in this experiment
the computational efficiency decreases in comparison to the case P0|−1 = 0, discussed in the fol-
lowing test. This is because (n1 + n2) in table 5.1 becomes greater than p or m. This was the case
for all the tests performed with P0|−1 6= 0. Secondly, the transformations used in each recursion to
triangularize the prearray become Σ-unitary, i.e. having a condition number > 1. This is due to
the fact that inc.P0 is not definite. From Fig.5.2a, this negative effect is clearly observed. Both
the error levels on P and K are a factor 102 larger than for the SRCF or SRIF. For the covariance

135

type algorithms considered here, it is observed that the error on the Kalman gain is always higher
than the error on the state error covariance matrix. This is partly due to the extra calculation
Gk(R

e
k)

−1/2 needed for the Kalman gain, where the condition number of (Re
k)

1/2 determines the
loss of accuracy.

Test 4 - Fig.5.2b: (P0|−1 = 0, ρ(A) = 1.0 and κ(R) = 1.0)

For this case inc.P0 = B.Q.BT is positive definite, causing the transformations used in each recur-
sion to be unitary. From the experimental results in Fig.5.2b we observe that the error on P is
very small, while the error on K is much higher than for the SRCF calculations. Furthermore, the
errors on K with the CSRF increase very slowly because the coefficient βk becomes very close to 1.
Generally, the CSRF is less reliable than the SRCF/SRIF combination. For zero initial conditions
of the state error covariance matrix maximal reliability can be achieved with the CSRF. Therefore,
for situations where n >> m, the CSRF may be preferred because of its increased computational
efficiency despite its loss of accuracy. This property is obviously only valid for the time-invariant
case.

Fig. 5.2 (a and b) Comparison SRCF/SRIF and CSRF

Comparison of the SRCF and the SRIF

In the previous experiments the SRCF/SRIF combination performed equally well. In this sec-
tion a further analysis is made to compare both implementations. Theorem 5.1 says that besides
κ(Rk) and ρ(Fk), other system parameters influence the round-off error accumulation in the SRIF.
The effect of these parameters is analyzed in the following tests.

Test 5 - Fig.5.3a:

In this test very large condition numbers for A, Q and R are considered. As expected this indeed

136

causes the error on P to be much higher (a factor 103) for the SRIF than for the SRCF. As in test
2, the large value of κ(R) again causes a great loss in the accuracy of the Kalman gain calculation
in the SRCF. In this test we analyzed the deterioration of the error covariance matrix by the SRIF
implementation by (fairly unrealistic) large condition numbers. The effect of a high κ(Ak) may
influence the accuracy of the SRIF considerably.

Test 6 - Fig.5.3b:

For this test, the measurement error statistics were taken from real flight-test measurement cali-
brations resulting in Q = diag{8.10−6, 5.10−5, 5.10−8} and R = diag{5.10−2, 2.10−1}. In Fig.5.3b
the simulated error ∆totx on the state calculations is plotted for both filter implementations. Here,
the error level with the SRIF is significantly higher than that for the SRCF, while P is computed
with roughly equal accuracy. This is due to the high condition number of Tk in the calculation of
the filtered state with the SRIF.

Fig. 5.3 (a and b) Comparison SRCF and SRIF

5.4 Comparison of the different filters

In this section we compare the different filter implementations based on the error analysis and the
simulation examples.

We first look at the time-varying case (whence excluding the CSRF). According to the error
bounds of Theorem 5.1, it appears that the SRCF has the lowest estimate for the local errors
generated in a single step k. The accumulated errors during subsequent steps is governed by the
norms γk for all three filters in a similar fashion (at least for the error on the estimate) — this
of course under the assumption that a “symmetrized” version of the CKF or the stabilized CKF
is considered. From these modifications, the implementation computing only the upper (or lower)

137

triangular part of the state error covariance matrix is the most efficient. The experiments with
the realistic flight path reconstruction problem indeed demonstrate that the CKF, the SRCF and
the SRIF seem to yield a comparable accuracy for the estimates x̂k+1|k or x̂k+1|k+1, unless some
of the “influential” parameters in the error bounds of Theorem 5.1 become critical. This is e.g.
true for the SRIF which is likely to give worse results when choosing matrices Ak, Rk or Qk that
are hard to invert. As far as Rk or Qk are concerned, this is in a sense an artificial disadvantage
since in some situations the inverses R−1

k and Q−1
k are the given data and the matrices Rk and Qk

have then to be computed. This then would of course disadvantage the SRCF. In [104] it is shown
that the problems of inverting covariances can always be by-passed as well for the SRIF as for the
SRCF. The problem of inverting Ak, on the other hand, is always present in the SRIF.

For the computational cost, the SRCF/SRIF have a marginal advantage over the CKF when
n is significantly larger then m and p (which is a reasonable assumption in general), even when
computing the upper (or lower) triangular part of P with the CKF. Moreover preference should
go to the SRCF (resp. SRIF) when p < m (resp. p > m), with slightly preference for the SRCF
when p = m. As is shown in [98], condensed forms or even the CSRF can sometimes be used in
the time-varying case as well, when e.g. only some of the matrices are time-varying or when the
variations are structured. In that case the latter two may yield significant savings in computing
time. Similarly, considerable savings can be obtained by using sequential processing [10] when
diagonal covariances are being treated (which is often the case in practice).

For the time-invariant case, the same comments as above hold for the accuracy of the CKF,
SRCF and SRIF. The fourth candidate, the CSRF, has in general a much poorer accuracy than
the other three. This is now not due to pathologically chosen parameters, but to the simple fact
that the accumulation of rounding errors from one step to another is usually much more significant
than for the three other filters. This is particularly the case when the signature matrix Σ is not
the identity matrix, which may then lead to divergence as shown experimentally.

As for the complexity, the Hessenberg forms of the SRCF and the SRIF seem to be the most
appealing candidate, except when the coefficient n1 +n2 in table 5.1 for the CSRF is much smaller
than n. This is e.g. the case when the initial covariance P0|−1 is zero, in which case the CSRF
becomes the fastest of all four filters. Although the Schur implementations of the SRCF and
SRIF are almost as fast as the Hessenberg implementations, they also have the small additional
disadvantage that the original state-space transformation U for condensing the model to Schur
form is more expensive than that for the other condensed forms and that the (real) Schur form is
not always exactly triangular but may contain some 2× 2 “bumps” on the diagonal (corresponding
to complex eigenvalues of the real matrix A). Finally, the c-Hess. form of the SRIF (given in
table 5.1) requires a more complex initial transformation U , since it is constructed from the pair
(A−1, A−1B) which also may be numerically more delicate due to the inversion of A.

As a general conclusion, we recommend the SRCF, and its observer-Hessenberg implementation
in the time-invariant case, as the optimal choice of KF implementation because of its good balance
of reliability and efficiency. Other choices may of course be preferable in some specific cases because
of special conditions that would then be satisfied.

138

Chapter 6

POLYNOMIAL VERSUS
STATE-SPACE MODELS

We have seen that there are two major classes of models for which a number of numerical algorithms
have been developed. These models are state-space models

{
λEx = Ax + Bu

y = Cx + Du
(6.1)

and polynomial models

D(λ)y = N(λ)u. (6.2)

Several algorithms were already discussed in previous chapters and it appeared clearly that
polynomial models have the advantage of speed over the state-space models. The main reason for
this is the number of parameters in the model. For a same transfer function of a given degree
n, a polynomial model typically has much less free parameters than a corresponding state-space
model. E.g., for a SISO systems a polynomial model will have 2n parameters versus (n + 1)2 for
the state-space model. This is a factor of roughly n

2 less parameter for the polynomial model. For
a m × m transfer function of degree n the corresponding numbers are roughly 2mn parameters
versus (n + m)2, which already gives a smaller advantage for polynomial models. Also when using
e.g., condensed forms these ratios have to be divided by 2. The same ratio was also observed in
the complexity of SISO polynomial algorithms versus SISO state-space algorithms: the complexity
is typically an order n smaller for polynomial algorithms. On the other hand, it was also observed
that algorithms for polynomial models may suffer from numerical instabilities whereas there exist
numerically stable algorithms for most problems formulated in state-space. This chapter analyzes
these differences in more detail and tries to answer the question when to favor a particular type of
model.

139

6.1 System Models And Transformation Groups

A system

System S
x(t)y(t)⇐= ⇐= u(t)

with m inputs and p outputs can be represented in essentially four different ways:

1) Rational transfer function

y(t) = R(λ)u(t) (6.3)

2) Polynomial fraction

D(λ)y(t) = N(λ)u(t) (6.4)

3) Generalized state-space

{
λEx(t) = Fx(t) + Gu(t)

y(t) = Hx(t) + Ju(t)
(6.5)

4) state-space

{
λx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t).

(6.6)

The corresponds between these models are found from the transfer function of each model:

R(λ) = D−1(λ)N(λ) = H(λE − F)−1G + J = C(λI −A)−1B + D. (6.7)

All these models are mathematically equivalent in the sense that they describe the same object,
namely the system S. There also exist transformation methods to derive any of the above four
models from the others ([65]). But from a numerical point of view the models are clearly not
equivalent. This follows quite easily from the types of transformations typically used in algorithms
dealing with these different models.

There are essentially two such sets of transformations

1) Unimodular transformation

P (λ) =
k∑

i=0

Piλ
i; detP (λ) = c 6= 0 (6.8)

140

2) Invertible transformations

T ; detT 6= 0. (6.9)

The first group of transformations is typically used for rational and polynomial models, the second
group is used for state-space and generalized state-space models. Both these transformation sets,
in fact, have a multiplicative group structure, which means that if M is a member of this group
then:

M ∈ G ⇒ M−1 ∈ G
M1, M2 ∈ G ⇒ M1 ·M2 ∈ G. (6.10)

When one has a transformation group then one can always define equivalence classes and canonical
forms. These canonical forms play a fundamental role in many analysis and design problems and
are therefore worth recalling. As related to the four different models we had, we briefly describe
four canonical forms for rational matrices R(λ), polynomial matrices P (λ), pencils λE − F and
monic pencils λI − A. Under unimodular transformations M(λ) and N(λ), every rational matrix
R(λ) can be transformed to the quasidiagonal form (Smith McMillan form):

M(λ)R(λ)N(λ) =









e1(λ)
f1(λ)

. . . 0
er(λ)
fr(λ)

0 0m−r,n−r









. (6.11)

Similarly, every polynomial matrix D(λ) can be transformed to a similar form (Smith form):

M(λ)D(λ)N(λ) =








e1(λ)
. . . 0

er(λ)

0 0m−r,n−r








. (6.12)

Constant transformations S, T can be used to reduce every pencil λE−F to a quasidiagonal form
(Kronecker form):

S(λE − F)T = diag{Lε1 , . . . , Lεs
, LT

η1
, . . . , Lηt

, λI −A, λN − I} (6.13)

where (i) A is in Jordan normal form, (ii) N is nilpotent and in Jordan normal form, (iii) Lk is
the k × (k + 1) bidiagonal pencil

Lk =






λ 1
. . .

. . .

λ 1






︸ ︷︷ ︸

k+1

.

Similarly, constant transformations T−1, T can be used to reduce the pencil λI − A to its quasi-
diagonal form :

T−1(λI −A)T = diag{λIki
−









αi −1
. . .

. . .

. . . −1
αi









}. (6.14)

141

It is interesting to notice that with respect to the models (6.3)-(6.6) these canonical forms all reveal
the polar structure of the transfer function, via the zeros of fi(λ) in (6.11), the zeros of ei(λ) in
(6.12), the generalized eigenvalues of λE − F in (6.13), and the eigenvalues of A in (6.14). It is
easily seen indeed that these are the values for which the transfer function (6.7) is unbounded.

6.2 Stabilized Transformations

The above canonical forms seem equivalent to each other in the sense that they define the same
invariants of the system (the poles in this case). When including numerical considerations, the
story is quite different. The group of constant invertible transformations has a subgroup of unitary
transformations:

U, UHU = I ⇒ det U 6= 0. (6.15)

This group is known to possess good properties in terms of error propagation. As a consequence
of this, one can define modified canonical forms which essentially contain the same information as
the Kronecker form and the Jordan form but which can be obtained using unitary transformations
only. These forms are, of course, the generalized Schur form of a pencil λE−F and the Schur form
of a pencil λI − A, as presented in Chapter 5. Notice that the generalized Schur form in its most
general form was, in fact, presented in Chapter 3 in connection to the computation of the zeros of
a system.

In this section we show via a simple example that the class of unimodular transformations
is unstable with respect to error propagation. Moreover, from the constraints of the algorithm
considered, it appears to be impossible to stabilize these transformations. But the same problem
can be solved using constant transformations and there of course we can restrict ourselves to unitary
ones, which will stabilize the computations.

The problem considered is that of finding the zeros of a polynomial matrix of first order. Let

P (λ) = P0 + λP1 =





0 0 δ
δ 1 0
0 δ −1



 + λ





1 0 0
0 1 0
0 0 1



 (6.16)

where we assume δ to be small.

Notice that this is in fact a monic pencil, so that the solutions of

det P (λ) = 0 (6.17)

are just the eigenvalues of −P0. We know there are stable algorithms for computing these eigenval-
ues, and moreover these eigenvalues are well conditioned when δ is small (since then P0 is close to
a diagonal matrix). We now show that the algorithm to construct the Smith form is unstable for
this algorithm. The first step of the Smith decomposition algorithm permutes a nonzero element
of minimum degree to the (1, 1) position (here we perform a permutation of rows 1 and 2)

M1(P0 + λP1) =





δ λ + 1 0
λ 0 δ
0 δ λ− 1



 .

142

Then we perform column and row operations to reduce the degree of the other elements in row 1
and column 1:

M2(λ)M1(P0 + λP1)N2(λ) =





δ 0 0
0 −λ(λ + 1)/δ δ
0 δ λ− 1





where

M2(λ) =





1 0 0
−λ/δ 1 0

0 0 1



 , N2(λ) =





1 −(λ + 1)/δ 0
0 1 0
0 0 1



 .

This is repeated until the element in (1, 1) divides all others and the rest of row 1 and column 1
is zero. Then the same procedure is repeated on the smaller dimensional matrix obtained after
deleting row 1 and column 1:

M3M2(λ)M1(P0 + λP1)N2(λ) =





δ 0 0
0 δ λ− 1
0 −λ(λ + 1)/δ δ





and

M4(λ)M3M2(λ)M1(P0 + λP1)N2(λ)N4(λ) =





δ 0 0
0 δ 0

0 0 λ(λ+1)(λ−1)+δ
δ2





where

M4(λ) =





1
1

λ(λ + 1)/δ2 1



 , N4(λ) =





1
1 −(λ− 1)/δ

1



 .

From the diagonal form one finds

det M(λ)P (λ)N(λ) = δ2

[
λ(λ + 1)(λ− 1)

δ2
+ δ

]

= λ(λ + 1)(λ− 1) + δ3

which is indeed the characteristic polynomial of the original pencil. But the algorithm to obtain
this form involved divisions by very small elements and this algorithm apparently does not show
how this could be avoided. When δ goes to zero, it is easy to see that it becomes unstable for this
reason.

6.3 State-Space Realizations Of Polynomials

We saw in Section 2.2 that to any SISO system d−1(λ)n(λ) in polynomial form there exists a
realization that is easily derived from the coefficients of the polynomial d(λ) and the first n samples

143

of the impulse response. A much simpler form is in fact given directly in terms of the coefficients
of n(λ) and d(λ) in case degree n(λ) < degree d(λ):

A =








0 1
. . .

. . .

0 1
−d0 −d1 . . . −dn−1








b =








0
...
0
1








c = [n0 n1 . . . nn−1] d = [0]

. (6.18)

A proof of this follows from the following identity:







λ −1
. . .

. . .

λ −1
d0 dn−2 λ + dn−1















1
λ
...

λn−1








=








0
0
...

d(λ)








. (6.19)

Rewriting this we find







1
λ
...

λn−1








d−1(λ) = (λI −A)−1








0
...
0
1








= (λI −A)−1b (6.20)

and hence, by just left multiplying this by the vector c:

c(λI −A)−1b = n(λ)d−1(λ). (6.21)

It is easy to see that the block version of this yields:
{

N(λ) = N0 + N1λ + · · ·+ Nn−1λ
n−1

D(λ) = D0 + D1λ + · · ·+ Dn−1λ
n−1 + Imλn (6.22)

and

Ar =








0 Im

. . .
. . .

0 Im

−D0 . . . −Dn−2 −Dn−1








, Br =








0
...
0

Im








,

Cr = [N0 . . . Nn−2 Nn−1] , Dr = [0pm] .

(6.23)

A quick look at the proof (6.19)-(6.21) shows that

Cr(λI −Ar)
−1Br + Dr = N(λ)D−1(λ) (6.24)

where the inverse D−1(λ) occurs at the right of N(λ). By duality, one shows that for realizing the
left product D−1(λ)N(λ) instead, one needs the dual formulas

A` =









0 −D0

Ip
. . .

...
. . . 0 −Dn−2

Ip −Dn−1









, B` =








N0
...

Nn−2

Nn−1








,

C` = [0 . . . 0 Ip] , D` = [0pm] .

(6.25)

144

When D(λ) is not a monic polynomial then one can not find simple state-space formulas for
D−1(λ)N(λ) but instead it is easy to find a generalized state-space realization Cg(λEg−Ag)

−1Bg +
Dg = D−1(λ)N(λ):

Ag − λEg =









−λIp −D0

Ip
. . .

...
. . . −λIp −Dn−1

Ip −Dn−1









, Bg =








N0
...

Nn−1

Nn








,

Cg = [0 . . . 0 Ip] , Dg = [0pm] .

(6.26)

where now N(λ) and D(λ) are arbitrary polynomial matrices.

Exercise 6.1

Prove that the above equations (6.26) satisfy Cg(λEg − Ag)
−1Bg + Dg = D−1(λ)N(λ) by using

similar arguments as in (6.19)-(6.21). �

Notice that the realizations (6.18), (6.22), (6.24) and not necessarily minimal. Minimality of
these realizations can be shown to be equivalent to coprimeness of the polynomials or polynomial
matrices. In the case of matrices, one defines right and left coprimeness, which are not necessarily
equivalent (see [114], [65]). Extraction of minimal realizations from these non-minimal ones can be
done in a stable manner by using staircase forms both for state-space and generalized state-space
realizations [141, 133].

6.4 Fast Versus Slow Algorithms

In this section we show a few fast algorithms using polynomial models and analyze their numerical
reliability. In the case that they are unstable, alternative slower algorithms are discussed.

A first very classical algorithm for scalar polynomials is the Euclidean algorithm for finding the
greatest common division g(λ) of two polynomials a(λ) and b(λ):

{
a(λ) = a0 + a1λ + · · ·+ akλ

k

b(λ) = b0 + b1λ + · · ·+ bkλ
k.

(6.27)

The algorithm is based on the remainder theorem

{
a(λ) = b(λ)q(λ) + r(λ)

deg r(λ) < deg b(λ).
(6.28)

Any polynomial dividing a(λ) and b(λ) clearly divides as well r(λ) and conversely, any polynomial
dividing b(λ) and r(λ) divides as well a(λ). Hence

gcd(a, b) = gcd(b, r) (6.29)

but meanwhile we are dealing with polynomials b(λ) and r(λ) of smaller degree. This is applied
recursively as follows

a1(λ) := a(λ); b1(λ) := b(λ); i = 1

145

while ri(λ) ≡ 0

ri(λ) := ri(λ)− bi(λ)qi(λ);

ai+1(λ) := bi(λ); bi+1(λ) := ri(λ); i = i + 1;

end

g(λ) = ai(λ)

From (6.29) we have

gcd(ai−1, bi−1) = gcd(ai, bi). (6.30)

When r(λ) = 0 we clearly have gcd(a, b) = b(λ), which yields the stopping criterion. This algorithm
has complexity O(n2). In order to show this we look at the “generic” case, i.e., for “random”
polynomials a(λ) and b(λ). For such polynomials the degree of ri(λ) decreases by 1 at each step,
and each polynomial division involves a quotient qi(λ) of degree 1:

ai(λ) = bi(λ)(q
(i)
0 + λq

(i)
1) + ri(λ), (6.31)

i.e., ai(λ) has degree (k − i + 1) and bi(λ) has degree (k − i). The number of flops involved in
computing ri(λ) in (6.31) is easily checked to be 2(k − i), and since this is performed at most k
steps, we have a total complexity of

k∑

i=1

2(k − 1) = k2 + o(k) (6.32)

flops. When the quotients happen to be of higher degree one shows that the complexity does in
fact not exceed this simple bound.

Remark

Since g(λ) is the gcd of a(λ) and b(λ) we have

a(λ) = â(λ)g(λ); b(λ) = b̂(λ)g(λ) (6.33)

where gcd(â, b̂) = 1. Since â(λ) and b̂(λ) are now coprime, it is well known [5] that there exist
polynomials ĉ(λ) and d̂(λ) such that

â(λ)d̂(λ)− b̂(λ)ĉ(λ) = 1. (6.34)

This identities imply

[
â(λ) ĉ(λ)

b̂(λ) d̂(λ)

] [
g(λ)

0

]

[1] =

[
a(λ)
b(λ)

]

(6.35)

where the left polynomial matrix has determinant 1. This is nothing but the Smith form of the
2× 1 polynomial matrix [a(λ), b(λ)]T . �

The above connection seems to indicate that, just as the Smith decomposition, this algorithm
must be unstable in general. This is indeed the case and polynomials of relatively low order

146

(namely 6th order) were constructed where all 16 digits get corrupted during the calculations of
the Euclidean algorithm [4].

The fact that the gcd algorithm is O(n2) can also nicely be interpreted in terms of the 2k× 2k
matrix

S2k =















a0 a1 . . . ak 0 . . . 0
b0 b1 . . . bk 0 . . . 0

0 a0 a1 . . . ak
. . .

...
0 b0 b1 . . . bk 0
...

. . .
. . .

. . .
. . .

. . . 0
0 . . . 0 a0 a1 . . . ak

0 . . . 0 b0 b1 . . . bk















(6.36)

which is also known as the Sylvester matrix (up to a row permutation). Notice that this is in fact a
block Toeplitz matrix. If the gcd g(λ) has degree ` > 0 then this matrix S2k has the factorization:

S2k =















â0 â1 . . . âk 0 . . . 0

b̂0 b̂1 . . . b̂k 0 . . . 0

0 â0 â1 . . . âk
. . .

...

0 b̂0 b̂1 . . . b̂k 0
...

. . .
. . .

. . .
. . .

. . . 0
0 . . . 0 â0 â1 . . . âk

0 . . . 0 b̂0 b̂1 . . . b̂k























g0 . . . g` 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 g0 . . . g`









(6.37)

where the inner dimension of this factorization is 2k − `. This identity is easily checked from the
polynomial equations (6.33), and it implies that the nullity (or rank defect) of S2k is at least `.
In [38], [5] it is shown that is actually equal to `. This result again links the gcd problem to that of
the rank of a matrix and therefore also to the singular values of a matrix. It then follows that the
gcd of “random” polynomials is generically 1 (or its degree 0) since S2k has generically full rank
2k. The gcd problem should thus be rephrased as follows: given two polynomials a(λ) and b(λ),
how close are they to having a nontrivial gcd g(λ) of degree larger than 0? This is answered by
looking at how close S2k is to the matrices of lower rank and hence in values singular values of S2k.

The Euclidean algorithm in fact amounts to a fast Gaussian elimination on S2k yielding the
decomposition (6.36). It is unstable because no pivoting is allowed in the algorithm and it does not
compute singular values as in fact desired. The singular value decomposition on the other hand is
slow, namely of the order of 80 k3 on the 2k×2k matrix S2k. Rank revealing factorizations of lower
complexity than the SVD approach were considered in [4] but the problem of finding a reliable and
fast algorithm for estimating how close a(λ) and b(λ) are to having a nontrivial gcd is still open.
Let us point out here that computing the roots a(λ) and b(λ) and comparing those, does not solve
this problem since roots may be badly conditioned.

147

Remark

The gcd problem is equivalent to that of finding the uncontrollable part of a corresponding realiza-
tion






1 −a0

. . .
...

1− ak−1




 , B =






b0
...

bk−1




 (6.38)

where we assumed deg b(λ) < deg a(λ) and a(λ) monic. The corresponding closeness problem here
is to find how close this (A, b) is to an uncontrollable one. �

A second problem involving polynomials for which now there exist a fast and reliable algorithm,
is that of spectral factorization. Here one starts from a polynomial (which is positive real):

z(λ) = z0 + z1λ + · · ·+ zkλ
k (6.39)

and one wants to find a polynomial

r(λ) = r0 + r1λ + · · ·+ rkλ
k (6.40)

with roots inside the unit circle, and such that

z∗(λ) + z(λ) = r∗(λ) · r(λ) (6.41)

where the notation z∗(λ) denotes the paraconjugate:

x∗(λ) = z0 + z1λ
−1 + · · ·+ zkλ

−k (6.42)

and the positive real condition implies that

Φ(λ) = z∗(λ) + z(λ) > 0 for λ = ejω. (6.43)

This problem is known to be equivalent to that of Riccati equations. The function Φ(λ) has zeros
that are symmetric with respect to the unit circle just as the eigenvalue problem of the discrete time
Riccati equation. The positive realness condition (6.43) guarantees that thee always exist a solution
r(λ) to (6.41). In fact r(λ) is the polynomial that groups all the stable zeros of Φ(λ) = Φ∗(λ).
In [146] a fast algorithm was developed to construct r(λ). It starts from an initial guess r0(λ) that
is an arbitrary stable polynomial. Then it iterates as follows:

ri+1(λ) =
ri(λ) + si(λ)

2
(6.44)

where

si∗(λ)ri(λ) + ri∗(λ)si(λ) = 2Φ(λ). (6.45)

This is in fact a Newton iteration for r0(λ). Assuming

r(λ) = ri(λ) + δ(λ) (6.46)

148

and equating

Φ(λ) = (ri∗(λ) + δ∗(λ))(ri(λ) + δ(λ)) (6.47)

we find

Φ(λ) = ri∗(λ)ri(λ) + δ∗(λ)ri(λ) + ri∗(λ)δ(λ) + δ∗(λ)δ(λ). (6.48)

Now this is a quadratic equation in δ(λ) but when we assume δ(λ) to be small (i.e., having small
coefficients), then we can approximate this well by deleting the quadratic term and solving for a
correction δi(λ) at step i:

δi∗(λ)ri(λ) + ri∗(λ)δi(λ) = Φ(λ)− ri∗(λ)ri(λ)
.
= ∆Φ(λ). (6.49)

This is obviously a Newton step for solving (6.48), and it is the same as (6.44), (6.45) by substituting

si(λ) = ri(λ) + 2δi(λ). (6.50)

The advantage of (6.45) over (6.49) is that the right hand side in (6.45) does not have to be
computed at each step. What can we say about the complexity of this scheme? First of all the
complexity of one iteration step is O(k2) where k is the order of the polynomials z(λ), ri(λ) and
Si(λ). This follows from the fact that the linear equation (6.45) has a structure related to that of
Toeplitz matrices (see [146], [76]). The number of steps involved in the iterative process is typically
very low and independent of k (say 4 or 5 steps). The reason for this is that the Newton iteration
is quadratically convergent (see [76]). So the overall algorithm is still O(n2).

The numerical accuracy of the algorithm this time is quite satisfactory. The reason for this is
that the Newton correction δi(λ) – or si(λ) – is computed at each step from the residual ∆Φ(λ)
for the current approximate solution solution ri(λ). In other words, even if δi(λ) is not computed
very accurately, this is not crucial since the next Newton step will be to evaluate ∆Φ(λ) first and
compute an additional correction from there on. It turns out that the fast solver for (6.45) may
indeed suffer from loss of accuracy, but the iterative algorithm in a sense absorbs these errors.
This of course does not guarantee that accurate results are always obtained. Indeed, the spectral
factorization problem may be poorly conditioned in which case any algorithm will yield poor results.

Because of the link of this problem to that of Riccati equations it is known that the spectral
factorization problem has a bad condition number when some of the zeros of Φ(λ) are close to
the unit circle. Because of symmetry, Φ(λ) then also has almost double zeros which have to be
separated in r(λ) and r∗(λ). It is well known that the Newton Raphson scheme, which is in fact a
special case of this algorithm also will have problems.

We note here that both the gcd problem and spectral factorization problem could have been
solved as well by just using a root finder. For the gcd of a(λ) and b(λ) one would just compute
the roots of these two polynomials and check if there are any common ones. Obviously, this will
not work in practice since roots may be sensitive to perturbations. For the spectral factorization
problem one could just find the roots of the polynomial λk. Φ(λ) and choose the stable ones to
go in the factor r(λ). This approach would destroy the symmetry in this problem and may given
an incorrect degree of r(λ) if some of the roots are close to the unit circle again. So the above
algorithm in general is more reliable.

149

6.5 Conclusion

In this chapter we showed that for polynomial models you typically tend to have a compacter
representation of your model and therefore also faster algorithms.

This is typically the case for SISO system where the model and the design/analysis algorithms
involve only two polynomials. These algorithms are then usually linked to root finding or to the
Padé, Schur or Euclidean algorithm. Each of these is O(k2) in complexity versus O(k3) for a
comparable algorithm in state-space form. The numerical stability of these algorithms on the other
hand is often questionable and has to be analyzed carefully. We showed here that the Euclidean
algorithm is unstable and showed the same for the Padéalgorithm earlier. But ideas of iterative
refinement or look ahead schemes may salvage these algorithms without sacrificing their speed. An
example of this is the look ahead Padéscheme.

For polynomial matrices the advantages are less obvious as far as complexity is concerned and
stability problems are worse. Therefore we recommend to use state-space realizations instead. E.g.
for the simple problem of finding the zeros of a polynomial matrix P (λ), the state-space approach
is still the only reliable method around [139].

150

Bibliography

[1] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorenson. LAPACK User’s Guide. SIAM, Philadelphia, PA,
1992.

[3] G. S. Axelby, A. J. Laub, and E. J. Davison. Further discussion on the calculation of transmission
zeros. Automatica, 14:403–405, 1978.

[4] P. Bailey. A theoretical analysis of greatest common divisor algorithms. Master’s thesis, University of
Illinois, Urbana, IL, 1993.

[5] S. Barnett. Polynomials and Linear Control Systems. Dekker Inc., New York, NY, 1983.

[6] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donatoand J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems: building blocks
for iterative methods. SIAM, NEED VOLUME(NEED NUMBER):NEED PAGES, NEED MONTH
1993.

[7] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C. Communications
of the ACM, 15(9):820–826, September 1972.

[8] R. Bellman. Some inequalities for the square root of a positive definite matrix. Linear Algebra and its
Applications I, pages 321–324, 1968.

[9] P. Benner, V. Mehrmann and H. Xu. A numerically stable, structure preserving method for computing
the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78:329–358, 1998.

[10] G. J. Bierman. Factorization Methods for Discrete Sequential Estimation. Academic Press, New York,
NY, 1977.

[11] G. J. Bierman and C. L. Thornton. Numerical comparison of Kalman filter algorithms—orbit deter-
mination case study. Automatica, 13(23–35), 1977.

[12] D. L. Boley. On Kalman’s procedure for the computation of the controllable/observable canonical
form. SIAM J. Control & Optimization., 18(6):624–626, November 1980.

[13] R. Byers. Numerical condition of the algebraic Riccati equation. Contemp. Math. 47:35–49, 1985.

[14] C. Brezinski. History of continued fractions and Pade approximants. Springer-Verlag, Berlin, 1991.

[15] H. Brezinski and O. Padé, editors. Librairie Scientifique et Technique A. Blanchard, Paris, 1984.

[16] A. Bultheel. Error analysis of incoming and outgoing schemes for the trigonometric moment problem.
In Van Rossum and de Bruin, editors, Lecture notes in Mathematics, pages 100–109. Springer-Verlag,
Berlin, 1980.

[17] S. Cabay and R. Meleshko. A weakly stable algorithm for padé approximants and the inversion of
hankel matrices. SIAM Matr. Anal. & Appl., 14:735–765, 1993.

151

[18] R. M. Chamberlain. An alternative view of lu factorization with partial pivoting on a hypercube
multiprocessor. In Hypercube Multiprocessors 1987: Proceedings of the Second Annual Conference on
Hypercube Multiprocessors, pages 59–575, Knoxville, TN, September 29-October 1, 1987. SIAM.

[19] M. Chilali, P. Gahinet and P. Apkarian. Robust pole placement in LMI regions. IEEE Trans. Aut.
Contr., 44(12):2257–2270, 1999.

[20] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An estimate for the condition number
of a matrix. SIAM Journal on Numerical Analysis, 16(2):368–375, April 1979.

[21] T. P. Coleman and C. F. Van Loan. Handbook for Matrix Computations. SIAM, Philadelphia, PA,
1988.

[22] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2:303–314, 1989.

[23] L. S. de Jong. Towards a formal definition of numerical stability. Numer. Math., 28:211–220, 1977.

[24] S. de Jong. Numerical aspects of the recursive realization algorithms. SIAM J. Contr. Optimiz.,
16:646–659, 1978.

[25] J.-M. Delosme and I. Ipsen. Parallel solution of symmetric positive definite systems with hyperbolic
rotations. Lin. Alg. & Appl., 77:75–111, 1986.

[26] J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat.
Comput., 11:893–912, 1990.

[27] B. Dickinson, T. Kailath, and M. Morf. Canonical matrix fraction and state-space descriptiosn for
deterministic and stochastic linear systems. IEEE Trans. Automat. Control, AC-19:656–667, December
1974.

[28] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User’s Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[29] R. Eising. Between controllable and uncontrollable. Syst. Contr. Lett., 4:263–264, 1984.

[30] L. Elsner and C. He. An algorithm for computing the distance to uncontrollability. Syst. Contr. Lett.,
17:453–464, 1991.

[31] A. Emami-Naeini and G. F. Franklin. Deadbeat control and tracking of discrete-time systems. IEEE
Trans. Automat. Control, AC-27(1):176–181, Feb 1982.

[32] A. Emami-Naeini and P. Van Dooren. Computation of zeros of linear multivariable systems. Auto-
matica, 18(4):415–430, July 1982.

[33] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical Computations.
Prentice Hall, Englewood Cliffs, NJ, 1977.

[34] G. E. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Systems. Prentice Hall,
Englewood Cliffs, NJ, 1967.

[35] J. G. F. Francis. The QR transformation I. Comput. J., 4:265–271, 1961.

[36] J. G. F. Francis. The QR transformation II. Comput. J., 4:332–345, 1962.

[37] R. Freund and H. Zha. Stable algorithms for fast triangular factorization of general Hankel and Toeplitz
matrices. To appear.

[38] F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, NY, 1960.

[39] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrix eigensystem routines–EISPACK
guide extension. Lecture Notes in Computer Science, 51, 1977. Springer-Verlag, New York.

152

[40] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler. Solution of the Sylvester matrix equation
AXBT + CXDT = E. ACM Trans. Math. Software, 18:223–231, 1992.

[41] W. M. Gentleman and H. T. Kung. Matrix triangularization by systolic arrays. In Proceedings of the
SPIE, Real Time Signal Processing IV, volume 298, pages 19–26, 1981.

[42] W. M. Gentleman. Least squares computation by Givens transformations without square roots. JIMA,
vol 12, pages 329–336, 1973.

[43] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SIAM J.
Numer. Anal., 2:205–224, 1965.

[44] G. H. Golub, S. Nash, and C. Van Loan. A Hessenberg-Schur method for the problem AX + XB = C.
IEEE Trans. Automat. Control, AC-24(6):909–913, December 1979.

[45] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numer. Math,
14:403–420, 1970.

[46] G. H. Golub and C. Van Loan. Matrix Computations, 2nd ed. Johns Hopkins University Press,
Baltimore, MD, 1989. First Edition.

[47] G. H. Golub and J. H. Wilkinson. Note on the iterative refinement of least squares solution. Numer.
Mathematik, 9:139–148, 1966.

[48] G. H. Golub and J. H. Wilkinson. Ill-conditioned eigensystems and the computation of the Jordan
canonical form. SIAM Rev., 18:579–619, 1976.

[49] G. Golub, B. K̊agström, and P. Van Dooren. Direct block tridiagonalization of single-input single-
output systems. Systems & Control Letters, 18:109–120, 1992.

[50] W. Gragg and A. Lindquist. On the partial realization problem. Linear Algebra & Applications,
50:277–319, 1983.

[51] E. Grimme, D. Sorensen, and P. Van Dooren. Mode reduction of large, sparse systems via an implicitly
restarted Lanczos method. Submitted to the 1994 American Control Conf., Baltimore, MD, 1993.

[52] M. T. Heath, A. J. Laub, C. C. Paige, and R. C. Ward. Computing the singular value decomposition
of a product of two matrices. SIAM Journal of Science Stat. Computer, 7(4):1147–1159, October 1986.

[53] D. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM Review, 20(4):740–777,
October 1978.

[54] P. Henrici. Essentials of Numerical Analysis. Wiley, New York, NY, 1982.

[55] G. Hewer and C. Kenney. The sensitivity of the stable Lyapunov equation. SIAM J. Contr. Optim.
26:321–344, 1988.

[56] B. L. Ho and R. E. Kalman. Effective construction of linear state-variable models from input/output
functions. Regelungstechnik, 14:545–548, 1966.

[57] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[58] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.

[59] A. S. Householder. The Theory of Matrices in Numerical Analysis. Dover, New York, NY, 1964.

[60] I. M. Jaimoukha and E. M. Kasenally. Oblique projection methods for large scale model reduction.
To appear, 1993.

[61] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic, New York, NY, 1970.

[62] R. L. Johnson. Numerical Methods: A Software Approach. Wiley, New York, NY, 1982.

153

[63] D. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software. Prentice Hall, Englewood Cliffs,
NJ, 1989.

[64] T. Kailath. Some new algorithms for recursive estimation in constant linear systems. IEEE Transaction
on Information Theory, IT-19(6):750–760, 1973.

[65] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[66] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans. ASME. (J. Basic
Eng.), 92D:34–45, March 1960.

[67] P. G. Kaminski, A. Bryson, and S. Schmidt. Discrete square root filtering—a survey of curren tech-
niques. IEEE Trans. Automat. Control, AC-16:727–736, December 1971.

[68] J. Kautsky, N. K. Nichols, and P. Van Dooren. Robust pole assignment in linear state feedback. Int.
J. Control, 41(5):1129–1155, 1985.

[69] C. Kenney and G. Hewer. The sensitivity of the algebraic and differential Riccati equations. SIAM J.
Contr. Optim. 28:50–69, 1990.

[70] G. Klein and B. Moore. Eigenvalue-generalized eigenvector assignment with state feedback. IEEE
Aut. Contr., AC-22:140–141, 1977.

[71] V. C. Klema and A. J. Laub. The singular value decomposition: Its computation and some applications.
IEEE Trans. Automat. Control, AC-25(2):164–76, April 1980.

[72] E. G. Kogbetliantz. Solutions of linear equations by diagonalization of coefficient matrix. Quart. Appl.
Math., 13:123–132, 1956.

[73] M. M. Konstantinov, P. H. Petkov, and N. D. Christov. Synthesis of linear systems with desired
equivalent form. J. Computat. Appl. Math., 6:27–35, 1980.

[74] M. M. Konstantinov, P. H. Petkov, and N. D. Christov. Sensitivity analysis of of the feedback synthesis
problem. IEEE Trans. Aut. Contr., 42:568–573, 1997.

[75] M. Konstantinov, P. Petkov, and D. Gu. Improved perturbation bounds for general quadratic matrix
equations. Numer. Func. Anal. Optim., 20:717–736, 1999.

[76] V. Kucera. Discrete Linear Control: The Polynomial Equation Approach. John Wiley, New York, NY,
1979.

[77] I. D. Landau. Adaptive Control: The Model Reference Approach. Marcel Dekker, New York, NY, 1979.

[78] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice Hall, Englewood Cliffs, NJ,
1974.

[79] R. E. Lord, J. S. Kowalik, and S. P. Kumar. Solving linear algebraic equations on a MIMD computer.
In Proceedings of the 1980 Int. Conf. on Parallel Proc., pages 205–210, 1980.

[80] D. G. Luenberger. Observers for multivariable systems. IEEE Trans. Automat. Control, AC-11:190–
197, 1966.

[81] F. T. Luk. A rotation method for computing the QR factorization. SIAM J. Sci. Stat. Comput.,
7:452–459, 1986.

[82] J. Makhoul. Linear prediction: a tutorial review. Proc. IEEE, 63:561–580, 1975.

[83] T. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iter-
ation. Numer. Math., 31:183–208, 1978.

[84] R. S. Martin and J. H. Wilkinson. Similarity reduction of a general matrix to Hessenburg form. Numer.
Math, 12:349–368, 1968.

154

[85] J. L. Massey. Shift register synthesis of BCH decoding. IEEE Trans. Inf. Th., IT-15:122–127, 1969.

[86] V. Mehrmann. The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and
Information Sciences. Springer-Verlag, Heidelberg, 1991.

[87] V. Mehrmann and H. Xu. An analysis of the pole placement problem I. Electr. Trans. Numer. Anal.,
4:89–105, 1996.

[88] V. Mehrmann and H. Xu. An analysis of the pole placement problem II. Electr. Trans. Numer. Anal.,
5:77–97, 1997.

[89] J. Mendel. Computational requirements for a discret Kalman filter. IEEE Trans. Automat. Control,
AC-16(6):748–758, 1971.

[90] W. Miller and C. Wrathall. Software for Roundoff Analysis of Matrix Algorithms. Academic Press,
New York, NY, 1980.

[91] G. Miminis and C. C. Paige. An algorithm for pole assignment of time invariant linear systems. Int.
J. Contr., 35:341–345, 1982.

[92] G. S. Miminis and C. C. Paige. A direct algorithm for pole assignment of time-invariant multi-input
linear systems using state feedback. Automatica, 24:343–356, 1988.

[93] P. Misra and R. V. Patel. Numerical algorithms for eigenvalue assignment by constant and dynamic
output feedback. IEEE Trans. Automat. Contr., 34:579–588, 1989.

[94] J. J. Modi. Parallel Algorithms and Matrix Computations. Oxford University Press, Oxford, England,
1988.

[95] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM
Review, 20(4):801–836, October 1978.

[96] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems. SIAM
Journal of Numerical Analysis, 10(2):241–256, April 1973.

[97] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle. On- and off-line identification of linear
state-space models. Int. J. Contr., 49:219–232, 1989.

[98] M. Morf and T. Kailath. Square-root algorithms for least squares estimation. IEEE Trans. Automat.
Control, AC-20:487–497, August 1975.

[99] C. Mullis and R. Roberts. Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans.
Circuits and Systems, CAS-23:551–562, 1976.

[100] C. Oara, R. Stefan and P. Van Dooren. Maximizing the stability radius. In Proceed. Americ. Contr.
Conf., TP06-5, pages 3035–3040, 2001.

[101] A. M. Ostrowski. On the spectrum of a one-parametric family of matrices. Journal fur die Reine und
Angewandte Mathematik, 193:143–160, 1954.

[102] C. C. Paige. Properties of numerical algorithms related to computing controllability. IEEE Trans.
Automat. Control, AC-26(1):130–138, February 1981.

[103] C. C. Paige. Practical use of the symmetric Lanczos process with reorthogonalization. BIT, 10:183–195,
1970.

[104] C. C. Paige. Covariance matrix representation in linear filtering. Special Issue of Contemporary
Mathematics on Linear Algebra and its Role in Systems Theory, AMS, 1985.

[105] T. Pappas, A. J. Laub, and N. R. Sandell, Jr. On the numerical solution of the discrete-time algebraic
Riccati equation. IEEE Trans. Automat. Control, AC-25(4):631–641, August 1980.

155

[106] B. Parlett. Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl.,
13:567–593, 1992.

[107] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[108] L. Pernebo and L. M. Silverman. Model reduction via balanced state space representations. IEEE
Trans. Automat. Control, AC-27(2):382–387, April 1982.

[109] P. Petkov, N. Christov and M. Konstantinov. Computational Methods for Linear Control Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[110] J. R. Rice. A theory of condition. SIAM J. Numer. Anal., 3:287–310, 1966.

[111] J. R. Rice. Matrix Computations and Mathematical Software. McGraw-Hill, New York, NY, 1981.

[112] J. R. Rice. Numerical Methods, Software, and Analysis. McGraw-Hill, New York, NY, 1983.

[113] J. Rissanen. Recursive identification of linear systems. SIAM J. Control, 9:420–430, 1971.

[114] H. Rosenbrock. State-space and multivariable theory. Wiley, New York, NY, 1970.

[115] Y. Saad. Numerical methods for large scale problems. Manchester Univ Press, Manchester UK, 1992.

[116] A. P. Sage and C. C. White. Optimum systems control. Prentice Hall, Englewood Cliffs, 1977.

[117] A. H. Sameh and D. J. Kuck. On stable parallel linear system solvers. J. Assoc. Comput. Mach.,
25:81–91, 1978.

[118] L. M. Silverman. Representation and realization of time-variable linear systems. PhD thesis, Columbia
University, New York, NY, 1966. Dept. El. Eng.

[119] V. Sima. Algorithms for Linear Quadratic Optimization. Marcel Dekker Inc. New York, 1996.

[120] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler.
Matrix Eigensystem Routines–EISPACK Guide, chapter 6. Springer-Verlag, New York, 2nd edition,
1976. Lecture Notes in Control and Information Sci.

[121] D. C. Sorensen. Implicit application of polynomial filters in a K-step Arnoldi method. SIAM J. Matrix
Anal. Appl., 13:357–385, 1992.

[122] G. W. Stewart. Error and perturbation bounds associated with certain eigenvalue problems. SIAM
Review, 15:727–764, 1973.

[123] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, NY, 1973.

[124] G. W. Stewart. Algorithm 506 - HQR3 and EXCHNG: Fortran subroutines for calculating and ordering
the eigenvalues of a real upper Hessenberg matrix. ACM Trans. Math. Software, 2:275–280, 1976.

[125] G. W. Stewart. On the perturbation of pseudo-inverses, projections, and linear least squares. SIAM
Rev., 19:634–662, 1977.

[126] G. W. Stewart. Rand degeneracy. SIAM J. Numer. Anal., 5:403–413, 1984.

[127] G. W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press, New York, NY, 1990.

[128] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York, NY, 1980.

[129] E. C. Y. Tse, J. V. Medanić, and W. R. Perkins. Generalized Hessenberg transformations for reduced-
order modeling of large-scale systems. Int. J. Control, 27(4):493–512, April 1978.

[130] A. van der Sluis. Stability of the solution of linear least squares problems. Numerische Mathematik,
23:241–254, 1975.

[131] P. Van Dooren. The computation of Kronecker’s canonical form of a singular pencil. Lin. Alg. Appl.,
27:103–141, 1979.

156

[132] P. Van Dooren. Computing the eigenvalues of a polynomial matrix. In Proceedings of the IBM-NFWO
Symposium, pages 213–223, Brussels, Belgium, December 1979.

[133] P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat.
Comput., 2(2):121–135, June 1981. Erratum in Vol.4, No. 4, Dec. 83.

[134] P. Van Dooren. Deadbeat control, a special inverse eigenvalue problem. BIT, 24:681–699, December
1984.

[135] P. Van Dooren. Reduced order observers: A new algorithm and proof. Systems & Control Lett.,
4:243–251, July 1984.

[136] P. Van Dooren. Comments on ‘minimum-gain minimum-time deadbeat controllers’. Systems & Control
Letters, 12:93–94, 1989.

[137] P. Van Dooren. Numerical aspects of system and control algorithms. Journal A, 30:25–32, 1989.

[138] P. Van Dooren. Upcoming numerical linear algebra issues in systems and control theory, September
1992.

[139] P. Van Dooren and P. Dewilde. The eigenstructure of an arbitrary polynomial matrix: Computational
aspects. Lin. Alg. & Appl., 50:545–580, 1983.

[140] P. Van Dooren and M. Verhaegen. On the use of unitary state-space transformations. In B. N.
Datta, editor, Linear Algebra and its Role in Linear Systems Theory, chapter 47, pages 447–463. AMS
Contemporary Mathematics Series, Providence, RI, 1985.

[141] P. M. Van Dooren. The generalized eigenstructure problem in linear system theory. IEEE Trans.
Automat. Control, AC-26(1):111–129, February 1981.

[142] C. F. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer. Anal., 14:971–981, 1977.

[143] G. Verghese, P. Van Dooren, and T. Kailath. Properties of the system matrix of a generalized state-
space system. Int. J. Control, 30(2):235–243, October 1979.

[144] M. Verhaegen and P. Van Dooren. Numerical aspects of different Kalman filter implementations. IEEE
Trans. Automat. Control, AC-31:907–917, October 1986.

[145] M. Verma. Synthesis of infinity-norm optimal linear feedback systems. PhD thesis, University of
Southern California, December 1985.

[146] Z. Vostry. New algorithm for polynomial spectral factorization with quadratic convergence. Kyber-
netika, 11:415–422, 1975.

[147] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Princeton Hall, Englewood Cliffs, NJ, 1963.

[148] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford, England, Clarendon Press, 1965.

[149] J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation , volume II. Springer-Verlag,
New York, NY, 1971.

[150] W. M. Wonham. On a matrix equation of stochastic control. SIAM J. Control, 6:681–697, 1968.

[151] D. Youla and N. Tissi. N-port synthesis via reactance extration, Pt. I. IEEE Int. Conv. Rec., 14:183–
208, 1966.

[152] H. Zeiger and A. McEwen. Approximate linear realizations of given dimension via Ho’s algorithm.
IEEE Trans. Automat. Control, AC-19:153–156, 1974.

157

