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Numerical Methods in Control

Volker Mehrmann‡ Hongguo Xu§

Abstract

We study classical control problems like pole assignment, stabiliza-
tion, linear quadratic control and H∞ control from a numerical analysis
point of view. We present several examples that show the difficulties
with classical approaches and suggest reformulations of the problems
in a more general framework. We also discuss some new algorithmic
approaches.

Keywords pole placement, linear quadratic control, stabilization H∞ con-
trol, algebraic Riccati equation, Hamiltonian matrix, skew Hamiltonian ma-
trix, two point boundary value problem
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1 Introduction

In the last 40 years systems and control theory has evolved into a mature
field that has found a stable position on the borderline between applied
mathematics, engineering and computer science. The major success is not
only due to the fact that beautiful mathematical theories (like linear alge-
bra, ring theory, representation theory and others) find direct application
but also since the results have immediately found their ways into production
code software packages like MATLAB toolboxes [55, 56] or the SLICOT sub-
routine library [13], which can be and are directly used by engineers working
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in practice. In this paper we will discuss several problems of linear control
theory, as there are pole assignment, stabilization, linear quadratic control
and H∞ control. In the solution techniques for these problems important
developments have taken place in recent years, which have lead to changes
in viewpoints in particular what the numerical solution of these problems is
concerned. In our opinion there are three central questions that need to be
studied in more detail in the context of numerical methods for the solution
of control problems and it is the aim of this paper to initiate more research
and software developments in this direction.

First of all, as is well-known, different mathematically equivalent for-
mulations of the same problem may lead to drastically different sensitivity
of the problem to perturbations (such as round-off errors) and thus it is
important to find the best formulation for numerical solution.

The second issue is that the numerical methods should reflect the phys-
ical properties of the problem in the maximal way, to get higher efficiency
but also to guarantee even in finite arithmetic that the computed results are
physically meaningful.

The third important topic is that with the growing complexity of prob-
lems, in particular in the context of large scale control problems, solution
approaches and numerical methods have to be reviewed and completely new
methods have to be developed.

We will only discuss the first two issues but large scale control problems
are currently a very important research topic.

Consider linear constant coefficient dynamical systems of the form

ẋ = Ax+Bu, x(t0) = x0, (1)

where x(t) ∈ Rn is the state, x0 is an initial vector, u(t) ∈ Rm is the control
input of the system and the matrices A ∈ Rn,n, B ∈ Rn,m are constant. The
topics that we discuss here also apply in a similar fashion to problems with
output and also to complex problems, but for the sake of brevity we only
discuss real problems.

The classical pole placement problem is to find a state feedback con-
trol law

u = Kx (2)

such that the closed loop system

ẋ = (A+BK)x (3)

has desired poles, or in linear algebra terminology, that the spectrum of the
closed loop system matrix A+BF is a given set of complex numbers. Here,



V. Mehrmann and H. Xu/J. Comput. App. Math. 123 (2000) 371 –394 3

the case of stabilization, where the closed loop poles are desired to be in
the open left half plane represents an important special case.

For a discussion of the classical theory of the pole placement problem
and related problems, we refer the reader to monographs in linear control
theory, e.g., [7, 28, 42, 45, 51, 66, 86]. In Section 2 we discuss some new
perturbation results and the resulting consequences for numerical methods.
These results indicate that the numerical solution of the classical formulation
of the pole placement problem is often and in particular for large n and small
m a highly ill-conditioned problem that should be modified.

This analysis and the resulting conclusions hold also for the stabilization
problem which alternatively may be solved also via the solution of a linear
quadratic control problem. For this the objective is to find a control law
u(t) such that the closed loop system is asymptotically stable and such that
the performance criterion

S(x, u) =
∫ ∞
t0

[
x(t)
u(t)

]T [
Q L
LT R

] [
x(t)
u(t)

]
dt (4)

is minimized, where Q = QT ∈ Rn,n, R = RT ∈ Rm,m is positive definite

and
[
Q L
LT R

]
is positive semidefinite.

The basics for this problem can be found in classical monographs on
linear control [4, 7, 16, 28, 52, 42, 45, 51, 59, 66, 74, 86].

Application of the maximum principle [59, 70] leads to the problem of
finding a stable solution to the two-point boundary value problem of Euler-
Lagrange equations

Ec

 ẋ
µ̇
u̇

 = Ac

 x
µ
u

 , x(t0) = x0, lim
t→∞

µ(t) = 0, (5)

with the matrix pencil

αEc − βAc := α

 I 0 0
0 −I 0
0 0 0

− β
 A 0 B

Q AT L
LT BT R

 . (6)

If R is well-conditioned with respect to inversion, then (5) may be re-
duced to the two-point boundary value problem[

ẋ
−µ̇

]
= H

[
x
−µ

]
, x(t0) = x0, lim

t→∞
µ(t) = 0 (7)
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with the Hamiltonian matrix

H =
[
F G
H −F T

]
:=
[
A−BR−1LT BR−1BT

Q− LR−1LT −(A−BR−1LT )T

]
. (8)

The solution of the boundary value problems (5) and (7) can be obtained
in many different ways. The classical way, that is implemented in most
design packages is to determine first X, the positive semidefinite (stabilizing)
solution of the associated algebraic Riccati equation

0 = H +XF + F TX −XGX, (9)

and then obtaining the optimal stabilizing feedback as

u(t) = −R−1BTXx(t). (10)

The solution of the algebraic Riccati equation is also often used for the
decoupling of the forward and backward integration. But one may also
directly solve the two point boundary value problem (5) or alternatively (7)
without going via the Riccati equation and we will show in Section 3 that
this is actually numerically a much better approach and that the Riccati
equation presents an unnecessary and sometimes dangereous detour.

As we have already mentioned, we may use both linear quadratic control
and pole placement for the objective of stabilization. In Section 4, we com-
pare pole assignment and the solution of linear quadratic control problems
for stabilization.

The third problem that we include into our discussion is the standardH∞
control problem which arises in the context of robust control in frequency
domain, see, e.g., the recent monographs [34, 88]. In this problem one studies
the linear system

ẋ = Ax+B1u+B2w, x(t0) = x0,

z = C1x+D11u+D12w,

y = C2x+D21u+D22w, (11)

where A ∈ Rn,n, Bk ∈ Rn,mk , Ck ∈ Rpk,n for k = 1, 2, and Dij ∈ Rpi,mj for
i, j = 1, 2. Here w(t) ∈ Rm2 describes noise, modelling errors or an unknown
part of the system, y(t) ∈ Rp2 describes measured outputs while z ∈ Rp1

describes the regulated outputs. The objective of optimal H∞ control is to
find a control law

q̇ = Âq + B̂y

u = Ĉq + D̂y (12)
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to minimize the closed loop transfer function Tzw from w to z in H∞ norm.
Under some technical assumptions, see [88] or [31] for the general case,

for a given parameter γ > 0, a necessary and sufficient condition for the
existence of an admissible controller such that ||Tzw||∞ < γ, is that the
following conditions hold (e.g., [88, Theorem 16.4, p. 419]):

(A1) For the matrix

H∞ :=
[

A γ−2B1B
T
1 −B2B

T
2

−CT1 C1 −AT
]
, (13)

there exists matrices Q1, Q2 ∈ Rn,n such that

H∞
[
Q1

Q2

]
=
[
Q1

Q2

]
Tx, (14)

where Tx has only eigenvalues with non positive real parts, Q1 is non-
singular, and X∞ := Q2Q

−1
1 is symmetric positive semidefinite.

(A2) For the matrix

J∞ :=
[

A −B1B
T
1

γ−2CT1 C1 − CT2 C2 −AT
]
, (15)

there exist matrices U1, U2 ∈ Rn,n such that[
U1

U2

]T
J∞ = Ty

[
U1

U2

]T
, (16)

where Ty has only eigenvalues with non positive real parts, U1 is non-
singular, and Y∞ := U2U

−1
1 is symmetric positive semidefinite.

(A3) For the matrices X∞, Y∞ we have that γ2 > ρ(X∞Y∞), where ρ(A)
denotes the spectral radius of the matrix A.

The optimal H∞ control is then obtained by finding the smallest admiss-
able γ so that conditions (A1)–(A3) still hold. The optimal controller yields
system (12) with

Â := A+ γ−2B1B
T
1 X∞ +B2Ĉ − B̂C2,

B̂ := (I − γ−2Y∞X∞)−1Y∞C
T
2 , Ĉ := −BT

2 X∞, D̂ := 0. (17)

We see that for the conditions (A1), (A2) we have Hamiltonian matrices
which (except for the indefiniteness of blocks) are similar to the Hamiltonians
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arising in the linear quadratic control problem, and hence the analysis and
improvements for the linear quadratic control problem also hold for the H∞
problem. We discuss this topic in Section 6.

Before going into details, let us recall that we have the following objec-
tives in mind. We want to determine the best formulation of the problem for
the use in numerical solution methods and furthermore we wish to obtain
methods that are best adapted to all the underlying physical and mathemat-
ical structures in order to obtain efficient and accurate solution methods.

2 Pole Placement

As we have discussed in the introduction, in linear algebra terminology the
pole placement problem is as follows:

Problem 1 For given matrices A ∈ Rn,n, B ∈ Rn,m and a given set of n
complex numbers P = {λ1, . . . , λn} ⊂ C, that is closed under conjugation,
find a matrix K ∈ Rm,n, such that the set of eigenvalues of A+BK is equal
to P.

It is well-known, see e.g., [42, 85], that a feedback gain matrix K exists
for all possible sets P ⊂ C, that are closed under conjugation if and only if
(A,B) is controllable, i.e.,

rank[A− λIn, B] = n, ∀λ ∈ C. (18)

There is a large literature on this problem. Extensions of Ackermann’s ex-
plicit formula [1] for the single-input case were given in [61, 79] and also many
numerical algorithms were developed for this problem, see [43, 64, 67, 73, 83].
For some of these methods, numerical backward stability has been estab-
lished, see e.g. [6, 26, 27, 43, 64, 67]. However, it is nevertheless often ob-
served that the numerical results are very inaccurate. If a numerically stable
method yields highly inaccurate results then this is due to ill-conditioning
of the problem. Therefore the conditioning of the pole placement problem
was analyzed but the conclusions from the analysis are quite different, see
[5, 36, 46, 48], and there are several reasons for these differences.

First of all pole assignment is usually approached via a two-step proce-
dure, which first brings the pair (A,B) to a simpler form and then assigns
the poles in this simpler form. But in such a two-step procedure it may
sometimes happen that although the original problem was well-conditioned
(i.e., small perturbations in the data only lead to small changes in the so-
lution), one of the intermediate steps is very ill-conditioned. To avoid this



V. Mehrmann and H. Xu/J. Comput. App. Math. 123 (2000) 371 –394 7

problem a good method for the initial reduction has to be used. For the
pole assignment problem the best reduction is given by the staircase form
of Van Dooren [80] or variations of it, see [47], which essentially does not
affect the perturbations except for situations where the problem is very near
to an uncontrollable problem, i.e., a problem (A,B) for which the distance
to uncontrollability defined as

du(A,B) := min
λ∈C

σn[A− λI,B], (19)

see [30], is small. Here σn(A) is the smallest singular value of the matrix A.
Since controllability is the necessary and sufficient condition for solvability
of the pole placement problem, it is clear that a problem that is near to
an uncontrollable problem will be very sensitive to perturbations. Hence
the distance to uncontrollability (if small) is an important factor in the
perturbation analysis of the pole placement problem but, as we will see
below, other factors are equally or even more important.

The second reason for confusion in the evaluation of the pole placement
problem is that one has to define clearly what the solution of the problem is.
This could be the feedbackK, the closed loop matrixA+BK or its spectrum,
respectively. All of these are solutions of the pole placement problem but
they exhibit largely different pertubation results. A striking example of a
stabilization problem is the case m = 1 in Example 1 below, see also [60],
which shows that even though the feedback K is computed analytically, and
the distance to uncontrollability is large, the (presumingly) stabilized closed
loop system has eigenvalues with positive real part, something which could
be a disaster in a practical application.

In our opinion the most important goal of pole placement is that the
poles of the closed loop system obtained with the computed feedback are
close to the desired ones and in the case of stabilization the resulting closed
loop system is robustly stable. If the desired poles of the exact closed loop
system are very sensitive to perturbations then this ultimate goal usually
cannot be guaranteed. And this may happen even if the computation of K
is reliable or even exact.

With this goal in mind, a new analysis and new explicit solution formulas
that cover all the aspects of the problem have recently been given in [60, 61]
and we will interpret some of these results here. The major conclusions can
be obtained from the following result which generalizes a perturbation result
of [77]. For this result we need the scaled spectral condition number of a
matrix A given by ‖TD‖‖(TD)−1‖, where T is the matrix that transforms A
to Jordan canonical form and D is a diagonal matrix that scales the columns
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of T to have all unit norm, see [29].

Theorem 1 [61] Consider a controllable matrix pair (A,B), and a set of
poles P = {λ1, . . . , λn}. Consider a perturbed system (Â, B̂) which is also
controllable and a perturbed set of poles P̂ = {λ̂1, . . . , λ̂n}. Set Â − A =:
δA, B̂ − B =: δB and λ̂k − λk =: δλk, k = 1, . . . , n. Suppose that both
the pole placement problems with A,B,P and Â, B̂, P̂ have solutions with a
diagonalizable closed loop matrix. Set

ε := ||[δA, δB]|| (20)

and suppose that

max
i

ε+ |δλi|
σn([A− λiI,B])

<
3
4
. (21)

Then there exists a feedback gain K̂ := K + δK of (Â, B̂) such that

||δK|| < 5
√
n

4
κ

√
1 +

∣∣∣∣∣∣K̂∣∣∣∣∣∣2 max
i

{√
1 + (||B†(A− λiI)||)2 (ε+ |δλi|)

σn([A− λiI,B])

}
,

(22)
the spectrum of (Â+ B̂K̂) is P̂ and Â+ B̂K̂ is diagonalizable.

Moreover, for each eigenvalue µi of the closed loop matrix A + BK̂,
(i.e., the perturbed feedback is used for the unperturbed system), there is a
corresponding λi ∈ P such that

|µi − λi| < |δλi|+ εκ̂

√
1 +

∣∣∣∣∣∣K̂∣∣∣∣∣∣2. (23)

Here κ, κ̂ are the scaled spectral condition numbers of A+BK and Â+ B̂K̂,
respectively and B† is the Moore-Penrose pseudoinverse of B.

Note that under additional mild assumptions in the bounds (22) and (23) the
terms κ̂, K̂ can be replaced by κ and K, respectively. If this is not possible,
then the problem is extremely ill-conditioned and hence not suitable for
numerical computation anyway.

Theorem 1 only gives upper bounds for the perturbations. This is the
usual situation in most perturbation results. But these bounds are usually
quite tight and very well describe the major difficulties of the pole placement
problem. Consider the following numerical example from [61]. For this and
all the other numerical examples the results were obtained on an HP-700
workstation with machine precision eps = 2.22 × 10−16, under MATLAB
Version 5.2.
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Example 1 Let A = diag(1, . . . , 20), P = {−1, . . . ,−20} and let B be
formed from the first m columns of a random 20× 20 orthogonal matrix.

The MATLAB pole placement code place of the control system toolbox
Version 4.1, which is an implementation of the method given in [43], was
used to compute the feedback gain K. We ran m from 1 to 20 and in
each case we computed 20 times with 20 random orthogonal matrices B.
In Table 1 we list the geometric means (over the 20 experiments) of κ̂, K̂,

bound=eps ||[A,B]|| κ̂
√

1 +
∣∣∣∣∣∣K̂∣∣∣∣∣∣2, and err=max1≤i≤20 |µi − λi|, with λi and

the real parts of µi arranged in increasing order.
It should be noted that for all 400 tests the values of mini σn([A−λiI,B])

varied from 2.0 to 2.24, so the factor in the denominator of (22) is negligible.
Furthermore we computed in all cases the distance to uncontrollability and
found that the pair (A,B) was controllable with a large distance to uncon-
trollability. Nevertheless for m = 1 the method produced an error message
”Can’t place eigenvalues there” and for m = 2, 3 a warning ”Pole locations
are more than 10% in error” was displayed. The reason for this failure of
the method is probably due to the large norm of K and the large closed loop
condition number which is computed in the course of the algorithm. Other
pole placement algorithms have similar difficulties for small m, see [60, 61].
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m κ̂ K̂ Bound Err
1
2 1.1× 109 2.5× 106 1.2× 101 2.0× 101

3 4.6× 108 1.3× 106 2.6 1.2× 101

4 9.6× 106 2.3× 105 9.6× 10−3 1.2× 10−3

5 3.0× 105 3.4× 104 4.6× 10−5 1.6× 10−6

6 3.0× 104 1.0× 104 1.3× 10−6 3.1× 10−8

7 5.6× 103 4.2× 103 1.0× 10−7 1.3× 10−9

8 1.6× 103 2.1× 103 1.5× 10−8 1.3× 10−10

9 5.3× 102 1.1× 103 2.6× 10−9 1.9× 10−11

10 2.7× 102 8.9× 102 1.1× 10−9 6.3× 10−12

11 1.2× 102 5.2× 102 2.7× 10−10 1.8× 10−12

12 7.6× 101 4.0× 102 1.4× 10−10 8.3× 10−13

13 4.4× 101 2.7× 102 5.3× 10−11 3.6× 10−13

14 3.0× 101 1.9× 102 2.6× 10−11 2.0× 10−13

15 2.4× 101 1.6× 102 1.7× 10−11 1.5× 10−13

16 1.9× 101 1.3× 102 1.1× 10−11 9.5× 10−14

17 1.5× 101 1.2× 102 7.8× 10−12 6.9× 10−14

18 1.3× 101 1.1× 102 6.8× 10−12 6.6× 10−14

19 9.0 8.8× 101 3.5× 10−12 4.5× 10−14

20 1.0 4.0× 101 1.8× 10−13 3.2× 10−14

Table 1, results for Example 1.

The results of Example 1 and most other examples with n − m large
lead to the interpretation that the sensitivity (conditioning) of all possible
results of the pole placement problem, i.e., the feedback gain K as well as
the poles of the the closed-loop system A+BK̂ obtained with the perturbed
feedback K̂, depends heavily on the size of n−m as well as on the factor

S := κ

√
1 + ||K||2 (24)

even if the distance to uncontrollability is large. The additional factor d :=
1/mini σn[A − λiI,B] in the perturbation bound only plays a role if the
distance to uncontrollability is small. It is obvious that if du(A,B) is small
then d may be very large and the problem to compute K is definitely ill-
conditioned. If, however, du(A,B) is large, then clearly d is small and may
be neglected.

The factor S has been analyzed in detail in [60, 61], where it was observed
that in the single-input case S is essentially given by the condition number
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of the Cauchy matrix C = [ 1
νi−λj ], where the νi are the eigenvalues of A

and the λi are the desired poles. This condition number is very large if n is
large. In the multi-input case S is essentially given by the condition number
of a Vandermonde-like matrix which is usually also very ill-conditioned (see
[39, Chapter 21] and the references therein), in particular if n−m is large.

This analysis indicates that serious numerical difficulties may arise in
the pole placement problem if n − m is large. Furthermore the analysis
demonstrates that the currently used strategies to resolve the freedom in
K in the numerical method, which is to minimize ‖K‖, see [15, 44, 64,
67, 73, 83] or κ as in [43], may both not be sufficient to get good results.

A better choice would be to minimize S := κ
√

1 + ||K||2, since this factor
describes the perturbation very well. A similar strategy has been proposed
and implemented by Varga [84]. We can actually formulate this strategy as
a refined robust pole placement problem.

Problem 2 For given matrices A ∈ Rn,n, B ∈ Rn,m and a given set of n
complex numbers P = {λ1, . . . , λn} ⊂ C, (closed under conjugation), find a
matrix K ∈ Rm,n, such that the set of eigenvalues of A+BK is equal to P,

and that minimizes S := κ
√

1 + ||K||2.

A solution to this problem for small systems can actually be obtained
via standard optimization software by using the explicit formula for K given
in [61]. In practice one probably does not even need the global minimum,
but just one, where S is small enough to guarantee small bounds (22) and
(23), which then can be actually computed and used as condition estimator.

But we propose to go even further in the reformulation of the pole place-
ment problem, see also [36]. One should first ask the following question.

Does one really have a fixed set of poles or does one rather have a specific
region in the complex plane where one wants the closed loop poles to be?

If the latter is the case then not only the minimization over the freedom
in K but also a minimization over the position of the poles in the given set
should be used. This would lead to the optimized robust pole placement
problem:

Problem 3 For given matrices A ∈ Rn,n, B ∈ Rn,m and a given set P ⊂ C,
find a matrix K ∈ Rm,n, such that the set of eigenvalues of A + BK is
contained in P and at the same time a robustness measure is optimized.

There are many papers that cover the placing of poles in specified regions
like disks, strips or sectors, or the optimized placement of poles, see e.g.
[14, 25, 40, 41, 50, 69, 72, 75, 78, 87]
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and the references therein. A clear and practical formulation of such
a general robust measure as well as suitable algorithms to determine this
optimized pole assignment will depend on the application and on the set
P. In the stabilization problem this is the left half plane or in the case of
damped stabilization a particular part of the left half plane, see [38]. If the
set P is a very small region of the complex plane, as when it has exactly n
points, then, as we have demonstrated above, even an optimization of some
robustness measures may still yield a very sensitive system, but if the set
P covers a large area in the complex plane, then quite good results may be
obtained, see for example [23].

In the case of stabilization the robustness measure would certainly in-
clude the distance to instability, i.e., the smallest perturbation that makes
the closed loop system have an unstable eigenvalue. To make sure that the
closed loop system is securely stable, a constraint should be added in the
optimization that guarantees that the perturbation bounds are smaller than
the distance to instability. To verify and guarantee this constraint the dis-
tance to instability as well as the perturbation bound have to be computed,
which alone is a difficult numerical problem, see [22]. In the context of sta-
bilization this would be a part of the optimization loop and from this it may
already be seen that the development of good numerical methods for this
optimized stabilization is an important but extremely difficult problem that
needs a lot of further attention, see also [62].

For large control problems with only few unstable poles the situation
can be reduced to a small problem provided one can design a method for
the separation of eigenvalues inside P and outside of P. If this can be done,
then the complexity of the optimization problem can be drastically reduced,
see [71, 37, 83] and the references therein.

As we have mentioned already before, for the stabilization problem there
are also other approaches to design a stabilizing feedback, such as the so-
lution of Lyapunov or Riccati equations or just the solution of the linear
quadratic control problem which we discuss in the next section. A compari-
son of stabilization via pole placement and linear quadratic control is given
in Section 4.

3 Linear quadratic control

For the solution of the linear quadratic control problem, i.e., to minimize
(4) subject to (1), a large number of approaches have been discussed in
the literature, see the monographs [59, 66, 52, 74]. Let us compare the
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Riccati equation approach with the solution of the two-point boundary value
problem via a matrix pencil approach. An observation of Van Dooren [81]
is that it suffices to study the deflating subspaces of the pencil (Ec,Ac) in
(6). Suppose (Ec,Ac) has an n-dimensional deflating subspace associated
with eigenvalues in the left half plane. Let this subspace be spanned by the
columns of a matrix U , partitioned analogous to the pencil as

U =

 U1

U2

U3

 . (25)

Then, if U1 is invertible, the optimal control is a linear feedback of the
form u(t) = U3U

−1
1 x(t). The solution of the associated Riccati equation

(9) is X = U2U
−1
1 , see [59] for details. We see that an explicit solution of

the Riccati equation is not needed to determine the optimal control and it
is also clear that the sensitivity of the computation of U3U

−1
1 x(t) may be

different than that of the procedure to first compute X = U2U
−1
1 and then

the feedback u(t) = −R−1BTXx(t) from this. In particular if the matrix R
is close to singular, then the coefficients in the Riccati equation (9) may be
highly corrupted so that a solution approach via the Riccati equation may
be completely useless. We demonstrate these observations in the following
example.

Example 2 Let U be a randomly generated real orthogonal matrix, L = 0,

A = U

[
2 0
0 1

]
UT , B = U , R =

[
0.5 0
0 γ

]
and Q = U

[
6 0
0 3γ

]
UT ,

where γ > 0.
The positive semidefinite (stabilizing) solution of the corresponding alge-

braic Riccati equation (9) is X = U

[
3 0
0 3γ

]
UT , the associated feedback

gain matrix K = −
[

6 0
0 3

]
UT and the closed loop spectrum is {−4,−2},

both independent of the value of γ. Since U is orthogonal, we see that ‖K‖
is small and hence we do not expect large perturbations in the solution. The
solution via the Riccati equation, however, depends on γ and hence we may
expect that the feedback K when computed via the Riccati equation will
depend heavily on γ.

We applied the MATLAB m-files are, care from different versions of
the MATLAB control tool box [55] which are solvers for algebraic Riccati
equations and compare the results with those obtained by just computing the
deflating subspace by the MATLAB implementation qz of the QZ-algorithm.
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The Riccati solution is used to compute K = −R−1BTX while via the
deflating subspace (25) of αEc − βAc, the feedback K is directly obtained
as U3U

−1
1 . The method are uses the Hamiltonian matrix H as in (8) to

determine the Riccati solution X while the method care works on a balanced
version of H if λmin(R)

λmax(R) ≥
√
eps and on the extended pencil αEc − βAc as in

(6) otherwise.
The relative error in X and K for all three methods and different values

of γ are listed in Table 2.

γ Method ||X̂−X||
2

||X||2
||K̂−K||

2
||K||2

are 7.6× 10−16 2.1× 10−14

10−2 care 7.0× 10−16 1.3× 10−15

qz 2.4× 10−16 4.9× 10−15

are 3.5× 10−11 5.7× 10−7

10−6 care 3.1× 10−12 3.2× 10−9

qz 2.6× 10−15 4.7× 10−11

are 1.8× 10−8 9.1× 10−1

10−9 care 2.1× 10−8 1.3× 10−4

qz 1.6× 10−15 5.9× 10−9

are 7.7× 10−5 1.2× 104

10−13 care 9.2× 10−5 3.9× 101

qz 1.7× 10−15 5.0× 10−4

Table 2, Relative errors in Example 2.

We see that the direct computation of the optimal control via the sub-
space yields much smaller relative errors than the solution via the Riccati
equation. Note that the subspace method always computed the Riccati
solution to high relative accuracy.

This example demonstrates that the solution of the linear quadratic con-
trol problem via the solution of the algebraic Riccati equation presents a
dangerous detour that may lead to very bad results and is really not neces-
sary, since the feedback and the closed loop matrix can be computed from
the deflating subspace of the extended pencil directly. This is even more
critical in the situation that R is indefinite or singular as in the H∞ prob-
lem discussed below. The situation is even worse in the case of descriptor
systems, see [8, 9, 59], where it is known that the Riccati equation may not
have anything to do with the solution of the optimal control problem [49].

But also for the linear quadratic control problem the question of robust-
ness has to be asked in terms of the performance criterion, i.e., the choice
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of Q,L,R which, as we have seen in Example 2, is critical in the Riccati
approach. But since this is a freedom in the problem, we should make use of
it to optimize the robustness. In the context of stabilization or other regions
P of the complex plane we may, therefore, formulate the optimized linear
quadratic control problem.

Problem 4 Consider matrices A ∈ Rn,n, B ∈ Rn,m and a set P ⊂ C. De-
termine cost matrices Q,L,R such the the closed loop system obtained via
the solution of the associated linear quadratic control problem has eigenval-
ues that are contained in P and at the same time a robustness measure is
optimized.

If the robustness measure in Problem 4 is the same as in Problem 3, then
these two problems are actually equivalent.

Proposition 2 Consider matrices A ∈ Rn,n, B ∈ Rn,m and a set P ⊂ C.
Consider furthermore the optimized linear quadratic control problem 4 and
the optimized robust pole assignment problem 3. If the same robustness
measure is used in both problems, then the problems are equivalent, i.e.,
they have the same solution sets.

Proof. Since the feedbacks in Problem 3 are not restricted, it is clear
that the solution set of Problem 3 contains the solution set of Problem 4.
Suppose now that a feedback gain K optimizes Problem 3. Choosing an
arbitrary positive definite matrix R and setting L = −KTR, Q = LR−1LT ,
it follows that the linear quadratic control generates the same feedback gain
matrix K as well as the same closed-loop system A+BK. Hence the solution
set of Problem 3 is contained in the solution set of Problem 4.

It should be noted, however, that in many applications cost functionals
with L = 0 are used. In this situation the optimal solution via Problem 4
may be worse than that of Problem 3 as the following example demonstrates,
see also Example 4.

Example 3 Consider the scalar system with A = 1 and B = 1 and the set
P = {x|Rex ≤ −α, 0 < α < 1}. Obviously in this case the distance to
uncontrollability satisfies du(A,B) = 1, and the scaled spectral condition is
κ(A+BK) = 1 for arbitrary K. Thus we only need to minimize ||K||2. For
Problem 3 the optimal feedback is K = −(1+α) and the closed loop system
is A+BK = −α. However, for Problem 4 with L = 0, the optimal solution,
i.e., the minimum norm K, is K = −2 which is obtained with arbitary R > 0
and Q = 0. The associated closed loop system is A + BK = −1. In fact
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for R > 0 and Q ≥ 0 the pole of A + BK is −
√

1 +Q/R which cannot be
greater than −1.

It follows from this example that in order to obtain results which are as
good as those from optimized robust pole placement the block L in the cost
functional has to be included in the optimization.

As we have discussed already in the context of pole assignment, there are
many different possibilities of general robust measures. These depend on the
specific application and lead to different numerical methods. An analysis of
different criteria should deserve more attention. Some numerical examples
in the context of stabilization are discussed in the next section.

4 Stabilization

In this section we compare the results obtained from optimized robust pole
assignment and optimized linear quadratic control for the specific problem
of stabilization, i.e., the set P is the open left half plane.

Our first example discusses the optimization of the condition number S
in (24) in the particular situation that in the cost functional we use L = 0.

Example 4 Consider the stabilization problem with A = diag(1, 2, 3, 4)
and B = [1, 1, 1, 1]T and a stability margin of 0.5, i.e., P = {λ ∈ C|Re (λ) ≤
−0.5}.

We used a heuristic ’random search’ algorithm for the optimal poles as
in [62], to minimize the condition number S in (24). For the solution of the
pole placement problem a MATLAB code based on the method of Miminis
and Paige [64] was used. It should be noted that the MATLAB code place
often generated incorrect results, which is probably due to a small distance
to instability in some of the cases. The computed optimal poles, the norm
of the feedback gain and the condition number S are listed in Table 3, as
well as the distance to instability displayed in column dis of the closed loop
matrix A + BK. The distance to instability was computed by the method
of Byers [22].

For comparison we used the solution of the optimized linear quadratic
control problem with a shift, see e.g. [38], to compute the feedback gain
using the MATLAB code surv based on the structure preserving Algorithm 1
below to determine the feedback gains. In the cost functional we chose
L = 0 and R = 50 ∗ ||B||2 /k with k = 1, . . . , 100 as well as R = ||B||2 /2k+1

with k = 1, . . . , 20. For each such R we chose 100 randomly chosen unit
norm positive definite matrices Q. Note that, as desired, all eigenvalues of
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A + BK have real parts less than −0.5. Among all tests the minimum for
S was obtained for R = 1/26 (note ||B|| = 2). The results are also shown in
Table 3.

Method closed loop poles ||K|| S dis
Pole placement −0.5± 3.69i, −0.5± 1.02i 222 1.1× 105 0.005

LQ −12.6,−4.26,−3.04,−1.66 2.0× 103 3.9× 107 0.013
Table 3, a comparison between stabilization by LQ and pole placement.

We see from this example, as we have already discussed before, that opti-
mized robust pole assigment performs better than optimized linear quadratic
control with L = 0. On the other hand even for this small sized single input
problem the optimal condition number is very large.

Furthermore we observe and this is typical, see also [62], that the optimal
condition number is obtained with eigenvalues close to or on the boundary
of the desired region. Thus if we choose the region P to be the open left
half plane then we will typically get a small distance to instability. For this
reason and to show that more theoretical investigation is necessary, in the
next example we compare different optimality criteria.

Example 5 Let A =
[

1 1
0 2

]
, B = I2 and P = {λ ∈ C|Re (λ) ≤ −1}.

As robustness measures we minimize κF , ||K||F and SF = κF

√
1 + ||K||2F ,

respectively, where the index F indicates that the Frobenius norm is used.
Clearly in this case K = TΛT−1−A for an arbitrary nonsingular real matrix
T and arbitrary real Λ with eigenvalues in the required region.

If the scaled spectral condition number of the closed loop system is to be
minimized, then the optimal solution is obtained with an orthogonal matrix
T and freely chosen Λ.

In the optimization of ||K||F and SF the optimal case is that Λ has a

pair of complex conjugate eigenvalues. Let Λ =
[

α β
−β α

]
. The general

form of T is T = γTs

[
a b
0 1

]
, where γ, a 6= 0 and Ts is a plane rotation.

Since Ts commutes with Λ and since γ does not affect the norms, we can
set Ts = I2 and γ = 1. To simplify the computation of the minimal SF we
furthermore set b = 0, which only gives a suboptimal result. In Table 5 we
give the resulting values of SF , ||K||F as well as the distance to instability
dis of the associated closed loop matrix A+ BK. Here in the optimization
of κF we have chosen both eigenvalues to be at −1.
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objective closed loop poles ||F ||F κF SF dis

κF {−1} 3.74 2 7.75 1.0
||F ||F −1± 0.5× 10−8i 3.54 2.4× 108 8.7× 108 0.56
SF −1± 0.52i 3.67 2.001 7.61 0.9994

Table 4, a comparison of optimality criteria.

The associated feedback gain matrices in the three cases are

−
[

2 1
0 3

]
, −

[
2.4534 0
0.2056 2.5466

]
, −

[
2 0.4656

0.4988 3

]
,

respectively.

We see from this example that a pure optimization of ||K||F may lead
to drastically different results than an optimization of κF and SF but we
also see that a detailed further investigation is necessary to obtain the best
possible criteria.

5 Structure preservation

In the context of the linear quadratic control problem the second important
topic that needs to be discussed, is the preservation of structure.

A feature of the pencils associated with the two-point boundary value
problem (5) is that they have algebraic structures which lead to a certain
symmetry in the spectrum. Roundoff errors can destroy this symmetry
leading to physically meaningless results unless the numerical method also
preserves the algebraic structure, see [80]. Moreover, preservation of the
algebraic structure usually leads to more efficient as well as more accurate
numerical methods. Let us briefly introduce the relevant structures.

Definition 3 Let J :=
[

0 In
−In 0

]
, where In is the n×n identity matrix.

a) A matrix H ∈ R2n×2n is Hamiltonian if (HJ)T = HJ and a matrix
H ∈ R2n×2n is skew-Hamiltonian if (HJ)T = −HJ .

b) A matrix Z ∈ Rn×n is symplectic if ZJZT = J and a matrix U ∈
R2n×2n is orthogonal symplectic if UJUT = J and UUT = I2n. The
group of orthogonal symplectic matrices in Rn×n is denoted by US2n.
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c) We call a real matrix Hamiltonian quasi-triangular if it is Hamiltonian
and has the form [

F G
0 −F T

]
,

where F is quasi-triangular in real Schur form, see [33]. If a Hamilto-
nian matrix H can be transformed into Hamiltonian quasi-triangular
form by a similarity transformation with a matrix U ∈ US2n, then we
say that UTHU has Hamiltonian Schur form.

The reduced Euler-Lagrange equations (7) involve a Hamiltonian matrix,
but the pencil (6) does not directly have this structure. Nonetheless many of
the properties of Hamiltonian matrices carry over, see [59]. Furthermore, we
may endow the pencil (6) with a similar structure by embedding the Euler-
Lagrange equations (5) into a larger system. If m is even then this is easily
done by splitting u(t), B, L,R into half sized parts and a permutation of the
pencil, see [8]. If m is odd then we may apply this splitting after introducing
an artificial input. The resulting pencil (after some permutation) has the
form

αEec − βAec := α


I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

− β


A B1 0 B2

LH2 RH12 BH
2 R22

−Q −L1 −AH −L2

−LH1 −R11 −B1
H −R12

 .
(26)

with one Hamiltonian and one skew-Hamiltonian matrix.
The solution of the eigenproblem for Hamiltonian matrices and skew-

Hamiltonian/Hamiltonian pencils has been a topic of several publications,
see [8, 18, 53, 57, 58, 59] and the references therein. The goal is to ob-
tain a numerically backward stable method, that has a complexity of O(n3)
and at the same time preserves the structure. There are two main rea-
sons why this problem is difficult. First of all one needs a triangular-like
form under orthogonal symplectic similarity transformations from which
the desired invariant subspaces can be read off. Such a Hamiltonian Schur
form was first suggested in [65] but not every Hamiltonian matrix or skew-
Hamiltonian/Hamiltonian pencil has such a condensed form, see [54, 57, 58].
The second difficulty arises from the fact that even if a Hamiltonian Schur
form exists, it is still difficult to construct a method with the desired fea-
tures, see [2, 3, 9, 10, 20, 21].

We dicuss here only the computation of the structured Schur form for
Hamiltonian matrices. For skew-Hamiltonian/Hamiltonian pencils we refer
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the reader to [9, 57, 58]. Necessary and sufficient conditions for the Hamil-
tonian Schur form are given by the following theorem.

Theorem 4 [54] Let H be a real Hamiltonian matrix, let iα1, . . . , iαν be
its pairwise distinct nonzero purely imaginary eigenvalues and let Uk, k =
1, . . . , ν, be the associated invariant subspaces. Then the following are equiv-
alent.

i) There exists a real symplectic matrix Z such that Z−1HZ is real
Hamiltonian quasi-triangular.

ii) There exists a real orthogonal symplectic matrix U such that UTHU is
real Hamiltonian quasi-triangular.

iii) UHk JUk is congruent to J for all k = 1, . . . , ν, where J is always of
the appropriate dimension.

A similar theorem for skew-Hamiltonian/Hamiltonian pencils has been given
in [57, 58].

This result shows that whenever a structured triangular form exists, then
it also exists under orthogonal transformations and hence there is hope that
these forms and therefore also the eigenvalues and invariant and deflating
subspaces can be computed with structure preserving numerically stable
methods.

Let us first discuss the computation of eigenvalues. It is well-known that
if H is a Hamiltonian matrix, then H2 is a skew-Hamiltonian matrix for
which a structure preserving method was suggested in [82]. This suggests
computing the eigenvalues of H by taking square roots of the eigenvalues
of H2. Unfortunately, in a worst case scenario via this approach one might
obtain only half of the possible accuracy in the computed eigenvalues [20, 82].
A way out of this dilemma was recently presented in [11]. This approach
uses the following decomposition.

Theorem 5 [11] Let H be Hamiltonian. Then there exist Q1, Q2 ∈ US2n,
such that

QT1HQ2 =
[
H11 H12

0 H22

]
, (27)

with H11 upper triangular and HT
22 quasi upper triangular. Furthermore the

eigenvalues of H are the square roots of the eigenvalues of −H11H
T
22.
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Note that the resulting matrix in (27) is neither Hamiltonian nor similar to
H, but a simple calculation shows that both QT1H2Q1 and QT2H2Q2 are real
skew-Hamiltonian quasi-triangular. For skew-Hamiltonian/Hamiltonian pen-
cils similar results have been given in [9]. After the form (27) has been
computed, one can compute the eigenvalues of H by solving 1 × 1 or 2 × 2
eigenvalue problems and taking square roots without loosing accuracy. For
algorithmic details, a detailed error analysis as well as illustrative numerical
examples, see [11], where it is demonstrated that these methods speed up
the computation of eigenvalues while still achieving full possible accuracy.

This new approach has also been extended to the computation of the
desired deflating and invariant subspaces. Let us first introduce the basic
theory behind the method. Let for A ∈ Rn×n the sets λ−(A), λ+(A), λ0(A)
denote the part of the spectrum of A in the open left half plane, in the
open right half plane and on the imaginary axis, respectively and denote
the associated invariant subspaces by Inv−(A), Inv+(A), Inv0(A). In [10] it

has been observed that for A ∈ Rn×n and B =
[

0 A
A 0

]
, if one determines

an orthogonal matrix such that

B

[
Q1

Q2

]
=
[
Q1

Q2

]
R, (28)

where
λ+(B) ⊆ λ(R) ⊆ λ+(B) ∪ λ0(B), (29)

then

range{Q1 +Q2} = Inv+(A) +N1, where N1 ⊆ Inv0(A), (30)

range{Q1 −Q2} = Inv−(A) +N2, where N2 ⊆ Inv0(A). (31)

Moreover, if we partition R =
[
R11 R12

0 R22

]
with λ(R11) = λ+(B) and,

accordingly, Q1 =
[
Q11 Q12

]
, Q2 =

[
Q21 Q22

]
, then

B

[
Q11

Q21

]
=
[
Q11

Q21

]
R11, (32)

and there exists an orthogonal matrix Z such that
√

2
2

(Q11 +Q21) =
[

0 P+

]
Z,

√
2

2
(Q11 −Q21) =

[
P− 0

]
Z, (33)
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where P+, P− are orthogonal bases of Inv+(A), Inv−(A), respectively.

In the case of a Hamiltonian matrix H =
[
F G
H −F T

]
one considers

the block matrix B =
[

0 H
H 0

]
and, using the block permutation P =

In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 , one obtains that

B̃ := PTBP =


0 F 0 G
F 0 G 0
0 H 0 −F T
H 0 −F T 0

 (34)

is again Hamiltonian. Furthermore it follows from Theorem 4 that B̃ has a
Hamiltonian Schur form.

Theorem 6 [10] Let H be Hamiltonian and let B =
[

0 H
H 0

]
. Then there

exists an orthogonal matrix U such that

UTBU =
[
R D
0 −RT

]
=: R (35)

is in Hamiltonian quasi-triangular form and λ−(R) = ∅. Moreover, U = PW
with W ∈ US4n, and

R =WT B̃W, (36)

i.e., R is the Hamiltonian quasi-triangular form of the Hamiltonian matrix
B̃. Furthermore, if H has no purely imaginary eigenvalues, then R has only
eigenvalues with positive real part.

The structure preserving, numerically stable algorithm to compute the
invariant subspace of a Hamiltonian matrix associated with the eigenvalues
in the left half plane is then as follows.
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Algorithm 1

Input: A Hamiltonian matrix H having an n-dimensional Lagrangian in-
variant subspace associated with the eigenvalues in the left half plane.

Output: Y ∈ R2n×n, with Y TY = In, such that the columns of Y span this
invariant subspace.

Step 1 Apply Algorithm 2 of [11] to H and compute orthogonal symplectic
matrices Q1, Q2 ∈ US2n such that

QT1HQ2 =
[
H11 H12

0 H22

]
is the decomposition (27).

Step 2 Determine an orthogonal matrix Q3, such that

QT3

[
0 −HT

22

H11 0

]
Q3 =

[
T11 T12

0 T22

]
is in real Schur form ordered such that the eigenvalues of T11 have
positive real part and the eigenvalues of T22 have negative real part.

Step 3 Use the orthogonal symplectic reordering scheme of [21] to deter-
mine an orthogonal symplectic matrix V ∈ US4n such that with

U =
[
U11 U12

U21 U22

]
:=
[
Q1Q3 0

0 Q2Q3

]
V

we have the Hamiltonian quasi-triangular form

UTBU =


F11 F12 G11 G12

0 F22 G21 G22

0 0 −F T11 0
0 0 −F T12 −F T22

 ,
where F11, F22 are quasi upper triangular with eigenvalues only in the
closed right half plane.

Step 4 Set Ŷ :=
√

2
2 (U11 − U21). Compute Y , an orthogonal basis of

range{Ŷ }, using any numerically stable orthogonalization scheme, for
example a rank-revealing QR-decomposition; see, e.g., [24].

End
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Generalizations of these results to the complex case and algorithms are pre-
sented in [12]. Corresponding results and methods for skew-Hamiltonian/Hamiltonian
pencils have been constructed in [9].

It should be noted that these new methods are already very close to the
desired structure preserving methods but they are still not optimal, since not
all structures are fully exploited. But the methods are more efficient and at
least as accurate as methods that do not address structure preservation. This
approach works in principle also for Hamiltonian matrices with eigenvalues
on the imaginary axis provided the appropriate subspaces can be seperated.
When this is the case and how the numerical method can detect this, as well
as the perturbation analysis is still under investigation, see [63]. A complete
analysis of this case will be also very important for the treatment of H∞
control problems, that we discuss in the next section.

6 Standard H∞ control

The solution of the standard H∞ control problem addresses another robust-
ness measure in the computation of a feedback solution, which is different
from the criteria that we have discussed so far. For the numerical solution of
the H∞ control problem the usual procedure is to use a optimization scheme
to determine the smallest γ > 0 so that all three conditions (A1), (A2) and
(A3) in Section 1 hold by determining the first value of γ where one of these
conditions fail, see for example [34, 68, 88]. In each step of the optimization
procedure two linear quadratic optimal control problems are solved plus a
positivity check.

Typically in current design packages like the MATLAB robust control
toolbox [56], the solution is obtained by a procedure which uses the solution
of algebraic Riccati equations to determine X∞ and Y∞.

In view of the discussion in Section 3 on the solution of linear quadratic
control problems and Riccati equations we should construct new methods for
the H∞ control problem that avoid the detour via the Riccati equation. This
conclusion is complemented by the observation that during the optimization
procedure, typically one or both of the Riccati solutions becomes very large
in norm. This leads to the question whether a numerical solution of the H∞
via the solution of Riccati equations makes sense at all, since in order to
obtain a robust control, a highly ill-conditioned numerical problem has to
be solved.

The usual way out of this dilemma in practice is to compute suboptimal
controls, see [35, 68]. But in view of the previous discussions one might ask
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whether this potential ill-conditioning is inherent in the problem formulation
or due to the approach for its solution. Let us consider an example.

Example 6 Let A = 1, B1 = 2, B2 = 1, C1 = 1 and C2 =
√

3. Then for
γ > γx,1 =

√
2 the matrix H∞ in (13) has no purely imaginary eigenvalues

and hence a Lagrange subspace associated with the stable eigenvalues always
exists. The stabilizing solution of the Riccati equation, however, is X(γ) =
γ2+γ
√

2γ2−4

γ2−4
. For γ > γx,2 = 2 we have that X(γ) is positive definite and

for γ < γx,2, X(γ) is negative definite. For γ = γx,2 the Riccati solution is
not defined.

Analogously for the Riccati equation associated with J∞ in (15) we have
γy,1 = 2

√
13

13 and γy,2 =
√

3
3 , and the associated stabilizing solution of the Ric-

cati equation is Y (γ) = γ2+γ
√

13γ2−4

3γ2−1
. It follows that the optimal parameter

γopt must be greater than γx,2 = 2.
For the third condition (A3) we have γ2

x,1 > ρ(X(γx,1)Y (γx,1)), since

X(γx,1) = −1 and Y (γx,1) = 2(1+
√

11)
5 . But γx,1 is obviously not optimal.

So in a typical optimization procedure to determine the optimal γ one needs
first to determine γx,2 and γy,2, but X(γx,2), Y (γy,2) are not defined.

We see from this example that, as for the solution of the linear quadratic
control problem, the Riccati solutions X∞ and Y∞ should be avoided. For-
tunately this can again be done quite easily. In [88, Theorem 16.16, p. 445]
it is shown that conditions (A1) – (A3) may be replaced by the alternative
conditions

(B1) There exist matrices Q1, Q2 ∈ Rn,n such that

H∞
[
Q1

Q2

]
=
[
Q1

Q2

]
Tx,

where Tx has only eigenvalues with nonpositive real parts and QT1 Q2 =
QT2 Q1.

(B2) There exist matrices U1, U2 ∈ Rn,n such that[
U1

U2

]T
J∞ = Ty

[
U1

U2

]T
,

where Ty has only eigenvalues with nonpositive real parts and UT1 U2 =
UT2 U1.
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(B3)
[

QT2 Q1 γ−1QT2 U2

γ−1UT2 Q2 UT2 U1

]
is symmetric positive semidefinite.

If these conditions hold then ||Tzw||∞ ≤ γ and the admissable controller is
in descriptor form

Êq̇ = Âq + B̂y

u = Ĉq + D̂y, (37)

with Ê = UT1 Q1 − γ−1UT2 Q2, B̂ = UT2 C
T
2 , Ĉ = −BT

2 Q2, D̂ = 0 and Â =
ÊTx − B̂C2Q1 = TyÊ + UT1 B2Ĉ.

Using this result, only the invariant subspaces of H∞ and J∞ are in-
volved and they can be determined via the same methods that we have
discussed in the previous section.

Thus not only is it possible to avoid the ill-conditioned Riccati equation
but also we can employ structure preservation as described above and as in
the case of the linear quadratic control problem, the computation of these
subspaces is usually much better conditioned than the computation of the
Riccati solutions.

Thus, the solution of the H∞ control problem should be approached
via the usual optimization procedures like in [19, 32, 35, 76], using in each
optimization step Algorithm 1 to determine the subspaces in (B1) and (B2)
and a Cholesky factorization to check condition (B3). An implementation
and analysis of such a procedure is currently under investigation.

7 Conclusion

We have discussed several standard problems of linear control theory, like
pole assignment, stabilization, linear quadratic and H∞ control and have
demonstrated some of the difficulties that arise in the numerical solution of
these problems due to inherent ill-conditioning in the problem. We have also
suggested several reformulated versions of the problem, which are sometimes
more complicated to solve, but which yield results that are much more robust
to perturbations.

References

[1] J. Ackermann. Der Entwurf linearer Regelungssysteme im Zustand-
sraum. Regelungstechnik und Prozessdatenverarbeitung, 7:297–300,
1972.



V. Mehrmann and H. Xu/J. Comput. App. Math. 123 (2000) 371 –394 27

[2] G.S. Ammar, P. Benner and V. Mehrmann. A multishift algorithm for
the numerical solution of algebraic Riccati equations. Electr. Trans.
Num. Anal., 1:33–48, 1993.

[3] G.S. Ammar and V. Mehrmann. On Hamiltonian and symplectic Hes-
senberg forms. Linear Algebra Appl., 149:55–72, 1991.

[4] B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice-
Hall, Englewood Cliffs, NJ, 1971.

[5] M. Arnold. Algorithms and Conditioning for Eigenvalue Assigment.
PhD thesis, Dept. of Mathematics, Northern Illinois University, De
Kalb, 1993.

[6] M. Arnold and B.N. Datta. Single-input eigenvalue assignment algo-
rithms: A close-look. SIAM J. Matrix Anal. Appl., 19:444–467, 1997.

[7] M. Athans and P.L. Falb. Optimal Control. McGraw-Hill, New York,
1966.

[8] P. Benner, R. Byers, V. Mehrmann and H. Xu. Numerical Methods
for Linear Quadratic and H∞ Control Problems. Dynamical Systems,
Control, Coding, Computer Vision. Progress in Systems and Control
Theory, Vol. 25, G. Picci und D.S. Gillian, ed., Birkhäuser Verlag, Basel
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