
Chapter 1

Numerical Algorithms and

Roundoff Errors

In this chapter we introduce and discuss some basic concepts of scientific
computing. We begin with a general, brief introduction to the field and how it
is related to other scientific disciplines. We then get into a detailed discussion
of the most fundamental source of imperfection in numerical computing:
roundoff errors.

1.1 Numerical analysis and the art of scien-

tific computing

Scientific computing is a discipline concerned with the development and
study of numerical algorithms for solving mathematical problems that
arise in various disciplines in science and engineering.

Typically, the starting point is a given mathematical model which
has been formulated in an attempt to explain and understand an observed

phenomenon in biology, chemistry, physics, economics, or any engineering
or scientific discipline. We will concentrate on those mathematical models
which are continuous (or piecewise continuous) and are difficult or impossible
to solve analytically: this is usually the case in practice. Relevant application
areas within computer science include graphics, vision and motion analysis,
image and signal processing, search engines and data mining, machine learn-
ing, hybrid and embedded systems, and more.

In order to solve such a model approximately on a computer, the (con-
tinuous, or piecewise continuous) problem is approximated by a discrete one.
Continuous functions are approximated by finite arrays of values. Algorithms
are then sought which approximately solve the mathematical problem effi-

ciently, accurately and reliably. While scientific computing focuses on
the design and the implementation of such algorithms, numerical analysis

1

2 Chapter 1: Numerical Algorithms and Roundoff Errors

may be viewed as the theory behind them.

The next step after devising suitable algorithms is their implementation.
This leads to questions involving programming languages, data structures,
computing architectures and their exploitation (by suitable algorithms), etc.
The big picture is depicted in Figure 1.1.

The set of requirements that good scientific computing algorithms must
satisfy, which seems elementary and obvious, may actually pose rather diffi-
cult and complex practical challenges. The main purpose of these notes is to
equip you with basic methods and analysis tools for handling such challenges
as they may arise in future endeavours.

In terms of computing tools, we will be using Matlab: This is an inter-
active computer language, which for our purposes may best be viewed as a
convenient problem solving environment. Its original concept was very
simple: only an array data structure is considered. Most standard linear
algebra problems, such as solving linear systems that are not very large, are
implemented as part of the environment and are available by a single sim-
ple command. These days, Matlab is much more than a language based
on simple data arrays; it is truly a complete environment. Its interactivity
and graphics capabilities make it much more suitable and convenient in our
context than general-purpose languages such as C++, Java or Fortran 90.
In fact, many of the algorithms that we will learn are already implemented
in Matlab... So why learn them at all?? Because they provide the basis
for much more complex tasks, not quite available (that is to say, not already
solved) in Matlab or anywhere else, which you may encounter in the future.

Rather than producing yet another Matlab Tutorial or Introduction in
these notes (there are several very good ones available in other texts as well
as on the internet) we will demonstrate the use of this language on examples
as we go along.

1.2 Numerical algorithms and errors

The most fundamental feature of numerical computing is the inevitable pres-
ence of error. The result of any interesting computation (and of many unin-
teresting ones) will be only approximate, and our general quest is to ensure
that the resulting error be tolerably small. In this section we discuss the
following topics:

• Error types

• Ways to measure errors: Relative and absolute errors

• Algorithm properties

Chapter 1: Numerical Algorithms and Roundoff Errors 3

Observed
phenomenon

Mathematical
model

Discretization Solution
algorithm

Efficiency Accuracy Robustness

Implementation

Programming
environment

Data
structures

Computing
architecture

Figure 1.1: Scientific computing.

4 Chapter 1: Numerical Algorithms and Roundoff Errors

Error types

There are several types of error that may limit the accuracy of a numerical
calculation.

1. Errors in the problem to be solved.

These may be approximation errors in the mathematical model.
For instance:

• Heavenly bodies are often approximated by spheres when calcu-
lating their properties; an example can be conceived within the
approximate calculation of their motion trajectory, attempting to
answer the question (say) whether a particular astroid will collide
with Planet Earth before 11.12.2011.

• Relatively unimportant chemical reactions are often discarded in
complex chemical modeling in order to arrive at a mathematical
problem of a manageable size.

It is important to realize, then, that often approximation errors of the
type stated above are deliberately made: The assumption is that sim-
plification of the problem is worthwhile even if it generates an error in
the model. Note, however, that we are still talking about the math-
ematical model itself; approximation errors related to the numerical
solution of the problem are to be discussed below.

Another typical source of error is error in the input data. This
may arise, for instance, from physical measurements, which are never
infinitely accurate.

Thus, it may occur that after careful numerical solution of a given
problem, the resulting solution would not quite match observations on
the phenomenon being examined.

At the level of numerical algorithms, which is the focus of our interest
here, there is really nothing we can do about such errors. However,
they should be taken into consideration, for instance when determining
the accuracy (tolerance with respect to the next two types of error
mentioned below) to which the numerical problem should be solved.

2. Approximation errors

Such errors arise when an approximate formula is used in place of the
actual function to be evaluated. There are two types of approximation
errors.

• Discretization errors arise from discretizations of continuous
processes, such as interpolation, differentiation and integration.

Chapter 1: Numerical Algorithms and Roundoff Errors 5

Taylor’s Series Theorem: Assume that f(x) has k + 1 derivatives in an interval
containing the points x0 and x0 + h. Then

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) + · · · + hk

k!
f (k)(x0) +

+
hk+1

(k + 1)!
f (k+1)(ξ)

where ξ is some point between x0 and x0 + h.

• Convergence errors arise in iterative methods. For instance,
nonlinear problems must generally be solved approximately by an
iterative process. Such a process would converge to the exact
solution in the limit (after infinitely many iterations), but we cut
it of course after a finite (hopefully small!) number of iterations.
Iterative methods often arise already in linear algebra, where an
iterative process is terminated after a finite number of iterations
before the exact solution is reached.

3. Roundoff errors

Any computation involving real, as opposed to integer, numbers, in-
volves roundoff error. Even when no approximation error is involved
(as in the direct evaluation of a straight line, or the solution by Gaus-
sian elimination of a linear system of equations), roundoff errors are
present. These arise because of the finite precision representation of
real numbers on any computer, which affects both data representation
and computer arithmetic. They are further discussed in Section 1.3.

Discretization and convergence errors may be assessed by analysis of the
method used, and we will see a lot of that. Unlike roundoff errors, they
have a relatively smooth structure which may occasionally be exploited. Our
basic assumption will be that approximation errors dominate roundoff errors
in magnitude in our actual calculations. This can often be achieved, at least
in double precision (see Section 1.3 and Example 1.1).

Example 1.1

In this lengthy example we see how discretization errors and roundoff errors
both arise in a simple setting.

Consider the problem of approximating the derivative f ′(x0) of a given
smooth function f(x) at the point x = x0. For instance, let f(x) = sin(x)

6 Chapter 1: Numerical Algorithms and Roundoff Errors

be defined on the real line −∞ < x < ∞, and set x0 = 1.2. Thus, f(x0) =
sin(1.2) ≈ 0.932....

Further, we consider a situation where f(x) may be evaluated at any point
x near x0, but f ′(x0) may not be directly available, or is computationally
prohibitively expensive to evaluate. Thus, we seek ways to approximate
f ′(x0) by evaluating f at arguments x near x0.

A simple minded algorithm may be constructed using Taylor’s series. For
some small, positive value h that we will choose in a moment, write

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) +

h4

24
f ′′′′(x0) + · · · .

Then,

f ′(x0) =
f(x0 + h) − f(x0)

h
−

(

h

2
f ′′(x0) +

h2

6
f ′′′(x0) +

h3

24
f ′′′′(x0) + · · ·

)

.

Our algorithm for approximating f ′(x0) is to calculate

f(x0 + h) − f(x0)

h
.

The obtained approximation has the discretization error

∣

∣

∣

∣

f ′(x0) −
f(x0 + h) − f(x0)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

h

2
f ′′(x0) +

h2

6
f ′′′(x0) +

h3

24
f ′′′′(x0) + · · ·

∣

∣

∣

∣

.

Geometrically, we approximate the slope of the tangent at the point x0 by
the slope of the chord through neighboring points of f . In Figure 1.2, the
tangent is in blue and the chord is in red.

If we know f ′′(x0), and it is nonzero, then for h small we can estimate
the discretization error by

∣

∣

∣

∣

f ′(x0) −
f(x0 + h) − f(x0)

h

∣

∣

∣

∣

≈ h

2
|f ′′(x0)| .

Even without knowing f ′′(x) we expect that, provided f ′′(x0) 6= 0, the dis-
cretization error will decrease proportionally to h as h is decreased.

For our particular instance f(x) = sin(x), we have the exact value f ′(x0) =
cos(1.2) = 0.362357754476674.... Carrying out the above algorithm we ob-
tain for h = 0.1 the approximation f ′(x0) ≈ (sin(1.3) − sin(1.2))/0.1 =
0.31519... The absolute error (which is the magnitude of the difference be-
tween the exact derivative value and the calculated one) thus equals approx-
imately 0.047.

This approximation of f ′(x0) using h = 0.1 is not very accurate. We
therefore apply the same algorithm using several, smaller and smaller values
of h. The resulting errors are as follows:

Chapter 1: Numerical Algorithms and Roundoff Errors 7

0 x

f

x0 x0 + h

Figure 1.2: A simple instance of numerical differentiation: the tangent f ′(x0)
is approximated by the chord (f(x0 + h) − f(x0))/h.

h Absolute error

0.1 4.716676e-2

0.01 4.666196e-3

0.001 4.660799e-4

1.e-4 4.660256e-5

1.e-7 4.619326e-8

Indeed, the error appears to decrease like h. More specifically (and less
importantly), using our explicit knowledge of f ′′(x) = − sin(x), in this case
we have that 1

2
f ′′(x0) ≈ −0.466. The quantity 0.466h is seen to provide a

rather accurate estimate for the above tabulated error values.

The above calculations, and the ones reported below, were carried out
using Matlab’s standard arithmetic. The numbers just recorded might sug-
gest that arbitrary accuracy can be achieved by our algorithm, provided only

that we take h small enough. Indeed, suppose we want
∣

∣

∣
cos(1.2) − sin(1.2+h)−sin(1.2)

h

∣

∣

∣
<

10−10. Can’t we just set h ≤ 10−10/0.466 in our algorithm?

Not quite! Let us record results for very small, positive values of h:

8 Chapter 1: Numerical Algorithms and Roundoff Errors

h Absolute error

1.e-8 4.361050e-10

1.e-9 5.594726e-8

1.e-10 1.669696e-7

1.e-11 7.938531e-6

1.e-13 6.851746e-4

1.e-15 8.173146e-2

1.e-16 3.623578e-1

A log-log plot of the error vs h is provided in Figure 1.3. We can clearly

10
−20

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

h

A
bs

ol
ut

e
er

ro
r

Figure 1.3: The combined effect of discretization and roundoff errors. The
solid curve interpolates the computed values of |f ′(x0) − f(x0+h)−f(x0)

h
| for

f(x) = sin(x), x0 = 1.2. Shown in dash-dot style is a straight line depicting
the discretization error without roundoff error.

see that, as h is decreased, at first (from right to left in the figure) the
error decreases along a straight line, but this trend is altered and eventually
reversed. The Matlab script which generates the plot in Figure 1.3 is

Chapter 1: Numerical Algorithms and Roundoff Errors 9

x0 = 1.2;

f0 = sin(x0);

fp = cos(x0);

i = -20:0.5:0;

h = 10.^i;

err = abs (fp - (sin(x0+h) - f0)./h);

d_err = f0/2*h;

loglog (h,err,’-*’);

hold on

loglog (h,d_err,’r-.’);

xlabel(’h’)

ylabel(’Absolute error’)

The reason for the error “bottoming out” at about h = 10−8 is that the
total error consists of contributions of both discretization and roundoff errors.
The discretization error decreases in an orderly fashion as h decreases, and
it dominates the roundoff error when h is relatively large. But when h gets
below the approximate value 10−8 the discretization error becomes very small
and roundoff error starts to dominate (i.e., it becomes larger in magnitude).
The roundoff error has a somewhat erratic behaviour, as is evident from the
small oscillations that are present in the graph in a couple of places. Overall,
the roundoff error increases as h decreases. This is one reason why we want
it always dominated by the discretization error when approximately solving
problems involving numerical differentiation, such as differential equations
for instance.

We will later understand the precise source of the roundoff error exhibited
in this case: See Section 1.3, under the header ’Roundoff error accumulation
and cancellation errror’, and Exercise 2.

¨

Relative and absolute errors

In Example 1.1 we have recorded measured values of absolute error. In fact,
there are in general two basic types of measured error: Given a quantity u
and its approximation v,

• the absolute error in v is |u − v|, and

• the relative error (assuming u 6= 0) is |u−v|
|u|

.

The relative error is usually a more meaningful measure 1. This is especially
true for errors in floating point representation, a point to which we return in

1However, there are exceptions, especially when the approximated value is small in

magnitude – let us not worry about this yet.

10 Chapter 1: Numerical Algorithms and Roundoff Errors

Section 1.3. For example, we record absolute and relative errors for various
hypothetical calculations in the following table:

u v Absolute Relative

Error Error

1 0.99 0.01 0.01

1 1.01 0.01 0.01

-1.5 -1.2 0.3 0.2

100 99.99 0.01 0.0001

100 99 1 0.01

Evidently, when |u| ≈ 1 there is not much difference between absolute and
relative error measures. (This is the case in Example 1.1 above.) But when
|u| À 1, the relative error is more meaningful. In particular, writing for the
last row of this table u = 1 × 102, v = 0.99 × 102, we expect to be able to
work with such an approximation as accurately as with the one in the first
row, and this is borne out by the value of the relative error.

Algorithm properties

Since we must live with errors in our numerical computations, the next nat-
ural question is regarding appraisal of a given computed solution: In view of
the fact that the problem and the numerical algorithm both yield errors, can
we trust the numerical solution of a nearby problem (or the same problem
with slightly different data) to differ by only a little from our computed so-
lution? A negative answer could make our computed solution meaningless!2

This question can be complicated to answer in general, and it leads to no-
tions such as problem sensitivity and algorithm stability. If the problem
is too sensitive, or ill-conditioned, meaning that even a small perturbation
in the data produces a large difference in the result, then no algorithm may
be found for that problem which would meet our requirement of solution ro-
bustness. See Figure 1.4. Some modification in the problem definition may
be called for in such cases.

For instance, the problem of numerical differentiation depicted in Exam-
ple 1.1 turns out to be ill-conditioned when extreme accuracy (translating to
very small values of h) is required.

The job of a stable algorithm for a given problem is to yield a numerical
solution which is the exact solution of an only slightly perturbed problem.

2Here we refer to intuitive notions of “large” vs “small” quantities and of values being

“close to” vs “far from” one another. While these notions can be quantified and thus made

more precise, this would typically make definitions cumbersome and harder to understand.

Chapter 1: Numerical Algorithms and Roundoff Errors 11

x

y

x̄

ȳ

f

f

Figure 1.4: An ill-conditioned problem of computing y = f(x): When the
input x is slightly perturbed to x̄, the result ȳ = f(x̄) is far from y. If the
problem were well-conditioned, we would be expecting the distance between
y and ȳ to be more comparable in magnitude to the distance between x and
x̄.

See Figure 1.5. Thus, if the algorithm is stable and the problem is well-

conditioned (i.e., not ill-conditioned) then the computed result ȳ is close to
the exact y.

In general, it is impossible to prevent linear accumulation of roundoff er-
rors during a calculation, and this is acceptable if the linear rate is moderate
(i.e., the constant c0 below is not very large). But we must prevent exponen-

tial growth! Explicitly, if En measures the relative error at the nth operation
of an algorithm, then

En ' c0nE0 represents linear growth;

En ' cn
1E0 represents exponential growth,

for some constants c0 and c1 > 1.
An algorithm exhibiting relative exponential error growth is unstable.

Such algorithms must be avoided!

Example 1.2

Consider evaluating the integrals

yn =

∫ 1

0

xn

x + 10
dx

for n = 1, 2, . . . , 30.

12 Chapter 1: Numerical Algorithms and Roundoff Errors

x
x̄

ȳ

f

Figure 1.5: A stable algorithm for computing y = f(x): the output ȳ is
the exact result, ȳ = f(x̄), for a slightly perturbed input; i.e., x̄ which is
close to the input x. Thus, if the algorithm is stable and the problem is
well-conditioned then the computed result ȳ is close to the exact y.

Observe at first that analytically,

yn + 10yn−1 =

∫ 1

0

xn + 10xn−1

x + 10
dx =

∫ 1

0

xn−1dx =
1

n
.

Also,

y0 =

∫ 1

0

1

x + 10
dx = ln(11) − ln(10).

An algorithm which may come to mind is therefore as follows:

• Evaluate y0 = ln(11) − ln(10).

• For n = 1, . . . , 30 evaluate

yn =
1

n
− 10 yn−1.

Note that applying this recursion formula would give exact values if
floating point errors were not present.

However, this algorithm is obviously unstable, as the magnitude of roundoff
errors gets multiplied by 10 (like compound interest on a shark loan, or
so it feels) each time the recursion is applied. Thus, there is exponential
error growth with c1 = 10. In Matlab (which automatically employs IEEE
double precision floating point arithmetic, see Section 1.3) we obtain y0 =
9.5310e−02, y18 = −9.1694e+01, y19 = 9.1694e+02, . . . , y30 = −9.1694e+13.

Chapter 1: Numerical Algorithms and Roundoff Errors 13

Note that the exact values all satisfy 0 < yn < 1 (Exercise: why?). Thus,
the computed solution, at least for n ≥ 18, is meaningless!

¨

Thankfully, such extreme instances of instability as depicted in Example
1.2 will not occur in any of the algorithms developed in these notes from here
on.

An assessment of the usefulness of an algorithm may be based on a number
of criteria:

• Accuracy

This issue is intertwined with the issue of error types and was discussed
at the start of this section and in Example 1.1. The important point is
that the accuracy of a numerical algorithm is an important parameter in
its assessment, and when designing numerical algorithms it is necessary
to be able to point out what magnitude of error is to be expected when
the algorithm is carried out.

• Efficiency

This depends on speed of execution in terms of CPU time and storage
space requirements. Details of an algorithm implementation within
a given computer language and an underlying hardware configuration
may play an important role in yielding an observed code efficiency.

Often, though, a machine-independent estimate of the number of floating-
point operations (flops) required gives an idea of the algorithm’s effi-
ciency.

Example 1.3

A polynomial of degree n,

pn(x) = c0 + c1x + . . . + cnx
n

requires O(n2) operations to evaluate at a fixed point x, if done in a
brute force way without intermediate storing of powers of x. But using
the nested form, also known as Horner’s rule,

pn(x) = (· · · ((cnx + cn−1)x + cn−2)x · · ·)x + c0

suggests an evaluation algorithm which requires only O(n) operations,
i.e. requiring linear instead of quadratic time. A Matlab script for
nested evaluation is as follows:

% Assume the polynomial coefficients are already stored

% in array c such that for any real x,

14 Chapter 1: Numerical Algorithms and Roundoff Errors

% p(x) = c(1) + c(2)x + c(3)x^2 + ... + c(n+1)x^n

p = c(n+1);

For j = n:-1:1

p = p*x + c(j);

end

¨

It is important to realize that while operation counts like this one often
give a rough idea of algorithm efficiency, they do not give the complete
picture regarding execution speed, as they do not take into account the
price (speed) of memory access which may vary considerably. Moreover,
any setting of parallel computing is ignored in a simple operation count
as well. Curiously, this is part of the reason why the Matlab command
flops, which was an integral part of this language for many years, was
removed from Matlab 6. Indeed, in modern computers, cache access,
blocking and vectorization features, and other parameters are crucial in
the determination of execution time. Those, unfortunately, are much
more difficult to assess compared to operation count, and we will not
get in this text into the gory details of the relevant, important issues.

Other theoretical properties yield indicators of efficiency, for instance
the rate of convergence. We return to this in later chapters.

• Robustness

Often, the major effort in writing numerical software, such as the
routines available in Matlab for function approximation and integra-
tion, is spent not on implementing the essence of an algorithm to carry
out the given task but on ensuring that it would work under all weather
conditions. Thus, the routine should either yield the correct result to
within an acceptable error tolerance level, or it should fail gracefully
(i.e., terminate with a warning) if it does not succeed to guarantee a
“correct result”.

There are intrinsic numerical properties that account for the robust-
ness and reliability of an algorithm. Chief among these is the rate of
accumulation of errors. In particular, the algorithm must be stable, as
we have already seen in Example 1.2.

1.3 Roundoff errors and computer arithmetic

As we have seen, various errors may arise in the process of calculating an
approximate solution for a mathematical model. Here we concentrate on one

Chapter 1: Numerical Algorithms and Roundoff Errors 15

'

&

$

%

Note: Readers who do not require detailed knowledge of roundoff error
and its propagation during a computation may skip the rest of this chapter,
at least upon first reading, provided that they accept the notion that each
number representation and each elementary operation (such as + or ∗) in
standard floating point arithmetic introduces a (small) relative error: up
to about η = 2.2e − 16 in today’s standard floating point systems.

error type, roundoff errors. Such errors arise due to the intrinsic limitation
of the finite precision representation of numbers (except for a restricted set
of integers) in computers.

Figure 1.6: The Patriot Missile catastrophically missed its target due to
rounding errors.

Example 1.4

Scientists and engineers often wish to believe that the numerical results of
a computer calculation, especially those obtained as output of a software
package, contain no error: at least not a significant or intolerable one. But
careless numerical computing does occasionally lead to disasters. One of
the more spectacular disasters was the Patriot Missile (Figure 1.6) failure in
Dharan, Saudi Arabia, on February 25, 1991, which resulted in 28 deaths.
This failure was ultimately traced back to poor handling of rounding errors
in the missile’s software. A web site maintained by D. Arnold,
http://www.ima.umn.edu/∼arnold/disasters/disasters.html

contains the details of this story and others. For a larger collection of soft-
ware bugs, see
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

¨

We discuss the following topics in this section:

16 Chapter 1: Numerical Algorithms and Roundoff Errors

• Floating point numbers

• Errors in floating point representation

• Roundoff error accumulation and cancellation error

• The rough appearance of roundoff error

• Machine representation and the IEEE standard

• Floating point arithmetic

• Errors in a general floating point representation

Floating point numbers

Any real number is accurately representable by an infinite decimal sequence
of digits.3 For instance,

8

3
= 2.6666 . . . =

(

2

101
+

6

102
+

6

103
+

6

104
+

6

105
+ · · ·

)

× 101.

This is an infinite series, but computers use a finite amount of memory to
represent real numbers. Thus, only a finite number of digits may be used to
represent any number, no matter by what representation method.

For instance, we can chop the infinite decimal representation of 8/3 after
4 digits,

8

3
'

(

2

101
+

6

102
+

6

103
+

6

104

)

× 101 = 0.2666 × 101.

Generalizing this, we can speak of t decimal digits (and call t the preci-

sion). For each real number x we associate a floating point representation,
denoted fl(x), given by

fl(x) = ±0.d1d2 . . . dt−1dt × 10e

= ±
(

d1

101
+

d2

102
+ · · · + dt−1

10t−1
+

dt

10t

)

× 10e.

The sign, digits di and exponent e are chosen so that fl(x) closely approxi-
mates the value of x: shortly we will discuss how close that is. In the above
example, t = 4 and e = 1.

3It is known from calculus that the set of all rational numbers in a given real interval

is dense in that interval. This means that any number in the interval, rational or not, can

be approached to arbitrary accuracy by a sequence of rational numbers.

Chapter 1: Numerical Algorithms and Roundoff Errors 17

The above representation is not unique; for instance,

0.2666 × 101 = 0.02666 × 102.

Therefore, we normalize the representation by insisting that d1 6= 0. Thus,

1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, i = 2, . . . , t.

Not only the precision is limited to a finite number of digits, also the
range of the exponent must be restricted. Thus, there are integers U > 0
and L < 0 such that all eligible exponents in a given floating point system
satisfy

L ≤ e ≤ U.

The largest number precisely representable in such a system is

0.99 . . . 99 × 10U / 10U ,

and the smallest positive number is

0.10 . . . 00 × 10L = 10L−1.

In addition, there are certain numbers that cannot be represented in a
normalized fashion but are necessary in any floating point system. One such
number is the celebrated 0... Numbers like 0 and ∞ are represented as special
combinations of bits, according to an agreed upon convention for the given
floating point system. A specific example is provided a little later in this
section, for the IEEE standard.

Example 1.5

Consider a (toy) decimal floating point system as above with t = 4, U = 2
and L = −1. The decimal number 2.666 is precisely representable in this
system because L < e < U .

The largest number in this system is 99.99, the smallest is −99.99, and
the smallest positive number is 10−2 = 0.01.

How many different numbers are in this floating point system? The first
digit can take on 9 different values, the other three digits 10 values each
(because they may be zero, too). Thus, there are 9 × 10 × 10 × 10 = 9000
different normalized fractions possible. The exponent can be one of U −
L + 1 = 4 values, so in total there are 4 × 9000 = 36000 different positive
numbers possible. There is the same total of negative numbers, and then
there is the number 0. So, there are 72001 different numbers in this floating
point system.

¨

18 Chapter 1: Numerical Algorithms and Roundoff Errors

Errors in floating point representation

How accurate is a floating point representation of the real numbers? First,
recall how we measure errors. For a given floating point system, denoting
by fl(x) the floating point number that approximates x, the absolute and
relative errors are given by

Absolute error = |fl(x) − x|;

Relative error =
|fl(x) − x|

|x| .

As was pointed out in Section 1.2, the relative error is generally a more
meaningful measure in floating point representation, because it is indepen-
dent of a change of exponent. Thus, if u = 1, 000, 000 = 1× 106, v = fl(u) =
990, 000 = 0.99× 106, we expect to be able to work with such an approxima-
tion as accurately as with u = 1, v = fl(u) = 0.99, and this is borne out by
the value of the relative error.

There are two distinct ways to do the “cutting” to store a real number
x = ±(0.d1d2d3 . . . dtdt+1dt+2 . . .) × 10e using only t digits.

• Chopping: ignore digits dt+1, dt+2, dt+3

• Rounding: add 1 to dt if dt+1 ≥ 10
2

= 5, then ignore digits dt+1, dt+2, dt+3

Here is a simple example, where we chop and round with t = 3:

x Chopped to Rounded to

3 digits 3 digits

5.672 5.67 5.67

-5.672 -5.67 -5.67

5.677 5.67 5.68

-5.677 -5.67 -5.68

Let x 7→ fl(x) = 0.f × 10e, where f is obtained as above by either chop-
ping or rounding. Then, the absolute error committed in using a machine
representation of x is bounded by

absolute error ≤

10−t · 10e, for chopping

1
2
10−t · 10e, for rounding

.

(This is not difficult to see. In any case, we show it more generally later on,
in the last subsection.)

Chapter 1: Numerical Algorithms and Roundoff Errors 19

Given these bounds on the absolute error, we now bound the relative
error. Note that due to normalization,

|x| ≥
(

1

10
+

0

102
+ · · · + 0

10t
+ · · ·

)

× 10e = 0.1 × 10e.

For chopping, then,

|fl(x) − x|
|x| ≤ 10−t · 10e

0.1 · 10e
= 101−t =: η.

For rounding, like the case for absolute error, the relative error is half of
what it is for chopping, hence

η =
1

2
101−t.

For the toy floating point system of Example 1.5, η = 1
2
101−4 = 0.0005.

The quantity η is fundamental, as it expresses a tight bound on the
’atomic’ relative error we may expect to result from each elementary op-
eration with floating point numbers. It has been called machine precision,
rounding unit, machine epsilon and more. Furthermore, the negative of
its exponent, t−1 (for the rounding case), is often referred to as the number

of significant digits.

Roundoff error accumulation and cancellation error

As many operations are being performed in the course of carrying out a
numerical algorithm, many small errors unavoidably result. We know that
each elementary floating point operation may add a small relative error; but
how do these errors accumulate? In general, as we have already mentioned,
error growth which is linear in the number of operations is unavoidable. Yet,
there are a few things to watch out for.

• Cautionary notes:

1. If x and y differ widely in magnitude, then x + y has a large
absolute error.

2. If |y| ¿ 1, then x/y has large relative and absolute errors. Like-
wise for xy if |y| À 1.

3. If x ' y, then x − y has a large relative error (cancellation

error). We return to this type of error below.

• Overflow and underflow:

An overflow is obtained when a number is too large to fit into the float-
ing point system in use, i.e., when e > U . An underflow is obtained

20 Chapter 1: Numerical Algorithms and Roundoff Errors

when e < L. When overflow occurs in the course of a calculation, this
is generally fatal. But underflow is non-fatal: the system usually sets
the number to 0 and continues. (Matlab does this, quietly.)

NaN is a combination of letters that stands for ’not a number’, which
naturally one dreads to see in one’s calculations. It allows software to
detect problematic situations such as an attempt to divide 0 by 0, and
do something graceful instead of just halting. We have a hunch that
you will inadvertantly encounter a few NaN’s before this course is over.

Let us give an example to show how overflow may sometimes be avoided.

Example 1.6

Consider computing c =
√

a2 + b2 in a floating point system with 4 decimal
digits and 2 exponent digits, for a = 1060 and b = 1. The correct result in this
precision is c = 1060. But overflow results during the course of calculation.
(Why?) Yet, this overflow can be avoided if we rescale ahead of time: Note
c = s

√

(a/s)2 + (b/s)2 for any s 6= 0. Thus, using s = a = 1060 gives an
underflow when b/s is squared, which is set to zero. This yields the correct
answer here.

¨

Cancellation error deserves a special attention, because it often appears
in practice in an identifiable way. For instance, recall Example 1.1. If we
approximate a derivative of a smooth (differentiable) function f(x) at a point
x = x0 by the difference of two neighboring values of f divided by the
difference of the arguments,

f ′(x0) ≈
f(x0 + h) − f(x0)

h

with a small step h, then there is a cancellation error in the numerator, which
is then magnified by the denominator.

Sometimes such errors can be avoided by a simple modification in the
algorithm. An instance is illustrated in Exercise 1. Here is another one.

Example 1.7

Suppose we wish to compute y =
√

x + 1 − √
x for x = 100000 in a 5-digit

decimal arithmetic. Clearly, the number 100001 cannot be represented in this
floating point system exactly, and its representation in the system (regardless
of whether chopping or rounding is used) is 100000. In other words, for this
value of x in this floating point system, we have x + 1 = x. Thus, naively
computing

√
x + 1 −√

x results in the value 0.

Chapter 1: Numerical Algorithms and Roundoff Errors 21

We can do much better if we use the identity

(
√

x + 1 −√
x)(

√
x + 1 +

√
x)

(
√

x + 1 +
√

x)
=

1√
x + 1 +

√
x
.

Applying this formula (in 5-digit decimal arithmetic) yields .15811×10−2,
which happens to be the correct value to 5 decimal digits. The computation
is carried out by a straightforward utilization of the following routine, that
returns a number x, rounded to n decimal digits.

function y = roundc(x,n)

%

% function y = roundc(x,n)

%

% Returns x rounded to n decimal digits

% (take n < number of significant digits in x)

% Note x can be an array; y would have the same size

xx = abs(x)+1.e-20;

e = ceil(log10(xx)); % number’s decimal exponent

f = xx ./ 10.^e; % number’s fraction

s = 1;

frac = zeros(size(x));

for j = 1:n

s = s*10;

d = floor(f*s + 0.5); % extract digit

f = f - d/s;

frac = frac + d/s; % add digit to rounded fraction

end

y = sign(x) .* frac .* 10.^e;

¨

There are also other ways to avoid cancellation error, and one popular
technique is the use of a Taylor expansion.

Example 1.8

Suppose we wish to compute

y = sinh x =
1

2
(ex − e−x)

22 Chapter 1: Numerical Algorithms and Roundoff Errors

for a small value of x > 0, |x| ¿ 1. Directly using the above formula for
computing y may be prone to severe cancellation errors, due to the subtrac-
tion of two quantities that are approximately equal to 1. On the other hand,
using the Taylor expansion

sinh x = x +
x3

6
+

x5

120
+ . . .

may prove useful. For example, the cubic approximation x+ x3

6
should be an

effective (and computationally inexpensive) approximation, if x is sufficiently
small. Clearly, this formula is not prone to cancellation error. Moreover, it
is easy to see that the discretization error in this approximation is ≈ x5

120
for

|x| ≤ 1.
Employing the same 5-digit decimal arithmetic as used in Example 1.7 for

our cubic approximation, we compute sinh(0.1) = 0.10017 and sinh(0.01) =
0.01. These are the ’exact’ values in this floating point system. On the other
hand, employing the formula that involves the exponential functions, (which
is the exact formula and would produce the exact result had we not had
roundoff errors) we obtain 0.10018 and 0.010025 for these two values of x,
respectively. ¨

Some insight into the damaging effect of subtracting two nearly equal
numbers in a floating point system can be observed by examining a bound
for the error. Suppose z = x − y, where x ≈ y. Then

|z − fl(z)| ≤ |x − fl(x)| + |y − fl(y)| ,

from which it follows that the relative error satisfies

|z − fl(z)|
|z| ≤ |x − fl(x)| + |y − fl(y)|

|x − y| .

Although the right hand side is just a bound, it could be a tight one, since
it merely depends on the floating point system’s ability to represent the
numbers x and y. However, the denominator is very close to zero if x ≈ y
regardless of how well the floating point system can do, and so the relative
error could become very large.

A note of caution is in place with regard to any suggested remedies for
avoiding cancellation errors. In large scale computations it is not practical to
repeatedly rewrite formulas or use Taylor expansions and expect the trouble
to disappear. It is nevertheless worthwhile keeping those seemingly naive
techniques in mind. In some cases, even if the computation is long and
intensive, it may be based on a short algorithm, and a simple change of a
formula may greatly improve the algorithm’s stability.

Chapter 1: Numerical Algorithms and Roundoff Errors 23

The rough appearance of roundoff error

Let us study the seemingly unstructured behaviour of roundoff error as be-
comes apparent, for instance, already in Figure 1.3.

Example 1.9

We examine the behaviour of roundoff errors by evaluating sin(2πt) at 101
equidistant points between 0 and 1, rounding these numbers to 5 decimal
digits, and plotting the differences. This is conveniently achieved by the
following Matlab instructions:

t = 0 : .01 : 1;

tt = sin(2 ∗ pi ∗ t);
rt = roundc(tt, 5);

round err = tt− rt;

plot(t, round err);

title (′roundoff error in sin(2πt) rounded to 5 decimal digits′)

xlabel(′t′)

ylabel(′roundoff error′)

The function roundc has been introduced in Example 1.7. The result is
depicted in Figure 1.7. Note the disorderly, “high frequency” oscillation of the
roundoff error. This is in marked contrast with discretization errors, which
are usually “smooth”, as we have seen in Example 1.1 (note the straight line
drop of the error in Figure 1.3 for relatively large h where the discretization
error dominates).

¨

Machine representation and the IEEE standard

²
±

¯
°Note: Here is where we get more technical in the present chapter.

Of course, computing machines do not necessarily use base 10 (especially
those machines that do not have 10 fingers on their hands). Because many
humans are used to base 10 we have used it until now in this section in order
to introduce and demonstrate various concepts. But computer storage is in
an integer multiple of bits, hence typical computer representations use bases
that are powers of 2. In general, if the base is β (i.e., a digit can have values

24 Chapter 1: Numerical Algorithms and Roundoff Errors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−6 roundoff error in sin(2π t) rounded to 5 decimal digits

t

ro
un

do
ff

er
ro

r

Figure 1.7: The “almost random” nature of roundoff errors.

from 0 to β−1) then the above derivations can be repeated with β replacing
the decimal base 10. In particular, let us frame the general expression for
the all important machine presicion constant η in rounding arithmetic. It is
derived in the last subsection below.

η =
1

2
β1−t.

The common base for most computers today, following the IEEE standard

set in 1985, is base 2. In this base each digit di may only have two values,
0 or 1. Thus, the first (normalized) digit must be d1 = 1 and need not be
stored. The IEEE standard therefore also shifts e ← e − 1, so that actually,

fl(x) = ±
(

1 +
d2

2
+

d3

4
+ · · · + dt

2t−1

)

× 2e.

The standard floating point word in the IEEE standard (in which for
instance the computations of Examples 1.1 and 1.2 were carried out) requires

Chapter 1: Numerical Algorithms and Roundoff Errors 25

64 bits of storage and is called double precision or long word. Of these
64 bits, one is allocated for sign s (the number is negative iff s = 1), 11 for
the exponent and 52 for the fraction:

Double precision (64 bit word)

s = ± b =11-bit exponent f =52-bit fraction

β = 2, t = 52 + 1, L = −1023, U = 1024

Since the fraction f contains t − 1 digits the precision is t = 52 + 1 = 53.
Thus, a given bit pattern in the last 52 bits of a long word is interpreted as
a sequence of binary digits d2d3 · · · d53. Since 211 = 2048 different exponents
can be distinguished the upper and lower limits are set at U = 1024, L =
−1023. (Note U − L + 1 = 2048.) Therefore, a given bit pattern in the
exponent part of the long word is interpreted as a positive integer b in binary
representation that yields the exponent e upon shifting by L, i.e., e = b−1023.

Example 1.10

The sequence of 64 binary digits

01000000011111101000

considered as a double precision word can be interpreted as follows:

• Based on the first digit 0 the sign is positive by convention.

• The next 11 digits,
10000000111

form the exponent: In decimal, b = 1×210+1×22+1×21+1×20 = 1031.
So in decimal, e = b − 1023 = 1031 − 1023 = 8.

• The next 52 bits,

11101000

form the decimal fraction: f = 1
2

+ 1
4

+ 1
8

+ 1
32

= 0.90625.

• The number in decimal is therefore

s · (1 + f) × 2e = 1.90625 × 28 = 488.

¨

There is also a single precision arrangement of 32 bits, as follows:

26 Chapter 1: Numerical Algorithms and Roundoff Errors

Single precision (32 bit word)

s = ± b =8-bit exponent f =23-bit fraction

β = 2, t = 23 + 1, L = −127, U = 128

The IEEE standard reserves the endpoints of the exponent range for
special purposes, and allows only exponents e satisfying L < e < U . The
largest number precisely representable in a long word is therefore

[

1 +
52

∑

i=1

(
1

2
)i

]

× 21023 ≈ 2 · 21023 ≈ 10308

and the smallest positive number is

[1 + 0] × 2−1022 ≈ 2.2 · 10−308.

How does the IEEE standard store 0 and ∞? Here is where the endpoints
of the exponent are used, and the conventions are simple and straightforward:

• For 0, set b = 0, f = 0, with s arbitrary; i.e. the minimal positive value
representable in the system is considered 0.

• For ±∞, set b = 1 · · · 1, f = 1 · · · 1;

• The pattern b = 1 · · · 1, f 6= 1 · · · 1 is by convention NaN.

In single precision, or short word, the largest number precisely representable
is

[

1 +
23

∑

i=1

(
1

2
)i

]

× 2127 ≈ 2128 ≈ 3.4 × 1038

and the smallest positive number is

[1 + 0] × 2−126 ≈ 1.2 · 10−38.

The formulae for the machine precision or rounding unit η introduced
above in base 10 remain the same, except of course that here the base changes
to β = 2. Using the word arrangement for single and double precision, η is
calculated as follows:

• For single precision with chopping, η = β1−t = 21−24 = 1.19× 10−7 (so,
there are 23 significant binary digits, or about 7 decimal digits).

• For double precision with chopping, η = β1−t = 21−53 = 2.2 × 10−16

(so, there are 52 significant binary digits, or about 16 decimal digits).

Chapter 1: Numerical Algorithms and Roundoff Errors 27

In Matlab typing eps (without explicitly assigning it a value beforehand)
displays approximately the value 2.22e − 16.

Typically, single and double precision floating point systems as described
above are implemented in hardware. There is also quadruple precision (128
bits), often implemented in software and thus considerably slower, for appli-
cations that require a very high precision (e.g. in semiconductor simulation,
numerical relativity, astronomical calculations).

Floating point arithmetic

Even if number representations were exact in our floating point system, arith-

metic operations involving such numbers introduce roundoff errors. These
errors can be quite large in the relative sense, unless guard digits are used.
We will not dwell on this much, except to say that the IEEE standard re-
quires exact rounding, which means that the result of a basic arithmetic
operation must be identical to the result obtained if the arithmetic opera-
tion was computed exactly and then the result was rounded to the nearest
floating point number. With exact rounding, if fl(x) and fl(y) are machine
numbers, then

fl(fl(x) ± fl(y)) = (fl(x) ± fl(y))(1 + ε1),

fl(fl(x) × fl(y)) = (fl(x) × fl(y))(1 + ε2),

fl(fl(x) ÷ fl(y)) = (fl(x) ÷ fl(y))(1 + ε3),

where |εi| ≤ η. Thus, the relative errors remain small after each such opera-
tion.

Example 1.11

Consider a floating point system with decimal base β = 10 and four digits
t = 4. Thus, the rounding unit is η = 1

2
× 10−3. Let

x = .1103, y = .9963 × 10−2.

Subtracting these two numbers, the exact value is x − y = .100337. Hence,
exact rounding yields .1003. Obviously, the relative error is below η:

|.100337 − .1003|
.100337

≈ .37 × 10−3 < η.

However, if we were to subtract these two numbers without guard digits
we would obtain .1103 − .0099 = .1004. Now,

|.100337 − .1004|
.100337

≈ .63 × 10−3 > η.

¨

28 Chapter 1: Numerical Algorithms and Roundoff Errors

Example 1.12

Generally, fl(1 + α) = 1 for any number α which satisfies |α| ≤ η. In partic-
ular, the following Matlab commands

eta = .5*2^(-52)

beta = (1+eta)-1

produce the output eta = 1.1102e− 16, beta = 0. Returning to Example 1.1
and to Figure 1.3, we can now explain why the curve of the error is flat for
the very, very small values of h. For such values, fl(f(x0 + h)) = fl(f(x0)).
So, the approximation is precisely zero and the recorded values are those of
fl(f ′(x0)), which is independent of h. ¨

Errors in a general floating point representation

A general floating point system may be defined by four values (β, t, L, U)
where

β = base of the number system;

t = precision (# of digits);

L = lower bound on exponent e;

U = upper bound on exponent e.

For each x ∈ R (i.e., for each real number x), there is an associated floating
point representation

fl(x) = ±
(

d1

β1
+

d2

β2
+ · · · + dt

βt

)

× βe,

where di are integer digits in the range 0 ≤ di ≤ β−1. The number fl(x) is an
approximation of x, in general. To ensure uniqueness of this representation
it is normalized to satisfy d1 6= 0 by adjusting the exponent e so that leading
zeros are dropped. (However, unless β = 2 this does not fix the value of d1.)
Moreover, e must be in the range L ≤ e ≤ U .

Obviously, the largest number that can be precisely expressed in this
system is obtained by setting di = β−1, i = 1, . . . , t, and e = U . The smallest
positive number is obtained by setting d1 = 1, then di = 0, i = 2, . . . , t, and
e = L.

The definitions of chopping and rounding extend directly for a more gen-
eral floating point system. To store a real number x = ±(.d1d2d3 . . . dtdt+1dt+2 . . .) · βe

using only t digits,

• chopping ignores digits dt+1, dt+2, dt+3 . . .; whereas

• rounding adds 1 to dt if dt+1 ≥ β

2
.

Chapter 1: Numerical Algorithms and Roundoff Errors 29

The IEEE standard uses a mixture of both (“unbiased rounding”).
Let x 7→ fl(x)=0.f × βe. (For the IEEE standard, there is a slight varia-

tion, which is immaterial here.) Then, the absolute error committed in using
a machine representation of x is

absolute error ≤

β−t · βe, (1 in the last digit for chopping)

1
2
β−t · βe, (1

2
in the last digit for rounding)

.

Proof:
Let us show these bounds, for those who just would not believe us oth-

erwise. We also use the opportunity to take a closer look at the structure of
the generated representation error. Assume for simplicity of notation that
x > 0, and write (without being fussy about limits and irrational numbers)

x = (.d1d2d3 . . . dtdt+1dt+2 . . .) · βe =

(

∞
∑

i=1

di

βi

)

βe.

• Consider chopping. Then,

fl(x) = (.d1d2d3 . . . dt) · βe =

(

t
∑

i=1

di

βi

)

βe.

So, β−e[x− fl(x)] =
∑∞

i=t+1
di

βi , and we ask how large this can be. Each
digit satisfies di ≤ β − 1, so at worst

β−e[x − fl(x)] ≤ (β − 1)
∞

∑

i=t+1

1

βi
= β−t.

Note, incidentally, that if x > 0 then always fl(x) < x, and if x < 0
then always fl(x) > x. This is not very good statistically, and does not
occur with rounding.

• Consider rounding. Now

fl(x) =

(.d1d2d3 . . . dt−1dt) · βe =
(

∑t

i=1
di

βi

)

βe if dt+1 < β/2

(.d1d2d3 . . . dt−1[dt + 1]) · βe =
(

1
βt +

∑t

i=1
di

βi

)

βe if dt+1 ≥ β/2.

So, if dt+1 < β/2 then

β−e[x − fl(x)] ≤ β/2 − 1

βt+1
+ (β − 1)

∞
∑

i=t+2

1

βi
=

β/2 − 1

βt+1
+

1

βt+1
=

1

2
β−t,

30 Chapter 1: Numerical Algorithms and Roundoff Errors

and if dt+1 ≥ β/2 then

|β−e[x − fl(x)]| =

∣

∣

∣

∣

∣

∞
∑

i=t+1

di

βi
− 1

βt

∣

∣

∣

∣

∣

=
1

βt
−

∞
∑

i=t+1

di

βi

≤ 1

βt
− β/2

βt+1
=

1

2
β−t.

¨

Having established the bounds for absolute errors, let us consider next the
relative errors in floating point number representations. Since the fraction is
normalized we have

|x| ≥ 1/β × βe.

For chopping, the relative error is therefore bounded by

|fl(x) − x|
|x| ≤ β−t · βe

β−1 · βe
= β1−t =: η.

For rounding, the relative error is half of what it is for chopping (as for
the absolute error), so

η =
1

2
β1−t.

This is the machine precision or rounding unit.

If you think of how a given floating point system represents the real line
you’ll find that it has a somwhat uneven nature. Indeed, very large numbers
are not represented at all, and the distance between two neighboring, positive
floating point values is constant in the relative but not in the absolute sense.
See Exercise 7.

Most annoying is the fact that the distance between the value 0 and the
smallest positive number is significantly larger than the distance between
that same smallest positive number and the next smallest positive number!
To address this the IEEE standard introduces into the floating point system
next to 0 additional, subnormal numbers which are not normalized. We will
leave it at that.

Finally, we note that when using rounding arithmetic, errors tend to be
more random in sign than when using chopping. Statistically, this gives a
higher chance for occasional error cancellations along the way. We will not
get into this further here.

Chapter 1: Numerical Algorithms and Roundoff Errors 31

1.4 Exercises

1. The function f1(x, δ) = cos(x + δ) − cos(x) can be transformed into
another form, f2(x, δ), using the trigonometric formula

cos(φ) − cos(ψ) = −2 sin

(

φ + ψ

2

)

sin

(

φ − ψ

2

)

.

Thus, f1 and f2 have the same values, in exact arithmetic, for any given
argument values x and δ.

a) Derive f2(x, δ).

b) Write a Matlab script which will calculate g1(x, δ) = f1(x, δ)/δ+
sin(x) and g2(x, δ) = f2(x, δ)/δ+sin(x) for x = 3 and δ = 1.e−11.

c) Explain the difference in the results of the two calculations.

2. The function f1(x0, h) = sin(x0 + h)− sin(x0) can be transformed into
another form, f2(x0, h), using the trigonometric formula

sin(φ) − sin(ψ) = 2 cos

(

φ + ψ

2

)

sin

(

φ − ψ

2

)

.

Thus, f1 and f2 have the same values, in exact arithmetic, for any given
argument values x0 and h.

a) Derive f2(x0, h).

b) Suggest a formula that avoids cancellation errors for computing
the approximation (f(x0+h)−f(x0))/h to the derivative of f(x) =
sin(x) at x = x0. Write a Matlab program that implements your
formula and computes an approximation of f ′(1.2), for h = 1e −
20, 1e − 19, . . . , 1. Compare your results to the results presented
in Example 1.1.

c) Explain the difference in accuracy between your results and the
results reported in Example 1.1.

3. The Stirling approximation

Sn =
√

2πn ·
(n

e

)n

is used to approximate n! = 1 · 2 · · · · ·n, for large n. Here e = exp(1) =
2.7182818...
Write a program that computes and displays n! and Sn, as well as the
relative and absolute errors, for 1 ≤ n ≤ 20.

Explain the meaning of your results.

32 Chapter 1: Numerical Algorithms and Roundoff Errors

4. Consider again the problem presented in Example 1.2, namely, com-
puting the integrals

yn =

∫ 1

0

xn

x + 10
dx

for n = 1, 2, . . . , 30. There we saw a numerically unstable procedure
for carrying out the task.

Derive a formula for approximately computing these integrals based on
evaluating yn−1 given yn. Show that for any given value ε > 0 and
n0, there exists n1 such that taking yn1

= 0 as a starting value will
produce integral evaluations yn with an absolute error smaller than ε
for all 0 < n ≤ n0. Explain why your algorithm is stable and write a
Matlab function that computes the value of y20 within an absolute
error of at most 10−5.

5. How many distinct positive numbers can be represented in a floating
point system using base β = 10, precision t = 2 and exponent range
L = −9, U = 10?

(Assume normalized fractions and don’t worry about underflow.)

6. Suppose a computer company is developing a new floating point system
for use with their machines. They need your help in answering a few
questions regarding their system. Following the terminology of Section
1.3, the company’s floating point system is specified by (β, t, L, U). You
may assume that:

• All floating point values are normalized (except the floating point
representation of zero).

• All digits in the mantissa (ie. fraction) of a floating point value
are explicitly stored.

• Zero is represented by a float with a mantissa and exponent of
zeros. (Don’t worry about special bit patterns for ±∞ and NaN.)

Questions:

a) How many different nonnegative floating point values can be rep-
resented by this floating point system? (Any answer within 5 of
the correct one is fine.)

b) Same question for the actual choice (β, t, L, U) = (8, 5,−100, 100)
(in decimal) which the company is contemplating in particular.

c) What is the approximate value (in decimal) of the largest and
smallest positive numbers that can be represented by this floating
point system?

Chapter 1: Numerical Algorithms and Roundoff Errors 33

d) What is the rounding unit?

7. If you generate in Matlab a row vector x containing all the floating
point numbers in a given system, another row vector y of the same
dimension as x containing 0′s, and then plot discrete values of y vs x
using the symbol ′+′, you’ll get a picture of sorts of the floating point
number system. The relevant commands for such a display are

y = zeros(1,length(x));

plot (x,y,’+’)

Produce such a plot for the system (β, t, L, U) = (2, 3,−2, 3). (Do not
assume the IEEE special conventions.) What do you observe? Also,
calculate the rounding unit for this modest floating point system.

8. (a) The number 8
3

= 2.6666 . . . obviously has no exact representation
in any decimal floating point system (β = 10) with finite precision
t. Is there a finite floating point system (i.e. some finite integer
base β and precition t) in which this number does have an exact
representation? If yes then describe one such.

(b) Same question for the irrational number π.

9. The roots of the quadratic equation

x2 − 2bx + c = 0

with b2 > c are given by

x1,2 = b ±
√

b2 − c.

Note x1x2 = c.

The following Matlab scripts calculate these roots using two different
algorithms:

(a) x1 = b + sqrt(b^2-c);

x2 = b - sqrt(b^2-c);

(b) if b > 0

x1 = b + sqrt(b^2-c);

x2 = c / x1;

else

x2 = b - sqrt(b^2-c);

x1 = c / x2;

end

34 Chapter 1: Numerical Algorithms and Roundoff Errors

Which algorithm gives a more accurate result in general? Choose one
of the following options.

(a) Algorithm (i)

(b) Algorithm (ii)

(c) Both algorithms produce the same result

Justify your choice in one short sentence. (NB The point is to answer
this question without any computing.)

10. Write a Matlab program which will:

(a) Sum up 1/n for n = 1, 2, . . . , 10000.

(b) Round each number 1/n to 5 decimal digits, and then sum them
up in 5-digit decimal arithmetic for n = 1, 2, . . . , 10000.

(c) Sum up the same rounded numbers (in 5-digit decimal arithmetic)
in reverse order, i.e. for n = 10000, . . . , 2, 1.

Compare the three results and explain your observations.

11. In the statistical treatment of data one often needs to compute the
quantities

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n

n
∑

i=1

(xi − x̄)2,

where x1, x2, . . . , xn are the given data. Assume that n is large, say
n = 10, 000. It is easy to see that s2 can also be written as

s2 =
1

n

n
∑

i=1

x2
i − x̄2.

(a) Which of the two methods to calculate s2 is cheaper in terms of
flop counts? (Assume x̄ has already been calculated and give the
operation counts for these two options.)

(b) Which of the two methods is expected to give more accurate re-
sults for s2 in general? (Justify briefly.)

(c) Write a little Matlab script to check whether your answer to the
previous question was correct.

12. With exact rounding, we know that each elementary operation has a
relative error which is bounded in terms of the rounding unit η; e.g.,
for two floating point numbers x and y, fl(x+ y) = (x+ y)(1+ ε), |ε| ≤
η. But is this true also for elementary functions such as sin, ln and
exponentiation?

Chapter 1: Numerical Algorithms and Roundoff Errors 35

Consider exponentiation, which is performed according to the formula

xy = ey ln x (assuming x > 0).

Estimate the relative error in calculating xy in floating point, assuming
fl(ln z) = (ln z)(1 + ε), |ε| ≤ η, and that everything else is exact. Show
that the sort of bound we have for elementary operations and for ln
does not hold for exponentiation when xy is very large.

1.5 Additional notes

• Here are some internet introdutions to Matlab. There are many more:

– Kermit Sigmon, Matlab tutorial,

http://www.mines.utah.edu/gg_computer_seminar/matlab/matlab.html

– Ian Cavers, Introductory guide to Matlab,

http://www.cs.ubc.ca/spider/cavers/MatlabGuide/guide.html

– Mark Gockenbach, A practical introduction to Matlab,

http://www.math.mtu.edu/~msgocken/intro/intro.html

• A lot of thinking went in the early days into the design of floating
point systems for computers and scientific calculators. Such systems
should be economical (fast execution in hardware) on one hand, yet
they should also be reliable, accurate enough, and free of unusual
exception-handling conventions on the other hand. W. Kahan was
particularly involved in such efforts (and received a Turing Award for
his contributions), especially in setting up the IEEE standard. The
almost universal adoption of this standard has significantly increased
both reliability and portability of numerical codes. See Kahan’s web
page for various interesting related documents:

http://www.cs.berkeley.edu/∼wkahan/

A short, accessible textbook which discusses IEEE floating point in
great detail is Overton [30]. A comprehensive and thorough treatment
of roundoff errors and many aspects of numerical stability can be found
in Higham [23].

• It may be surprising for the reader to know how much attention has
been given throughout the years to the definition of scientific computing
and/or numerical analysis. Early definitions made use of terms like
roundoff errors and other terms, which were later perceived as not

36 Chapter 1: Numerical Algorithms and Roundoff Errors

very appealing. A very nice account of the evolution of this seemingly
trivial but nevertheless important issue, can be found in Trefethen and
Bau [35]. These days it seems that we are converging to the definition
suggested in that book, the spirit of which is also reflected in our own
words, on the very first page of this book: “Numerical analysis is the
study of algorithms for the problems of continuous mathematics.”

• As mentioned earlier, in practice one often treats roundoff errors simply
by using stable algorithms (no unreasonably large error accumulation)
and by using double precision by default. This tends to ensure in
many cases (though not all!) that these accumulated errors remain at a
tolerable level. However, such a practical solution is hardly satisfactory
from a theoretical point of view. Indeed, what if we want to use a
floating point calculation for the purpose of producing a mathematical
proof?! The nature of the latter is that a stated result should always –
not just usually – hold true.

One more careful approach uses interval arithmetic. With each num-
ber are associated a lower and an upper bound, and these are propa-
gated with the algorithm calculations on a “worst case scenario” basis.
The calculated results are then guaranteed to be within the limits of
the calculated bounds.

Naturally, such an approach is expensive and of limited utility, as the
range between the bounds typically grows way faster than the accumu-
lated error itself. But at times this approach does work for obtaining
truly guaranteed results. See Overton [30] for a workout.

• A move to put (more generally) complexity theory for numerical al-
gorithms on firmer foundations was initiated by S. Smale and others
in the 1980’s. Although we are not aware of anything that arose from
this volume of efforts which actually affects practical work in scientific
computing, it has mushroomed into an entire organization called Foun-
dations of Computational Mathematics (FOCM). This organization is
involved with various interesting activities which concentrate on the
more mathematically rich aspects of numerical computation.

