
Chapter #5

TRANSIENT ANALYSIS USING STATE
VARIABLES

5.1 INTRODUCTION

When the dynamic behavior of a circuit is under consideration, the equations
representing the circuit, say in node or mesh analysis, are generally integro-
differential. They can then be transformed into one scalar diffff fferential equationffff
of the second or higher order. However, the differential equations of a circuitffff
may also be written as a set of first-order differential equations, or whenffff
expressed in matrix form it results in a first-order vector differential equationffff
of the form

ẋ= f (x, w, t),

where x is a vector of unknown variables called state variables, w represents
the set of inputs and t is the time.
The set of first-order differential equations written in such a form is called affff
state equation and the vector x represents the state of the network. State
equations play an important role in the study of the dynamic behavior of a
circuit. There are three basic advantages in using the state equations in this
form. (1) There is an enormous amount of mathematical knowledge for solving
such equations while the equations by themselves can be derived from formal
topological properties of the circuit, using the matrix approach. (2) It can be
easily and naturally extended to nonlinear and time-varying or switched net-
works and is, in fact, the approach most often used in characterizing such
networks and (3) it is easily programmed for and solved by computers.
In this chapter, we shall formulate, derive and solve first-order vector

differential equations, i.e. state equations. As before, we shall be limited here toffff
linear, time-invariant circuits that may be reciprocal or nonreciprocal. On the
other hand, this approach is applicable to circuits of any complicity, especially
with computer-aided analysis. In this study, when using a computer is suggested,
we are referring to the MATHCAD or MATHLAB programs which are also
suitable for symbolic computation.
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5.2 THE CONCEPT OF STATE VARIABLES

Two general methods of circuit analysis are usually studied in-depth in introduc-
tory courses in circuit analysis(*), namely nodal analysis and mesh analysis.
Both of these methods are very useful for resistive d.c. and RL C a.c. circuits in
their steady-state behavior. The basic variables in these two kinds of circuits,
node voltages and mesh currents, were constant quantities, i.e. with no variation
in time. Thus, the nodal and mesh equations in such circuits happen to be
algebraic equations, without derivatives and integrals. However, node voltages
or mesh currents when used as basic variables in transient analysis are expressed
as a function of time. Therefore, the node and loop equations here are in general
integro-differential equations of the second order.ffff
Consider, as an example, the circuit in Fig. 5.1, in which the inductor current
and two capacitor currents may be expressed as

i
L2
=
1

L 2 P t0PP (vn1−vn2 )dt+I0 , (5.1a)

i4=C4
dv
C4
dt
=C4

dv
n2
dt

i5=C5
dv
C5
dt
=C5

dv
n3
dt

(5.1b)

Figure 5.1 Circuit of the example for writing node and mesh equations.

(*)See for example W. H. Hayt and J. E. Kemmerly (1998) Engineering Circuit Analysis,
McGraw-Hill.



T ransient Analysis using State Variables 267

Then the node equations may be written by inspection of the circuit as:

(G1+G2 )vn1+
1

L 2 P t0PP vn1dt− 1L 2 P t0PP vn2dt−G1vn3=− is1−I0
−
1

L 2 P t0PP vn1dt+G6vn2+C4 dvn2dt + 1L 2 P t0PP vn2dt−G6vn3=I0
−G1vn1−G6vn3+C5

dv
n3
dt
= i
s1
. (5.2)

Once these equations are solved for the node voltages v
n1
, v
n2
and v

n3
, the

remaining variables are easily obtained.
However, the presence of the integrals of unknowns in node equations 5.2
causes some difficulties in the solution. The integrals can be eliminated by
differentiating the equations in which they appear, but this will increase theffff
order of the derivatives. An easier way of analyzing would be if we avoid the
appearance of the integrals altogether. We note that an integral appears in the
present example of node equations when the current of an inductor is eliminated
by using equation 5.1a. In a similar way, the integrals appear in mesh equations
when the voltages of the capacitors are eliminated by substituting their v–i
relationship. Therefore these integrals will not appear if we leave both the
capacitor voltages and inductor currents as variables using a mixed set of
equations, i.e. based on Kirchhoff ’s laws.
Let us illustrate this idea of using capacitor voltages and inductor currents

as unknown variables in the same example of the circuit in Fig. 5.1. We may
write three independent KCL equations for the nodes 1n, 2n and 3n, and three
KVL equations for loops (meshes) indicated by the dashed arrows:

i∞
1
+ i
L2
+ i3=−is1 ,

−i
L2
+ i4+ i6=0, (5.3a)

−i∞
1
+ i5− i6= is1 ,

v
L2
+v
C4
−v3=0,

−v
C4
+v6+vC5=0, (5.5b)

v3−vC5−v1=0.

Substituting equation 5.1b for i4 and i5 , taking into consideration that
L 2 (diL2/dt)=vL2 and eliminating all branch voltages except for the capacitor
voltages by using the v–i relationships, and after rearranging the terms, yields

C4
dv
C4
dt
= i
L2
= i6 ,

C5
dv
C5
dt
= i∞
1
+ i6+ is1 , (5.4)

L 2
di
L2
dt
=−v

C4
+R3 i3
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R6 i6=vC5−vC4 (5.5a)

i∞
1
+ i3= iL2−is1
R1 i∞1−R3 i3=vC5 .

(5.b)

These are six equations in six unknowns. However, we can reduce the number
of equations that must be solved simultaneously. We note that equations 5.5a
and 5.5b are algebraic, i.e., they contain no derivatives or integrals. They can
be used to eliminate the rest of the unknown variables in (5.4) except v

C4
, v
C5

and i
L2
, whose derivatives are involved in these equations. The algebraic equa-

tions 5.5a and 5.5b can be easily solved (the first one trivially) to yield

i6=−
1

R6
v
C4
+
1

R6
v
C5

i∞
1
=

1

R1+R3
v
C5
+

R3
R1+R3

i
L2
−

R3
R1+R2

i
s1

(5.6)

i3=−
1

R1+R3
v
C5
+

R3
R1+R3

i
L2
−

R1
R1+R3

i
s1
.

Finally, these equations can be substituted into equation 5.4 to yield, after
rearrangement,

C4
dv
C4
dt
=
1

R6
v
C4
−
1

R6
v
C5
+i
L2

C5
dv
C5
dt
=−

1

R6
v
C4
−
R1+R3+R6
R6 (R1+R3 )

v
C5
+

R3
R1+R3

i
L2
+i
s1

(5.7a)

L 2
di
L2
dt
=−v

C4
−

R3
R1+R3

v
C5
+
R3R1
R1+R3

i
L2
−
R1R3
R1+R3

i
s1
,

or in matrix form, after dividing by the coefficients on the left,

d

dt CvC4vC5i
L2
D=C 1

C4R6
−

1

C4R6

1

C4

−
1

C5R6

R1+R3+R6
C5R6 (R1+R3 )

R3
C5 (R1+R3 )

−
1

L 2
−

R3
L 2 (R1+R3 )

R1R3
L 2 (R1+R3 )
D CvC4vC5iL2D

+C 0

1

C5

−
R1R3

L 2 (R1+R3 )
Dis1 . (5.7b)
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The resulting matrix equation 5.7b represents three first-order differential equa-ffff
tions in three unknowns. It is called the state equation and the variables v

C4
,

v
C5
and i

L2
are called the state variables.

As can be seen, the advantage of this method is that no integrals appear, and
subsequently no second derivatives occur as a result of the differentiation. Theffff
initial conditions, or initial state of the circuit, are the initial values of the
capacitor voltages and inductor currents, which usually can be independently
specified in the circuit, i.e. their values just after t0 are determined by their
values just before t0 . This is the second reason for choosing capacitor voltages
and inductor currents as unknown variables.
Further advantages in describing the network by first-order differential equa-ffff
tions are:

1) A simple systematic method for writing such equations can be formulated
by using the graph theory.

2) A systematic matrix solution may be applied for solving these first-order
differential equations. It may be easily programmed for a numerical andffff
symbolic solution with appropriate computer software.

3) It is quite easy to extend the state-variable representation to time-varying
and nonlinear networks.

The concept of state variables, or just state, satisfies two basic conditions of
circuit analysis:
a) If at any time, say t0 , the state is known (which is the initial condition or
initial state), then the state equations uniquely determine the state at any
time t>t0 for any given input. In other words, given the state of the circuit
at time t0 and all the inputs, the behavior of the circuit is completely deter-
mined for all t>t0 .
b) The state and the input uniquely determine the value of the remaining
circuit variables.

Proof a) From the theory of differential equations we know that the initialffff
values of the variables uniquely define, by differential equations, such as 5.7,ffff
the value of the variables for all t≥t0 . In other words, the state (vC (t), iL (t))
can be expressed by the state equations in terms of the initial state.

Proof b) We may use the substitution (or compensation) principle, which states
that in any linear circuit any voltage drop across a passive element, say the
capacitance, may be substituted by an independent voltage source equal to this
drop. In addition, any current through a passive element, say the inductance,
may be substituted by an independent current source equal to this current.
Hence, we will replace all the inductors by independent current sources whose
values i

L
(t) are given by the found state variables and all the capacitors by

independent voltage sources whose values are equal to the found state variables
v
C
(t) . As a result, we will obtain a pure resistive network in which any variable
can be determined by any well-known method of resistive circuit analysis.
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For example, let the desired output quantities be v3 and v6 in the circuit being
considered in Fig. 5.1. Since v3=R3 i3 and v6=R6 i6 , by multiplying the third
and the first equations of 5.6 correspondingly by R3 and R6 , we have

v3=−
R3

R1+R3
v
C5
+
R1R3
R1+R3

i
L2
−
R1R3
R1+R3

i
s1

v6=−vC4+vC5 ,

where v
C4
, v
C5
and i

L2
represent the voltage and current sources, which substitute

the elements C4 , C5 and L 2 subsequently. The above expressions in matrix form
are

Cv3v6D=C 0 −
R3

R1+R3

R1R3
R1+R3

−1 1 0 D CvC4vC5i
L2
D+C− R1R3

R1+R3
0 D [is1]. (5.8)

This matrix equation is called an output equation.
Both the state equation 5.7b and the output equation 5.8 equations may be

written in compact matrix notation as

ẋ=Ax+bw (5.9a)

y=cx+dw, (5.9b)

where x is the state vector, w is the input and y is the output vector. The
meanings of matrixes, A, b, c and d, which are dependent upon circuit elements,
are obvious from equations 5.7b and 5.8.
Next, we shall consider the number of independent state variables that repre-

sent the transient behavior of a network.

5.3 ORDER OF COMPLEXITY OF A NETWORK

As is known, node-voltage, mesh-currents, and mixed variable equations (based
on Kirchhoff ’s two laws) completely represent any electrical circuit. Recall that
the number of independent node-voltage equations, i.e., number of independent
Kirchhoff ’s current law (KCL) equations, is B− (N−1), where B is the number
of branches and N is the number of nodes. These numbers are determined only
by the graph of the circuit and not by the types of the branches, i.e. they would
not be influenced if the branches were all resistors, or if some were capacitors
and/or inductors. However, in resistive circuits driven by d.c. sources the node
or mesh equations are algebraic, with no variation in time. On the other hand,
when capacitors or inductors are present, the equations will be integro-
differential. Hence, the question is how many independent variables representffff
the circuit in its transient (dynamic) behavior. We know that each capacitor
and each inductor introduces a variable in such behavior since the v-i character-
istic of each contains a derivative or integral. We also know that, for a unique
solution of differential equations, the arbitrary constants have to be determined.ffff
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The number of these constants is equal to the number of independent initial
conditions that can be specified in a circuit. It is also known that the number
of initial conditions is related to the energy-storing elements, capacitors and
inductors, and in general is equal to the number of such elements in the circuit.
The exceptions are the, so-called, all-capacitor loops and all-inductor cut-sets.
Consider the circuit shown in Fig. 5.2. There are five energy-storing elements,
but in this circuit there is an all-capacitor loop, consisting of two capacitors C1
and C2 and a voltage source, and an all-inductor cut-set (see dashed line in
Fig. 5.2) consisting of three inductors L 3 , L 4 and L 5 . In this case, the capacitor
voltages and inductor currents will be restricted by KVL and KCL, namely

v
C1
+v
C2
=v
s8

(5.10a)

i
L4
+i
L5
= i
L3
, (5.10b)

which means that one of the voltages and one of the currents can be determined
if the other is known. This also means that the initial values of both v

C1
and

v
C2
cannot be prescribed independently, nor can the initial values of all three

currents i
L3
, i
L4
and i

L5
. Therefore, each of the constraint relationships, such as

equations 5.10a and 5.10b, reduce the number of independent variables.
In other words, the order of complexity of any network equals the total
number of energy-storing elements minus the number of all-capacitor loops and
the number of all-inductor cut-sets. Thus, the order of complexity of the circuit
of Fig. 5.2 is 5−1−1=3. Note that (1) all-capacitor loops may also consist
of ideal voltage sources and all-inductor cut-sets may also include ideal current
sources, and (2) only independent all-capacitor loops and all-inductor cut-sets
are taken into account(*).

Figure 5.2 Circuit with an all-capacitor loop and an all-inductor cut-set.

(*)The opposite situation, when the circuit consists of all-inductor loops and all-capacitor cut-sets,
does not influence the order of complexity, but it influences the values of the natural frequencies,
namely s=0. For more about all-capacitor loops/cut-sets and all-inductor cut-sets/loops see in
Balabanian, N. and Bickart T. A. (1969) Electrical Network T heory, John Wiley & Sons.
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Figure 5.3 Second order circuit.

5.4 STATE EQUATIONS AND TRAJECTORY

Consider the circuit in Fig. 5.3. Let us use capacitor voltage v
C
and inductor

current i
L
as state variables. Applying KCL to node 1n and KVL to the right

loop and outer loop, we obtain

C
dv
C
dt
=−i

L
+ i1 , L

di
L
dt
=v
C
−R2 iL (5.11)

R1 i1+vC=vs , (5.12)

Eliminating the non-desirable variable i1 from equation 5.12 and substituting it
into equation 5.11, after rearranging the terms, gives the state equations

dv
C
dt
=−

1

CR1
v
C
−
1

C
i
L
+
1

CR1
v
s
,

di
L
dt
=
1

L
v
C
−
R2
L
i
L
,

(5.13)

or in matrix form

dx(t)

dt
=Ax(t)+bw(t), (5.14)

where:

x(t)=CvC (t)i
L
(t)D is a vector of state variables,

A=C− 1

CR1
−
1

C

1

L
−
R2
L D is a constant 2×2 matrix,
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b=C− 1R10 D is a constant vector,
w(t)=v

s
(t) is the scalar input, or input vector.

For solving equation 5.14, the initial conditions of the inductor current and
of the capacitor voltage have to be known. Thus, the pair i

L
(0)=I0 and vC (0)=

V0VV is called the initial state

x0=CI0V0VV D (5.15)

The zero input response, i.e., circuit response when w(t)=0,

dx(t)

dt
=Ax(t) (5.16)

is completely determined by the initial state equation 5.15. Thus, if we consider
[i
L
(t), v
C
(t)] as the coordinates of a point on the i

L
−v
C
plane, then as t increases

from 0 to 2 the point [i
L
(t), v
C
(t)] will trace a curve, which is called the state-

space trajectory and the plane i
L
−v
C
is called the state-space of the circuit. It

is obvious that the trajectory curve starts at the initial point (I0 , V0VV ) and ends
at the origin (0, 0) when t=2. Since v

C
(t) and i

L
(t) are the components of the

state vector x(t), the trajectory defines it in the state space. The velocity of the
trajectory (di

L
/dt, dv

C
/dt) can be obtained from the state equation 5.16. In other

words, the trajectory of the state vector in a two-dimensional space characterizes
the behavior of a second order circuit, i.e., for every t, the corresponding point
of the trajectory specifies i

L
(t) and v

C
(t) .

As an example, three different kinds of trajectory, for: a) overdamped, b)ffff
underdamped and 3) loss-less, are shown in Fig. 5.4(d). Note, that in the first
case, the trajectory starts at (0.7, 0.9), when t=0, and ends at the origin (0, 0),
when t=2. In the second case, the trajectory is a shrinking spiral starting at
the same point and terminating at the origin. Finally, when the circuit is loss-
less (which of course is an ideal circuit) the trajectory is an ellipse centered at
the origin whose semi-axes depend on the circuit parameters L and C and the
initial state [i

L
(0), v

C
(0)] . The ellipse shape trajectory indicates that the response

is oscillatory.
For suitably chosen different initial states (usually uniformly spaced points)ffff
in the i

L
−v
C
plane we obtain a family of trajectories, called a phase portrait, as

shown in Fig. 5.5(a).
As we have already mentioned, the state equations in matrix representation
may be easily programmed to a numerical solution. Let us illustrate the approxi-
mate method for the calculation of the trajectory. We start at the initial point,
determined by the initial state x0[vC (0), iL (0)]T, and step forward a small interval
of time to find an estimate of x at this new time. From this point we step
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Figure 5.4 Waveforms forWW i
L
and v

C
in the second order circuits of an overdamped response (a),

underdamped response (b), loss-less response (c) and state trajectories (d).

Figure 5.5 State trajectories: phase portrait (a) and for Example 5.1 (b): 1) an approximation with

Dt=0.2 s and 2) an exact trajectory.
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forward again and estimate x after another short interval of time and so on.
The estimate of x at the new time is found by evaluating dx/dt at the old time
using the differential equation 5.16 and estimating the new value offfff x by the
formula

x
new
=x
old
+Dt AdxdtB

old
, (5.17)

where Dt is the ‘‘step length’’. This step-by-step method is known as Euler’s
method.
Essentially, we are using a straight-line approximation to the function in each
interval. In other words, this method is based on the assumption that if a
sufficiently small interval of time Dt is chosen, then during that interval the
trajectory velocity dx/dt is approximately constant. Thus, the straight-line seg-
ment, which approximates the trajectory on each step of calculation, is

Dx=AdxdtB
const
Dt.

It is obvious that the approximation calculated in this manner reaches the exact
trajectory when Dt approaches zero. In practice, the value of Dt that should be
selected depends primarily on the accuracy required and on the length of the
time interval over which the trajectory is calculated. Once the trajectory is
computed, the response of the circuit is easily obtained by plotting each of the
state variables v

C
, i
L
versus time.

Example 5.1

Let us employ Euler’s (first-order) method to calculate the state trajectory and
capacitor voltage versus the time of the circuit shown in Fig. 5.3.

Solution

Let the values of the circuit elements be R1=1 V, R2=1 V, L=1 H, C=1 F
and the initial state be I0=1 A and V0VV =1 V.

Then, substituting the above parameters in the matrix A, we have the state
equation 5.16 as

dx

dt
=C−1 −11 −1D x,

and the initial state is

x(0)=C11D
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Let us pick Dt=0.1 s. Using equation 5.17 yields the state at 0.1 s:

x(0.1)=C11D+0.1 C−1 −11 −1D C11D=C0.81 D .
Next, we can obtain the state at t=2Dt=0.2 s:

x(0.2)=C0.81 D+0.1 C−1 −11 −1D C0.81 D=C0.620.98D .
From these two steps, we can write the state at (k+1)Dt in terms of the state
at kDt

x[(k+1)0.1]=A1+0.1 C−1 −1

1 −1DB x(kDt)=C0.9 −0.10.1 0.9 D x(kDt).
In accordance with this formula the computer-aided calculation results are
shown in Fig. 5.5(b). If we use Dt=0.01, the resulting trajectory will coincide
with the exact trajectory.
In conclusion, the general recurrence formula for approximating the trajectory
may be written as(*)

x[(k+1)Dt]= (1+DtA)x(kDt). (5.18)

5.5 BASIC CONSIDERATIONS IN WRITING STATE EQUATIONS

In this section, we shall introduce a systematic method for writing state equa-
tions. This method is based on the topological properties of the network and
is called the ‘‘proper tree’’ method. However, we must first consider KCL and
KVL equations based on a cut-set and loop analysis.

5.5.1 Fundamental cut-set and loop matrixes

As is known from matrix analysis, the matrix formulation of independent KCL
equations is given by using the reduced incident matrix A. Recall that for any
connected graph, having N nodes and B branches, A has N−1 rows and B
columns. Thus, the set of N−1 linearly independent KCL equations, written
on the node basis, has the matrix form

Ai=0. (5.19)

However, equation 5.19 is not the only way of writing KCL equations. It may
also be done on the cut-set basis. A cut-set is defined as a set of k branches
with the property that if all k branches are removed from the graph, it is
separated into two parts. As an example, consider the graph shown in Fig. 5.6.

(*)For a more accurate approximation of the state-space trajectory, the Runge-Kutta fourth-order
method can be used (see, for example in Bajpai, A. C., et al. (1974) Engineering Mathematics, John
Wiley & Sons.
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Figure 5.6 Two distinct cut-sets indicated by dashed lines.

Two distinct cut-sets are shown by dashed lines, namely C1= (b2 , b6 , b7 ) and
C2= (b1 , b3 , b5 , b6 ). Recall now the generalized version of the KCL. By enclosing
one of the cut parts of the circuit in the balloon-shaped surface, (see the dotted-
dash line in Fig. 5.6(b)) we can write a KCL equation for this particular cut-
set

− i1+ i3− i4+ i5=0.

The number of such KCL equations is obviously equal to the number of distinct
cut-sets. However, as we know, the number of independent KCL equations is
N−1, where N is the number of nodes in the graph/circuit. Naturally, we are
interested in writing linearly independent cut-set equations. For this purpose,
we shall introduce the so-called fundamental cut-set. Choosing any tree in the
graph, we define a fundamental cut-set as that associated with the tree branch,
i.e. every tree branch together with some links constitutes a unique cut-set of
the graph. Such a cut-set is shown, for example, in Fig. 5.7. As can be seen,
removing the tree branch t3 separates the tree into two parts T1TT and T2TT . Then
the links l

a
and l

b
together with twig t3 constitute a unique cut-set. Indeed,

removing any of the remaining links, even all of them (thin lines), cannot

Figure 5.7 An example of a graph, tree and fundamental cut-set.
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separate either T1TT or T2TT into two parts. Therefore, the above cut-set is unique.
Obviously, each of the fundamental cut-sets is independent of any other, because
each of them contains one and only one twig. Since the number of twigs in any
tree is N−1, we can write N−1 linearly independent KCL equations following
N−1 fundamental cut-sets. Note that the orientation of each fundamental cut-
set is defined by the direction of the associated twig as shown in Fig. 5.7.
We will next consider the oriented graph of Fig. 5.8(a). A chosen tree is shown
by heavy lines, and four fundamental cut-sets associated with four twigs (since
a given graph has five nodes) are marked by dashed lines. For the sake of
convenience, we first number the twigs from 1 to 4 and the links from 5 to 7,
and adopt a reference direction for the cut-set, which agrees with the tree branch
defining the cut-set. Applying KCL to the four cut-sets, we obtain

cut-set 1: i1 + i7=0

cut-set 2: i2 +i6+ i7=0

cut-set 3: i3 − i5+ i6− i7=0

cut-set 4: i4− i5+ i6 =0,

or in matrix form

(5.20)

Figure 5.8 Fundamental cut-sets for the chosen tree (dashed lines) (a) and fundamental loops (dashed

lines) (b).
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In general, the KCL equations based on the fundamental cut-sets may be
written in the short form:

Qi=0, (5.21)

where Q is the fundamental cut-set matrix associated with the tree. The order
of the Q matrix is (N−1)×B, and its jk-th element is defined as follows:

q
jkG 1 if branch k belongs to cut-set j and has the same direction

−1 if branch k belongs to cut-set j and has the opposite direction

0 if branch k does not belong to cut-set j.

Note that the fundamental cut-set matrix in equation 5.20 includes a unit sub-
matrix of order (N−1), which is the number of fundamental cut-sets and the
number of twigs. Therefore,

Q=[1
t
Q
l
], (5.22)

where Q
l
is a sub-matrix of the order (N−1)×l, i.e. it consists of (N−1) rows

and of l (number of links) columns. The fundamental cut-set matrix Q will
always have the form of equation 5.22 because each fundamental cut-set contains
one and only one twig and its orientation agrees with the reference direction of
the cut-set, by definition.
Next, we shall introduce the loop matrix. Mesh analysis, which is commonly
studied in introductory courses in circuit analysis, is not the only method of
writing a set of independent equations based on KVL. Another and actually
more flexible method, which allows us to derive independent KVL equations,
is based on the so-called fundamental loop. Every link of a co-tree (complement
of the tree) together with some twigs, which are connected to the link, constitutes
a unique loop associated with the link. Indeed, there cannot be any other path
between two nodes of the tree, to which the link is connected. If there were two
or more paths between two nodes of the tree, they will form a loop; this
contradicts the main property of a tree. The set of fundamental loops is indepen-
dent, since each of them contains one and only one link, i.e. every loop differsffff
from another by at least one branch. Therefore, each link uniquely defines a
fundamental loop. Hence, the number of fundamental loops is equal to the
number of links, i.e. B− (N−1). Each fundamental loop has a reference direc-
tion, which is defined by the direction of its associated link, as shown in
Fig. 5.8(b).
So we use the fundamental loops to define B− (N−1) linearly independent

KVL equations. For the graph in Fig. 5.8(b), we may write the following three
independent KVL equations:

Loop 1: v3+v4+v5 =0

Loop 2: −v2−v3−v4 +v6 =0

Loop 3: −v1−v2−v3 +v7=0
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or in matrix form

(5.23)

In general, the KVL equations based on fundamental loops may be written in
the short form:

Bv=0, (5.24)

where B is the fundamental loop matrix associated with the tree. The order of
the B matrix is l×B, where l is the number of loops, and its jk-th element is
defined as follows:

b
jkG 1 if branch k belongs to loop j and has the same direction as the loop

−1 if branch k is in loop j and has the opposite direction

0 if branch k is not in loop j.

Note that the fundamental loop matrix in equation 5.23 includes a unit sub-
matrix of order l, which is the number of fundamental loops and also the
number of links. Therefore, we can express B in the form

B=[B
t
1
l
], (5.25)

where B
t
is a sub-matrix of l× (N−1), i.e. it consists of l (number of links)

rows and of t=N−1 (number of twigs) columns. The unit matrix in B results
from the fact that each fundamental loop contains one and only one link and
by convention the reference directions of the fundamental loops are the same
as that of the associated links.
Let us think that twig voltages are a set of the basic independent variables.
Since each fundamental loop is formed from twigs and only one link, the link
voltage can always be expressed in terms of twig voltages. Therefore, the branch
voltages in any circuit can be determined by twig voltages, when the latter ones
are used as independent variables. Indeed, in accordance with equations 5.24
and 5.25

[B
t
1
l
] Cvtv

l
D=0, (5.26)

where the branch voltage vector v is partitioned into two sub-vectors: v
t
and
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v
l
, which are, respectively, the twig-voltage sub-vector and link-voltage sub-
vector. Performing the multiplication yields

B
t
v
t
+v

l
=0,

or

v
l
=−B

t
v
t
. (5.27)

This means that link voltages are determined by twig voltages. Obviously, we
can write the twig branch-voltage sub-vector as

v
t
=1
t
v
t
. (5.28)

Combining equations 5.27 and 5.28, we have

Cvtv
l
D=C 1t−B

t
D vt , (5.29)

or simply

v=C 1t−B
t
D vt , (5.30)

which states that all the branch voltages in any circuit can be expressed in
terms of twig voltages.
Now, let us again examine the fundamental cut-sets. Since each fundamental
cut-set is formed from links and only one twig, we can express the twig-currents
in terms of link-currents. Therefore, using the link-currents as basic independent
variables, we can always determine the all branch currents by the independent
variables. After partitioning the branch currents into twig-currents and link-
currents, with equations 5.21 and 5.22, we have

[1
t
Q
l
] Citi

l
D=0, (5.31)

where i
t
and i

l
are, respectively, the twig-current and link-current sub-vectors.

Then two matrixes in equation 5.31 can be multiplied to yield

i
t
+Q

l
i
l
=0,

or

i
t
=−Q

l
i
l
. (5.32)

Combining equation 5.32 and the identity i
l
=1

l
i
l
, yields

Citi
l
D=C−Ql1

l
D il , (5.33)

or

i=C−Ql1
l
D il , (5.34)
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which again states that all branch currents in any circuit can be expressed in
terms of link currents.
A useful relation between two matrixes Q and B can now be determined.

Recall T ellegen’s theorem in the form

vT i=0. (5.35)

By taking the transpose of v (equation 5.30), we obtain

vT=AC 1t−B
t
D vtBT=vTt C 1t−B

t
DT=vT[1t−BTt ]. (5.36)

After substituting equations 5.36 and 5.34 into equation 5.35 we have

vT
t
[1
t
−BT
t
] C−Qt1

l
D il=0, for all vt and all il . (5.37)

Since vT
t
≠0 and i

l
≠0 then

[1
t
−BT
t
] C−Qt1

l
D=0. (5.38)

Performing the multiplication, we obtain the identities

Q
l
=−BT

t
(5.39a)

and

B
t
=−QT

l
. (5.39b)

This relationship between two sub-matrixes Q
l
and B

t
results from the fact that

both fundamental cut-set matrix Q
l
and fundamental loop matrix B

t
give the

topological relation between graph branches and fundamental cut-sets and
fundamental loops respectively. Also, note that both matrixes Q

l
and B

t
come

from the same tree.
Replacing −B

t
by QT

l
in equation 5.30, we obtain

v=C 1tQT
l
D vt=QTvt , (5.40)

which can be interpreted as a matrix transformation of twig-voltages into branch
voltages. Similarly, replacing −Q

l
by BT

t
in equation 5.34, we obtain

i=CBTt1
l
D il=BT il , (5.41)

which is a matrix transformation of link-currents into branch currents.
Finally, substituting equations 5.40 and 5.41 into Tellengen’s theorem (equa-
tion 5.35), we have

vT
t
QBT i

l
=0, for all v

t
and i

l
, (5.42)
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which can be reduced to the following relation between the matrixes

QBT=0. (5.43)

In conclusion, the following comments on loop and cut-set matrixes have to
be made. The methods of circuit analysis based on loop and cut-set matrixes
are more flexible, allowing more possible applications than the node and mesh
analyses. So, as we remember, the mesh analysis based on mesh matrix M is
restricted to the planar graph only, whereas the fundamental loop matrix B,
based on tree, is applicable to any graph including non-planar, by means of
allowing us to write a maximal number of linearly independent KVL equations.
The concept of duality is usually applied (in introductory courses) to planar
graphs and planar circuits by means of node and mesh terms. By now, we may
extend this concept to fundamental matrixes B and Q, pertaining to non-planar
graphs and circuits. So, the listing of dual terms can be extended as follows:

Twig – Link,
Fundamental cut-set – Fundamental loop,
Twig voltage, v

t
– Link current, i

l
,

Fundamental cut-set matrix, Q – Fundamental loop matrix, B.

Thus, two graphs, G1 and G2 having the same number of branches, are dual if
the number of fundamental cut-sets of one of them is equal to the number of
fundamental loops of the second and their Q and B matrixes are identical,
namely

Q1=B2 .

5.5.2 ‘‘Proper tree’’ method for writing state equations

Our aim now is to write the state and output equations in the form of equation
5.9

ẋ(t)=Ax(t)+bw(t) (5.44a)

y(t)= cx(t)+dw(t), (5.44b)

where x is the state vector containing all the capacitor voltages and all the
inductor currents, w is the input vector containing all the independent voltage
and current sources, driving the circuit and y is the desired output vector. A, b,
c and d are constant matrixes whose elements depend on circuit parameters.
Equation 5.44a is a first order matrix differential equation with constant matrixffff
coefficients. ẋ is the first derivative of the state vector x, i.e. it consists of the
derivatives of the state variables dv

C
/dt and di

L
/dt . WeWW note that these quantities

are given by currents in the capacitors C(dv
C
/dt) and voltages across inductors

L (di
L
/dt) . To evaluate capacitor currents in terms of other currents, we must

write cut-set equations and to evaluate inductor voltages in terms of other
voltages we must write loop equations. Therefore, it turns out that we could
do this if, using the concept of cut-set and loop analysis, we chose a tree which
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Figure 5.9 A circuit of the example for writing state equations (a), the oriented graph and proper

tree (b).

includes all the capacitors but no inductors. Such a tree is called a proper tree(*)
We can complete the proper tree if the number of twigs is larger than the
number of capacitors by adding resistors and voltage sources. Thus, the induc-
tors, the remaining resistors and possibly the current sources will constitute the
co-tree links.
Following this method, we may write a fundamental cut-set equation for each
capacitor-twig, in which the capacitor current C(dv

C
/dt) is expressed in terms

of other currents. We may write a fundamental loop equation as well for each
link inductor in which the inductor voltage L (di

L
/dt) is expressed in terms of

other voltages. We shall also take into consideration that the basic variables in
cut-set/loop analysis are twig voltages and link currents. Hence, we shall use
the appropriate v–i relationships for resistive and active elements. Thus for twig
resistors we use the form v

t
=Ri and for the link resistors i

l
=Gv. For the same

reason we put the voltage sources into the twigs and the current sources into
the links. (To fulfill these requirements, we can use a source transformation and
shifting techniques.) At this point, let us illustrate the above description by the
following example. For the sake of generality, we will divide the solution
procedure into five steps. Consider the circuit shown in Fig. 5.9(a).

Step 1 Choosing the state variables

The circuit contains two capacitors and one inductor. Therefore, the state
variables are v

C1
, v
C2
and i

L4
, and the state vector is

x=CvC1vC2i
L4
D . (5.45)

Step 2 Choosing the proper tree

(*)If a circuit contains an all-capacitor loop or an all-inductor cut-set, a proper tree does not exist.
For such cases see in Balabanian, N. and Bickart, T. A. (1969) Electrical Network T heory, John
Wiley & Sons.
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The proper tree picked for the circuit, shown in Fig. 5.9(b), includes two capaci-
tors and resistor R3 .

Step 3 Writing the fundamental cut-set equationsWW

These equations are written in such a way that the capacitor currents are
defined by other link currents and/or current sources (if such are present), and
the remaining currents are written in terms of inductor currents and/or cur-
rent sources.

cut-set 1: C1
dv
C1
dt
=−i5− i6 (5.46)

cut-set 2: C2
dv
C2
dt
=−i

L4
+ i5− i7

cut-set 3: G3v3+ i5= iL4 . (5.47)

Step 4 Writing the fundamental loop equationsWW

The loop equations are written in such a way that the inductor voltages are
defined by other twig voltages and/or voltage sources (if such are present), and
the remaining voltages are written in terms of capacitor voltages and/or voltage
sources

Loop 1: L 4
di
L4
dt
=v
C2
−v3 (5.48)

Loop 2: −v3+R5 i5=vC1−vC2 (5.49)

Loop 3: R6 i6=vC1−vs1
Loop 4: R7 i7=vC2−vs2

H . (5.50)

The last two steps lead to state equations

C1
dv
C1
dt
=− i5− i6

C2
dv
C2
dt
=− i

L4
+ i5− i7 (5.51)

L 4
di
L4
dt
=v
C2
−v3 .

Step 5 Expressing the right-hand side of the state equations in terms of state
variables and/or inputs. In this example, currents i5 , i6 , i7 and voltage v3 have
to be expressed in terms of the capacitor voltages v

C1
, v
C2
and the inductor

current i
L4
. By solving equations 5.50, we have

i6=
1

R6
v
C1
−
1

R6
v
s1
, i7=

1

R7
v
C2
−
1

R7
v
s2
, (5.52)

equations 5.47 and 5.49 form a set of two algebraic equations of two unknowns:
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C−1 R5
G3 1 D Cv3i

5
D=CvC1−vC2i

L4
D (5.53)

Solving equation 5.53 yields

v3=−
1

1+R5G3
v
C1
+

1

1+R5G3
v
C2
+

R5
1+R5G3

i
L4

(5.54)

i5=
G3

1+R5G3
v
C1
−

G3
1+R5G3

v
C2
+

1

1+R5G3
i
L4
.

Finally, equations 5.52 and 5.54 can be substituted into equation 5.51 to yield,
after rearrangement and dividing through the equations by appropriate
C1 , C2 , L 4 ,

d

dt CvC1vC2i
L4
D=C− 1+aR6G3R6C1

aG3
C1

−
a

C1
aG3
C2

−
1+aR7G3
R7C2

−
1−a
C2

a

L 4

1−a
L 4

−
aR5
L 4
D CvC1vC2iL4D

+C 1R6C1 0

0
1

R7C2
0 0
D Cvs1vs2D , (5.55)

where a=1/(1+R5G3 ).
Note that state equations here are written in the matrix form of equation
5.44a where the input vector (in this example) is w=[v

s1
v
s2
]T and the meanings

of matrixes A and b are obvious.
Suppose now that the remaining branch variables, i.e. v3 , i5 , i6 and i7 are a
desired output. Then, using equations 5.54 and 5.52, we can express the output
in terms of the state variables and the input as

Cv3i5i6i7D=C−a a aR5
aG3 −aG3 a

1/R6 0 0

0 1/R7 0 D CvC1vC2iL4D+C 0 0

0 0

−1/R6 0

0 −1/R7
D Cvs1vs2D .

(5.56)

This is an output equation in the form of equation 5.44b, where the output
vector is y=[v3 i5 i6 i7]T and the meanings of the constant matrixes are
obvious.
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Remark. The capacitor charges and the inductor fluxes can also be used as
state variables. Then in the above example the state vector will be

x=[q1 q2 l4]T,

where q1=C1vC1 , q2=C2vC2 and l4=L 4 iL4 .
Substituting v

C1
=q1/C1 , vC2=q2/C2 and i4=l4/L 4 in equation 5.55, and

after simplification, we obtain

d

dt Cq1q2l
4
D=C− 1+aR6G3R6C1

aG3
C2

−
a

L 4
aG3
C1

−
1+aR7G3
R7C2

−
1+a
L 4

a

C1

1−a
C2

−
aR5
L 4
D C q1qC2l4 D

+C 1R6 0

0
1

R7
0 0
D Cvs1vs2D (5.57)

which is the state equation using the charges and fluxes as state variables.
It is worthwhile mentioning that some other variables in the circuit may be
used as state variables. For example, a current through a resistor in parallel
with a capacitor or voltage across a resistor in series with an inductor can be
treated as state variables. Also any linear combination of capacitor voltages or
inductor currents may be used as state variables. This can be helpful in writing
state equations when the circuit consists of all-capacitor loops or all-inductor
cut-sets. The next step would be to solve the state equations. However, before
doing so, we shall consider the general approach for deriving state equations
in matrix form.

5.6 A SYSTEMATIC METHOD FOR WRITING A STATE EQUATION
BASED ON CIRCUIT MATRIX REPRESENTATION

Consider a network whose elements are inductors, capacitors, resistors and
independent sources. As stated, we assume that capacitors do not form a loop
and inductors do not form a cut-set. We also assume that the network graph
is connected and as a first step we will pick a proper tree. WeWW can obviously
include all capacitors into the tree branches, since they do not form any loop.
Usually, it might be necessary to add some resistors and/or voltage sources in
order to complete the tree. Then all the inductors will be assigned to the links.
In the next step we shall partition the circuit branches into four sub-sets: the
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capacitive twigs, the resistive twigs, the inductive links and the resistive links.
For the sake of specifics, we shall use an example to illustrate this procedure.
Consider again the circuit shown in Fig. 5.9(a). The circuit graph and the

proper tree are shown in Fig. 5.9(b). The KCL equations for the fundamental
cut-sets, in accordance with equation 5.31, are

[1
t
Q
l
]C iCiG– –iL
i
R
D=0, (5.58)

where subvectors of twig and link currents are

i
t
=CiCi

G
D , il=CiLi

R
D

and i
C
, i
G
, i
L
and i

R
are in turn subvectors representing currents in capacitive

and resistive (conductive) twigs and inductive and resistive links, respectively.
In our example, these four subvectors are

i
C
=CiC1i

C2
D , iG=[iG3], iL=[iL4], iR=C iR5iR6i

R7
D (5.59)

and the equation 5.58 becomes

(5.60)

The KVL equations may be written in the form (see equation 5.26)

[B
t
1
l
]C vCvG– –vL
v
R
D=0, (5.61)
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where

v
t
=CvCv

G
D , vl=CvLv

R
D

are subvectors of twig and link voltages and v
C
, v
G
, v
L
, v
R
are in turn subvectors

representing voltages across the capacitive and resistive (conductive) twigs and
inductive and resistive links, respectively. For the circuit in Fig. 5.9(a) the voltage
subvectors are

v
C
=CvC1v

C2
D , vG=[vG3], vL=[vL4], vR=C v

R5
v
R6
−v
sR6

v
R7
−v
sR7
D=Cvl5v6v

7
D
(5.62)

where v
sR6
represents v

s1
and v

sR7
represents v

s2
. The KVL equation 5.61 becomes

(5.63)

Note that B
t
=−QT

l
.

Next we shall use the v-i, or i-v characteristics to introduce branch equations.
We will employ the concept of a generalized branch, i.e. combining passive and
active elements together. However, we must now take into consideration four
different branches: two for twigs and two for links, as shown in Fig. 5.10. Asffff
was mentioned earlier, we shall assume that the voltage sources are located in
the link branches and the current sources are located in the twig branches.
Therefore, in matrix form we have:

capacitor twigs i
C
=C

d

dt
v
C
+ i
sC

inductor links v
L
=L

d

dt
i
L
+v
sL

(5.64)

resistor twigs i
G
=Gv

G
+ i
sG

resistor links v
R
=Ri

R
+v
sR

(5.65)

where the matrixes C, L, G and R are the branch parameter matrixes; namely,
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Figure 5.10 Generalized branches with independent sources: twig capacitor (a), twig resistor (b),

link resistor (c) and link inductor (d).

the twig capacitance matrix, the link inductance matrix, the twig conductance
matrix and the link resistance matrix, respectively. Note that C, L, G and R
are square diagonal matrixes, but if the circuit consists of coupled elements
(mutual inductances and/or dependent sources), L, G and R might not be
diagonal any more. For the example in Fig. 5.9

C=CC1 0

0 C2
D , L=[L 4] (5.66)

G=[G3], R=CR5 0

R6
0 R7
D . (5.67)

The vectors v
sR
, v
sL
and i

sG
, i
sC
represent the independent voltage and current

sources, which in the present example are

v
sR
=C 0vs1v

s2
D , vsL=0 , isG=0, isC=0 . (5.68)

Equation 5.64 can be rewritten to yield

C
d

dt
v
C
= i
C
− i
sC
, L

d

dt
i
L
=v
L
−v
sL
. (5.69)

To bring these equations to the form of state equations, we must eliminate the
variables. For this purpose, we shall solve the KCL equation 5.58 and KVL
equation 5.61 equations together with the branch equations 5.64 and 5.65.
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Equations 5.58 and 5.61 can be rewritten as

CiCi
G
D=−Ql CiLi

R
D=−CQCL QCRQ

GL
Q
GR
D CiLi
R
D (5.70a)

and

CvLv
R
D=−Bt CvCv

G
D=−CBLC BLGB

RC
B
RG
D CvCv
G
D (5.70b)

where in the following solution matrixes Q
l
and B

t
are partitioned into submat-

rixes. The order of each of the submatrixes in equations 5.70 is determined by
the number of twigs (which is the number of rows) and by the number of
corresponding links (which is the number of columns) in equation 5.70a and
vice versa in equation 5.70b. For example, the number of rows in Q

CL
(equation

5.70a) is equal to the number of capacitor currents in i
C
(capacitor twigs) and

the number of its columns is equal to the number of inductor currents in i
L

(inductor links). It can also be shown that there are simple relations between
Q
l
and B

t
submatrixes, namely

B
LC
=−QT

CL
, B
LG
=−QT

GL
, B
RC
=−QT

CR
, B
RG
=−QT

GR
. (5.71)

The undesirable variables i
C
and v

L
in equation 5.69 can now be expressed from

equation 5.70 to yield

i
C
=−Q

CL
i
L
−Q
CR
i
R

(5.72a)

v
L
=−B

LC
v
C
−B
LG
v
G
, (5.72b)

and after substituting these two expressions into equation 5.69, we obtain

C
d

dt
v
C
=−Q

CL
i
L
−Q
CR
i
R
− i
sC

(5.73)

L
d

dt
i
L
=−B

LC
v
C
−B
LG
v
G
−v
sL
.

However, we still need to eliminate i
R
and v

G
. Substituting i

G
and v

R
from

equation 5.70 into equation 5.65, and after rearrangement, results in two simulta-
neous matrix equations in two unknowns i

R
and v

G
,

Ri
R
+B
RG
v
G
=M (5.73a)

Q
GR
i
R
+Gv

G
=N , (5.73b)

where

M=−B
RC
v
C
−v
sR
and N=−Q

GL
i
L
− i
sG

(5.74)

Solving these two equations by the substitution method yields

i
R
=R−1
eq
(−B

RG
G−1N+M ) (5.75a)

v
G
=G−1
eq
(−Q

GR
R−1M+N ), (5.75b)
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where

R
eq
=R−B

RG
G−1Q

GR
(5.76a)

G
eq
=G−Q

GR
R−1B

RG
. (5.76b)

Finally, we substitute equation 5.75 with equation 5.74 in equation 5.73 to
obtain, after rearrangement, the state representation is follows

d

dt CvCi
L
D=CC 0

0 LD−1 CA111 A112A1
21
A1
22
D CvCi
L
D

+CC 0

0 LD−1 Cb111 b112 b113 b114b1
21
b1
22
b1
23
b1
24
D C isCisGvsLv
sR
D (5.77)

agbgc
A

agggbgggc
A1

agbgc
b

aggggggbggggggc
b1

where the matrix terms are

A1
11
=Q
CR
R−1
eq
B
RC

A1
12
=−Q

CL
−Q
CR
R−1
eq
B
RG
G−1Q

GL
A1
22
=B
LG
G−1
eq
Q
GL
A1
21
=−B

LC
−B
LG
G−1
eq
Q
GR
R−1B

RC

(5.78)

b1
11
=−1 b1

12
=−Q

CR
R−1
eq
B
RG
G−1 b1

13
=0 b1

14
=Q
CR
R−1
eq

b1
21
=0 b1

22
=B
LG
G−1
eq

b1
23
=−1 b1

24
=−B

LG
G−1
eq
Q
GR
R−1.
(5.79)

Let us now use the above expressions to calculate the A and b matrixes in our
example.
First we determine the submatrixes of the Q

l
matrix

Q
l CQCL QCRQ

GL
Q
GR
D=C 0 1 1 0

1 −1 0 1

−1 1 0 0D.KKKKKKKKKKCC K
K
K
K

K
K

KK

Then with equation 5.76 and equation 5.71 we have

R
eqCR5 0

R6
0 R7
D− C100D C 1G3D [1 0 0]=C 1+R5G3G3

0 0

0 R6 0

0 0 R7
D

R−1
eq
=CaG3 0 0

0 1/R6 0

0 0 1/R7
D, where again a= 1

1+R5G3
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G
eq
=[G3]+[1 0 0] C1/R5 0 0

0 1/R6 0

0 0 1/R7
DC−100 D=C1+R5G3R5 D=C 1aR5D

G−1
eq
=[aR5]

A1
11
=C 1 1 0

−1 0 1D CaG3 0

1/R6
0 1/R7

D C−1 +1−1 0

0 −1D
=−C(aG3+1/R6 ) −aG3

−aG3 (aG3+1/R7
D

A1
22
=[1][aR5][−1]=−[aR5]

A1
12
=−C01D−C 1 1 0

−1 0 1D CaG3 0 0

0 1/R6 0

0 0 1/R7
D C−100 D [1/G3][−1]

=−C 11−aD
A1
21
=−[0 −1]−[1][aR5][1 0 0] C1/R5 0 0

0 1/R6 0

0 0 1/R7
D C−1 +1−1 0

0 −1D
=[a (1−a)]

CC 0

0 LD−1=CC1 0 0

0 C2 0

0 0 L 2
D−1=C1/C1 0 0

0 1/C2 0

0 0 1/L// 4
D

Therefore the A matrix is

A=CC 0

0 LD−1 CA111 A112A1
21
A1
22
D=C− 1+R6aG3R6C1

aG3
C1

−
a

C1
aG3
C2

−
1+R7aG3
R7C2

−
1−a
C2

a

L 4

1−a
L 4

−
aR5
L 4
D ,KKKKKKKKKKKKKKKKKKKKKK

K
K
K
K
K
K
K
K
K
K
K

KK

which agrees with the results previously obtained (see equation 5.55).
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To find the b matrix we will calculate equation 5.79. Since only the v
sR
vector

is present we need only two elements of b:

b1
14
=C 1 1 0

−1 0 1D CaG3 0 0

0 1/R6 0

0 0 1/R7
D=C aG3 1/R6 0

−aG3 0 1/R7
D

b1
24
=−[1][aR5][1 0 0] C1/R5 0 0

0 1/R6 0

0 0 1/R7
D=−[a 0 0]

Therefore, the reduced b matrix is

b=CC 0

0 LD−1 Cb114b1
24
D=C aG3/C1 1/R6C1 0

−aG3/C2 0 1/R7C2
−a/L 4 0 0 D

which also agrees with the results in equation 5.55. Note that a voltage source
in link 5 is absent (v

sR5
=0), therefore the above matrix can be reduced even

more, namely

b=C1/R6C1 0

0 1/R7C2
0 0 D

which is exactly the same as in equation 5.55.
Comparing the systematic method for writing state equations with the intu-
itive approach, which we first presented in the previous sections, we may
conclude that it is rather complicated. In many practical instances, the final
results can be arrived at much easier and faster by following the intuitive
approach. However, the systematic method has an appreciable advantage for
computer-aided analysis, since it can be easily programmed.

5.7 COMPLETE SOLUTION OF THE STATE MATRIX EQUATION

We will now turn to the solution of the state equation of the form of equation
5.44a, repeated here for convenience:

ẋ(t)=Ax(t)+bw(t). (5.80)

5.7.1 The natural solution

We will begin by considering the natural or zero-input (non-forced) solution;
that is w(t)=0. Equation 5.80 then simplifies to

ẋ(t)=Ax(t) or ẋ(t)−Ax(t)=0. (5.81)
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It is customary to compare a vector problem with its scalar version. In this
case, the scalar version of equation 5.81 is

dx(t)

dt
=ax(t). (5.82)

The solution of equation 5.82, that satisfies the initial condition x(0), is

x(t)=eatx(0).

Suppose we try the same form for the solution of equation 5.81, that is

x(t)=eAtx(0). (5.83)

where eAt is called the matrix exponential and is an example of a function of
matrix A.

5.7.2 Matrix exponential

In mathematics the matrix exponential is defined similarly to a scalar exponen-
tial (or complex exponential ), i.e. in terms of the power series expansion:

eAt=1+
t

1!
A+

t2
2!
A2+ · · ·+

tk

k!
Ak+ · · ·= ∑

2

k=0

tk

k!
Ak. (5.84)

Since A is a square matrix of order n, the matrix exponential eAt is also a square
matrix of order n.

Example 5.2

As an example, let us take the matrix of Example 5.1, namely

A=C−1 −11 −1D
then

A2=C−1 −11 −1D C−1 −1

1 −1D=C 0 2

−2 0D , A3=C2 −22 2 D
and

eAt=C1 00 1D+t C−1 −11 −1D+ t22 C 0 2

−2 0D+ t36 C2 −22 2 D+ · · ·
=C1−t+ t33+ · · · −t+t2− t33+ · · ·t−t2+

t3
3
+ · · · 1−t+

t3
3
+ · · · D . (5.85)

As can be seen from equation 5.85, each of the elements of the matrix eAt is a
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continuous function of t. Term-by-term diTT fferentiation of the matrix exponentialffff
(equation 5.84) results in

d

dt
(eAt)=A+tA2+

t2
2!
A3+

t3
3!
A4+ · · ·

=A A1+tA+ t22! A2+ t33! A3+ · · ·B=AeAt, (5.86)

i.e., the formula for the derivative of a matrix exponential is the same as it is
for a scalar exponential. Substituting equation 5.83 into the matrix differentialffff
equation 5.81, results in identity:

AeAtx(0)=AeAtx(0).

Thus, we have established that equation 5.83 is indeed the solution to equa-
tion 5.81.
We must now show that the inverse of a matrix exponential exists and equals
(eAt)−1=e−At. For the latter we can write

e−At=1−At+A2
t2
2!
−A3

t3
3!
+ · · ·+ (−1)kAk

tk

k!
+ · · · .

Now let this series be multiplied by the series for the positive exponential in
equation 5.84. This term-by-term multiplication results in 1 since all other terms
are cancelled. Thus,

eAte−At=1.

This result tells us that the matrix e−At is the inverse of eAt, since by definition
the product of the matrix by its inverse gives a unit matrix. This result can be
used, first of all, to show that in general if the initial vector x(0) is known for
some time, for instance t0 , namely xnat (t0 ) then the solution will be

x
n
(t)=eA(t− t

0
)x(t0 ). (5.87)

Indeed, substituting t=t0 , results in identity:

x
n
(t0 )=eAt0e−At0x(t0 )=1x (t0 ),

where we have used

eA+B=eA ·eB.

(This can be verified by using equation 5.84 for both sides of equality.)

5.7.3 The particular solution

To find the complete solution to equation 5.80, we must now find the particular
solution to the differential equation, i.e. the forced response. For this purpose,ffff
assume a solution of the form

x
p
(t)=eAtq(t), (5.88)
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where q(t) is an unknown function to be determined. In order to be a solution,
equation 5.88 has to satisfy the differential equation. Substituting equation 5.88ffff
in equation 5.80 gives

d

dt
[eAtq(t)]=AeAtq(t)+bw(t),

or

AeAtq(t)+eAt
dq(t)

dt
=AeAtq(t)+bw(t).

Thus

dq(t)

dt
=e−Atbw(t). (5.89)

Integrating, we obtain

q(t)=q(t0 )+ P tPP
0

e−Atbw(t)dt.

Thus, the particular solution is

x
p
(t)=eAtq(t)=eAtq(t0 )+ P tPP

0

eA(t− t)bw(t)dt.

To evaluate q(t0 ), we use the complete solution being evaluated at t0

x (t) |
t=t
0

=x
n
(t)+x

p
(t)=eA(t− t

0
)x(t0 )+eAtq (t0 )+ P tPP

0

eA(t− t)bw(t)dtK
t=t
0

,

or

x(t0 )=x (t0 )+eAt0 q(t0 )+0,

which implies that q(t0 )=0.
Hence, finally the complete solution of the state equation 5.80 is

x(t)=eA(t− t
0
)x(t0 )+ P tPP

0

eA(t− t)bw(t)dt. (5.90)

To evaluate this solution the basic calculation is a determination of the matrix
exponential eAt. This will be discussed in the next subsection.

5.8 BASIC CONSIDERATIONS IN DETERMINING FUNCTIONS OF A
MATRIX

In this section, we shall examine two methods of computing eAt in closed form.
This matrix exponential is a particular function of a matrix. The simplest
functions of a matrix are powers of a matrix and polynomials. As we have seen,
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the matrix exponential can be represented by an infinite series of such functions.
The matrix polynomial has the form

f (A)=An+a
n−1
An−1+ · · ·+a1A+a01 . (5.91)

The generalization of polynomials is an infinite series:

f (A)=a01+a0A+a2A2+ · · ·+akAk+ · · ·= ∑
2

k=0
a
k
Ak. (5.92)

The function f (A) is itself a matrix, and in the last case each of the matrix
elements is an infinite series. This matrix series is said to converge if each of
the element series converges.
We will begin with a brief description of some of the properties of matrixes
that will be useful in our studies.

5.8.1 Characteristic equation and eigenvalues

An algebraic equation that often appears in network transient analysis is

lx=Ax, (5.93)

where A is a square matrix of order n. The problem is to find scalars l and
vectors x that satisfy this equation. A value of l for which a nontrivial solution
of x exists, is called an eigenvalue, or characteristic value ofA. The corresponding
vector x is called an eigenvector, or characteristic vector, of A. After collecting
the terms on the left-hand side, we have

[l1−A]x=0. (5.94)

This equation will have a nontrivial solution for x only if the matrix [l1−A]
is singular, i.e.,

det[l1−A]=0. (5.95)

This equation is known as the characteristic equation associated with A. It is
also closely related to the auxiliary (characteristic) equation of the corresponding
differential equation of orderffff n for the system. The determinant on the left-hand
side of equation 5.95 is actually a polynomial of degree n in l and is called the
characteristic polynomial of A. For each value of l that satisfies the characteristic
equation, a nontrivial solution of equation 5.94 can be found. To illustrate this
procedure, consider the following example.

Example 5.3

Let us find the eigenvalues and eigenvectors of a matrix of the second order

A=C2 13 4D .
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The characteristic polynomial is also of order two:

det Gl C1 00 1D−C2 13 4DH=det Cl−2 −1

−3 l−4D=l2−6l+5
=(l−5)(l−1)=g(l).

Thus, l2−6l+5=0 is the characteristic equation of the matrix. The roots of
the characteristic equation, or the eigenvalues, are

l1=5 and l2=1.

To obtain the eigenvector corresponding to the eigenvalue l1=5, we solve
equation 5.94 by using the given matrix A. Thus

GC5 00 5D−C2 13 4DH Cx1x2D=C00D
or

C 3 −1

−3 1 D Cx1x2D=C00D and x2=3x1 .

Therefore

Cx1x2D=C x13x1D=C13D [x1] for any value of x1 .
The eigenvector corresponding to the eigenvalue l2=1 is obtained similarly.

C−1 −1−3 −3D Cx1x2D=C00D
from which

Cx1x2D=C x1−x1D=C 1−1D [x1] for any value of x1 .
The first method to be discussed for finding functions of a matrix is based on
the Caley-Hamilton theorem.

5.8.2 The Caley-Hamilton theorem

This theorem states that every square matrix satisfies its own characteristic
equation. For example, if we substitute A for l in the characteristic equation of
Example 5, we obtain the matrix equation

g(A)=A2−6A+5·1=0,

where, again, 1 is an identity matrix and 0 is a matrix whose elements are all
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zero. Thus,

C2 13 4D C2 13 4D−6 C2 13 4D+5 C1 00 1D=C 7 6

18 19D−C12 6

18 24D+C5 00 5D
=C0 00 0D .

The equation is certainly satisfied in this example.
The Caley-Hamilton theorem permits us to reduce the order of a matrix
polynomial of any higher order to be of an order no greater than n−1, where
n is the order of the matrix. For example, if A is a square matrix of order 3,
then its characteristic equation is

g(l)=l3+a2l2+a1l+a0=0, (5.96)

and by the Caley-Hamilton theorem we have

A3+a2A2+a1A+a01=0.

Then

A3=−a2A2−a1A−a01. (5.97)

Thus, A3 may be expressed in terms of the matrixes of an order not higher than
2 and identity matrix. Hence, the given polynomial of order 3 is reduced to a
polynomial of order 2. To extend these results to polynomials of an even higher
order, we multiply equation 5.97 throughout by A to obtain

A4=−a2A3−a1A2−a0A. (5.98)

Substituting equation 5.97 for A4, we obtain

A4= (a2
2
−a1 )A2+ (a2a1−a0 )A+a2a01 . (5.99a)

To generalize these results, let us develop an iterative formula for expressing
higher powers of A. WeWW assign the obtained coefficients in equation 5.99 by
upper script, as follows

A4=a(1)
2
A2+a(1)

1
A+a(1)

0
1. (5.99b)

Multiplying this expression throughout by A, and collecting like terms, yields

A5= (−a2a(1)2 +a(1)1 )A2+ (−a1a(1)2 +a(1)0 )A+ (−a0a(1)2 )1=a(2)2 A2+a(2)1 A+a(2)0 1,

where again a(2)
2
, a(2)
1
, a(2)
0
are the new coefficients and a2 , a1 , a0 are as before

the coefficients of the characteristic equation 5.96. Now the iterative formula
for this case, n=3, can be written as

A3+k= (−a2a(k−1)2
+a(k−1)
1
)A2+ (−a1a(k−1)2

+a(k−1)
0
)A+ (−a0a(k−1)2

)1

=a(k)
2
A2+a(k)

1
A+a(k)

0
1. (5.100)

Note that this formula also works fine for the first calculation of A4 (equation
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5.99) if the coefficients in equation 5.97 are assigned as a(0)
2
=−a2 , a(0)1 =−a1

and a(0)
0
=−a0 . Generalizing this result (equation 5.100) for any matrix of order

n, we can write

An+k= (−a
n−1
a(k−1)
n−1
+a(k−1)
n−2
)An−1

+ (−a
n−2
a(k−1)
n−1
+a(k−1)
n−3
)An−2+ · · ·+ (−a0a(k−1)n−1

)1. (5.101)

This gives us an expression for An+k, k=0, 1, 2, . . . , in terms of An−1, An−2, . . . , A
and 1.
Continuing this process, we see that any power of A can be represented as a
weighted polynomial in A of an order, at most n−1. Hence, functions of
matrixes, including eAt, that can be expressed as a polynomial(*)

f (A)=a01+a1A+ · · ·+akAk+ · · ·= ∑
2

k=0
a
k
Ak, (5.102)

may be reduced to the expression

f (A)=b01+b1A+ · · ·+bn−1An−1= ∑
n−1

k=0
b
k
Ak. (5.103)

Here, the coefficients b0 , b1 , . . . , bn−1 are functions of a0 , a1 , . . . , an−1 and
a0 , a1 , . . . . Their approximate calculation can be carried out by the iterative
method used in the calculation of higher powers of A in equation 5.101 and by
using equation 5.102. However this straightforward method can be lengthy.

Example 5.4

(a) Let us first calculate a simple matrix function f (A)=A4, where A is the
matrix of the previous example. Since the characteristic equation of A is
l2−6l+5=0, we have

A2=6A−5·1,

where a1=−6 and a0=5. Using an iterative formula, and noting that in the
first calculation a(0)

1
=−a1 and a(0)0 =−a0 , yields

A3=[−a1a(0)1 +a(0)0 ]A+ (−a0a(0)1 )1

=[6·6−5]A+ (−5·6)1=31A−30 1,

where a(1)
1
=31 and a(1)

0
=−30. Hence,

A4=[(6)(31)−30]A−5·31 1=156A−155 1,

and finally

A4=156 C2 13 4D−C155 0

0 155D=C157 156

468 469D
(*)In general, any analytic function of matrix A can be expressed as a polynomial in A of an order
no greater than one less than the order of A. For proof see N. Balabanian and T. A. Bickart (1969)
Electrical Network T heory, John Wiley & Sons.
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(b) As a second example, let us calculate a matrix potential f(A)A =eAt for t=
1 s, using the approximation up to fifth term:

eA$1+A+
1

2!
A2+

1

3!
A3+

1

4!
A4

= 1+A+
1

2
(−5·1+6A)+

1

6
(−30·1+31A)+

1

24
(155·1+156A)

=−12.96·1+15.67A

and finally

eA$C−13 0

0 −13D+15.7 C2 13 4D=C18.4 15.747.1 49.8D .
We shall next develop an easier, one-step method for finding b-coefficients in

the function of matrix expression (equation 5.103). Let us return to the character-
istic equation of matrix A

g(l)=|l1−A |=ln+a
n−1
ln−1+ · · ·+a1l+a0=0. (5.104)

The eigenvalues l1 , l2 , . . . , ln , which are the roots of the characteristic equation
5.104, obviously satisfy the equation 5.104 as well as matrix A (in accordance
with the Caleg-Hamilton theorem). Therefore, using the same procedure as
before, we can derive an expression similar to equation 5.103 for the eigenvalues
instead of the matrix by itself, namely:

f (l)=b0+b1l+b2l2+ · · ·+bn−1ln−1= ∑
n−1

k=0
b
k
lk. (5.105)

It is understandable that this expression holds for any l that is a solution of
the characteristic equation 5.104, that is for any eigenvalue of the matrix A.

(a) Distinct eigenvalues

Assume first that the eigenvalues are distinct; that is, that none is repeated.
Substituting l1 , l2 , . . . , ln in equation 5.105 gives n equations in n unknown b’s:

b0+b1l1+b1l21+ · · ·+bn−1ln−11 = f (l1 )

b0+b1l1+b2l22+ · · ·+bn−1ln−12 = f (l2 )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

b0+b1ln+b2l2n+ · · ·+bn−1ln−11 = f (ln ).

(5.106)

The coefficients b0 , b1 , . . . , bn−1 can then be obtained as the solution to this
linear system of scalar equations, i.e. the inversion of the set of equations 5.106
gives the solution. With the known b-coefficients, the function of the matrix
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representation problem is solved:

f (A)= ∑
n−1

k=0
b
k
Ak. (5.107)

Example 5.5

Let us illustrate this process with the same simple example (as in Example 5.4):

(a) Find f (A)=A4, if A=C2 13 4D
The characteristic equation is (see Example 5.3)

g(l)=l2−6l+5=0.

Thus, the eigenvalues are

l1=5, l2=1.

In accordance with equation 5.106, we have

b0+b15=54 ,

b0+b11=14 .

Solving these simple equations for unknowns b0 and b1 , gives

b1=156, b0=−155.

The solution for A4 is found by using equation 5.107

f (A)=A4=−155·1+156·A

which is the same as the results obtained in the previous example.

(b) Find f (A)=eAt for the same matrix A

The equations for unknowns b0 and b1 in this case will be

b0+5b1=e5t,

b0+b1=et.

Solving this equation gives

b1=
1
4
e5t−1

4
et, b0=−

1
4
e5t+5

4
et.

Thus, the matrix exponential is

eAt= (−1
4
e5t+5

4
et)1+ (1

4
e5t−1

4
et)A

= (−1
4
e5t+5

4
et) C1 00 1D+ (14e5t−14et) C2 1

3 4D .
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By an obvious rearrangement, this becomes

eAt=C14e5t+34et 14e5t−14et3
4
e5t−3

4
et 3
4
e5t+1

4
etD . (5.108)

It is interesting to compare these results with those obtained in the previous
example. The approximate, up to fifth term, evaluation of the exponents e5 and
e1 (t=1 s) gives

e5$1+5+
1

2!
52+

1

3!
53+

1

4!
54=65.4

e1$1+1+
1

2!
+
1

3!
+
1

4!
=2.71.

Substituting these results in equation 5.108 yields

eA$ C18.4 15.647.0 49.7D
which agrees with the previous results.
Therefore, the series form of the exponential may permit some approximate

numerical results; it does not lead to a closed form. However, with the help of
the Caley-Hamilton theorem, we obtained the closed-form equivalent for the
exponential eAt (equation 5.107). We shall now return our consideration to the
complete solution of the state equation in the form of equation 5.90, repeated
here for convenience:

x(t)=eA(t− t
0
)x(t0 )+ P tPP

0

eA(t− t)bw(t)dt. (5.109)

The following example illustrates this computation.

Example 5.6

Find the complete solution of the state equation describing the circuit in Fig. 5.9,
considered before. For the sake of convenience, it is redrawn here again in
Fig. 5.11(a). Let the circuit element values be C1=1 F, C2=2 F, L 4=1 H, G3=
1 S, R5=1 V, R6=2/7 V, R7=1/3 V.

Solution

Substituting these parameters into equation 5.55, we obtain the following A
matrix

A=C−4 1
2
−1
2

1
4
−7
4
−1
4

1
2

1
2
−1
2
D . (5.110)
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Figure 5.11 A circuit of Example 5.6 (a) and its steady-state equivalent (b).

The characteristic equation is

g(l)=|l ·1−A |= Kl+4 −1
2

1
2

−1
4
l+7
4

1
4

−1
2

−1
2
l+1
2
D=0.

Thus,

g(l)= (l+4)[(l+7
4
)(l+1

2
)+1
4
]=0.

Simplifying yields

(l+4)(l2+9
4
l+9
8
)=0. (5.111)

Thus, the eigenvalues of A are

l
1,2
=−

9

8
±SA9282− 98B=−1.125±0.375

or

l1=−0.75, l2=−1.5, l3=−4.

Using the results of equation 5.106, we can evaluate b0 , b1 , and b2 from the
equations

b0−0.75b1+ (−0.75)2b2=e−0.75t

b0−1.5b1+ (−1.5)2b2=e−1.5t

b0−4b1+ (−4)2b2=e−4t ,

which in the matrix form are

C1 −0.75 0.56251 −1.5 2.25

1 −4 16 D Cb0b1b2D=Ce−0.75te−1.5t

e−4t D . (5.113)
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The solution for b’s is found by inversion, as

Cb0b1b2D=C1 −0.75 0.56251 −1.5 2.25

1 −4 16 D−1 Ce−0.75te−1.5t

e−4t D
=C 2.462 −1.6 0.1385

2.256 −2.533 0.2769

0.4103 −0.5333 0.1231D Ce−0.75te−1.5t

e−4t D
=C 2.462e−0.75t −1.6e−1.5t 0.1385e−4t

2.256e−0.75t −2.533e−1.5t 0.2769e−4t

0.4103e−0.75t −0.5333e−1.5t 0.1231e−4tD . (5.114)

With b’s now known, matrix eAt will be

eAt=C1 0 00 1 0

0 0 1D b0+C−4 0.5 −0.5

0.25 −1.75 −0.25

0.5 0.5 −0.5 D b1
+C 15.87 −3.125 2.125

−1.563 3.063 0.438

−2.125 −0.875 −0.125D b2 .
Substituting equation 5.114 for b’s and collecting like terms yields the final
results

eAt=C−0.048 −0.154 −0.256−0.077 −0.229 −0.384

0.256 0.769 1.283 D e−0.75t+C 0.066 0.4 0.133

0.2 1.2 0.4

−0.133 −0.8 −0.267D e−1.5t
+C 0.985 −0.246 0.123

−0.123 0.031 −0.015

−0.123 0.031 −0.015D e−4t. (5.115)

Now suppose that the initial state vector at t0=0 is x (0)=[0.5 1.5 1]T, then
the natural solution (for w(t)=0) in equation 5.109 is

x
nat
(t)=eAtx (0)=C−0.511e−0.75t +0.767e−1.5t +0.246e−4t−0.766e−0.75t +2.30e−1.5t −0.031e−4t

2.564e−0.75t −1.534e−1.5t −0.031e−4tD .
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(5.116)

The next step is to find the particular or forced solution of the state equation.
Let the input vector w(t)=[1 1]T. Substituting the circuit parameters into
matrix b in equation 5.55, we obtain

b=C3.5 0

0 1.5

0 0 D . (5.117)

Since the input is a constant (d.c.), evaluating the integral in equation 5.55
results, for t0=0, in

P t
0
PP eA(t− t)bw dt=−A−1eA(t− t)bw | t0=A−1[eAt−1]bw, (5.118)

where the inverse of the A matrix is found as follows

A−1=C−4 1
2
−1
2

1
4
−7
4
−1
4

1
2

1
2
−1
2
D−1=C−0.222 0 0.222

0 −0.5 0.25

−0.222 −0.5 −1.528D . (5.119)

Performing now, all the calculations in equation 5.118, with equations 5.119,
5.115, 5.117 and w=[1 1]T, we obtain the particular solution

x
par
(t)=C 0.547e−0.75t−0.556e−1.5t−0.769e−4t+0.7780.821e−0.75t−1.667e−1.5t+0.096e−4t+0.750

−2.735e−0.75t+1.111e−1.5t+0.096e−1.5t+1.528D . (5.120)
The final result of the complete solution is simply obtained by combining the
above two solutions: the natural (equation 5.116) and the particular (equation
5.120), which leads to

x(t)=x
nat
+x
par
=C 0.034e−0.75t+0.211e−1.5t−0.523e−4t+0.7780.052e−0.75t+0.633e−1.5t+0.065e−4t+0.750

−0.171e−0.75t−0.423e−1.5t+0.065e−4t+1.528D Cvc1vc2i
L4
D .

(5.121)

Figure 5.12 shows the state variables v
c1
, v
c2
, i
L4
behavior versus time.

The computer calculation of the state variables in the above example, using
the MATHCAD program is shown in Appendix I. (Note that the computing
results are slightly different from those obtained above.)ffff
To complete this example, suppose that voltage v3 is of interest. Then the
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Figure 5.12 Two capacitor voltages and inductor current curves versus time of Example 5.6.

output equation 5.56 simplifies to

v3 (t)=[−a a aR5]x (t)=[−
1
2
1
2
1
2
] Cvc1vc2i
L4
D .

Thus, the output voltage is

v
out
(t)=v3=

1
2
(−v
c1
+v
c2
+ i
L4
)

=−0.077e−0.75t−0.0005e−1.5t+0.327e−4t+0.750 V. (5.122)

Note that by inspection of the given circuit in its d.c. steady-state behavior, i.e.
the capacitors are open-circuited and the inductor is short-circuited as shown
in Fig. 5.11(b), we may find

v
c1
(2)=

v
s1

R5+R6
R5=

1

1+2/7
·1=0.778 V

v
c2
(2)=

v
s2

R3+R7
R3=

1

1+1/3
·1=0.75 V

i
L
(2)=v

c1
/R5+vc2/R3=0.778+0.75=1.528 A,

which is in agreement with the final results in equation 5.121.

(b) Multiple eigenvalues

If some of the eigenvalues of A (roots of the characteristic equation g(l)≠0)
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are not distinct and there are repeated values (for example l1=l2 ), then in this
case, the number of independent equations in 5.106 would be fewer than n
unknown coefficients b . The following theorem allows us to extend the solution
for finding all b’s to the case of repeated eigenvalues.

T heorem:(*) Let A be the n×n matrix with n0 distinct eigenvalues l1 , l2 , . . . , ln0
and m multiple eigenvalues (n0<n, if no eigenvalue is repeated, then n0=n).
Let the eigenvalue l

i
occur with multiplicity r

i
, and define the polynomials

P(A)= ∑
n−1

k=0
b
k
A, (5.123)

and

P(l)= ∑
n−1

k=0
b
k
lk. (5.124)

Then the matrix function f (A) is identical to the matrix polynomial P(A) (see
5.107) if the following conditions are obeyed:

for each distinct eigenvalue

f (l
i
)=P(l

i
) i=1, 2, . . . , n0 (5.125a)

for each multiple eigenvalue

dq

dlq
f (l) |
l=l
i

=
dq

dlq
P(l) |

l=l
i

,

i=n
0+1
, n
0+2
, . . . , n

0+m
, q=0, 1, 2, . . . , r

i
−1 (5.125b)

that the first condition (equation 5.125a) gives us only n0 (n0<n) independent
equations for finding n unknown b-coefficients. However, the second condition
(equation 5.125b) yields the remaining equations needed to solve for
b0 , b1 , . . . , bn−1 . For this purpose equation 5.125b shall be rewritten in terms of
the unknown b’s

dq

dlq
f (l) |
l=l
i

=
dq

dlq
∑
n−1

k=0
b
k
lk |
l=l
i

= ∑
k−1

k=q
k(k−1)· · · (k−q+1)b

k
lk−q
i
,

i=n
0+1
, n
0+2
, . . . , n

0+m
, q=0, 1, 2, . . . , r−1 (5.126)

The total number of independent equations, therefore, will be

n0+∑
m

1
r
i
=n.

Example 5.7

As an example of the determination of a matrix function when A has multiple

(*)The proof can be found in the book by Balabanian N. and Bickart T. A. (1969) Electrical Network
T heory, John Wiley & Sons.
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eigenvalues, let us consider the same circuit in Fig. 5.11 of the previous example
with slightly different parameters, namely:ffff R6=1/3 V, R7=2/5 V (the rest of
the parameters are the same). Suppose we wish to find eAt.

Solution

The A matrix in this case will be

A=C−72 1
2
−1
2

1
4
−3
2
−1
4

1
2

1
2
−1
2
D

which yields the characteristic equation

g(l)=Cl+72 −1
2

1
2

−1
4
l+3
2

1
4

−1
2

−1
2
l+1
2
D

= (l+7
2
)(l+3

2
)(l+1

2
)+1
4
l+3
8
= (l+7

2
)(l2+2l+1)=0.

Thus, the eigenvalues are l1=−
7
2
and double l2=−1, i.e. the multiplicity r=

2. Therefore, for the first distinct eigenvalue, in accordance with equation 5.125a,
we have

b0+b1 (−
7
2
)+b2 (−

7
2
)2=e−(7/2)t,

and for the double eigenvalue, in accordance with equation 5.125b we have

b0+b1 (−1)+b2 (−1)2=e−t, q=0

b1+2b2 (−1)=te−t , q=1.

Since

df (l2 )
dl K

l
2
=−1
=
d

dl2
(el
2
t )K
l
2
=−1
=te−t,

the above equations in the matrix form are

C1 −7/2 49/41 −1 1

0 1 −2D Cb0b1b2D=Ce−3.5te−t

te−t D .
The solution for b’s gives

Cb0b1b2D=C0.16e−3.5t+0.84e−t+1.4te−t0.32e−3.5t−0.32e−t+1.8te−t

0.16e−3.5t−0.16e−t+0.4te−tD .
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With b’s known, the desired matrix is

eAt=C1 0

1

0 1D b0+C−3.5 0.5 −0.5

0.25 −1.5 −0.25

0.5 0.5 −0.5 D b1
+C 12.125 −2.75 1.875

−1.375 2.25 0.375

−1.875 −0.75 −0.125D b2 .
Substituting the b’s from the previous solution, and after simplifying, we obtain

eAt=C 0.98e−3.5t+0.02e−t−0.05te−t −0.28e−3.5t+0.28e−t−0.2te−t 0.14e−3.5t−0.14e−t−0.15te−t

−0.14e−3.5t+0.14e−t−0.1te−t 0.04e−3.5t+0.96e−t−0.4te−t −0.02e−3.5t+0.02e−t−0.3te−t

−0.14e−3.5t+0.14e−t+0.15te−t 0.04e−3.5t−0.04e−t+0.6te−t 1.02e−3.5t−0.02e−t+0.45te−t D .
(c) Complex eigenvalues

We shall illustrate the computation of a matrix exponential when some of the
roots of the characteristic equation are complex quantities, considering the
following example.

Example 5.8

Let the circuit in Fig. 5.11 (of the previous example) have the same parameters,
excluding R6=2/5 V and R7=1/2 V. Our purpose is again to compute eAt.

Solution

We substitute the above parameters into the A matrix of equation 5.55 to yield

A=C−3 1
2
−1
2

1
4
−5
4
−1
4

1
2

1
2
−1
2
D .

Thus, the characteristic equation of A is

g(l)= (l+3)(l+5
4
)(l+1

2
)+1
4
l+3
4
=0,

or after a rearrangement of terms

(l+3)(l2+7
4
l+7
8
)=0,

Therefore, the eigenvalues are

l1=−3, l2,3=−
7
8
±√49–56

64
=−0.875± j0.331.

Note that two complex eigenvalues are a conjugate pair. Thus, in accordance
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with equation 5.106, we have

b0+b1 (−3)+b2 (−3)2=e−3t

b0+b1 (−0.875+ j0.331)+b2 (−0.875+ j0.331)2=e−0.875t ej0.331t

b0+b1 (−0.875− j0.331)+b2 (−0.875− j0.331)2=e−0.875t e−j0.331t.

Next, we solve these equations to yield for b’s:

b0=0.819e−3t+e−0.875t(3.86 sin 0.331t+0.811 cos 0.331t)

b1=0.378e−3t+e−0.875t(5.46 sin 0.331t−0.378 cos 0.331t)

b2=0.216e−3t+e−0.875t(1.39 sin 0.331t−0.216 cos 0.331t).

Hence, matrix eAt will be

eAt=C1 0

1

0 1D b0+C−3 0.5 −0.5

0.25 −1.25 −0.25

0.5 0.5 −0.5 D b1
+C 8.875 −2.375 1.625

−1.187 1.563 0.313

−1.625 −0.625 −1.125D b2 .
Finally, substituting the above results for b’s, after simplifying, we obtain

eAt=C 0.973e−3t−0.174f1+0.027f2 −0324e−3t−0.572f1+0.324f2 0.162e−3t−0.470f1−0.162f2
−0.162e−3t−0.280f1+0.162f2 0.054e−3t−0.787f1+0.946f2 −0.027e−3t−0.930f1+0.027f2
−0.162e−3t+0.470f1+0.162f2 −0.054e−3t+1.86f1−0.054f2 −0.027e−3t+0.960f1+1.027f2

D
where f1=e−0.875t sin 0.331t, f2=e−0.875t cos 0.331t.
Suppose we now wish to know the zero input response of the circuit to the
initial vector, x(0)=[1 1 0]T, i.e. the capacitors are initially charged to 1 V
each. Then,

x
nat
(t)=eAt[1 1 0]T=Cvc1vc2i

L4
D

=C 0.649e−3t+e−0.875t(−0.746 sin 0.331t+0.351 cos 0.331t)−0.108e−3t+e−0.875t(−1.073 sin 0.331t+1.108 cos 0.331t)

−0.108e−3t+e−0.875t(2.329 sin 0.331t+0.108 cos 0.331t) D .
These two voltage curves and one current curve versus time are shown in
Fig. 5.13.
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Figure 5.13 Two capacitor voltages and inductor current curves versus time of Example 5.8 in the

case of complex-conjugate eigenvalues.

5.8.3 Lagrange interpolation formula

One other method of computing functions of a matrix is based on the Lagrange
interpolation formula (this formula is also known as the Silvestre formula).
Thus, knowing the eigenvalues l’s of matrix A, any function of A may be
determined as:

f (A)= ∑
n

i=1 A ank=1
k≠1

A−l
k
1

l
i
−l
k B f (li ), (5.127)

where an

k=1
k≠1

means the product of terms
A−l

k
1

l
i
−l
k
where k takes the values

1, 2, . . . , n but excluding k= i. For example, using the data of Example 5.6,
equation 5.127 implies that

eAt=
(A+1.5·1)(A+4·1)
(−0.75+1.5)(−0.75+4)

e−0.75t+
(A+0.75·1)(A+4·1)
(−1.5+0.75)(−1.5+4)

e−1.5t

+
(A+0.75·1)(A+1.5·1)
(−4+0.75)(−4+1.5)

e−4t.

Substituting matrix A (equation 5.110) and performing all the arithmetic, leads
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to

eAt=C−0.050 −0.154 −0.256−0.077 −0.230 −0.385

0.256 0.769 1.282 D e−0.75t+C 0.067 0.4 0.133

0.2 1.2 0.4

−0.133 −0.8 −0.267D e−1.5t
+C 0.985 −0.246 0.123

−0.123 0.031 −0.015

−0.123 0.031 −0.015D e−4t
which agrees with the previous results obtained in equation 5.115.
The Lagrange interpolation formula can be easily programmed, which is an
advantage in computer-aided calculations.

5.9 EVALUATING THE MATRIX EXPONENTIAL BY LAPLACE
TRANSFORM

In conclusion, let us introduce the Laplace transform application for solving
the matrix differential equation. To simplify the procedure, we first apply theffff
Laplace transform to the homogeneous equation (see equation 5.81):

d

dt
x(t)−Ax(t)=0. (5.128)

Applying the Laplace transform to equation 5.128, we get

sX(s)−X(0)−AX(s)=0, (5.129)

where X(s) is the Laplace transform of x(t). Supposing that X(0)=1 (equation
5.129) can be written as follows:

(s ·1−A)X(s)=1, (5.130)

or

X(s)= (s ·1−A)−1. (5.131)

Now, we take the inverse transform to get x(t)

x(t)=L−1{(s·1−A)−1}=eAt. (5.132)

As can be seen, since we have taken X(0)=1, this expression is also equal to
the matrix exponential eAt.

Example 5.9

Let us apply this result to the simple circuit shown in Fig. 5.14, where the
proper tree branches are emphasized.
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Figure 5.14 A circuit of Example 5.9.

Solution

The capacitor voltage v
C
and the inductor current i

L
are the state variables in

this case. The fundamental cut-set equation and two fundamental loop equations
yield

C
dv
C
dt
=−i

L
+ i1

L
di
L
dt
=v
C
−R2 iL

R1 i1=−vC+vs or i1=−
1

R1
v
C
+
1

R1
v
s
.

To eliminate a non-desirable variable, i1 , in the first equation, in this simple
case, the third equation shall be inserted into the first one for i1 . Thus, the state
equations are

dv
C
dt
=−

1

R1C
v
C
− i
L
+
1

R1
v
s

di
L
dt
=
1

L
v
C
−
R2
L
i
L
,

or in the matrix form

d

dt CvCi
L
D=C−1/R1C −1

1/L −R2/L
D CvCi
L
D+C1/R10 D [vs]. (5.133)

Let the element values be C=1.0 F, L=4/3 H, R1=2/5 V, R2=2/3 V and vs=
1 V. This yields the coefficient matrixes A and b

A=C−5/2 −1

3/4 −1/2D , b=C5/20 D (5.134)
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and the input matrix w=[v
s
]=[1]. Next, we find the matrix [s1−A] and its

determinant

s1−A=Cs+52 1

−3
4
s+1
2
D

det (s1−A)= (s+5
2
)(s+1

2
)+3
4
=s2+3s+2= (s+1)(s+2).

The inverse matrix [s·1−A]−1 is now easily obtained as

[s·1−A]=C s+1
2

(s+1)(s+2)
1

(s+1)(s+2)

−
3
4

(s+1)(s+2)

s+5
2

(s+1)(s+2)D
=C− 1

2
s+1

+
3
2
s+2

1

s+1
−
1

s+2

−
3
4
s+1

+
3
4
s+2

3
2
s+1

−
1
2
s+2D .

A partial-fraction expansion was performed in the last step. The inverse Laplace
transform of this expression is

L−1[s·1−A]−1=C−12e−t+32e−2t e−t−e−2t−3
4
e−t+3

4
e−2t 3

2
e−t−1

2
e−tD=eAt. (5.135)

(It is left as an exercise for the reader to verify this result using one of the above
given methods for determining a matrix exponential.)
Suppose that the initial conditions are v

C
=1 V and i

L
(0)=0 , and then the

natural response will be

x
n
(t)=CvC,ni

L,n
D=eAt C10D=C−12e−t+32e−2t−3

4
e−t+3

4
e−2tD . (5.136)

Note that the verification of equation 5.136 at t=0 yields the initial values of
v
C
(0) and i

L
(0) . The particular solution of equation 5.133 may also be obtained

with equation 5.135 using, for example, equation 5.118. Thus,

x
p
(t)=A−1[eAt−1]bw=C−14 1

2
−3
8
−5
4
D C−12e−t+32e−2t e−t−e−2t

−3
4
e−t+3

4
e−2t 3

2
e−t−1

2
e−2tD C520D

or after performing all the calculations

x
part
(t) CvC,pi

L,p
D=C 54e−t−158 e−2t+58−15

8
e−t+15

16
e−2t+15

16
D .

By inspection (see the circuit in Fig. 5.13) it can be easily verified that the
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steady-state values of the capacitor voltage and the inductor current agree with
those found below:

v
C,p(2)

=5
8
V and i

L,p(2)
=15
16
A.

The Laplace transform is one of the ways of evaluating the matrix exponential.
However, if we are going to use the Laplace transform for circuit analysis, we
may do it straightforwardly using the methods described in Chapter 3. The
methods of matrix function evaluation, considered in this chapter, are the most
general and suitable for computer-aided computation.




