
CHAPTER 6
Ordinary
Differential
Equations

FRONT NOTES———————
[Photos: Tacoma narrows bridge]
On the morning of November 7, 1940, the Tacoma Narrows Bridge, the third longest suspension

bridge in the world at the time, fell into Puget Sound. Duringits short life, it had already become
famous for its pronounced vertical oscillations during high winds.

But the motion which preceded the collapse at 11 a.m. on that morning was primarily torsional,
twisting from side-to-side. This motion had not been seen prior to that day, and continued for 45
minutes before the collapse. The twisting motion eventually became large enough to snap a support
cable, and the bridge disintegrated rapidly.

The debate among architects and engineers about the reason for collapse has continued unabated
since that time. The winds were unusually high, even for the Puget Sound. It was known that high
winds caused vertical oscillation for aerodynamic reasons, with the bridge acting like an airplane
wing. In fact, the bridge’s integrity was not in danger from strictly vertical movements. The mystery
is how the torsional oscillation arose on that day. Reality Check 6 on page 296 investigates a possible
mechanism.

END FRONT NOTES————–

A differential equation is an equation involving derivatives. Differential equations models are the
primary means of representing, understanding, and predicting systems that are changing with
time. In the form

y′(t) = f(t, y(t)),

the first-order differential equation expresses the rate ofchange of a quantity in terms of the present
time and the current value of the quantity.

A wide majority of interesting equations have no closed-form solution, and so approximations
are the only recourse. This chapter covers the approximate solution of ordinary differential equa-
tions by computational methods. After introductory ideas on differential equations, Euler’s method
is described and analyzed in detail. Although too simple to be heavily used in simulations, Euler’s
method is crucial, since most of the important issues in the subject can be easily understood in its
very simple context.

More sophisticated methods follow, and interesting examples of systems of differential equa-
tions are explored. Variable step-size protocols are important for efficient solution, and special
methods are necessary for stiff problems. The chapter ends with an introduction to implicit and
multistep methods.
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6.1 Initial value problems

M ANY physical laws that have been successful in modeling nature are expressed in the form of
differential equations. Sir Isaac Newton wrote his laws of motion in this form:F = ma is

an equation connecting the composite force acting on an object and the object’s acceleration, which
is the second derivative of the position. In fact, Newton’s postulation of his laws together with
development of the infrastructure needed to write them down(calculus) comprised one of the most
important revolutions in the history of science.

A simple model known as thelogistic equationmodels the rate of change of a population as

y′ = ay(1 − y) (1)

where the independent variablet represents time andy′ denotes the derivative with respect tot. If
we think ofy as representing the population as a proportion of the carrying capacity of the animal’s
habitat, then we expecty to grow to near that capacity and then taper off. The differential equation
(1) shows the rate of changey′ as being proportional to the product of the current population y and
the “remaining capacity”1 − y. Therefore the rate of change is small both when the population is
small (y near 0) and also when the population nears capacity (y near 1).

The ordinary differential equation (1) is typical in that ithas infinitely many solutionsy(t). By
specifying an initial condition we can identify which of theinfinite family we are interested in.
(We will get more precise about existence and uniqueness in the next section.) Aninitial value
problem for a first order ordinary differential equation is to solve the equation together with an
initial condition on a specific intervala ≤ t ≤ b:







y′ = f(t, y)
y(a) = ya

t ∈ [a, b].
(2)

It will be very helpful for us to think of differential equations as field of slopes, as in Figure 1(a).
The equation (1) can be viewed as specifying a slope for any current values of(t, y). If we plot the
slope at each point in the plane with an arrow we get theslope field, or direction field, of the
differential equation. When in addition an initial condition is specified, then one out of the infinite
family of solutions can be identified. In Figure 1(b), two different solutions are plotted starting at
two different initial values,y(0) = 0.2 andy(0) = 1.4, respectively.

Equation (1) has a solution that can be written in terms of elementary functions. One checks by
differentiating and substituting that as long as the initial conditiony0 6= 0,

y(t) = 1 − 1

1 + y0

1−y0
eat

(3)

is the solution of the initial value problem







y′ = ay(1 − y)
y(0) = y0

t ∈ [0, T ].
(4)

The solution follows the arrows in Figure 1(b). Ify0 = 0, the solution isy(t) = 0, which is checked
the same way.
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Figure 1: The logistic differential equation. (a) The slope field varies in they-direction but is
constant for allt, the definition of an autonomous equation. (b) Two solutionsof the differential
equation.

6.1.1 Euler’s method.

The logistic equation had an explicit, fairly simple solution. A much more common scenario is a
differential equation with no explicit solution formula. The geometry of Figure 1 suggests an al-
ternate approach: to computationally “solve” the differential equation by following arrows. Start at
the initial condition(t0, y0), and follow the direction specified there. After moving a short distance,
re-evaluate the slope at the new point(t1, y1), move further according to the new slope, and repeat
the process. There will be some error associated with the process, since in between evaluations of
the slope, we will not be moving along a completely accurate slope. But if the slopes change slowly,
we may get a fairly good approximation to the solution of the initial value problem.

Example 6.1 Draw the slope field of the initial value problem

{

y′ = ty + t3

y(0) = y0
(5)

For each point(t, y) in the plane, an arrow with slope equal toty + y3 was plotted in Figure
2(a). This IVP is called nonautonomous becauset appears explicitly in the right-hand-side of the
equation. It is also clear from the slope field, which varies according to botht andy. An exact
solutiony(t) = 3et2/2 − t2 − 2 is plotted for initial conditiony(0) = 1, but let us assume that we
don’t know it.

Figure 2(b) shows an implementation of the method of computationally following the slope
field, which is known as Euler’s method. We begin with a grid ofpoints

t0 < t1 < t2 < . . . < tn (6)

along thet-axis and assign approximatey values

w0 < w1 < w2 < . . . < wn (7)
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Figure 2: Solution of the initial value problem (5). (a) Slope field for a nonautonomous equation
varies in bothy andt. Solution is shown. (b) Application of Euler’s method to theequation, with
stepsizeh = 0.2.

at the respectivet points. In Figure 2(b), thet points were selected to be

t0 = 0.0 < t1 = 0.2 < t2 = 0.4 < t3 = 0.6 < t4 = 0.8 < t5 = 1.0, (8)

theyi = y(ti) correspond to the values on the exact solution curve, and each wi is an approximation
to the solution atti. Theti points are equally spaced with stepsizeh = 0.2.

Since the change iny is the horizontal distanceh multiplied by the slope, the formula for each
step can be expressed as follows:
Euler’s Method

w0 = y0

wi+1 = wi + hf(ti, wi). (9)

Example 6.2 Apply Euler’s method to initial value problem (5), with initial conditiony0 = 1.

The right-hand-side of the differential equation isf(t, y) = ty + t3. Therefore Euler’s method will
be the iteration

w0 = 1

wi+1 = wi + h(tiwi + t3i ). (10)
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Using the grid (8) with step sizeh = 0.2, we calculate the approximate solution iteratively from
(10). The valueswi given by Euler’s method are compared to the true valuesyi in the following
table, and plotted in Figure 2(b).

step ti wi yi ei

0 0.0 1.0000 1.0000 0.0000
1 0.2 1.0000 1.0206 0.0206
2 0.4 1.0416 1.0899 0.0483
3 0.6 1.1377 1.2317 0.0939
4 0.8 1.3175 1.4914 0.1739
5 1.0 1.6306 1.9462 0.3155

The table also shows the errorei = yi − wi at each step. The error tends to grow, from zero at the
initial condition to its largest value at the end of the interval, although the maximum error will not
always be found at the end.

Applying Euler’s method with step sizeh = 0.1 causes the error to decrease. Again using (10)
we calculate

step ti wi yi ei

0 0.0 1.0000 1.0000 0.0000
1 0.1 1.0000 1.0050 0.0050
2 0.2 1.0101 1.0206 0.0105
3 0.3 1.0311 1.0481 0.0170
4 0.4 1.0647 1.0899 0.0251
5 0.5 1.1137 1.1494 0.0357
6 0.6 1.1819 1.2317 0.0497
7 0.7 1.2744 1.3429 0.0684
8 0.8 1.3979 1.4914 0.0934
9 0.9 1.5610 1.6879 0.1269
10 1.0 1.7744 1.9462 0.1718

Compare the final errore10 for the h = 0.1 calculation to the final errore5 for the h = 0.2 cal-
culation. Note that cutting the step sizeh in half results in cutting the final error approximately in
half.

Euler’s method is implemented in the following Matlab code,which has been written in some-
what modular form, to highlight the three individual components. The plotting program calls a
subprogram to execute each single Euler step, which in turn calls the function containing the right-
hand-side of the differential equation. In this form, it will be easy later to change out both the
right-hand-side, for another differential equation, and the Euler method, for another more sophisti-
cated method.

%Program 6.1 Euler’s Method for Solving Initial Value Probl ems
%Use with ydot.m to evaluate rhs of differential equation
function euler(int,y0,h)
% input interval [a,b], initial value y0, step size h
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Figure 3: Euler’s method applied to IVP (5). The arrows show the Euler steps, exactly as in
Figure 2 except for the step size. (a) Ten steps of size h = 0.1 (b) Twenty steps of size h = 0.05

% Example usage: euler([0 1],1,0.1);
a=int(1);b=int(2);
t(1)=0; y(1)=y0;
n=round((b-a)/h);
for i=1:n

t(i+1)=t(i)+h;
y(i+1)=eulerstep(t(i),y(i),h);

end
plot(t,y)

function y=eulerstep(t,x,h)
%one step of the Euler method
%Input: t is current time, x is current value, h is stepsize
%Output: the approximate solution value at time t+h
y=x+h*ydot(t,x);

function ydot=ydot(t,y)
ydot = t*y + tˆ3

Comparing the Euler method approximation for (5) with the exact solution att = 1 gives us the
following table.
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stepsn step sizeh error att = 1

5 0.20000 0.3155
10 0.10000 0.1718
20 0.05000 0.0899
40 0.02500 0.0460
80 0.01250 0.0233

160 0.00625 0.0117
320 0.00312 0.0059
640 0.00157 0.0029

Two facts are evident from the table and Figures 3 and 4. First, the error is nonzero. Since Eu-
ler’s method takes non-infinitesimal steps, the slope changes along the step, and the approximation
does not lie exactly on the solution curve. Second, the errordecreases as the stepsize is decreased,
as can be also seen in Figure 3. It appears from the table that the error is proportional toh; we will
investigate this further in the next section.
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Figure 4: Error as a function of stepsize for Euler’s method. The difference between the ap-
proximate solution of (5) and the correct solution att = 1 has slope 1 on a loglog plot, so is
proportional to the stepsizeh, for smallh.

Example 6.3 Find the Euler’s method formula for the initial value problem






y′ = cy
y(0) = y0

t ∈ [0, 1]
(11)

Herec is an arbitrary constant. The true solution isy(t) = y0e
ct. Euler’s method formula gives

w0 = y0

wi+1 = wi + hcwi = (1 + hc)wi.

From this we conclude

wi = (1 + hc)wi−1 = (1 + hc)2wi−2 = . . . = (1 + hc)iw0. (12)
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Settingh = 1/n for an integern, the value att = 1 is

wn = (1 + hc)ny0

= (1 +
c

n
)ny0

The classical formula says that

lim
n→∞

(1 +
c

n
)n = ec (13)

which shows that asn → ∞, Euler’s method will converge to the correct value.

6.1.2 Existence, uniqueness, and continuity for solutions.

Before starting a computational method to find a solution to aproblem, it is helpful to know that
the solution exists. Further, it is helpful to know that there is only one solution, so that the solution
algorithm is not confused about which one to calculate. Under the right circumstances, initial value
problems have exactly one solution.

Definition 6.1 A functionf(t, y) is Lipschitz in the variabley on a convex setC if there exists a constant
L (called theLipschitz constant) satisfying

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|

for eacht and for eachy1, y2 ∈ C.

Notice that Lipschitz in a variable implies that the function is continuous in that variable, but not
necessarily differentiable.

Example 6.4 Find the Lipschitz constant for the differential equation (5)

The right-hand-sidef(t, y) = ty + t3 is Lipschitz in the variabley on the set0 ≤ t ≤ 1,−∞ <
y < ∞. Check that

|f(t, y1) − f(t, y2)| = |ty1 − ty2| ≤ |t||y1 − y2| ≤ |y1 − y2| (14)

on the set. The Lipschitz constant is1.

Note that if the functionf is continuously differentiable in the variabley, the maximum absolute
value of the partial derivative∂f

∂y is a Lipschitz constant. According to the Mean Value Theorem,
for each fixedt there is ac betweeny1 andy2 such that

f(t, y1) − f(t, y2)

y1 − y2
=

∂f

∂y
(t, c).

ThereforeL can be taken to be the maximum of
∣

∣

∣

∣

∂f

∂y
(c)

∣

∣

∣

∣

on the set.
The Lipschitz hypotheses guarantees the existence and uniqueness of solutions of initial value

problems. We refer to [3] for a proof of the following theorem.
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Theorem 6.2 If f(t, y) is Lipschitz in the variabley on an interval[a, b] × [y1, y2] wherey1 < ya < y2,
then for somec betweena andb the initial value problem (2)







y′ = f(t, y)
y(a) = ya

t ∈ [a, c].
(15)

has exactly one solutiony(t).

The fine print of Theorem 6.2 is important to understand, especially if your goal is to calculate
the solution numerically. Just because the initial value problem satisfies a Lipschitz condition on
[a, b]×[y1, y2] containing the initial condition doesn’t guarantee a solution for t in the entire interval
[a, b]. The simple reason is that the solution may wander outside the y range[y1, y2] for which the
Lipschitz constant is valid. The best that can be said is thatthe solution exists on some shorter
interval [a, b]. This point is illustrated by the following example.

Example 6.5 Discuss existence and uniqueness for the initial value problem






y′ = y2

y(0) = 1
t ∈ [0, 2].

(16)

The partial derivative off with respect toy is 2y. If we apply Theorem 6.2 on the set0 ≤ t ≤
2,−10 ≤ y ≤ 10, for example, the Lipschitz constantmax |2y| = 20 is valid on the entire set. The
theorem guarantees a solution starting att = 0 and existing out as far as somec > 0, but we are not
guaranteed a solution on the entire interval[0, 2].

In fact, the solution of the differential equation (16) guaranteed by the theorem isy(t) = 1/(1−
t), which can be easily checked. This solution goes to infinity as t approaches1. In other words,
the solution exists on the interval0 ≤ t ≤ c for any0 < c < 1, but not forc = 2. As mentioned
above, the problem is easy to notice - the Lipschitz constant20 is valid for |y| ≤ 10, buty along the
solution exceeds10 long beforet reaches2.

Theorem 6.3 is the basic fact about stability (error amplification) for ordinary differential equa-
tions. If a Lipschitz constant exists for the right-hand-side of the differential equation, then the
solution at a later time is a Lipschitz function of the initial value, with a new Lipschitz constant
which is exponential in the original one.

Theorem 6.3 Assume thatf(t, y) is Lipschitz in the variabley on the setS = [a, b] × [y1, y2]. If Y (t)
andZ(t) are solutions inS of the differential equation

y′ = f(t, y)

with initial conditionsY (a) andZ(a) respectively, then

|Y (t) − Z(t)| ≤ eL(t−a)|Y (a) − Z(a)| (17)

for all t ∈ [a, b].
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0 SPOTLIGHT ON: Conditioning
Error magnification was discussed in Chapters 1 and 2 as a way to quantify the effects on a problem’s
solution due to small changes in the input data. The analogueof that question for initial value problems
is given a precise answer by Theorem 6.3. When initial condition (input data)Y (a) is changed toZ(a),
the greatest possible change in outputt time units later,Y (t) − Z(t), is exponential int. Alternatively,
for fixed timet in the future, the output change is linear in the initial condition difference, which means
we can talk of a ”condition number” whose role is played byeL(t−a).

Proof. First, if Y (a) = Z(a), then by uniqueness of solutionsY (t) = Z(t) and (17) is trivially
satisfied. We may assumeY (a) 6= Z(a), in which caseY (t) 6= Z(t) for all t in the interval to avoid
contradicting uniqueness.

Defineu(t) = Y (t)−Z(t). Sinceu(t) is either strictly positive or strictly negative, and because
(17) depends only on|u|, we may assumeu > 0. Thenu(a) = Y (a) − Z(a) and the derivative
u′ = Y ′ − Z ′ = f(t, y) − f(t, z). The Lipschitz condition

u′ = |f(t, Y ) − f(t, Z)| ≤ L|Y (t) − Z(t)| = L|u(t)| = Lu(t)

implies that(ln u)′ = u′

u ≤ L. By the Mean Value Theorem,

ln u(t) − ln u(a)

t − a
≤ L,

which simplifies to

ln
u(t)

u(a)
≤ L(t − a)

u(t) ≤ u(a)eL(t−a)

which is the desired result. 2

Returning to Example 6.4, Theorem 6.3 implies that solutions Y (t) andZ(t), starting at differ-
ent initial values, must not grow apart any faster than a multiplicative factor ofet for 0 ≤ t ≤ 1. In
fact, the solution at initial valueY0 is Y (t) = (2 + Y0)e

t2/2 − t2 − 2, and so the difference between
two solutions is

|Y (t) − Z(t)| ≤ |(2 + Y0)e
t2/2 − t2 − 2 − ((2 + Z0)e

t2/2 − t2 − 2)| ≤ |Y0 − Z0|et2/2 (18)

which is less than|Y0 − Z0|et for 0 ≤ t ≤ 1, as prescribed by Theorem 6.3.
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6.1.3 First-order linear equations

A special class of ordinary differential equations that canbe readily solved provides a handy set of
illustrative examples. They are the first-order equations whose right-hand sides are linear in they
variable. Consider the initial value problem







y′ = g(t)y + h(t)
y(a) = ya

t ∈ [a, b].
(19)

First note that ifg(t) is continuous on[a, b], a unique solution exists by Theorem 6.2, usingL =
max[a,b] g(t) as the Lipschitz constant. The solution is found by a trick, multiplying the equation
through by an ”integrating factor”.

The integrating factor isexp(
∫

g(t) dt), and multiplying both sides by it yields

(y′ − g(t)y)e−
∫

g(t) dt = e−
∫

g(t) dth(t)
(

ye−
∫

g(t) dt
)

′

= e−
∫

g(t) dth(t)

ye−
∫

g(t) dt =

∫

e−
∫

g(t) dth(t) dt

which can be solved as

y(t) = e
∫

g(t) dt

∫

e−
∫

g(t) dth(t) dt (20)

If the integrating factor can be expressed simply, this method allows an explicit solution of the
first-order linear equation (19).

Example 6.6 Solve the first-order linear differential equation

{

y′ = ty + y3

y(0) = 1
(21)

The integrating factor is

e−
∫

g(t) dt = e−
t2

2 .

According to (20), the solution is

y(t) = e
t2

2

∫

e−
t2

2 t3 dt

= e
t2

2

∫

e−u(2u) du

= 2e
t2

2 [− t2

2
e−

t2

2 − e−
t2

2 + C]

= −t2 − 2 + 2Ce
t2

2

where the substitutionu = t2/2 was made. Solving for the integration constantC yields 1 =
−2 + 2C, soC = 3/2. The solution is

y(t) = 3e
t2

2 − t2 − 2.
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Exercises 6.1

6.1.1. Show that the functiony(t) = t sin t is a solution of the differential equations (a)y + t2 cos t = ty′ (b) y′′ =
2 cos t − y (c) t(y′′ + y) = 2y′ − 2 sin t.

6.1.2. Show that the functiony(t) = esin t is a solution of the initial value problems (a)y′ = y cos t, y(0) = 1 (b)
y′′ = (cos t)y′ − (sin t)y, y(0) = 1, y′(0) = 1 (c)y′′ = y(1 − ln y − (ln y)2), y(π) = 1, y′(π) = −1.

6.1.3. (a) Show that ifa 6= 0, the solution of the initial value problemy′ = ay + b, y(0) = y0 is y(t) = b
a
(eat − 1) +

y0e
at. (b) Verify the inequality of Theorem 6.3 for solutionsy(t), z(t) with initial valuesy0 andz0, respectively.

6.1.4. Use separation of variables to find solutions of the IVP given byy(0) = 1 and the following differential equations.

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f) y′ = t3/y2

[Ans.: (a) y(t) = et (b) y(t) = et3/3 (c) y(t) = et2−t (d) y = et5 (e) y(t) = (3t + 1)1/3 (f) y(t) =
(3t4/4 + 1)1/3]

6.1.5. Find the solutions of the IVP given byy(0) = 0 and the following first-order linear differential equations

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

[Ans.: (a)y(t) = et − t − 1 (b) y(t) = e−t + t − 1. (c) y(t) = e−2t + 2t − 1]

6.1.6. Which of these differential equations have unique solutions for initial value problems on[0, 1], as guaranteed by
Theorem 6.2? Find the Lipschitz constants. (a)y′ = t (b) y′ = y (c) y′ = −y (d) y′ = −y3.

6.1.7. Sketch the slope field of the differential equations in Exercise 6.1.6, and draw rough approximations to the solu-
tions starting at the initial conditionsy(0) = 1, y(0) = 0, andy(0) = −1.

6.1.8. Find the solutions of the initial value problems in Exercise 6.1.7. For each equation, use the Lipschitz constants
from Exercise 6.1.6, and verify the inequality of Theorem 6.3 for the pair of solutions with initial conditions
y(0) = 0 andy(0) = 1.

6.1.9. Find the solution of the initial value problemy′ = ty2 with y(0) = 1. What is the largest interval[0, b] for which
the solution exists? [Ans.:y(t) = 2/(2 − t2), the interval[0,

√
2]

6.1.10. (a) Write out the Euler’s method formula for the IVP in Exercise 6.1.3. (b) Seta = b = 1, h = 0.5, y0 = 1 and
carry out two steps to approximatey(1). (c) Change the step size toh = 0.25 and carry out 4 steps to approximate
y(1). (d) Using the correct solution from Exercise- 6.1.3, compare the errors of (b) and (c) att = 1.

6.1.11. Write out Euler’s method for the IVPs in Exercise 6.1.4. Using stepsizeh = 1/4, calculate the Euler’s method
approximation on the interval[0, 1]. Compare to the correct solution found above, and find the total error at each
step.

6.1.12. Repeat Exercise 6.1.11 for the IVPs in Exercise 6.1.5.

Computer Problems 6.1

6.1.1. Print the values of the Euler’s method solution with step sizeh = 0.1 in [0, 1] for the initial value problems in
Exercise 6.1.4.

6.1.2. Plot the Euler’s method approximate solutions for the IVPs in Exercise 6.1.4 on[0, 1] for stepsizesh = 0.1, 0.05,
and0.025 along with the true solution.

6.1.3. Plot the Euler’s method approximate solutions for the IVPs in Exercise 6.1.5 on[0, 1] for stepsizesh = 0.1, 0.05,
and0.025 along with the true solution.

6.1.4. For the IVP’s in Exercise 6.1.4, plot the global errorof Euler’s method att = 1 as a function ofh = 0.1× 2k for
0 ≤ k ≤ 5. Use semilog plot as in Figure 4.

6.1.5. For the IVP’s in Exercise 6.1.5, plot the global errorof Euler’s method att = 1 as a function ofh = 0.1× 2k for
0 ≤ k ≤ 5.
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6.2 Analysis of IVP solvers.

I N this section we try to explain Figure 4. In that example, the error in the Euler’s method approx-
imation seems decrease as stepsize is decreased. Is this generally true? Can we make the error

as small as we want, just by decreasing the step size? A careful investigation of error in Euler’s
method will illustrate the issues for IVP solvers in general.
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Figure 5: One step of an ODE solver.The Euler method follows a line segment with the slope of
the vector field at the current point to the next point(ti+1, wi+1). The upper curve represents the
true solution to the differential equation. The global error gi+1 is the sum of the local errorei+1

and accumulated error from previous steps.

6.2.1 Local and global truncation error

Figure 5 shows a schematic picture for one step of a solver like Euler’s method when solving an
IVP of form







y′ = f(t, y)
y(a) = ya

t ∈ [a, b].
(22)

At step i, the accumulated error from the previous steps is carried along and perhaps amplified,
while new error from the Euler approximation is added. To be precise let us define theglobal
truncation error

gi = |wi − yi|,
to be the difference between the Euler’s method approximation and the correct solution of the IVP.
Also, define thelocal truncation error , or one-step error, to be

ei+1 = |wi+1 − z(ti+1)|, (23)

the difference between the value of the Euler step on that interval and the correct solution of the
”one-step initial value problem”







y′ = f(t, y)
y(ti) = wi

t ∈ [ti, ti+1].
(24)
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The local truncation error is the error occurring just from asingle step, taking the previous solution
approximationwi as the starting point. The global truncation error is the accumulated error from
the firsti steps. The local and global truncation errors are illustrated in Figure 5. At each step, the
new global error is the sum of the amplified global error from the previous step and the new local
error. Because of the amplification, the global error is not simply the sum of the local truncation
errors.

Example 6.7 Find the local truncation error for Euler’s method.

According to the definition, this is the new error made on a single step of Euler’s method.
Assume the previous stepwi is correct, solve the initial value problem (24) exactly, and compare
the exact solutiony(ti+1) to the Euler method approximation.

Assumingy′′ is continuous, the exact solution atti+1 = ti + h is

y(ti + h) = y(ti) + hy′(ti) +
h2

2
y′′(c)

according to Taylor’s Theorem, for some (unknown)c satisfyingti < c < ti+1. Sincey(ti) = wi

andy′(ti) = f(ti, wi), this can be written as

y(ti+1) = wi + hf(ti, wi) +
h2

2
y′′(c).

Meanwhile, Euler’s method says

wi+1 = wi + hf(ti, wi).

Subtracting the two expressions yields

ei+1 = |wi+1 − y(ti+1)| =
h2

2
|y′′(c)|

for somec in the interval. This is the local truncation errorei for Euler’s method. IfM is an upper
bound fory′′ on [a, b], thenei ≤ Mh2/2.

Now let’s investigate how the local errors add up to global errors. At the initial conditiony(a) =
ya, the global error isg0 = |w0 − y0| = |ya − ya| = 0. After one step, there is no accumulated error
from previous steps and the global error is equal to the first local error,g1 = e1 = |w1 − y1|. After
two steps, let’s break downg2 as in Figure 5, into the local truncation error plus the accumulated
error from the earlier step. Definez(t) to be the solution of the initial value problem







y′ = f(t, y)
y(t1) = w1

t ∈ [t1, t2].
(25)

(We give the solution the namez becausey is already being used for the solution to the same IVP
starting at the exact initial conditiony(t0) = y0.) Thusz(t2) is the exact value of the solution
starting at initial condition(t1, w1). Note that if we use the initial condition(t1, y1) we would get
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0 SPOTLIGHT ON: Convergence
Theorem 6.4 is the main theorem on convergence of one-step ode solvers. The dependence of global error
on h shows that we can expect error to decrease ash is decreased, so that (at least in exact arithmetic)
error can be made as small as desired. Which brings us to the other important point - the exponential
dependence of global error onb. As time increases, the global error bound may grow extremely large.
For largeti, the step sizeh required to keep global error small may be so tiny as to be impractical.

y2, which is on the actual solution curve, unlikez(t2). Thene2 = |w2−z(t2)| is the local truncation
error of step 2. The other difference,z(t2)−y2, is covered by Theorem 6.3, since it is the difference
between two solutions of the same equation with different initial conditionsw1 andy1. Therefore

g2 = |w2 − y2| = |w2 − z(t2) + z(t2) − y2|
≤ |w2 − z(t2)| + |z(t2) − y2|
≤ e2 + eLhg1

= e2 + eLhe1.

The argument is the same for step 3, which yields

g3 = |w3 − y3| ≤ e3 + eLhg2 ≤ e3 + eLhe2 + e2Lhe1, (26)

and likewise the general stepi satisfies

gi = |wi − yi| ≤ ei + eLhei−1 + e2Lhei−2 + . . . + e(i−1)Lhe1. (27)

Now we bring in the local truncation error. Assume that it satisfies

ei ≤ Chk+1

for a constantC > 0. Then

gi ≤ Chk+1(1 + eLh + . . . + e(i−1)Lh)

= Chk+1 eiLh − 1

eLh − 1

≤ Chk+1 eL(ti−a) − 1

Lh

=
Chk

L
(eL(ti−a) − 1) (28)

Note how the local truncation error is related to the global truncation error. The local truncation
error is proportional tohk for someK. Roughly speaking, the global truncation error ”adds up”
the local truncation errors over a number of steps proportional toh1, the reciprocal of the step size.
Thus the global error turns out to be proportional tohk. This is the major finding of the above
calculation, and we state it in the following theorem.



272 6.2 ANALYSIS OF IVP SOLVERS.

Theorem 6.4 Assume thatf(t, y) has a Lipschitz constantL for the variabley and that the valueyi of
the solution of the initial value problem (2) atti is approximated bywi from a one-step IVP solver with
local truncation errorei ≤ Chk+1, for some constantC andk ≥ 0. Then for eacha < ti < b, the IVP
solver has global truncation error

gi = |wi − yi| ≤
C

L
(eL(ti−a) − 1)hk. (29)

If a method satisfies (29) ash → 0, we say that the method hasorder k. Example 6.7 shows that
the local truncation error of Euler’s method is of size bounded byMh2/2, so the order of Euler’s
method is 1. Restating the theorem in the Euler’s method casegives the following corollary.

Corollary 6.5 (Euler’s method convergence.) Assume that f(t, y) has a Lipschitz constant L for the
variable y and that the solution yi of the initial value problem (2) at ti is approximated by wi using
Euler’s method. Let M be an upper bound for |y′′(t)| on [a, b]. Then

|wi − yi| ≤
Mh

2L
(eL(ti−a) − 1). (30)

Example 6.8 Find an error bound for Euler’s method in Example 6.2.

The Lipschitz constant on[0, 1] is L = 1. Now that the solutiony(t) = 3et2/2− t2−2 is known, the
second derivative is determined to bey′′(t) = (t2 + 2)et2/2 − 2, whose absolute value is bounded
above on[0, 1] by M = 3

√
e−2. Corollary 6.5 implies that the global truncation error att = b = 1

must be smaller than
Mh

2L
eL(1 − 0) =

(3
√

e − 2)

2
eh ≈ 4.004h. (31)

This upper bound is confirmed by the actual global truncationerrors, shown in Figure 4, which are
roughly 2 timesh for smallh.

So far, Euler’s method seems to be foolproof. It is intuitivein construction, and the errors it
makes get smaller when the step size decreases, according toCorollary 6.5. However, for more
difficult IVP’s, Euler’s method is rarely used. There exist more sophisticated methods whose order,
or power ofh in (29), is greater than one. This leads to vastly reduced global error, as we shall see.
We close this section with an innocent-looking example where such a reduction in error is needed.

Example 6.9 Apply Euler’s method to the IVP






y′ = −4t3y2

y(−10) = 1/10001
t ∈ [−10, 0].

(32)

It is easy to check by substitution that the exact solution isy(t) = 1/(t4 + 1). The solution
is very well behaved on the interval of interest. We will assess the ability of Euler’s method to
approximate the solution att = 0.
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Figure 6: Approximation of Example 6.9 by Euler’s method.From bottom to top, step sizes are
h = 10−3, h = 10−4 andh = 10−5. The correct solution hasy(0) = 1. Extremely small steps are
needed to get a reasonable approximation.

Figure 6 shows Euler’s method approximations to the solution, with step sizesh = 10−3, 10−4

and10−5, from bottom to top. The value of the correct solution att = 0 is y(0) = 1. Even the best
approximation, which uses one million steps to reacht = 0 from the initial condition, is noticeably
incorrect.

This example shows that more accurate methods are needed to achieve accuracy in a reasonable
amount of computation. The remainder of the chapter is devoted to developing more sophisticated
methods that require fewer steps to get the same or better accuracy.

6.2.2 The explicit trapezoid method

A small adjustment in the Euler’s method formula makes a great improvement in accuracy. Con-
sider the following geometrically motivated method:
Explicit trapezoid method

w0 = y0

wi+1 = wi +
h

2
(f(ti, wi) + f(ti + h,wi + hf(ti, wi))) (33)

For Euler’s method, the slopey′(ti) governing the discrete step is taken from the slope field
at the left-hand end of the interval[ti, ti+1]. In the trapezoid method, this slope is replaced by the
average between the contributiony′(ti) from the left-hand endpoint and the corresponding slope
f(ti + h,wi + hf(ti, wi)) from the right-hand side. (See Figure 14(a).) Note that we are using the
Euler’s method ”prediction” as thew-value to evaluate the slope functionf at ti+1 = ti + h. The
Euler’s method prediction is corrected by the trapezoid method, which is more accurate, as we will
show.

The method is calledexplicit because the new approximationwi+1 can be determined by an
explicit formula in terms of previouswi. The reason for the name ”trapezoid method” is that in the
special case wheref(t, y) is independent ofy, the method

wi+1 = wi +
h

2
[f(ti) + f(ti + h)]
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Figure 7: Schematic view of single step of the explicit trapezoid method. The slopessL =
f(ti, wi) andsR = f(ti + h, wi + hf(ti, wi)) are averaged to define the slope used to advance the
solution toti+1.

can be viewed as adding a trapezoid rule approximation (Chapter 5) of the integral
∫ ti+h

ti

f(t) dt

to the currentwi. Since

∫ ti+h

ti

f(t) dt =

∫ ti+h

ti

y′(t) dt = y(ti + h) − y(ti),

this corresponds to solving the differential equationy′ = f(t) by integrating both sides using the
trapezoid rule. The explicit trapezoid method is also called the improved Euler method and the
Heun method in the literature, but we will use the more descriptive and more easily remembered
title.

Let’s test the new method on an old example.

Example 6.10 Apply the explicit trapezoid method to the IVP (5) with initial conditiony(0) = 1.

Formula (33) forf(t, y) = ty + t3 is

w0 = y0 = 1

wi+1 = wi +
h

2
(f(ti, wi) + f(ti + h,wi + hf(ti, wi)))

= wi +
h

2
(tiyi + t3i + (ti + h)(wi + h(tiyi + t3i )) + (ti + h)3)

Using step sizeh = 0.1, the iteration yields the following table.
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step ti wi yi ei

0 0.0 1.0000 1.0000 0.0000
1 0.1 1.0051 1.0050 0.0001
2 0.2 1.0207 1.0206 0.0001
3 0.3 1.0483 1.0481 0.0002
4 0.4 1.0902 1.0899 0.0003
5 0.5 1.1499 1.1494 0.0005
6 0.6 1.2323 1.2317 0.0006
7 0.7 1.3437 1.3429 0.0008
8 0.8 1.4924 1.4914 0.0010
9 0.9 1.6890 1.6879 0.0011
10 1.0 1.9471 1.9462 0.0009

The comparison of Example 6.10 with the results of Euler’s method on the same problem in Exam-
ple 6.2 is striking. In order to quantify the improvement that the trapezoid method brings toward
solving IVP’s, we need to calculate its local truncation error (23).

The local truncation error is the error made on a single step.Starting at an assumed correct solu-
tion point(ti, yi), the correct extension of the solution atti+1 can be given by the Taylor expansion

yi+1 = y(ti + h) = yi + hy′(ti) +
h2

2
y′′(ti) +

h3

6
y′′′(c), (34)

for some numberc betweenti andti+1, assumingy′′′ is continuous. In order to compare these terms
with the trapezoid method, we will write them a little differently. From the differential equation
y′(t) = f(t, y), differentiate both sides with respect tot, using the chain rule:

y′′(t) =
∂f

∂t
(t, y) +

∂f

∂y
(t, y)y′(t)

=
∂f

∂t
(t, y) +

∂f

∂y
(t, y)f(t, y)

The new version of (34) is

yi+1 = yi + hf(ti, yi) +
h2

2

(

∂f

∂t
(ti, yi) +

∂f

∂y
(ti, yi)f(ti, yi)

)

+
h3

6
y′′′(c), (35)

We want to compare this expression to the explicit trapezoidmethod, using the two-dimensional
Taylor theorem to expand the term

f(ti + h, yi + hf(ti, yi)) = f(ti, yi)

+ h
∂f

∂t
(ti, yi) + hf(ti, yi)

∂f

∂y
(ti, yi)

+ O(h2).
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The trapezoid method can be written

wi+1 = yi +
h

2
(f(ti, yi) + f(ti + h, yi + hf(ti, yi)))

= yi +
h

2
f(ti, yi) +

h

2

(

f(ti, yi) + h

(

∂f

∂t
(ti, yi) + f(ti, yi)

∂f

∂y
(ti, yi) + O(h2)

))

= yi + hf(ti, yi) +
h2

2

(

∂f

∂t
(ti, yi) + f(ti, yi)

∂f

∂y
(ti, yi)

)

+ O(h3). (36)

Subtracting (36) from (35) gives the local truncation erroras

yi+1 − wi+1 = O(h3)

Theorem 6.4 shows that the global error of the trapezoid method is proportional toh2, meaning
that the method is of order two, compared with order one for Euler’s method. For smallh this is a
significant difference, as shown by returning to Example 6.9.

−10 10
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t

Figure 8: Approximation of Example 6.9 by the trapezoid method. Step size ish = 10−3. Note
the significant improvement in accuracy as compared to Euler’s method in Figure 6.

Example 6.11 Apply the trapezoid method to the Example 6.9:






y′ = −4t3y2

y(−10) = 1/10001
t ∈ [−10, 0].

0 SPOTLIGHT ON: Complexity
Is a second-order method more efficient or less efficient thana first-order method? On each step, the error
is smaller, but the computational work is greater, since ordinarily two function evaluations (off(t, y)) are
required instead of one. A rough comparison goes like this: Suppose an approximation has been run with
step sizeh, and one wants to double the amount of computation to improvethe approximation. For the
same number of function evaluations, one can (a) halve the step size of the first order method, multiplying
the global error by1/2, or (b) keep the same step size, but use a second order method,replacing theh in
Theorem 6.4 byh2, essentially multiplying the global error byh. For smallh, (b) wins.
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Revisiting Example 6.9 with a more powerful method shows a great improvement in approxi-
mating the solution, for example atx = 0. The correct valuey(0) = 1 is attained within.0015 with
a step size ofh = 10−3 with the trapezoid method, as shown in Figure 8. This is already better than
Euler with a step sizeh = 10−5. Using the trapezoid method withh = 10−5 yields an error on the
order of10−7 for this relatively difficult initial value problem.

6.2.3 Taylor methods

So far we have learned two methods for approximating solutions of ordinary differential equations.
The Euler method has order one, and the apparently superior trapezoid method has order two. In
this section we show that methods of all orders exist. For each positive integerk, there is a Taylor
method of orderk, which we will describe next.

The basic idea is a straightforward exploitation of the Taylor expansion. Assume the solution
y(t) is k + 1 times continuously differentiable. Given the current point (t, y(t)) on the solution
curve, the goal is to expressy(t + h) in terms ofy(t) for some stepsizeh, using information about
the differential equation. The Taylor expansion ofy(t) aboutt is

y(t + h) = y(t) + hy′(t) +
1

2
h2y′′(t) + . . . +

1

k!
hky(k)(t) +

1

(k + 1)!
hk+1y(k+1)(c)

wherec lies betweent and t + h. The last term is the Taylor remainder term. Fork = 1 the
expansion is

y(t + h) = y(t) + hy′(t) + O(h2)

= y(t) + hf(t, y) + O(h2)

where we have used the differential equation to replacey′(t) with f . Settingwi = y(t) to be the
currenty position, we see that the method gives

wi+1 = wi + hf(ti, wi),

with a local truncation error of orderh2. Therefore we recognize the first-order Taylor method as
Euler’s method.

Fork = 2 we find a new method. The Taylor expansion is

y(t + h) = y(t) + hy′(t) +
1

2
h2y′′(t) + . . . +

1

3!
h3y′′′(c)

= y(t) + hf(t, y) +
1

2
h2f ′(t, y) + O(h3)

where we have denoted the fullt-derivative

f ′(t, y) = f ′(t, y(t)) = ft(t, y) + fy(t, y)y′(t).

We will use the notationft to denote the partial derivative off with respect tot, and similarly for
fy. Setting the currenty position to bewi = y(t), the method is

wi+1 = wi + hf(ti, wi) +
1

2
h2(ft(ti, wi) + fy(ti, wi)f(ti, wi)).
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Example 6.12 Determine the second-order Taylor method for

{

y′ = ty + t3

y(0) = y0
(37)

Sincef(t, y) = ty + t3,

f ′(t, y) = ft + fyf

= y + 3t2 + t(ty + t3),

and the method gives

wi+1 = wi + h(tiwi + t3i ) +
1

2
h2(wi + 3t2i + ti(tiwi + t3i )).

The second-order Taylor method gives a second-order method, but notice that manual labor on
the user’s part was required, to determine the partial derivatives. Compare this to the other second-
order method we have learned, where (33) requires only callsto a routine that computes values of
f(t, y) itself.

Conceptually, the lesson represented by Taylor methods is that ODE methods of arbitrary order
exist. They can be derived by following the scheme shown above. However, they suffer from the
problem that extra work is needed to compute the partial derivatives off that show up in the formula.
Since formulas of the same orders can be developed that don’trequire these partial derivatives, the
Taylor methods are used only for specialized purposes.

Exercises 6.2

6.2.1. Compute the Euler’s method error bound from Corollary 6.5 for the solution att = 1, for the initial value problems
of Exercise 6.1.5.

6.2.2. Write out the explicit trapezoid method for the IVPs in Exercise 6.1.4. Using stepsizeh = 1/4, calculate the
trapezoid method approximation on the interval[0, 1]. Compare to the correct solution found in Exercise 6.1.4,
and find the total error at each step.

6.2.3. Carry out Exercise 6.2.2 for the IVPs in Exercise 6.1.5.

6.2.4. Find a general formula, similar to (37), for the third-order Taylor method.

6.2.5. Find the formula for the second-order Taylor method for the following differential equations. (a)y′ = ty (b)
y′ = ty2 + y3 (c) y′ = y sin y (d) y′ = eyt2

[Ans. (a)wi+1 = wi + htiwi + 1

2
h2(wi + t2i wi) (b) wi+1 = wi + h(tiw

2
i + w3

i ) + 1

2
h2(w2

i + (2tiwi +

3w2
i )(tiw

2
i +w3

i )) (c) wi+1 = wi +hwi sin wi + 1

2
h2(sin wi +wi cos wi)wi sin wi (d) wi+1 = wi +hewit2

i +
1

2
h2ewit2

i (2ti + t2i e
wit2

i )]

6.2.6. Same as Exercise 6.2.5, but determine the third-order Taylor method.

6.2.7. Find the formula for the second-order Taylor method applied to the initial value problems in Exercise 6.1.4. Using
step sizeh = 1/4, calculate the second-order Taylor method approximation on the interval[0, 1]. Compare to the
correct solution found in Exercise 6.1.4, and find the total error at each step.

6.2.8. (a) Prove (26). (b) Prove (27)

Computer Problems 6.2
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6.2.1. Print the values of the explicit trapezoid method solution on a grid of step sizeh = 0.1 in [0, 1] for the initial
value problems in Exercise 6.1.4.

6.2.2. Plot the approximate solutions for the IVPs in Exercise 6.1.4 on[0, 1] for step sizesh = 0.1, 0.05, and0.025
along with the true solution.

6.2.3. For the IVP’s in Exercise 6.1.4, plot the global errorof the explicit trapezoid method att = 1 as a function of
h = 0.1 × 2k for 0 ≤ k ≤ 5. Use a semilog plot as in Figure 4.

6.2.4. Print the values of the second-order Taylor method solution on a grid of step sizeh = 0.1 in [0, 1] for the initial
value problems in Exercise 6.1.4.

6.3 Systems of ordinary differential equations.

A PPROXIMATION of systems of differential equations can be done as a simple extension of the
methodology for a single differential equation. Treating systems of equations greatly extends

our ability to model interesting dynamical behavior. In addition, we will discuss the handling of
higher-order equations. Theorder of a differential equation refers to the highest order derivative
appearing in the equation.

A first-order system has form

y′1 = f1(t, y1, . . . , yn)

y′2 = f2(t, y1, . . . , yn)

...

y′n = fn(t, y1, . . . , yn)

Example 6.13 Apply Euler’s method to the first-order system of two equations

y′1 = y2
2 − 2y1

y′2 = y1 − y2 − ty2
2

y1(0) = 0

y2(0) = 1 (38)

First, check that the solution of the system (38) is the vector-valued function

y1(t) = te−2t

y2(t) = e−t

For the moment, forget that we know the solution and apply Euler’s method. The Euler’s method
formula is applied to each component in turn.

wi+1,1 = wi,1 + h(w2
i,2 − 2wi,1)

wi+1,2 = wi,2 + h(wi,1 − wi,2 − tw2
i,2)

Figure 9 shows the Euler method approximations ofy1 and y2 along with the correct solution.
Matlab code that carries this out is very similar to Program 6.1.
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Figure 9: Equation (38) approximated by Euler method.Step sizeh = 0.1. The upper curve is
y1(t), along with its approximate solutionwi,1 (circles), while the lower curve isy2(t) andwi,2.

% Program 6.2 Vector version of Euler method
function euler2(int,y0,h)
% input interval [a,b], initial vector y0, step size h
% Example usage: euler2([0 1],[0 1],0.1);
a=int(1);b=int(2);
t(1)=0; y(1,:)=y0;
n=round((b-a)/h);
for i=1:n

t(i+1)=t(i)+h;
y(i+1,:)=eulerstep(t(i),y(i,:),h);

end
plot(t,y(:,1),t,y(:,2));

function y=eulerstep(t,x,h)
%one step of the Euler method
%Input: t is current time, x is current vector, h is stepsize
%Output: the approximate solution vector at time t+h
y=x+h*ydot(t,x);

function ydot=ydot(t,y)
ydot(1) = y(2)ˆ2-2*y(1);
ydot(2) = y(1)-y(2)-t*y(2)ˆ2;

6.3.1 Higher order equations

A single differential equation of higher order can be converted to a system. Let

y(n) = f(t, y, y′, y′′, . . . , y(n−1)
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be annth-order ordinary differential equation. Define new variables

y1 = y

y2 = y′

y3 = y′′

...

yn = y(n−1)

and notice that the original differential equation can be written

y′n = f(t, y1, y2, . . . , yn).

Together with the equations

y′1 = y2

y′2 = y3

y′3 = y4

...

y′n−1 = yn,

thenth-order differential equation can be converted to a systemof first-order equations, which we
can solve using methods like the Euler or trapezoid methods.

Example 6.14 Convert the third-order differential equation

y′′′ = a(y′′)2 − y′ + yy′′ + sin t (39)

to a system.

Sety1 = y and define the new variables

y2 = y′

y3 = y′′.

Then in terms of first derivatives

y′1 = y2

y′2 = y3

y′3 = ay2
3 − y2 + y1y3 + sin t, (40)

and the solutiony(t) of the third-order equation (39) can be found by solving the system (40).

Because of the possibility of converting higher-order equations to systems, we will restrict our
attention to systems of first-order equations. Note also that a system of higher-order equations can
be converted in the same way to a system of first-order equations.
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6.3.2 The pendulum

Figure 10 shows a pendulum swinging under the influence of gravity. Assume that the pendulum
is hanging from a rigid rod that is free to swing through 360 degrees. Denote byy the angle of the
pendulum with respect to the vertical, so thaty = 0 corresponds to straight down. Thereforey and
y + 2π should be considered the same angle.

−1 0 1

−1

0

1

length l

−mgsin y
−mg

y

Figure 10: The pendulum. Component of force in the tangential direction isF = −mg sin y,
wherey is the angle the pendulum bob makes with the vertical.

We will use Newton’s law of motionF = ma to find the pendulum equation. The motion
of the pendulum bob is constrained to be along a circle of radius l, wherel is the length of the
pendulum rod. Ify is measured in radians, then the component of acceleration tangent to the circle
is ly′′, because the component of position tangent to the circle isly. The component of force
along the direction of motion ismg sin y. It is a restoring force, meaning that it is directed in the
opposite direction from the displacement of the variabley. The differential equation governing the
frictionless pendulum is therefore

mly′′ = F = −mg sin y, (41)

according to Newton’s law of motion. This is a second-order differential equation for the angley of
the pendulum. The initial conditions are given by the initial angley(0) and angular velocityy′(0).

By settingy1 = y and introducing the new variabley2 = y′, the second-order equation is
converted to a first-order system

y′1 = y2

y′2 = −g

l
sin y1. (42)

If the pendulum is started from a position straight out to theright, the initial conditions arey1(0) =
π/2 andy2(0) = 0. Using MKS units, the gravitational acceleration at the earth’s surface is about
9.8m/sec2. We assume below that the pendulum rod is1 meter long. Using these parameters, we
can test the ability of the Euler method as a solver for this system.



Chapter 6 ORDINARY DIFFERENTIAL EQUATIONS 283

1 2 3 4 5 6 7 8 9 10

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

y

t

(a)

1 2 3 4 5 6 7 8 9 10

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

y

t

(b)

Figure 11: Euler method applied to the pendulum equations.The curve of smaller amplitude
is the angley1 in radians; the curve of larger amplitude is the angular velocity y2. (a) Stepsizeh =
0.01 is too large; energy is growing. (b) Stepsizeh = 0.001 shows more reasonable trajectories.

Figure 11 shows Euler’s method approximations to the pendulum equations with two different
step sizes. The smaller curve represents the angley as a function of time, and the larger amplitude
curve is the instantaneous angular velocity. Note that the zeros of the angle, representing the vertical
position of the pendulum, correspond to the largest angularvelocity, positive or negative. The
pendulum is travelling fastest as it swings through the lowest point. When the pendulum is extended
to the far right, the peak of the smaller curve, the velocity is zero as it turns from positive to negative.

The inadequacy of Euler’s method is apparent in Figure 11. The step sizeh = 0.01 is clearly
too large to get even the qualitative parts correct. An undamped pendulum started with zero velocity
should swing back and forth forever, returning to its starting position with a regular periodicity. The
amplitude of the angle in Figure 11(a) is growing, which cannot be correct. Using10 times more
steps, as in Figure 11(b), improves the situation at least visually, but a total of104 steps are needed,
an extreme number for the routine dynamical behavior shown by the pendulum.

A second-order ODE solver like the trapezoid method can help. We will rewrite the Matlab
code to use the trapezoid method, and take the opportunity toillustrate the ability of Matlab to do
simple animations.

The following codepend.m contains the same differential equation information, buteulerstep
is replaced bytrapstep . In addition, the variablesrod andbob are introduced to represent the
rod and pendulum bob, respectively. The Matlabset command assigns attributes to variables. The
drawnow command plots therod andbob variables. Note that the erase mode of both variables is
set toxor , meaning that when the plotted variable is redrawn somewhere else, the previous position
is erased. Figure 10 is a screen shot of the animation.

% Program 6.3 Animation program for pendulum using IVP solve r
function pend(int,ic,h,p)
% Inputs: int = [a b] time interval,
% ic = [y(1,1) y(1,2)], initialize
% h = stepsize, p = steps per point plotted
% Calls a one-step method such as trapstep.m
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% Example usage: pend([0 10],[pi/2 0],.05,1)
clf % clear figure window
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i n total
y(1,:)=ic; % enter initial conds in y
t(1)=a;
set(gca,’XLim’,[-1.2 1.2],’YLim’,[-1.2 1.2], ...

’XTick’,[-1 0 1],’YTick’,[-1 0 1], ...
’Drawmode’,’fast’,’Visible’,’on’,’NextPlot’,’add’);

cla; % clear screen
plot(0,0,’ks’) % pivot where rod attached
axis square % make aspect ratio 1 - 1
bob = line(’color’,’r’,’Marker’,’.’,’markersize’,40,’ erase’,’xor’,...

’xdata’,[],’ydata’,[]);
rod = line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,3, ’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
for k=1:n

for i=1:p
t(i+1) = t(i)+h;
y(i+1,:) = trapstep(t(i),y(i,:),h);

end
y(1,:) = y(p+1,:);t(1)=t(p+1);
xbob = cos(y(1,1)-pi/2); ybob = sin(y(1,1)-pi/2);
xrod = [0 xbob]; yrod = [0 ybob];
set(rod,’xdata’,xrod,’ydata’,yrod)
set(bob,’xdata’,xbob,’ydata’,ybob)
drawnow; pause(h)

end

function y = trapstep(t,x,h)
%one step of the trapezoid method
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function ydot=ydot(t,y)
g=9.8;length=1;
ydot(1) = y(2);
ydot(2) = -(g/length)*sin(y(1));

Example 6.15 The damped pendulum.

The force of damping, such as air resistance or friction, is often modelled as being proportional and
in the opposite direction to velocity. The pendulum equation becomes

y′1 = y2

y′2 = −g

l
sin y1 − dy2, (43)

whered > 0 is the damping coefficient. Unlike the undamped pendulum above, this one will lose
energy through damping and with time approach the limiting equilibrium solutiony1 = y2 = 0,
from any initial condition. Computer Problem 6.3.3 asks youto run a damped version ofpend.m .
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Example 6.16 The forced damped pendulum.

Adding a time-dependent term to (43) represents outside forcing on the damped pendulum. Consider
adding the sinusoidal termf sin(t) to they′2 right-hand-side, yielding

y′1 = y2

y′2 = −g

l
sin y1 − dy2 + f sin t, (44)

This can be considered as a model of a pendulum that is affected by an oscillating magnetic field,
for example.

A host of new dynamical behavior becomes possible when forcing is added. For a two-dimensional
autonomous system of differential equations, the Poincare-Bendixson Theorem from the theory of
differential equations says that trajectories can tend toward only two types of limiting behavior:
stable equilibria like the down position of the pendulum, orstable periodic cycles like the pendu-
lum swinging back and forth forever. The forcing makes the system non-autonomous (it can be
rewritten as a three-dimensional autonomous system, but not two-dimensional) so that a third type
of trajectories are allowed: chaotic trajectories.

Setting the damping coefficient tod = 1 and the forcing coefficient tof = 10 results in
interesting periodic behavior, explored in Computer Problem 6.3.4. Moving the parameter tof = 15
introduces chaotic trajectories.

Example 6.17 The double pendulum.

The programpend.m can be adapted to make an animation of the double pendulum, which is a
single pendulum with another pendulum hanging from the bob of the first pendulum. Ify1 andy3

are the angles of the two bobs with respect to the vertical, the system of differential equations is

y′1 = y2

y′2 =
−3g sin y1 − g sin(y1 − 2y3) − 2 sin(y1 − y3)(y

2
4 − y2

2 cos(y1 − y3))

3 − cos(2y1 − 2y3)
− dy2

y′3 = y4

y′4 =
2 sin(y1 − y3)[2y

2
2 + 2g cos y1 + y2

4 cos(y1 − y3)]

3 − cos(2y1 − 2y3)

The parameterd represents friction at the pivot. Ifd > 0, the pendulum will eventually move toward
the down position. The double pendulum is believed to be chaotic for d = 0.

%Program 6.? Animation program for double pendulum
function pend2(int,ic,h,p)
%Inputs: int = [a b] time interval,
%ic = [y(1,1) y(1,2) y(1,3) y(1,4)], initialize
%h = stepsize, p = steps per point plotted
%Calls a one-step method such as trapstep.m
%Example usage: pend2([0 100],[pi/2 0 pi/2 0],.01,5)
clf % clear figure window
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i n total
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y(1,:)=ic; % enter initial conds in y
t(1)=a;
set(gca,’XLim’,[-2.2 2.2],’YLim’,[-2.2 2.2], ...

’XTick’,[-2 0 2],’YTick’,[-2 0 2], ...
’Drawmode’,’fast’,’Visible’,’on’,’NextPlot’,’add’);

cla; % clear screen
axis square % make aspect ratio 1 - 1
plot(0,0,’ks’) % pivot where rod attached
bob1 =line(’color’,’r’,’Marker’,’.’,’markersize’,40, ’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
rod1 =line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,3 ,’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
bob2 =line(’color’,’g’,’Marker’,’.’,’markersize’,40, ’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
rod2 =line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,3 ,’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
for k=1:n

for i=1:p
t(i+1) = t(i)+h;
y(i+1,:) = trapstep(t(i),y(i,:),h);

end
y(1,:) = y(p+1,:);t(1)=t(p+1);
xbob1 = cos(y(1,1)-pi/2); ybob1 = sin(y(1,1)-pi/2);
xbob2 = xbob1+cos(y(1,3)-pi/2); ybob2 = ybob1+sin(y(1,3) -pi/2);
xrod1 = [0 xbob1]; yrod1 = [0 ybob1];
xrod2 = [xbob1 xbob2]; yrod2 = [ybob1 ybob2];
set(rod1,’xdata’,xrod1,’ydata’,yrod1)
set(bob1,’xdata’,xbob1,’ydata’,ybob1)
set(rod2,’xdata’,xrod2,’ydata’,yrod2)
set(bob2,’xdata’,xbob2,’ydata’,ybob2)
drawnow; pause(h)

end

function y = trapstep(t,x,h)
%one step of the trapezoid method
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function ydot=ydot(t,y)
g=9.8;length=1;
a=y(1)-y(3);
ydot(1) = y(2);
ydot(2)=-3*g*sin(y(1))-g*sin(y(1)-2*y(3))-2*sin(a)* (y(4)ˆ2-y(2)ˆ2*cos(a));
ydot(2) = ydot(2)/(3-cos(2*a)) - .003*y(2);
ydot(3) = y(4);
ydot(4) = (2*sin(a)*(2*y(2)ˆ2+2*g*cos(y(1))+y(4)ˆ2*co s(a)))/(3-cos(2*a));

6.3.3 Orbital mechanics

As a first example we discuss the one-body problem of an orbiting satellite. Newton’s second law
of motion says that the accelerationa of the satellite is related to the forceF applied to the satellite
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asF = ma, wherem is the mass. The law of gravitation expresses the force on a body of massm1

by a body of massm2 by an inverse-square law

F =
gm1m2

r2

wherer is the distance separating the masses. In the one-body problem, one of the masses is
considered negligible compared to the other, as in the case of a small satellite orbiting a large
planet. This simplification allows us to neglect the force ofthe satellite on the planet, so that the
planet may be regarded as fixed.
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Figure 12: Euler on one-body problem.(a)h = 0.01 and (b)h = 0.001

Place the large mass at the origin and denote by(x, y) the position of the satellite. The distance
between the masses isr =

√

x2 + y2, and the force on the satellite is central, meaning in the
direction of the large mass. The direction vector, a unit vector in this direction, is

(

− x
√

x2 + y2
,− y
√

x2 + y2

)

.

Therefore the force on the satellite in terms of components is

(Fx, Fy) =

(

gm1m2

x2 + y2

−x
√

x2 + y2
,
gm1m2

x2 + y2

−y
√

x2 + y2

)

(45)

Inserting these forces into Newton’s law of motion yields the two second-order equations

m1x
′′ = − gm1m2x

(x2 + y2)3/2

m1y
′′ = − gm1m2y

(x2 + y2)3/2
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Introducing the variablesvx = x′ andvy = y′ allows reduction of the two second-order equations
to a system of four first-order equations

x′ = vx

vx
′ = − gm2x

(x2 + y2)3/2

y′ = vy

v′y = − gm2y

(x2 + y2)3/2
(46)

Applying Euler’s method to a system of first-order equationsis done componentwise: by using
Euler separately on each component. The Matlab code for one Euler step of (46) looks exactly like
the code for the scalar version, except that the inputx is a vector.

We have written Euler’s method as a function to be called froma driver program, so that we
can substitute more sophisticated one-step methods later.The following driver program called
orbit.m callseulerstep.m and sequentially plot the results in the Matlab plotting window.

%Program 6.4 Plotting program for one-body problem by IVP so lver
function z=orbit(int,ic,h,p)
%Inputs: int = [a b] time interval,
% ic = [x0 vx0 y0 vy0], initialize x position, x velocity, y pos , y vel
% h = stepsize, p = steps per point plotted
%Calls a one-step method such as eulerstep.m
%Example usage: orbit([0 100],[0 1 2 0],.01,50)
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i n total
x0=ic(1);vx0=ic(2);y0=ic(3);vy0=ic(4); % grab initial c onditions
y(1,:)=[x0 vx0 y0 vy0];t(1)=a; % enter initial conds in y
set(gca, ...

’XLim’,[-5 5],’YLim’,[-5 5], ...
’XTick’,[-5 0 5],’YTick’,[-5 0 5], ...
’Drawmode’,’fast’, ...
’Visible’,’on’, ...
’NextPlot’,’add’);

cla;
sun=line(’color’,’y’, ...

’Marker’,’.’, ...
’markersize’,25,...
’xdata’,0,’ydata’,0);

drawnow;
head = line( ...

’color’,’r’, ...
’Marker’,’.’, ...
’markersize’,25, ...
’erase’,’xor’, ...
’xdata’,[],’ydata’,[]);

tail=line( ...
’color’,’b’, ...
’LineStyle’,’-’, ...
’erase’,’none’, ...
’xdata’,[],’ydata’,[]);

%[px,py,button]=ginput(1); % include these three lines
%[px1,py1,button]=ginput(1); % to enable two mouse clicks
%y(1,:)=[px px1-px py py1-py]; % for setting initial condit ions
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for k=1:n
for i=1:p

t(i+1)=t(i)+h;
y(i+1,:)=eulerstep(t(i),y(i,:),h);

end
y(1,:)=y(p+1,:);t(1)=t(p+1);
set(head,’xdata’,y(1,1),’ydata’,y(1,3))
set(tail,’xdata’,y(2:p,1),’ydata’,y(2:p,3))
drawnow;

end

function y=eulerstep(t,x,h)
%one step of the Euler method
y=x+h*ydot(t,x);

function ydot = ydot(t,x)
m2=3;g=1;mg2=m2*g;px2=0;py2=0;
px1=x(1);py1=x(3);vx1=x(2);vy1=x(4);
dist=sqrt((px2-px1)ˆ2+(py2-py1)ˆ2);
ydot=zeros(1,4);
ydot(1)=vx1;
ydot(2)=(mg2*(px2-px1))/(distˆ3);
ydot(3)=vy1;
ydot(4)=(mg2*(py2-py1))/(distˆ3);

Running the Matlab scriptorbit.m immediately shows the limitations of Euler’s method
for approximating interesting problems. Figure 12(a) shows the outcome of runningorbit([0
100],[0 1 2 0],.01,50) . That means we follow the orbit over the time interval[a, b] =
[0, 100], the initial position is(x0, y0) = (0, 2), the initial velocity is(vx, vy) = (1, 0), the stepsize
is h = 0.01, and the current position is plotted once everyp = 50 steps.

Solutions to the one-body problem must be conic sections, either ellipses, parabolas, or hyper-
bolas. The spiral seen in Figure 12(a) is a numerical artifact, meaning a misrepresentation caused
by errors of computation. In this case, it is the truncation error of Euler’s method that leads to the
failure of the orbit to close up into an ellipse. If the stepsize is cut by a factor of ten toh = 0.001,
the result is improved as shown in Figure 12(b). Several orbits are shown, and it is clear that even
with the greatly decreased stepsize, the accumulated erroris noticeable.

Corollary 6.5 says that the Euler method, in principle, can approximate a solution with as much
accuracy as desired, if the step sizeh is sufficiently small. However, results like Figures 6 and 12
show that the method is seriously limited in practice.

Figure 13 shows the clear improvement in the one-body problem resulting from the replace-
ment of the Euler step with the trapezoid step. The plot was made by replacing the function
eulerstep.m by trapstep.m in the above code.

Exercises 6.3

6.3.1. Apply four steps of the Euler method withh = 1/4 to the initial value problem.

(a)















y′

1 = y1 + y2

y′

2 = −y1 + y2

y1(0) = 1
y2(0) = 0

(b)















y′

1 = −y1 − y2

y′

2 = −y1 + y2

y1(0) = 1
y2(0) = 0

(c)















y′

1 = −y2

y′

2 = y1

y1(0) = 1
y2(0) = 0

(d)















y′

1 = y1 + 3y2

y′

2 = 2y1 + 2y2

y1(0) = 5
y2(0) = 0
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Figure 13: One-body problem approximated by the trapezoid method. Step sizeh = 0.01.
The orbit appears to close, at least to the resolution visible in the plot.

Compare your answer att = 1 with the value of the correct solutions (a)y1(t) = et cos t, y2(t) = −et sin t
(b) y1(t) = e−t cos t, y2(t) = e−t sin t (c) y1(t) = cos t, y2(t) = sin t (d) y1(t) = 3e−t + 2e4t, y2(t) =
−2e−t + 2e4t.

6.3.2. Apply four steps of the trapezoid method withh = 1/4 to the initial value problems in Exercise 6.3.1. Compare
answers with the correct solutions.

6.3.3. Convert the higher-order ordinary differential equation to a first-order system of equations.

(a) y′′ − ty = 0 (Airy’s equation) (b) y′′ − 2ty′ + 2y = 0 (Hermite’s equation) (c)y′′ − ty′ − y = 0

6.3.4. Apply four steps of the Euler method withh = 1/4 to the initial value problems in 6.3.3, usingy(0) = y′(0) = 1.

6.3.5. (a) Show thaty(t) = (et + e−t − t2)/2 − 1 is the solution of the initial value problemy′′′ − y′ = t with
y(0) = y′(0) = y′′(0) = 0. (b) Convert the differential equation to a system of three first-order equations. (c)
Use Euler’s method with step sizeh = 1/4 to approximate the solution on[0, 1]. (d) Compare your approximate
solution att = 1 with the correct solution.

Computer Problems 6.3

6.3.1. Apply Euler’s method with step sizesh = 0.1 andh = 0.01 to the initial value problems in Exercise 6.3.1. Find
the solution on[0, 1], and compare the solution vector att = 1 with the correct value to find the total error. How
much better is the error for the smaller step size? Does it correspond to the difference predicted by the order of
Euler’s method?

6.3.2. Repeat Computer Problem 6.3.1, but use the trapezoidmethod.

6.3.3. Adaptpend.m to accept damping coefficients. Run the resulting code withd = 0.1. Except for the initial
conditiony1(0) = π, y2(0) = 0, all trajectories move toward the straight down position astime progresses.
Check the exceptional initial condition. What does the theory say, and what does the program do? Explain any
differences.

6.3.4. Adaptpend.m to build a forced, damped version of the pendulum. Run the code with d = 1 in the following.
(a) Set the forcing parameterf = 10. After moving through some temporary, transient behavior,the pendulum
will settle into a periodic trajectory. Describe this trajectory qualitatively. Try different initial conditions. Do
all solutions end up at the same ”attracting” periodic trajectory? (b) Setf = 12. There are now two periodic
attractors, that are mirror images of one another. Describethe two attracting trajectories, and find two initial
conditions(y1, y2) = (a, 0) and(b, 0) where|a− b| < 0.1 that are attracted to different periodic trajectories. (c)
Setf = 15 to view chaotic motion of the forced damped pendulum.
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6.3.5. Adaptpend.m to build a damped pendulum with oscillating pivot. The goal is to investigate the phenomenon of
parametric resonance, by which the inverted (rigid) pendulum becomes stable! The equation is

y′′ + (
g

l
+ dy′ + a cos 2πt) sin y = 0,

wherea is the forcing strength. Setd = 0.1 and the length of the pendulum to be2.5 meters. In the absence of
forcing a = 0, the downward pendulumy = 0 is a stable equilibrium and the inverted pendulumy = π is an
unstable equilibrium. Find as accurately as possible the range of parametera for which the inverted pendulum
becomes stable. (Of course,a = 0 is too small; it turns out thata = 30 is too large.) Use the initial condition
y = 3.1 for your test, and call the inverted position ”stable” if thependulum does not pass through the downward
position.

6.3.6. Use the parameter settings of Computer Problem 6.3.5to demonstrate the other effect of parametric resonance:
the stable equilibrium can become unstable with an oscillating pivot. Find the smallest (positive) value of the
forcing strengtha for which this happens. Classify the downward position as unstable if the pendulum eventually
travels to the inverted position.

6.4 Runge-Kutta methods and applications.

THE Runge-Kutta methods are a family of methods that include theEuler and trapezoid methods,
and also more sophisticated methods of higher order. We haveseen that Euler has order one

and the trapezoid method has order two. Another order two method of the Runge-Kutta type is the
Midpoint method

w0 = y0

wi+1 = wi + hf(ti +
h

2
, wi +

h

2
f(ti, wi)). (47)

To verify the order of the Midpoint method we must compute itslocal truncation error. When we
did this for the trapezoid method, we found the expression (35) useful:

yi+1 = yi + hf(ti, yi) +
h2

2

(

∂f

∂t
(ti, yi) +

∂f

∂y
(ti, yi)f(ti, yi)

)

+
h3

6
y′′′(c), (48)

To compute the local truncation error at stepi, we assumewi = yi and calculateyi+1 − wi+1.
Repeating the use of the Taylor series expansion as for the trapezoid method, we can write

wi+1 = yi + hf(ti +
h

2
, yi +

h

2
f(ti, yi))

= yi + h

(

f(ti, yi) +
h

2

∂f

∂t
(ti, yi) +

h

2
f(ti, yi)

∂f

∂y
(ti, yi)

)

. (49)

Comparing (48) and (49) yields
yi+1 − wi+1 = O(h3)

and so the Midpoint method is of order two by Theorem 6.4.
Each function evaluation of the right-hand-side of the differential equations, corresponding to an

si above, is called astageof the method. Both the Trapezoid and Midpoint methods are two-stage,
second-order Runge-Kutta methods.
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In fact, the Trapezoid and Midpoint methods are just membersof the family of two-stage,
second-order Runge-Kutta methods, having form

wi+1 = wi + h(1 − 1

2α
)f(ti, wi) +

h

2α
f(ti + αh,wi + αhf(ti, wi)). (50)

for someα 6= 0. Settingα = 1 corresponds to the explicit trapezoid method, andα = 1/2 to the
midpoint method. Exercise 6.4.5 asks you to verify the orderof methods in this family.
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Figure 14: Schematic view of two members of the RK2 family.(a) The Trapezoid method uses
an average from the left and right endpoints to traverse the interval. (b) The Midpoint method uses
a slope from the interval midpoint

Figure 14 illustrates the intuition behind the Trapezoid and Midpoint methods. The Trapezoid
method uses an Euler step to the right endpoint of the interval, evaluates the slope there, and then
averages with the slope from the left endpoint. The Midpointmethod uses an Euler step to the
midpoint of the interval, evaluates the slope there fromf(ti + h/2, wi + (h/2)f(ti, wi)), and uses
that slope to move fromwi to the new approximationwi+1. The methods use different approaches
to solving the same problem: acquiring a slope that represents the entire interval better than the
Euler method, which uses only the slope estimate from the left end of the interval.

There are Runge-Kutta methods of all orders. A particularlypopular method is the
Runge-Kutta method of order four (RK4)

wi+1 = wi +
h

6
(s1 + 2s2 + 2s3 + s4) (51)

where

s1 = f(ti, wi)

s2 = f(ti +
h

2
, wi +

h

2
s1)

s3 = f(ti +
h

2
, wi +

h

2
s2)

s4 = f(ti + h,wi + hs3)

This method is the workhorse of quick and dirty ODE solvers because of its simplicity and ease of
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0 SPOTLIGHT ON: Convergence
The convergence properties of a fourth-order method, like RK4, are far superior to those of the order 1
and 2 methods we have discussed so far. Convergence here means how fast the (global) error of the ODE
approximation at some fixed timet goes to zero as the stepsizeh goes to zero. Fourth order means that
for every halving of the stepsize, the error drops by approximately a factor of24 = 16.

programming. It is a one-step method, so that it requires only an initial condition to get started, yet
as an order four method is much more accurate that either the Euler or trapezoid method.

The quantityh
6 (s1 + 2s2 + 2s3 + s4) in the fourth-order Runge-Kutta method takes the place

of slope in the Euler method. This quantity can be consideredas an improved guess for the slope
of the solution in the interval[ti, ti + h]. Note thats1 is the slope at the left end of the interval,
s2 is the slope used in the midpoint method,s3 is an improved slope at the midpoint, ands4 is an
approximate slope at the right-hand endpointti + h. The algebra needed to prove that this method
is order four is similar to our derivation of the trapezoid and midpoint methods, but a bit lengthy,
and can be found for example in [Henrici].

6.4.1 Classical examples

In this subsection we present two examples of both historical and ongoing interest. Computers
were in their early development stages in the middle of the twentieth century. Some of the first
applications were to help solve hitherto intractable systems of differential equations. In so doing,
Hodgkin and Huxley essentially began the field of computational neuroscience, and Edward Lorenz
first glimpsed in meteorological models what later became known as chaos.

A landmark in the history of neuroscience was the development of a realistic firing model for
nerve cells, or neurons. The originators of the model, Hodgkin and Huxley, won the Nobel Prize in
Biology in 1963. The model is a system of four coupled differential equations, one of which models
the voltage difference between the interior and exterior ofthe cell. The three other equations model
activation levels of ion channels, which do the work of exchanging sodium and potassium ions
between the inside and outside. TheHodgkin-Huxley equationsare:

Cv′ = −g1m
3h(v − E1) − g2n

4(v − E2) − g3(v − E3) + Iin

m′ = αm(v − E0)(1 − m)βm(v − E0)m

n′ = αn(v − E0)(1 − m)βn(v − E0)n

h′ = αh(v − E0)(1 − m)βh(v − E0)h, (52)

where

αm(v) =
2.5 − 0.1v

e2.5−0.1v − 1
, βm(v) = 4e

v
18 ,

αn(v) =
0.1 − 0.01v

e1−0.1v − 1
, βn(v) =

1

8
e

v
80 ,
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and where

αh(v) = 0.07e−
v
20 , βh(v) =

1

e3−0.1v + 1
.

The coefficientC denotes the capacitance of the cell, andIin denotes the input current from other
cells. Typical coefficient values areC = 1 (capacitance, in microFarads),g1 = 120, g2 = 36, g3 =
0.3 (conductances), andE0 = −65, E1 = 50, E2 = −77, E3 = −54.4 (voltages, in millivolts).

Thev′ equation is an equation of current per unit area, in units of milliamperes/cm2 , while the
three other activationsm,n, andh are unitless. The coefficientC is the capacitance of the neuron
membrane,g1, g2, g3 are conductances, andE1, E2 andE3 are the ”reversal potentials”, which are
the voltage levels that form the boundary between current flowing inward and outward.

Hodgkin and Huxley carefully chose the form of the equationsto match experimental data,
which was acquired from the squid giant axon. They also fit parameters to the model. Although the
particulars of the squid axon differ from mammal neurons, the model has held up in general terms
as a realistic depiction of neural dynamics. More generally, it is useful as an example of excitable
media that translates continuous input into an all-or-nothing response.

% Program 6.5 Plotting program for Hodgkin-Huxley by IVP sol ver
function hh
% [a b] time interval,
% ic = initial voltage v, gating variables m, n, h
% h = stepsize
% Calls a one-step method such as rk4step.m
% Example usage: hh
global pa pb pulse
inp=input(’square pulse start, square pulse end, muamps in [ ], e.g. [50 51 7]: ’);
pa=inp(1);pb=inp(2);pulse=inp(3);
ic=[-65 0 .3 .6];
h=.05;p=10; %p steps per point plotted
a=0;b=100;n=ceil((b-a)/h); % plot n points in total
y(1,:)=ic; % enter initial conds in y
t(1)=a;

for i=1:n
t(i+1)=t(i)+h;
y(i+1,:)=rk4step(t(i),y(i,:),h);

end
subplot(3,1,1);
plot([a pa pa pb pb b],[0 0 pulse pulse 0 0]);
grid;axis([0 100 0 2*pulse])
ylabel(’input pulse’)
subplot(3,1,2);
plot(t,y(:,1));grid;axis([0 100 -100 100])
ylabel(’voltage (mV)’)
subplot(3,1,3);
plot(t,y(:,2),t,y(:,3),t,y(:,4));grid;axis([0 100 0 1] )
ylabel(’gating variables’)
legend(’m’,’n’,’h’)
xlabel(’time (msec)’)

function y=rk4step(t,w,h)
%one step of the Runge-Kutta order 4 method
s1=ydot(t,w);
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s2=ydot(t+h/2,w+h*s1/2);
s3=ydot(t+h/2,w+h*s2/2);
s4=ydot(t+h,w+h*s3);
y=w+h*(s1+2*s2+2*s3+s4)/6;

function ydot = ydot(t,w)
global pa pb pulse
c=1;g1=120;g2=36;g3=0.3;T=(pa+pb)/2;len=pb-pa;
e0=-65;e1=50;e2=-77;e3=-54.4;
in=pulse*(1-sign(abs(t-T)-len/2))/2;
% square pulse input on interval [pa,pb] of pulse muamps
v=w(1);m=w(2);n=w(3);h=w(4);
ydot=zeros(1,4);
ydot(1)=(in - g1*m*m*m*h*(v-e1) - g2*n*n*n*n*(v-e2) - g3* (v-e3))/c;
v = v-e0; %modern convention
ydot(2)=(1-m)*(2.5-0.1*v)/(exp(2.5-0.1*v)-1) - m*4*ex p(-v/18);
ydot(3)=(1-n)*(0.1-0.01*v)/(exp(1-0.1*v)-1) - n*0.125 *exp(-v/80);
ydot(4)=(1-h)*0.07*exp(-v/20) - h/(exp(3-0.1*v)+1);
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Figure 15: Screenshots of Hodgkin-Huxley program.(a) Square wave input of sizeIin = 7 µA
at time 50 msecs, 1 msec duration, causes the model neuron to fire once. (b) Sustained square wave,
with Iin = 7 µA causes the model neuron to fire periodically.

Without input, the Hodgkin-Huxley neuron stays quiescent,at a voltage of approximatelyE0.
SettingIin to be a square current pulse of length 1 msec and strength 7 microamps is sufficient
to cause a spike, a large depolarizing deflection of the voltage. This is illustrated in Figure 15.
Run the program to check that6.9 µA is not sufficient to cause a full spike. It is this property of
greatly magnifying the effect of small differences in inputthat may explain the neuron’s success at
information processing. Figure 15(b) shows that if the input current is sustained, the neuron will
fire a periodic volley of spikes.

The Lorenz equations are a simplification of a miniature atmosphere model that was designed
to study Rayleigh-Bénard convection, the movement of heatin a fluid like air from a lower warm
medium (such as the ground) to a higher cool medium (like the upper atmosphere). In this model of
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a two-dimensional atmosphere, a circulation of air develops that can be described by the system of
three equations

x′ = −sx + sy

y′ = −xz + rx − y

z′ = xy − bz, (53)

called theLorenz equations. The variablex denotes the clockwise circulation velocity,y measures
the temperature difference between the ascending and descending columns of air, andz measures
the deviation from a strictly linear temperature profile in the vertical direction. The Prandtl number
s, the Reynolds numberr, andb are parameters of the system. The most common setting for the
parameters iss = 10, r = 28, andb = 8/3, which results in the trajectory shown in Figure 16.

function ydot=ydot(t,y)
%Lorenz equations
s=10; r=28; b=8/3;
ydot(1) = -s*y(1)+s*y(2);
ydot(2) = -y(1)*y(3)+r*y(1)-y(2)
ydot(3) = y(1)*y(2) - b*y(3)

−25 0 25
0

25

50

Figure 16: One trajectory of the Lorenz equations (53), projected to thexz-plane. Parameters
are set tos = 10, r = 28, andb = 8/3.

The Lorenz equations are an important example because the trajectories show great complexity,
despite the fact that the equations are deterministic, and fairly simple (almost linear). The explana-
tion for the complexity is often calledsensitive dependence on initial conditions, which, in our
language, is just another way of saying that the problem thattakes an initial condition as input and
gives the trajectory location as output has a high conditionnumber.

◮ REALITY CHECK 6: THE TACOMA NARROWS BRIDGE DISASTER ◭
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A mathematical model that attempts to model the Tacoma Narrows bridge incident was proposed
recently by McKenna and Tuama [MT]. The goal is to explain howtorsional, or twisting, oscillations
can be magnified by forcing that is strictly vertical.

Consider a roadway of width2l hanging between two suspended cables, as in Figure 17(a). We
will consider a two-dimensional slice of the bridge, ignoring the dimension of the bridge’s length
for this model, since we are only interested in the side-to-side motion. At rest, the roadway hangs
at a certain equilibrium height due to gravity; lety denote the current distance the center of the
roadway hangs below this equilibrium.

Hooke’s Law postulates a linear response, meaning that the restoring force the cables apply
will be proportional to the deviation. Letθ be the angle the roadway makes with the horizontal.
There are two suspension cables, stretchedy− l sin θ andy + l sin θ from equilibrium, respectively.
Assume a viscous damping term that is proportional to the velocity. Using Newton’s lawF = ma
and denoting Hooke’s constant byK, the equations of motion fory andθ are

y′′ = −dy′ −
[

K

m
(y − l sin θ) +

K

m
(y + l sin θ)

]

θ′′ = −dθ′ +
3cos θ

l

[

K

m
(y − l sin θ) − K

m
(y + l sin θ)

]

However, Hooke’s law is designed for springs, where the restoring force is more or less equal
whether the springs is compressed or stretched. McKenna andTuama hypothesize that cables pull
back with more force when stretched than they push back when compressed. (Think of a string
as an extreme example.) They replace the linear Hooke’s Law restoring forcef(y) = Ky with
a nonlinear forcef(y) = (K/a)(eay − 1), as shown in Figure 17(b). Both functions have the
same slopeK at y = 0, but for the nonlinear force, a positivey (stretched cable) causes a stronger
restoring force than the corresponding negativey (slackened cable). Making this replacement in the
above equations yields

y′′ = −dy′ − K

ma

[

ey−l sin θ − 1 + ey+l sin θ − 1
]

θ′′ = −dθ′ +
3cos θ

l

K

ma

[

ey−l sin θ − ey+l sin θ
]

. (54)

As the equations stand, the point(y, θ) = (0, 0) is an equilibrium. Now turn on the wind.
Add the forcing termA sin ωt to the right-hand-side of they equation. This adds a strictly vertical
oscillation to the bridge.

Useful estimates for the physical constants can be made. Themass of a one foot length of
roadway was about 2500 kg, and the spring constantK has been estimated at 1000 Newtons. The
roadway was about 12 meters wide. For this simulation, the damping coefficient was set atd = 0.01
and the Hooke’s nonlinearity coefficienta = 0.1. The vertical forcing supplied by the wind on
the final day caused the bridge to oscillate vertically aboutonce every two seconds, so estimate
ω = 2π/2 ≈ 3. These coefficients are only guesses, but they suffice to showranges of motion that
tend to match photographic evidence of the bridge’s final oscillations. Matlab code that runs this
model follows:

%Program 6.? Animation program for bridge using IVP solver
function tacoma(int,ic,h,p)
%Inputs: int = [a b] time interval,
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Figure 17: Schematics for the McKenna-Tuama model of the Tacoma Narrows bridge. (a)
Denote the distance from the roadway center of mass to its equilibrium position byy, and the angle
of the roadway with the horizontal byθ. (b) Exponential Hooke’s Law curvef(y) = (K/a)(eay −
1).

%ic = [y(1,1) y(1,2) y(1,3) y(1,4)], initialize
%h = stepsize, p = steps per point plotted
%Calls a one-step method such as trapstep.m
%Example usage: tacoma([0 500],[1 0 0.001 0],.04,3)
clf % clear figure window
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i n total
y(1,:)=ic; % enter initial conds in y
t(1)=a;len=6;
set(gca,’XLim’,[-8 8],’YLim’,[-8 8], ...

’XTick’,[-8 0 8],’YTick’,[-8 0 8], ...
’Drawmode’,’fast’,’Visible’,’on’,’NextPlot’,’add’);

cla; % clear screen
axis square % make aspect ratio 1 - 1
road=line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,5 ,’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
lcable=line(’color’,’r’,’LineStyle’,’-’,’LineWidth’ ,1,’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
rcable=line(’color’,’r’,’LineStyle’,’-’,’LineWidth’ ,1,’erase’,’xor’,...

’xdata’,[],’ydata’,[]);
for k=1:n

for i=1:p
t(i+1) = t(i)+h;
y(i+1,:) = trapstep(t(i),y(i,:),h);

end
y(1,:) = y(p+1,:);t(1)=t(p+1);

z1(k)=y(1,1);z3(k)=y(1,3);
c=len*cos(y(1,3));s=len*sin(y(1,3));
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set(road,’xdata’,[-c c],’ydata’,[-s-y(1,1) -s-y(1,1)] )
set(lcable,’xdata’,[-c -c],’ydata’,[-s-y(1,1) 8])
set(rcable,’xdata’,[c c],’ydata’,[s-y(1,1) 8])
drawnow; pause(h)
end

function y = trapstep(t,x,h)
%one step of the trapezoid method
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function ydot=ydot(t,y)
len=6;a=0.1;
a1=exp(a*(y(1)-len*sin(y(3))));
a2=exp(a*(y(1)+len*sin(y(3))));
ydot(1) = y(2);
ydot(2) = -0.01*y(2)-0.4*(a1+a2-2)/a+11*sin(3*t);
ydot(3) = y(4);
ydot(4) = -0.01*y(4)+1.2*cos(y(3))*(a1-a2)/(len*a);

Runtacoma.m with the default parameter values, to see the phenomenon postulated earlier. If
the angleθ of the roadway is set to any small nonzero value, vertical forcing causesθ to eventually
grow to a macroscopic value, leading to significant torsion of the roadway. The interesting point is
that there is no torsional forcing applied to the equation; the ”torsional mode” is excited completely
by vertical forcing.

This project is an example of experimental mathematics. Theequations are too difficult to
derive closed-form solutions, and even too difficult to prove qualitative results about. Equipped
with reliable ode solvers, we can generate numerical trajectories for various parameter settings, to
illustrate the types of phenomena available to this model. Used in this way, differential equations
models can predict behavior and shed light on mechanisms in scientific and engineering problems.

Questions to consider:
1. What happens if with the default system if the initial angle and angular velocityθ, θ′ are set

to zero?
2. What ranges of forcing amplitudeA between0 and20 cause the torsional mode to be excited?

(Use the defaultω = 3.) What ranges of forcing frequencyω between0 and4? (Use the default
A = 11.) If the torsional mode is not excited, what happens to the angle θ? Try some large initial
θ, say≈ 0.1.

3. Print the time series ofy(t) andθ(t) from the code. Swap in an RK4 solver, and compare
accuracy of the series before and after. How large a stepsizecan be used intrapstep before
accuracy is lost?

◮ ◭

Exercises 6.4

6.4.1. Write out the midpoint method for the IVPs in Exercise6.1.4. Using stepsizeh = 1/4, calculate the midpoint
method approximation on the interval[0, 1]. Compare to the correct solution found in Exercise 6.1.4, and find the
total error at each step.
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6.4.2. Repeat Exercise 6.4.1 for the IVPs in Exercise 6.1.5.

6.4.3. Write out the order four Runge-Kutta method for the IVPs in Exercise 6.1.4. Using stepsizeh = 1/4, calculate
the RK4 method approximation on the interval[0, 1]. Compare to the correct solution found in Exercise 6.1.4,
and find the total error at each step.

6.4.4. Repeat Exercise 6.4.3 for the IVPs in Exercise 6.1.5.

6.4.5. Prove that for anyα 6= 0, the method (50) is second order.

6.4.6. Consider the IVPy′ = λy, y(0) = 1. The solution isy(t) = eλt.

(a) Calculatew1 for RK4 in terms ofw0 for this differential equation.

(b) Calculate the local truncation error by settingw0 = y0 = 1 and determiningy1 − w1. Show that the local
truncation error is of sizeO(h5), as expected for a fourth-order method.

6.4.7. Assume that the right-hand sidef(t, y) = f(t) doesn’t depend ony. Show thats2 = s3 in fourth-order Runge-
Kutta and that RK4 is equivalent to Simpson’s rule for the integral

∫ ti+h

ti

f(s) ds.

Computer Problems 6.4

6.4.1. Write and test a Matlab m-file calledrkstep.m that can be substituted foreulerstep.m or trapstep.m
in the programs of the previous section.

6.4.2. Print the values of the midpoint method solution on a grid of step sizeh = 0.1 in [0, 1] for the initial value
problems in Exercise 6.1.4.

6.4.3. Print the values of the fourth-order Runge-Kutta method solution on a grid of step sizeh = 0.1 in [0, 1] for the
initial value problems in Exercise 6.1.4.

6.4.4. Repeat Computer Problem 6.4.3 but plot the approximate solutions on[0, 1] for step sizesh = 0.1, 0.05, and
0.025 along with the true solution.

6.4.5. Repeat Computer Problem 6.4.3 for the equations of Exercise 6.1.5.

6.4.6. For the IVP’s in Computer Problem 6.4.3, plot the global error of the RK4 method att = 1 as a function ofh, as
in Figure 4.

6.5 Variable step-size methods.

UP to this point the step-sizeh has been treated as a constant in the implementation of the ODE
solver. However, there is no reason thath cannot be changed during the solution process.

A good reason to want to change the step size is for a solution that moves between periods of
small change and periods of fast change. To make the fixed step-size small enough to track the fast
changes accurately may mean that the rest of the solution is solved intolerably slowly.

The key idea of a variable step-size method is to monitor the error produced by the current step.
The user sets an error tolerance that must be met by the current step. Then the method is designed to
(1) reject the step and cut the step-size if the error tolerance is exceeded, or (2) if the error tolerance
is met, to accept the step and then choose a step-sizeh that should be appropriate for the next step.
The key need then is for some way to approximate the error madeon each step. First let’s assume
we have found such a way, and explain how to change the step size.

The simplest way to vary step size is to double or halve the step size, depending on the current
error. Compare the error estimateei, or relative error estimateei/|wi|, with the error tolerance.
(Here, as in the rest of this section, we will assume the ODE system being solved consists of one
equation. It is fairly easy to generalize the ideas of this section to higher dimensions.) If the
tolerance is not met, the step is repeated with new step size equal tohi/2. If the tolerance is met too
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well, say if the error is less than1/10 the tolerance, after accepting the step, the step size is doubled
for the next step.

In this way, the step size will be adjusted automatically to asize that maintains the (relative)
local truncation error near the user-requested level. Whether the absolute or relative error is used
depends on the context; a good general purpose technique is to use the hybridei/max(|wi|, θ) to
compare with the error tolerance, whereθ > 0 protects against very small values ofwi.

A more sophisticated way to choose the appropriate step-size follows from knowledge of the
order of the ODE solver. Assume the solver has orderp, so that the local truncation errorei =
O(hp+1). Let T be the relative error tolerance allowed by the user for each step. That means the
goal is to ensureei/|wi| < T .

If the goalei/|wi| < T is met, then the step is accepted and a new step size for the next step is
needed. Assuming that

ei ≈ chp+1
i (55)

for some constantc, the step sizeh that best meets the tolerance satisfies

T |wi| = chp+1. (56)

Solving the equations (55) and (56) forh yields

h∗ = 0.8 ∗
(

T |wi|
ei

)1/p+1

hi (57)

where we have added a safety factor of0.8 to be conservative. Thus the next step size will be set to
hi+1 = h∗.

On the other hand, if the goalei/|wi| < T is not met by the relative error, thenhi is set toh∗ for
a second try. This should suffice, because of the safety factor. However, if the second try also fails
to meet the goal, then the step size is simply cut in half. Thiscontinues until the goal is achieved.
As above, for general purposes, once should replace the relative error byei/max(|wi|, θ).

Both the simple and sophisticated methods described above depend heavily on some way to
estimate the error of the current step of the ODE solverei = |wi+1−yi+1|. An important constraint
is to gain the estimate without requiring a large amount of extra computation.

The most widely-used way for obtaining such an error estimate is to run a higher order ODE
solver in parallel with the ODE solver of interest. The higher order method’s estimate forwi+1, call
it zi+1, will be significantly more accurate than the originalwi+1, so that the difference

ei ≈ |zi+1 − wi+1| (58)

is used as an error estimate for the current step fromti to ti+1.
Following this idea, several “pairs” of Runge-Kutta methods, one of orderp and another of order

p + 1, have been developed that share much of the needed computations. In this way the extra cost
of step size control is kept low. Such a pair is often called anembedded Runge-Kutta pair.

Example 6.18 RK2/3, An example of a Runge-Kutta order2/order 3 embedded pair.

The explicit trapezoid method can be paired with a third-order RK method to make an embedded
pair suitable for step size control. Set

wi+1 = wi + h
s1 + s2

2

zi+1 = wi + h
s1 + 4s3 + s2

6
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where

s1 = f(ti, wi)

s2 = f(ti + h,wi + hs1)

s3 = f(ti +
1

2
h,wi +

1

2
h

s1 + s2

2
)

In the above,wi+1 is the trapezoid step, andzi+1 represents a third-order method, which requires
the three Runge-Kutta stages shown. The third-order methodis just an application of Simpson’s
rule for numerical integration to the context of differential equations. From the two ODE solvers,
an estimate for the error can be found by subtracting the two approximations:

ei ≈ |wi+1 − zi+1| =

∣

∣

∣

∣

h
s1 − 2s3 + s2

3

∣

∣

∣

∣

. (59)

Using this estimate for the local truncation error allows the implementation of either of the step size
control protocols described above.

Although the step size protocol has been worked out forwi+1, it makes even better sense to use
the higher order approximationzi+1 to advance the step, since it is available. This is calledlocal
extrapolation.

Example 6.19 The Bogacki-Shampine order2/order 3 embedded pair.

Matlab uses a different embedded pair in itsode23 command. Let

s1 = f(ti, wi)

s2 = f(ti +
1

2
h,wi +

1

2
hs1)

s3 = f(ti +
3

4
h,wi +

3

4
hs2)

zi+1 = wi +
h

9
(2s1 + 3s2 + 4s3)

s4 = f(t + h, zi+1)

wi+1 = wi +
h

24
(7s1 + 6s2 + 8s3 + 3s4) (60)

It can be checked thatzi+1 is an order 3 approximation, andwi+1, despite having four stages, is
order 2. The error estimate needed for step size control is

ei = |zi+1 − wi+1| =
h

72
| − 5s1 + 6s2 + 8s3 − 9s4|. (61)

Note thats4 becomess1 on the next step, if it is accepted, so there are no wasted stages - at least
3 stages are needed anyway for a third-order Runge-Kutta method. This design of the second order
method is called FSAL, for First Same As Last.



Chapter 6 ORDINARY DIFFERENTIAL EQUATIONS 303

Example 6.20 The Runge-Kutta-Fehlberg order 4/order 5 embedded pair.

s1 = f(ti, wi)

s2 = f(ti +
1

4
h,wi +

1

4
hs1)

s3 = f(ti +
3

8
h,wi +

3

32
hs1 +

9

32
hs2)

s4 = f(ti +
12

13
h,wi +

1932

2197
hs1 −

7200

2197
hs2 +

7296

2197
hs3)

s5 = f(ti + h,wi +
439

216
hs1 − 8hs2 +

3680

513
hs3 −

845

4104
hs4)

s6 = f(ti +
1

2
h,wi −

8

27
hs1 + 2hs2 −

3544

2565
hs3 +

1859

4104
hs4 −

11

40
hs5)

wi+1 = wi + h(
25

216
s1 +

1408

2565
s3 +

2197

4104
s4 −

1

5
s5)

zi+1 = wi + h(
16

135
s1 +

6656

12825
s3 +

28561

56430
s4 −

9

50
s5 +

2

55
s6) (62)

It can be checked thatzi+1 is an order 5 approximation, and thatwi+1 is order 4. The error estimate
needed for step size control is

ei = |zi+1 − wi+1| = h

∣

∣

∣

∣

1

360
s1 −

128

4275
s3 −

2197

75240
s4 +

1

50
s5 +

2

55
s6

∣

∣

∣

∣

(63)

The Runge-Kutta-Fehlberg method (RKF45) is currently the most well-known variable step-size
one-step method. Implementation is simple, given the aboveformulas. The user must set a relative
error toleranceT and an initial step sizeh. After computingw1, z1 ande0, the relative error test

ei

|wi|
< T (64)

is checked fori = 0. If successful, the neww1 is replaced with the locally extrapolated versionz1

and the program moves on to the next step. On the other hand, ifthe relative error test (64) fails, the
step is tried again with step sizeh given by (57) withp = 4, the order of the method producingwi.
(A repeated failure, which is unlikely, is treated by cutting step size in half until success is reached.)
In either case, the step sizeh1 for the next step should be calculated from (57).

Example 6.21 The Dormand-Prince order 4/order 5 embedded pair.
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s1 = f(ti, wi)

s2 = f(ti +
1

5
h,wi +

1

5
hs1)

s3 = f(ti +
3

10
h,wi +

3

40
hs1 +

9

40
hs2)

s4 = f(ti +
4

5
h,wi +

44

45
hs1 −

56

15
hs2 +

32

9
hs3)

s5 = f(ti +
8

9
h,wi + h(

19372

6561
s1 −

25360

2187
s2 +

64448

6561
s3 −

212

729
s4))

s6 = f(ti + h,wi + h(
9017

3168
s1 −

355

33
s2 +

46732

5247
s3 +

49

176
s4) −

5103

18656
s5)

zi+1 = wi + h(
35

384
s1 +

500

1113
s3 +

125

192
s4 −

2187

6784
s5 +

11

84
s6)

s7 = f(ti + h, zi+1)

wi+1 = wi + h(
5179

57600
s1 +

7571

16695
s3 +

393

640
s4 −

92097

339200
s5 +

187

2100
s6 +

1

40
s7) (65)

It can be checked thatzi+1 is an order 5 approximation, and thatwi+1 is order 4. The error estimate
needed for step size control is

ei = |zi+1 − wi+1| = h

∣

∣

∣

∣

71

57600
s1 −

71

16695
s3 +

71

1920
s4 −

17253

339200
s5 +

22

525
s6 −

1

40
s7

∣

∣

∣

∣

(66)

Again local extrapolation is used, meaning that the step is advanced withzi+1 instead ofwi+1.
Note that in fact,wi+1 need not be computed – onlyei is necessary for error control. This is a FSAL
method, like the Bogacki-Shampine method, sinces7 becomess1 on the next step, if it is accepted.
There are no wasted stages - it can be shown that at least 6 stages are needed for a fifth-order
Runge-Kutta method.

The Matlab commandode45 uses the Dormand-Prince embedded pair along with step size
control roughly as described above. The user can set the relative toleranceT as desired. The right-
hand side of the differential equation can be specified in a function file, for example

function y=f(t,y)
y = t*y+tˆ3;

Then the command

>> opts=odeset(’RelTol’,1e-4,’Refine’,1,’MaxStep’,1) ;
>> [t,y]=ode45(’f’,[0 1],1,opts);

will solve the initial value problem of Example 6.1 with initial conditiony0 = 1, and relative error
toleranceT = 0.0001. If the parameterRelTol is not set, the default of0.001 is used. Note that
the functionf input toode45 must be a function of two variables, in this caset andy, even if one of
them is absent in the definition of the function. The command can be run without an accompanying
function file by defining the functionf ”inline”, as

>> [t,y]=ode45(inline(’t*y+tˆ3’,’t’,’y’),[0 1],1,opts );



Chapter 6 ORDINARY DIFFERENTIAL EQUATIONS 305

The output fromode45 using the above parameter settings for this problem is

step ti wi yi ei

0 0.00000000 1.00000000 1.00000000 0.00000000
1 0.54021287 1.17946818 1.17946345 0.00000473
2 1.00000000 1.94617812 1.94616381 0.00001431

and if a relative tolerance of10−6 is used,

step ti wi yi ei

0 0.00000000 1.00000000 1.00000000 0.00000000
1 0.21506262 1.02393440 1.02393440 0.00000000
2 0.43012524 1.10574441 1.10574440 0.00000001
3 0.68607729 1.32535658 1.32535653 0.00000005
4 0.91192246 1.71515156 1.71515144 0.00000012
5 1.00000000 1.94616394 1.94616381 0.00000013

The approximate solutions more than meet the relative errortolerance because of local extrapolation,
meaning that thezi+1 is being used instead ofwi+1, even though the step size is designed to be
sufficient forwi+1. This is the best we can do - if we had an error estimate forzi+1, we could use
it to tune the step size even better, but we don’t have one. Note also that the solutions stop exactly
at the end of the interval[0, 1], sinceode45 detects the end of the interval and truncates the step as
necessary.

In order to seeode45 do its step size selection, we had to turn off some basic default settings
using theodeset command. TheRefine parameter normally increases the number of solution
values reported beyond what is computed by the method, to make a more beautiful graph, if and
when the output is used for that purpose. The default value is4, which causes four times the
necessary number of points to be provided as output. TheMaxStep parameter puts an upper limit
on the step sizeh, and defaults to one-tenth the interval length. Using the default values for both of
these parameters would mean a step size ofh = 0.1 would be used, and after refining by a factor of
4, the solution would be shown with a step size of0.025. In fact, running the command without an
output variable specified

>> opts=odeset(’RelTol’,1e-6);
>> ode45(inline(’t*y+tˆ3’,’t’,’y’),[0 1],1,opts);

will cause Matlab to automatically plot the solution on a grid of constant step size0.025, as shown
in Figure 18.

While it is tempting to crown variable step-size Runge-Kutta methods as the champion ODE
solvers, there are a few types of equations that they do not handle very well. Here is a particularly
simple example. See if you can decide where the problem lies.

Example 6.22 Useode45 to solve the initial value problem within a relative tolerance of10−4:






y′ = 10(1 − y)
y(0) = 1/2
t ∈ [0, 100].

(67)

This can be accomplished in three lines of Matlab code:
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Figure 18: Matlab’s ode45 command. Solution of the initial value problem of Example 6.1 is
computed, correct to within10−6.

>> opts=odeset(’RelTol’,1e-4);
>> [t,y]=ode45(inline(’10*(1-y)’,’t’,’y’),[0 100],.5, opts);
>> length(t)

ans =

1241
>>

We have printed the number of steps because it seems excessive. The solution to the initial value
problem is easy to determine:y(t) = 1 − e−10t/2. For t > 1 the solution has already reached its
equilibrium 1 within 4 decimal places, and it never moves any farther away from1. Yet ode45
moves at a snail’s pace, using an average step size of less than 0.1. Why such a conservative step
size selection for such a tame solution?

Part of the answer is clear by viewing the output fromode45 in Figure 19. Although the
solution is very close to1, the solver overshoots continually in trying to approximate closely. The
differential equation is ”stiff”, a term we will formally define in the next section. For stiff equations,
a different strategy in numerical solution increases solving efficiency greatly. For example, note the
difference in steps needed when one of Matlab’s stiff solvers are used:

>> opts=odeset(’RelTol’,1e-4);
>> [t,y]=ode23s(inline(’10*(1-y)’,’t’,’y’),[0 100],.5 ,opts);
>> length(t)

ans =

39
>>

Figure 19(b) plots the solution points from the solverode23s . Relatively few points are needed
to keep the numerical solution within the tolerance. We willinvestigate how to build methods that
handle this type of difficulty in the next section.
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Figure 19: Numerical solution of the initial value problem of Example 6.22.(a) Usingode45
requires over 10 steps per unit time to stay within relative tolerance10−4. (b) With ode23s , far
fewer steps are needed.

Computer Problems 6.5

6.5.1. Write a Matlab implementation of RK23 (Example 6.18)and apply to approximating the solutions of the IVPs in
Exercise 6.1.4 with a relative tolerance of10−8 on [0, 1]. Ask the program to stop exactly at the endpointt = 1.
Report the maximum step size used and the number of steps.

6.5.2. Compare the results of Computer Problem 6.5.1 with the application of Matlab’sode23 to the same problem.

6.5.3. Repeat Computer Problem 6.5.1 for the Runge-Kutta-Fehlberg method RKF45.

6.5.4. Compare the results of Computer Problem 6.5.3 with the application of Matlab’sode45 to the same problem.

6.5.5. Apply a Matlab implementation of RKF45 to approximating the solutions of the systems in Exercise 6.3.1 with a
relative tolerance of10−6 on [0, 1]. Report the maximum step size used and the number of steps.

6.6 Implicit methods and stiff equations.

The difficulty that occurs when using variable step-size Runge-Kutta in Example 6.22 is that there
is a particular step-size that cannot be exceeded for this solver applied to this differential equation.
This phenomenon can be best understood in a much simpler context.

Example 6.23 Apply Euler’s method to Example 6.22.

Euler’s method for the right-hand sidef(t, y) = 10(1 − y) with step-sizeh is

wi+1 = wi + hf(ti, wi)

= wi + h(10)(1 − wi)

= wi(1 − 10h) + 10h. (68)
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Since the solution isy(t) = 1− e−10t/2, the approximate solution must approach1 in the long run.
Here we get some help from Chapter 1. Notice that (68) can be viewed as a fixed point iteration
with g(x) = x(1 − 10h) + 10h. This iteration has a fixed point atx = 1, and it will be converged
to as long as|g′(1)| = |1 − 10h| < 1. Solving this inequality yields0 < h < 0.2. For any largerh,
the fixed point1 will repel nearby guesses, and the solution will have no hopeof being accurate.

Figure 20 shows this effect for Example 6.23. The solution isvery tame - an attracting equilibrium
at y = 1. An Euler step of sizeh = 0.3 has difficulty finding the equilibrium because the slope
of the nearby solution changes so much between the beginningand the end of theh interval. This
causes overshoot in the numerical solution.

0 10.3 0.6

Backward Euler

Euler

1

0.7

1.3

y

t

Figure 20: Comparison of Euler and Backward Euler steps.The differential equation in Ex-
ample 6.22 is stiff. The equilibrium solutiony = 1 is surrounded by other solutions with large
curvature (fast changing slope). The Euler step overshoots, while the Backward Euler step is more
consistent with the system dynamics.

Differential equations with this property, that attracting solutions are surrounded with fast-
changing nearby solutions, are calledstiff . This is often a sign of multiple time scales in the system.
Quantitatively, it corresponds to the linear part of the right-hand-sidef of the differential equa-
tion, in the variabley, being large and negative. (For a system of equations, this corresponds to
an eigenvalue of the linear part being large and negative.) This definition is a bit relative, but that
is the nature of stiffness - the more large and negative, the smaller the step-size must be to avoid
overshoot. For Example 6.23, stiffness is measured by evaluating∂f/∂y = −10 at the equilibrium
solutiony = 1.

One way to solve the problem depicted in Figure 20 is to somehow bring in information from
the right side of the interval[ti, ti + h], instead of relying solely on information from the left side.
That is the motivation behind the

Backward Euler method
wi+1 = wi + hf(ti+1, wi+1). (69)
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Note the difference - while the Euler method uses the left-end slope to step across the interval, Back-
ward Euler would like to somehow cross the interval so that the slope is correct at the right end.

A price must be paid for this improvement. Backward Euler is our first example of animplicit
method, meaning that the method does not give directly a formula for the new approximationwi+1.
Instead, we must work a little to get it. For the exampley′ = 10(1−y), the Backward Euler method
gives

wi+1 = wi + 10h(1 − wi+1),

which, after a little algebra, can be expressed as

wi+1 =
wi + 10h

1 + 10h
.

Settingh = 0.3 for example, the Backward Euler method giveswi+1 = (wi + 3)/4. We can again
evaluate the behavior as a fixed point iterationw → g(w) = (w + 3)/4. There is a fixed point at
1, andg′(1) = 1/4 < 1, verifying convergence to the true equilibrium solutiony = 1. Unlike the
Euler method withh = 0.3, at least the correct qualitative behavior is followed by the numerical
solution. In fact, note that the Backward Euler method’s solution converges toy = 1 no matter how
large the step sizeh (Exercise 6.6.1).

Because of the better behavior of implicit methods like Backward Euler in the presence of stiff
equations, it is worthwhile performing extra work requiredto evaluate the next step, even though
it is not explicitly available. Example 6.23 was not challenging to solve forwi+1, due to the fact
that the differential equation is linear, and it was possible to change the original implicit formula to
an explicit one for evaluation. In general, however, this isnot possible, and we need to use more
indirect means.

If the implicit method leaves a nonlinear equation to solve,we must refer to Chapter 1. Both
fixed point iteration and Newton’s method are often used to solve for wi+1. This means there is an
equation-solving loop within the loop advancing the differential equation. The next Example shows
how this can be done.

Example 6.24 Apply the Backward Euler method to the initial value problem






y′ = y + 8y2 − 9y3

y(0) = 1/2
t ∈ [0, 3].

This equation, like the previous example, has an equilibrium solutiony = 1. The partial derivative
∂f/∂y = 1 + 16y − 27y2 evaluates to−10 at y = 1, identifying this equation as moderately stiff.
There will be a upper bound, similar to that of the previous example, forh such that Euler’s method
is successful. Thus we are motivated to try the Backward Euler method

wi+1 = wi + hf(ti+1, wi+1)

= wi + h(wi+1 + 8w2
i+1 − 9w3

i+1).

This is a nonlinear equation inwi+1, which we need to solve in order to advance the numerical
solution. Renamingz = wi+1, we must solve the equationz = wi + h(z + 8z2 − 9z3), or

9hz3 − 8hz2 + (1 − h)z − wi = 0 (70)
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Figure 21: Numerical solution of the initial value problem of Example 6.24. True solution
is the dashed curve. The open circles denote the Euler methodapproximation; the closed circles
denote Backward Euler. (a)h = 0.3 (b) h = 0.15.

for the unknownz. We will demonstrate with Newton’s method. To start Newton’s method, we
need an initial guess. Many choices could work - two choices that come to mind are the previous
approximationwi, and the Euler’s method approximation forwi+1. Although the latter is accessible
since Euler is explicit, it may not be the best choice for stiff problems, as shown in Figure 20. In
this case we will usewi as the starting guess.

Assembling Newton’s method for (70) yields

znew = z − 9hz3 − 8hz2 + (1 − h)z − wi

27hz2 − 16hz + 1 − h
(71)

After evaluating (71), replacez with znew and repeat. For each Backward Euler step, Newton’s
method is run untilznew− z is smaller than a preset tolerance (smaller than the errors that are being
made in approximating the differential equation solution).

Figure 21 shows the results for two different step sizes. In addition, numerical solutions from
Euler’s method are shown. Clearlyh = 0.3 is too large for Euler on this stiff problem. On the other
hand, whenh is cut to0.15, both methods perform at about the same level. So-called stiff solvers
like Backward Euler allow sufficient error control with comparatively large step size, increasing
efficiency.

Exercises 6.6

6.6.1. Show that for every step sizeh, the Backward Euler approximate solution converges to the equilibrium solution
y = 1 asti → ∞ for Example 6.23.
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6.6.2. Find all equilibrium solutions and the value of the Jacobian at the equilibria. Is the equation stiff? (a)y′ = y−y2

(b) y′ = 10y − 10y2 (c) y′ = −10 sin y

[Ans.: (a)y = 0, fy(0) = 1 No. y = 1, fy(1) = −1 No. (b)y = 0, fy(0) = 10 No. y = 1, fy(1) = −10 Yes.
(c) y = nπ for all integersn, fy(oddπ) = 10 No, fy(evenπ) = −10 Yes.]

6.6.3. Consider the linear differential equationy′ = ay + b for a < 0. (a) Find the equilibrium. (b) Write down the
Backward Euler method for the equation. (c) View Backward Euler as a Fixed Point Iteration to prove that the
method’s approximate solution will converge to the equilibrium ast → ∞.

Computer Problems 6.6

6.6.1. Compare Euler’s method to Backward Euler for the IVP

(a)







y′ = y2 − y3

y(0) = 1/2
t ∈ [0, 100].

(b)







y′ = 6y − 6y2

y(0) = 1/2
t ∈ [0, 100].

(c)







y′ = 6y − 3y2

y(0) = 1/2
t ∈ [0, 100].

Which of the equilibrium solutions are approached by the approximate solution? For what range ofh can Euler
be used successfully? How large can the backward Euler step size be made, while achieving equivalent accuracy?

6.7 Multistep methods.

THE Runge-Kutta family that we have studied consists of one-step methods, meaning that the
newest stepwi+1 is produced on the basis of the differential equation and thevalue of the

previous stepwi. This is in the spirit of well-defined initial value problems, for which a unique
solution exists starting at an arbitrarywi.

The multistep methods suggest a different approach - using the knowledge of more than one
of the previouswi to help produce the next step. This will lead to ODE solvers that have order as
high as the one-step methods, but much of the computation necessary will be replaced by essentially
interpolating from past values on the solution path. For example, while the second-order Midpoint
method

wi+1 = wi + hf(ti +
h

2
, wi +

h

2
f(ti, wi))

needs two function evaluations of the ODE right-hand sidef per step, the

Adams-Bashforth Two-Step method

wi+1 = wi + h

[

3

2
f(ti, wi) −

1

2
f(ti−1, wi−1)

]

(72)

requires only one new evaluation per step (one is stored fromthe previous step). We will see below
that (72) is also an second-order method. Therefore multistep methods can achieve the same order
with less computational effort - usually just one function evaluation per step.

Since multistep methods use more than one previousw values, they need help getting started.
The start-up phase for ans-step method typically consists of a one-step method which usesw0

to produces − 1 valuesw1, w2, . . . , ws−1, before the multistep method can be used. The Adams-
Bashforth two-step method (72) needsw1 along with the given initial conditionw0 in order to begin.
The following Matlab code uses the trapezoid method to provide the start-up valuew1.
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% Program 6.6 Multistep method plotting program
function y=exmultistep(int,ic,h,s)
% Inputs: int= [a,b] time interval
% ic = [y0] initial condition
% h = stepsize, s = number of (multi)steps
% Calls a multistep method such as ab2step.m
% Example usage: exmultistep
a=int(1);b=int(2);n=ceil((b-a)/h);
% Start-up phase
y(1,:)=ic;t(1)=a;
for i=1:s-1 % start-up phase, using one-step method

t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,:)=ydot(t(i),y(i,:));

end
for i=s:n % multistep method loop

t(i+1)=t(i)+h;
f(i,:)=ydot(t(i),y(i,:));
y(i+1,:)=ab2step(t(i),i,y,f,h);

end

function y=trapstep(t,x,h)
%one step of the trapezoid method from section 6.2
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*f(i,:)/2-f(i-1,:)/2);

function z=another2step(t,i,y,f,h)
%one step of another 2-step method
z=y(i,:)/2+y(i-1,:)/2+h*(7*f(i,:)/4-f(i-1,:)/4);

function z=unstable2step(t,i,y,f,h)
%one step of an unstable 2-step method
z=-y(i,:)+2*y(i-1,:)+h*(5*f(i,:)/2+f(i-1,:)/2);

function z=weaklystable2step(t,i,y,f,h)
%one step of a weakly-stable 2-step method
z=y(i-1,:)+h*2*f(i,:);

function z=weaklystable2step1(t,i,y,f,h)
%one step of another weakly-stable 2-step method
z=2*y(i,:)-y(i-1,:)+h*(f(i,:)-f(i-1,:));

function ydot = ydot(t,y) % IVP from section 6.1
ydot = t*y+t*t*t;

Figure 22(a) shows the result of applying Adams-Bashforth two-step method to the initial value
problem (5) from earlier in the chapter, using step sizeh = 0.05, using the trapezoid method for
start-up. Part (b) of the figure shows the use of a different two-step method. Its instability will be
the subject of our look at stability analysis in the next sections.
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Figure 22: Two-step methods applied to IVP (5).Correct solution is the dashed curve. Step size
h = 0.05. (a) Adams-Bashforth two-step method plotted as circles (b) Unstable method (81) in
circles.

6.7.1 Generating multistep methods.

A generals-step method has the form

wi+1 = a1wi + a2wi−1 + . . . + aswi−s+1 + h[b0fi+1 + b1fi + b2fi−1 + . . . + bsfi−s+1]. (73)

The step size ish and we use the notational convenience

fi ≡ f(ti, wi).

If b0 = 0, the method is explicit. Ifb0 6= 0, the method is implicit. We will discuss how to use
implicit methods below.

First, we want to show how multistep methods are derived, andhow to decide which ones will
work best. The main issues that arise with multistep methodscan be introduced in the relatively
simple case of two-step methods, so we begin there. A generaltwo-step method (settings = 2 in
(73)) has the form

wi+1 = a1wi + a2wi−1 + h[b0fi+1 + b1fi + b2fi−1]. (74)

To develop a multistep method, we need to resort to Taylor’s Theorem once more, since the
game remains to match as many terms of the solution’s Taylor expansion as possible with the terms
of the method. What remains will be the local truncation error.

We assume that all previouswi are correct, i.e.wi = yi and wi−1 = yi−1 in (74). The
differential equation says thaty′i = fi, so that all terms can be expanded in a Taylor expansion as



314 6.7 MULTISTEP METHODS.

follows:

wi+1 = a1wi + a2wi−1 + h[b0fi+1 + b1fi + b2fi−1]

= a1[yi]

+ a2[yi − hy′i + h2

2 y′′i − h3

6 y′′′i + h4

24y′′′′i − . . .]

+ b0[ hy′i + h2y′′i + h3

2 y′′′i + h4

6 y′′′′i + . . .]
+ b1[ hy′i]

+ b2[ hy′i − h2y′′i + h3

2 y′′′i − h4

6 y′′′′i + . . .]

Adding up yields

wi+1 = (a1 + a2)yi + (b0 + b1 + b2 − a2)hy′i + (a2 − 2b2 + 2b0)
h2

2
y′′i

+ (−a2 + 3b0 + 3b2)
h3

6
y′′′i + (a2 + 4b0 − 4b2)

h4

24
y′′′′i + . . . (75)

By choosing theai andbi appropriately, the local truncation erroryi+1 − wi+1, where

yi+1 = yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i + . . . (76)

can be made as small as possible, assuming the derivatives involved actually exist. Next, we will
investigate the possibilities.

6.7.2 Explicit multistep methods

To look for explicit methods, setb0 = 0. A second-order method can be developed by matching
terms in (75) and (76) up to and including theh2 term, making the local truncation error of size
O(h3). Comparing terms, we find we need to solve the system

a1 + a2 = 1

−a2 + b1 + b2 = 1

a2 − 2b2 = 1 (77)

There are three equations in four unknowns, so it will be possible to find infinitely many different
explicit order-two methods. (There is also one order-threemethod that turns out to be not useful.
See Exercise 6.7.4.) Note that the equations can be written in terms ofa1 as follows:

a2 = 1 − a1

b1 = 2 − 1

2
a1

b2 = −1

2
a1 (78)

The local truncation error will be

yi+1 − wi+1 =
1

6
h3y′′′i − 3b2 − a2

6
h3y′′′i + O(h4)

=
1 − 3b2 + a2

6
h3y′′′i + O(h4)

=
4 + a1

12
h3y′′′i + O(h4). (79)
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0 SPOTLIGHT ON: Complexity
The advantage of multistep methods to one-step methods is clear. After the first few steps, only one new
evalution of the right-hand side function need be made. For one-step methods, it is typical for function
evaluations to be needed. Fourth-order Runge-Kutta, for example, needs four evaluations per step, while
the fourth-order Adams-Bashforth method needs only one after the startup phase.

We are free to seta1 arbitrarily - any choice leads to a second-order method, as we have just
shown. Settinga1 = 1 yields the second-order Adams-Bashforth method (72). Notethata2 = 0
by the first equation, andb2 = −1/2 andb1 = 3/2. According to (79), the local truncation error is
5
12h3y′′′(ti) + O(h4).

Alternatively, we could seta1 = 1/2 to get another two-step second-order method witha2 =
1/2, b1 = 7/4, andb2 = −1/4:

Another second-order two-step method

wi+1 =
1

2
wi +

1

2
wi−1 + h[

7

4
fi −

1

4
fi−1], (80)

which has local truncation error38h3y′′′(ti) + O(h4).

A third choice,a1 = −1, gives

Unstable second-order two-step method

wi+1 = −wi + 2wi−1 + h[
5

2
fi +

1

2
fi−1] (81)

Figure 22 showed that the methods (72) and (81) are not equal in effectiveness. The failure of (81)
brings out an important condition that must be met by multistep solvers, called stability. Consider
the even simpler IVP







y′ = 0
y(0) = 0
t ∈ [0, 1].

(82)

Write out method (81) for this example. It is

wi+1 = −wi + 2wi−1 + h[0] (83)

There are many solutions{wi} to (83). One iswi ≡ 0. However, there are others. Substituting the



316 6.7 MULTISTEP METHODS.

form wi = cλi into (83) yields

cλi+1 + cλi − 2cλi−1 = 0

cλi−1(λ2 + λ − 2) = 0 (84)

The solutions of the ”characteristic polynomial”λ2 +λ−2 = 0 of this recurrence relation are1 and
−2. The latter is a problem - it means that solutions of form(−2)ic are solutions of the method for
small c. This allows small rounding and truncation errors to quickly grow to unit size and swamp
the computation, as seen in Figure 22. It is important to be sure that the roots of the characteristic
polynomial of the method stay bounded by1 in absolute value, to avoid this possibility. This leads
to the following definition.

Definition 6.6 The multistep method (73) isstable if the roots of the polynomialP (x) = xs +a1x
s−1 +

. . . + as are bounded by1 in absolute value, and any roots of absolute value1 are simple roots. A stable
method for which1 is the only root of absolute value1 is calledstrongly stable; otherwise it isweakly
stable.

The Adams-Bashforth method (72) has roots0 and1, making it strongly stable, while (81) has roots
−2 and1, making it unstable.

The characteristic polynomial of the general two-step formula is

ρ(x) = x2 − a1x − a2

= x2 − a1x − 1 + a1

= (x − 1)(x − a1 + 1)

whose roots are1 anda1 − 1. Returning to (78), we can find a weakly stable second-order method
by settinga1 = 0. Then the roots are1 and−1, leading to a

Weakly stable second-order two-step method

wi+1 = wi−1 + 2hfi (85)

Example 6.25 Apply strongly stable method (72), weakly stable method (85), and unstable method (81)
to the initial value problem







y′ = −3y
y(0) = 1
t ∈ [0, 2].

(86)

The solution is the curvey = e−3t. We will use Program 6.3 to follow the solutions, whereydot.m
has been changed to

function ydot = ydot(t,y)
ydot = -3*y;



Chapter 6 ORDINARY DIFFERENTIAL EQUATIONS 317

and ab2step.m is replaced by one of the three callsab2step , weaklystable2step , or
unstable2step .

Figure 23 shows the three solution approximations for stepsize h = 0.1. The weakly stable and
unstable methods seem to follow closely for a while, and thenmove quickly away from the correct
solution. Reducing the step size does not eliminate the problem, although it may delay the onset of
instability.

1 2

−1

1y

t

(a)

1 2

−1

1y

t1 2

−1

1y

t

(b)

Figure 23: Comparison of second-order, two-step methods applied to IVP (86). (a) Adams-
Bashforth method (b) Weakly stable method (in circles) and unstable method (in squares).

With two more definitions, we can state the fundamental theorem of multistep solvers.

Definition 6.7 A multistep solver isconsistentif it has order at least1. A solver isconvergent if the
approximate solutions converge to the exact solution for each t, ash → 0.

Theorem 6.8 (Dahlquist) Assume that the starting values are correct. Then a multistep method (73) is
convergent if and only if it is stable and consistent.

One root of the characteristic polynomial must be at1 (see Exercise 6.7.6). The Adams-
Bashforth methods are the ones whose other roots are all at0. For this reason, the Adams-Bashforth
two-step method is considered the ”most stable” of the two-step methods.

The derivation of higher-order methods, using more steps, is precisely analogous to our deriva-
tion of two-step methods above. Strongly stable multistep methods include the following.
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Adams-Bashforth Three-Step Method(third-order)

wi+1 = wi +
h

12
[23fi − 16fi−1 + 5fi−2] (87)

Adams-Bashforth Four-Step Method(fourth-order)

wi+1 = wi +
h

24
[55fi − 59fi−1 + 37fi−2 − 9fi−3] (88)

6.7.3 Implicit multistep methods

When the coefficientb0 in (73) is nonzero, the method is implicit. The simplest second-order im-
plicit method (see Exercise 6.7.3) is the

Implicit Trapezoid Method (second-order)

wi+1 = wi +
h

2
[fi+1 + fi] (89)

If the fi+1 term is replaced by evaluatingf at the ”prediction” forwi+1 made by Euler’s method,
then this becomes the explicit trapezoid method. The implicit trapezoid method is also called the
Adams-Moulton one-step method, by analogy with what follows. An example of a two-step implicit
method is the

Adams-Moulton Two-Step Method(third-order)

wi+1 = wi +
h

12
[5fi+1 + 8fi − fi−1] (90)

There are significant differences between the implicit and explicit methods. First, it is possible to
get a stable third-order implicit method using only two steps, unlike the explicit case. Second, the
corresponding local truncation error formula is smaller for implicit methods. On the other hand, the
implicit method has the inherent difficulty that it needs some kind of help to evaluate the implicit
part.

For these reasons, implicit methods are often used as the corrector in a ”predictor-corrector”
pair. Implicit and explicit methods of the same order are used together. Each step is the combination
of a prediction by the explicit method and a correction by theimplicit method, where the implicit
method uses the predictedwi+1 to calculatefi+1. Predictor-corrector methods use approximately
twice the computational effort, since an evaluation of the differential equation right-hand-sidef is
done on both the prediction and the correction parts of the step. However, the added accuracy and
stability often make the price worth paying.

A simple predictor-corrector method pairs the two-step Adams-Bashforth explicit method as
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predictor with the one-step Adams-Moulton implicit methodas corrector. Both are second-order
methods. Matlab code looks similar to the Adams-Bashforth code used earlier, but with a corrector
step added.

% Program 6.7 Adams-Bashforth-Moulton second-order predi ctor-corrector
function y=predcorr(int,ic,h,s)
% Inputs: int= [a,b] time interval
% ic = [y0] initial condition
% h = stepsize, s = number of steps for explicit method
% Calls multistep methods such as ab2step.m and am1step.m
% Example usage: predcorr([0 1],1,.05,2)
a=int(1);b=int(2);n=ceil((b-a)/h);
% Start-up phase
y(1,:)=ic;t(1)=a;
for i=1:s-1 % start-up phase, using one-step method

t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,:)=ydot(t(i),y(i,:));

end
for i=s:n % multistep method loop

t(i+1)=t(i)+h;
f(i,:)=ydot(t(i),y(i,:));
y(i+1,:)=ab2step(t(i),i,y,f,h); % predict
f(i+1,:)=ydot(t(i+1),y(i+1,:));
y(i+1,:)=am1step(t(i),i,y,f,h); % correct

end
plot(t,y(:,1),t,y(:,1),’o’);

function y=trapstep(t,x,h)
%one step of the trapezoid method from section 6.2
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*f(i,:)-f(i-1,:))/2;

function z=am1step(t,i,y,f,h)
%one step of the Adams-Moulton 1-step method
z=y(i,:)+h*(f(i+1,:)+f(i,:))/2;

function ydot = ydot(t,y) % IVP
ydot = t*y+t*t*t;

Deriving the Adams-Moulton two-step method is done just as the explicit methods were es-
tablished. Redo the set of equations (77) but without requiring b0 = 0. Since there is an extra
parameter now (b0) we are able to match up (75) and (76) through the degree 3 terms, putting the
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local truncation error in theh4 term. The analogue to (77) is

a1 + a2 = 1

−a2 + b0 + b1 + b2 = 1

a2 + 2b0 − 2b2 = 1

−a2 + 3b0 + 3b2 = 1 (91)

Satisfying these equations results in a third-order two-step implicit method.
The equations can be written in terms ofa1 as follows:

a2 = 1 − a1

b0 =
1

3
+

1

12
a1

b1 =
4

3
− 2

3
a1

b2 =
1

3
− 5

12
a1 (92)

The local truncation error is

yi+1 − wi+1 =
1

24
h4y′′′′i − 4b0 − 4b2 + a2

24
h4y′′′′i + O(h5)

=
1 − a2 − 4b0 + 4b2

24
h4y′′′′i + O(h5)

= −a1

24
h4y′′′′i + O(h5). (93)

The order of the method will be three as long asa1 6= 0. Again,a1 is a free parameter, so there are
infinitely many third-order two-step implicit methods. TheAdams-Moulton two-step method uses
the choicea1 = 1. Exercise 6.7.8 asks you to verify that this method is strongly stable. Exercise
6.7.9 explores other choices ofa1.

Note one more special choice,a1 = 0. From the local truncation formula we see that this two-
step method

Simpson’s Method

wi+1 = wi−1 +
h

3
[fi+1 + 4fi + fi−1] (94)

will be fourth-order. Exercise 6.7.15 asks you to check thatit is only weakly-stable. For this reason,
it is susceptible to error magnification.

The suggestive terminology of the Trapezoid Method (89) andSimpson’s Method (94) should
remind the reader of the numerical integration formulas from Chapter 5. In fact, although we have
not emphasized this approach, many of the multistep formulas we have presented can be alter-
nately derived by integrating approximating interpolants, in a close analogy to numerical integration
schemes.

The basic idea behind this approach is that the differentialequationy′ = f(t, y) can be inte-
grated on the interval[ti, ti+1] to give

y(ti+1) − y(ti) =

∫ ti+1

ti

f(t, y) dt. (95)
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Applying a numerical integration scheme to approximate theintegral in (95) results in a multistep
ODE method. For example, using the trapezoid rule for numerical integration from Chapter 5 yields

y(ti+1) − y(ti) =
1

2
(fi+1 + fi) + O(h2),

which is the second-order Trapezoid Method for ODE’s. If we approximate the integral by Simp-
son’s Rule, the result is

y(ti+1) − y(ti) =
1

3
(fi+1 + 4fi + fi−1) + O(h4),

the fourth-order Simpson’s Method (94). Essentially, we are approximating the right-hand-side of
the ODE by a polynomial and integrating, just as is done in numerical integration. This approach
can be extended to recover various of the multistep methods we have already presented, by changing
the degree of interpolation and the location of the interpolation points. Although this approach is a
more geometric way of deriving some the the multistep methods, it gives no particular insight into
the stability of the resulting ODE solver.

By extending the previous methods, the higher-order Adams-Moulton methods can be derived,
in each case usinga1 = 1:

Adams-Moulton Three-Step Method(fourth-order)

wi+1 = wi +
h

24
[9fi+1 + 19fi − 5fi−1 + fi−2] (96)

Adams-Moulton Four-Step Method (fifth-order)

wi+1 = wi +
h

720
[251fi+1 + 646fi − 264fi−1 + 106fi−2 − 19fi−3] (97)

These methods are heavily used in predictor-corrector methods along with an Adams-Bashforth pre-
dictor of the same order. Computer Problems 6.7.5 etc. asks you to write Matlab code to implement
this idea.

Exercises 6.7

6.7.1. Write out the Adams-Bashforth method for the IVPs in Exercise 6.1.4. Using stepsizeh = 1/4, calculate the
approximation on the interval[0, 1]. Use the trapezoid method to createw1. Compare to the correct solution, and
find the total error at each step.

6.7.2. Repeat Exercise 6.7.1 for the IVPs in Exercise 6.1.5.

6.7.3. Show that the trapezoid rule (89) is a second-order method.

6.7.4. Find a two-step, third-order explicit method. Is themethod stable? [Ans.wi+1 = −4wi+5wi−1+h[4fi+2fi−1],
NO.]

6.7.5. Find a second-order two-step explicit method whose characteristic polynomial has a double root at1.

6.7.6. Explain why the characteristic polynomial of an explicit or implicit s-step method must have a root at1.

6.7.7. (a) For whicha1 does there exist a strongly stable second-order two-step explicit method? (b) Same question for
weakly stable. [Ans. (a)0 < a1 < 2 (b) a1 = 0, 2]
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6.7.8. Show that the coefficients of the two-step Adams-Moulton implicit method satisfy (92) and that the method is
strongly stable.

6.7.9. Find the order and stability type of the following two-step implicit methods.

(a) wi+1 = 3wi − 2wi−1 + h
12

[13fi+1 − 20fi − 5fi−1]

(b) wi+1 = 4

3
wi − 1

3
wi−1 + 2

3
hfi+1

(c) wi+1 = 4

3
wi − 1

3
wi−1 + h

9
[4fi+1 + 4fi − 2fi−1]

(d) wi+1 = 3wi − 2wi−1 + h
12

[7fi+1 − 8fi − 11fi−1]

(e) wi+1 = 2wi − wi−1 + h
2
[fi+1 − fi−1]

[Ans. (a) second order unstable (b) second order strongly stable (c) third order strongly stable (d) third order
unstable (e) third order weakly stable]

6.7.10. Find a second-order two-step implicit method that is weakly stable. [Ans. For example,a1 = 0, a2 = 1, b1 =
2 − b0, b2 = b0, whereb0 6= 0 is arbitrary.]

6.7.11. Find a third-order two-step implicit method that isweakly stable.

6.7.12. (a) Find the conditions (analogous to (77)) onai, bi required for a third-order, three-step explicit method. (b)
Show that the Adams-Bashforth three-step method satisfies the conditions. (c) Show that the Adams-Bashforth
three-step method is strongly stable. (d) Find a weakly-stable third-order three-step explicit method and verify
these properties.

6.7.13. (a) Find the conditions (analogous to (77)) onai, bi required for a fourth-order, four-step explicit method. (b)
Show that the Adams-Bashforth four-step method satisfies the conditions. (c) Show that the Adams-Bashforth
four-step method is strongly stable.

6.7.14. (a) Find the conditions (analogous to (77)) onai, bi required for a fourth-order, three-step implicit method. (b)
Show that the Adams-Moulton three-step method satisfies theconditions. (c) Show that the Adams-Moulton
three-step method is strongly stable.

6.7.15. Derive Simpson’s method (94) from (92) and show thatit is fourth-order and weakly stable.

Computer Problems 6.7

6.7.1. Adapt theexmultistep.m program to apply the Adams-Bashforth method to the IVPs in Exercise 6.1.4. Using
stepsizeh = 0.1, calculate the approximation on the interval[0, 1]. Compare to the correct solution, and find the
total error at each step.

6.7.2. Repeat Exercise 6.7.1 for the IVPs in Exercise 6.1.5.

6.7.3. Repeat Exercise 6.7.1 using the weakly-stable 2-step method, and compare results with those from the Adams-
Bashforth 2-step method.

6.7.4. Repeat Exercise 6.7.1 using the Adams-Bashforth 3-step method.

6.7.5. Change Program 6.4 into a third-order predictor-corrector method, using Adams-Bashforth three-step method and
the Adams-Moulton two-step method. Apply to the solution ofIVP (9) using step sizeh = 0.05.

6.7.6. Same as previous problem, but with a fourth-order predictor-corrector method.

6.8 Software and Further Reading

TRADITIONAL sources for fundamentals on ordinary differential equations are [5, 6, 4, 10, 16].
Many books teach the basics of ODE’s along with ample computational and graphical help;

we mention ODE Architect [8] as a good example. Polking’s Matlab codes and manual [19] are an
excellent way to learn and visualize ODE concepts.

To supplement our tour through one-step and multi-step numerical methods for solving ordi-
nary differential equations, there are many intermediate and advanced texts. The texts [14, 11]
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are classics. A contemporary Matlab approach is taken by [21]. Other recommended texts are
[15, 20, 1, 17, 9, 7] and the comprehensive two volume set [12,13].

There is a great deal of sophisticated software available for solving ODEs. Details on the solvers
used by Matlab can be found in [22, 2]. Variable stepsize explicit methods of the Runge-Kutta type
are usually successful for non-stiff or mildly stiff problems. In addition to Runge-Kutta-Fehlberg
and Dormand-Prince, the variant Runge-Kutta-Verner, an order 5/6 method, is often used. For stiff
problems, backward-difference methods and extrapolationmethods are typically used.

The IMSL library includes the double precision routine DIVPRK, based on the Runge-Kutta-
Verner method, and DIVPAG for a multistep Adams-type methodthat can handle stiff problems.

The NAG library provides a driver routine D02BJF that runs standard Runge-Kutta steps. The
multistep driver is D02CJF, which includes Adams-style programs with error control. For stiff
problems, the D02EJF routine is recommended, where the userhas an option to specify the Jacobian
for faster computation.

The Netlib repository contains a Fortran routine RKF45 for the Runge-Kutta-Fehlberg method
and DVERK for the Runge-Kutta-Verner method. The Netlib package ODE contains several multi-
step routines. The routine VODE handles stiff problems.

The collection ODEPACK is a public domain set of Fortran codeimplementing ODE solvers
developed at Lawrence Livermore National Laboratory (LLNL). The basic solver LSODE and its
variants are suitable for stiff and non-stiff problems. Theroutines are freely available at the LLNL
websitehttp://ww.llnl.gov/CASC/odepack .
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