CHAPTER 6 Ordinary

Differential
Equations

FRONT NOTES

[Photos: Tacoma narrows bridge]

On the morning of November 7, 1940, the Tacoma Narrows Brittgethird longest suspension
bridge in the world at the time, fell into Puget Sound. Duritsgshort life, it had already become
famous for its pronounced vertical oscillations duringthiginds.

But the motion which preceded the collapse at 11 a.m. on tbhatimy was primarily torsional,
twisting from side-to-side. This motion had not been seéor fio that day, and continued for 45
minutes before the collapse. The twisting motion evenyuadicame large enough to snap a support
cable, and the bridge disintegrated rapidly.

The debate among architects and engineers about the ressotidipse has continued unabated
since that time. The winds were unusually high, even for thgeP Sound. It was known that high
winds caused vertical oscillation for aerodynamic reaswiith the bridge acting like an airplane
wing. In fact, the bridge’s integrity was not in danger frotmcily vertical movements. The mystery
is how the torsional oscillation arose on that day. Reallig€k 6 on page 296 investigates a possible
mechanism.

END FRONT NOTES

Q differential equation is an equation involving derivasv®ifferential equations models are the

primary means of representing, understanding, and piegisiystems that are changing with
time. In the form

y'(t) = f(t.y(t),

the first-order differential equation expresses the rathahge of a quantity in terms of the present
time and the current value of the quantity.

A wide majority of interesting equations have no closedrf@olution, and so approximations
are the only recourse. This chapter covers the approxinodigian of ordinary differential equa-
tions by computational methods. After introductory ideagdferential equations, Euler's method
is described and analyzed in detail. Although too simpleetddavily used in simulations, Euler’s
method is crucial, since most of the important issues in thgest can be easily understood in its
very simple context.

More sophisticated methods follow, and interesting exasplf systems of differential equa-
tions are explored. Variable step-size protocols are itaporfor efficient solution, and special
methods are necessary for stiff problems. The chapter eittsaw introduction to implicit and
multistep methods.
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6.1 Initial value problems

ANY physical laws that have been successful in modeling naterexpressed in the form of
differential equations. Sir Isaac Newton wrote his laws ation in this form: F = ma is
an equation connecting the composite force acting on arcobiel the object’s acceleration, which
is the second derivative of the position. In fact, Newtordstplation of his laws together with
development of the infrastructure needed to write them d@altulus) comprised one of the most
important revolutions in the history of science.
A simple model known as thegistic equationmodels the rate of change of a population as

Y =ay(l—y) 1)

where the independent variabileepresents time angl denotes the derivative with respectttalf
we think ofy as representing the population as a proportion of the cayapacity of the animal’s
habitat, then we expegtto grow to near that capacity and then taper off. The diffeaéequation
(1) shows the rate of changéas being proportional to the product of the current popoiasi and
the “remaining capacity’l — y. Therefore the rate of change is small both when the populagi
small ¢y near 0) and also when the population nears capagiteér 1).

The ordinary differential equation (1) is typical in thah#s infinitely many solutiong(¢). By
specifying an initial condition we can identify which of tlefinite family we are interested in.
(We will get more precise about existence and uniquenedseiméxt section.) Arnitial value
problem for a first order ordinary differential equation is to solve tequation together with an
initial condition on a specific interval < t < b:

Y
y(a) =y, (2)
t

It will be very helpful for us to think of differential equains as field of slopes, as in Figure 1(a).
The equation (1) can be viewed as specifying a slope for amgruvalues oft, y). If we plot the
slope at each point in the plane with an arrow we getdiope field or direction field, of the
differential equation. When in addition an initial conditiis specified, then one out of the infinite
family of solutions can be identified. In Figure 1(b), twofditnt solutions are plotted starting at
two different initial valuesy(0) = 0.2 andy(0) = 1.4, respectively.

Equation (1) has a solution that can be written in terms ohelgary functions. One checks by
differentiating and substituting that as long as the ihi@nditiony, # 0,

1
t)y=1—-——— 3
y(t) T (3)
is the solution of the initial value problem
Y =ay(l—y)
y(0) = yo (4)

te[0,T].

The solution follows the arrows in Figure 1(b).if = 0, the solution igy(¢) = 0, which is checked
the same way.
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Figure 1: The logistic differential equation. (a) The slope field varies in thgdirection but is
constant for all;, the definition of an autonomous equation. (b) Two solutiohthe differential
equation.

6.1.1 Euler’'s method.

The logistic equation had an explicit, fairly simple soduti A much more common scenario is a
differential equation with no explicit solution formula.h& geometry of Figure 1 suggests an al-
ternate approach: to computationally “solve” the difféi@requation by following arrows. Start at
the initial condition(to, 3o ), and follow the direction specified there. After moving arstiistance,
re-evaluate the slope at the new pditit, 41 ), move further according to the new slope, and repeat
the process. There will be some error associated with theepsy since in between evaluations of
the slope, we will not be moving along a completely accurlaees But if the slopes change slowly,
we may get a fairly good approximation to the solution of thigal value problem.

Example 6.1 Draw the slope field of the initial value problem

y =ty +t3
{ Z/(O) =%0 ®)

For each point(t,y) in the plane, an arrow with slope equal #p + y* was plotted in Figure
2(a). This IVP is called nonautonomous becatigppears explicitly in the right-hand-side of the
equation. It is also clear from the slope field, which variesoading to botht andy. An exact
solutiony(t) = 3¢t*/2 — 12 — 2 is plotted for initial conditiony(0) = 1, but let us assume that we
don't know it.

Figure 2(b) shows an implementation of the method of contjmually following the slope
field, which is known as Euler's method. We begin with a grighoints

to <t <ty <...<ty (6)
along thet-axis and assign approximagevalues

wo <wp <wg < ...< Wy (7)
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Figure 2: Solution of the initial value problem (5). (a) Slope field for a nonautonomous equation

varies in bothy and¢. Solution is shown. (b) Application of Euler's method to #euation, with
stepsizeh = 0.2.

at the respective points. In Figure 2(b), theé points were selected to be
th=00<t1=02<t=04<t3=0.6 <ty =0.8<t5=1.0, (8)

they; = y(t;) correspond to the values on the exact solution curve, arftheds an approximation
to the solution at;. Thet; points are equally spaced with stepsize- 0.2.

Since the change inis the horizontal distanck multiplied by the slope, the formula for each
step can be expressed as follows:

Euler's Method

Wo = Yo
Wit1 = wi+hf(tz-,wi). (9)

Example 6.2 Apply Euler’'s method to initial value problem (5), with iidt conditiony, = 1.

The right-hand-side of the differential equationfig,y) = ty + t3. Therefore Euler's method will
be the iteration

’LU():l

Wiyl = wW;+ h(tiwi + t?) (10)
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Using the grid (8) with step sizk = 0.2, we calculate the approximate solution iteratively from
(10). The valuesuv; given by Euler's method are compared to the true vajyeas the following
table, and plotted in Figure 2(b).

step| t; W Yi €;

0O | 0.0] 1.0000| 1.0000/| 0.0000
0.2 | 1.0000| 1.0206| 0.0206
0.4 1.0416| 1.0899| 0.0483
0.6 | 1.1377| 1.2317| 0.0939
0.8 ] 1.3175| 1.4914| 0.1739
1.0| 1.6306| 1.9462| 0.3155

a b wN P

The table also shows the errer= y; — w; at each step. The error tends to grow, from zero at the
initial condition to its largest value at the end of the indy although the maximum error will not
always be found at the end.

Applying Euler's method with step siZze= 0.1 causes the error to decrease. Again using (10)
we calculate

step| i w; Yi €

O | 0.0] 1.0000| 1.0000| 0.0000
0.1] 1.0000| 1.0050| 0.0050
0.2] 1.0101| 1.0206| 0.0105
0.3] 1.0311| 1.0481| 0.0170
0.4] 1.0647| 1.0899| 0.0251
0.5] 1.1137| 1.1494| 0.0357
0.6 1.1819| 1.2317| 0.0497
0.7 1.2744| 1.3429| 0.0684
0.8 1.3979| 1.4914| 0.0934
0.9] 1.5610| 1.6879| 0.1269
1.0| 1.7744| 1.9462| 0.1718

OO ~NO UL WNPE

[ =Y
o

Compare the final errag; for the h = 0.1 calculation to the final erro¢; for the h = 0.2 cal-
culation. Note that cutting the step sizen half results in cutting the final error approximately in
half.

Euler's method is implemented in the following Matlab coddich has been written in some-
what modular form, to highlight the three individual compats. The plotting program calls a
subprogram to execute each single Euler step, which in @alls the function containing the right-
hand-side of the differential equation. In this form, it Mde easy later to change out both the
right-hand-side, for another differential equation, amel Euler method, for another more sophisti-
cated method.

%Program 6.1 Euler's Method for Solving Initial Value Probl ems
%Use with ydot.m to evaluate rhs of differential equation

function euler(int,y0,h)

% input interval [a,b], initial value yO, step size h
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1¢
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Figure 3: Euler's method applied to IVP (5). The arrows show the Euler steps, exactly as in
Figure 2 except for the step size. (a) Ten steps of size h =) Tenty steps of size h = 0.05

% Example usage: euler(J0 1],1,0.1);

a=int(1);b=int(2);

t(1)=0; y(1)=y0;

n=round((b-a)/h);

for i=1:n
t(i+1)=t(i)+h;
y(i+1)=eulerstep(t(i),y(i),h);

end

plot(t,y)

function y=eulerstep(t,x,h)

%one step of the Euler method

%Input: t is current time, x is current value, h is stepsize
%Output: the approximate solution value at time t+h
y=x+h*ydot(t,x);

function ydot=ydot(t,y)
ydot = t*y + t°3

Comparing the Euler method approximation for (5) with thaasolution at = 1 gives us the
following table.
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stepsn | step sizeh | error att = 1

51 0.20000 0.3155

10 | 0.10000 0.1718

20 | 0.05000 0.0899

40 | 0.02500 0.0460

80 | 0.01250 0.0233

160 | 0.00625 0.0117
320 | 0.00312 0.0059
640 | 0.00157 0.0029

Two facts are evident from the table and Figures 3 and 4.,Fmsterror is nonzero. Since Eu-
ler's method takes non-infinitesimal steps, the slope obsuaépng the step, and the approximation
does not lie exactly on the solution curve. Second, the eleoreases as the stepsize is decreased,
as can be also seen in Figure 3. It appears from the tableinatior is proportional té; we will
investigate this further in the next section.

®
[ ]
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01t ®
[ ]
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.001 ' :
.001 .01 A 1
step size h

Figure 4: Error as a function of stepsize for Euler's method. The difference between the ap-
proximate solution of (5) and the correct solutiontat= 1 has slope 1 on a loglog plot, so is
proportional to the stepsize for smallh.

Example 6.3 Find the Euler's method formula for the initial value praile

y(0) = wo (11)

Herec is an arbitrary constant. The true solutiony{) = yoe’. Euler's method formula gives
Wo = Yo
wir1 = w; + hew; = (1 4 he)w;.
From this we conclude

w; = (1 + hc)wi_l = (1 + hc)zwi_g =...= (1 + hC)iwo. (12)
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Settingh = 1/n for an integem, the value at = 1 is

wy, = (14 he)"yo
&
= (14+ )"
(1+ n) Yo
The classical formula says that
lim (14 —)" = e° (13)
n—oo n

which shows that as — oo, Euler's method will converge to the correct value.

6.1.2 EXxistence, uniqueness, and continuity for solutions.

Before starting a computational method to find a solution pvablem, it is helpful to know that
the solution exists. Further, it is helpful to know that #é& only one solution, so that the solution
algorithm is not confused about which one to calculate. Wittkeright circumstances, initial value
problems have exactly one solution.

Definition 6.1 A function f (¢, y) is Lipschitz in the variabley on a convex set’ if there exists a constant
L (called theLipschitz constant) satisfying

|f(t,y1) — f(t,y2)| < Llyr — yo

for eacht and for eachy,, y2 € C.

Notice that Lipschitz in a variable implies that the funatis continuous in that variable, but not
necessarily differentiable.

Example 6.4 Find the Lipschitz constant for the differential equatiéh (

The right-hand-sidef (¢, ) = ty + t3 is Lipschitz in the variabley on the sed) < t < 1,00 <
y < co. Check that
|f(ty1) — F(ty2)| = [tyr — tya| < [tl[yr — y2| < [y1 — y2l (14)
on the set. The Lipschitz constantlis
|

Note that if the functiory is continuously differentiable in the variabjethe maximum absolute
value of the partial derivativ% is a Lipschitz constant. According to the Mean Value Thegrem
for each fixedt there is ac betweery; andy» such that

f(t>y1) - f(tva) _ g

Y1 — Y2 0y
ThereforeL can be taken to be the maximum of
of
ol

on the set.
The Lipschitz hypotheses guarantees the existence andamggs of solutions of initial value
problems. We refer to [3] for a proof of the following theorem
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Theorem 6.2 If f(¢,y) is Lipschitz in the variablg on an intervala, b] x [y1,y2] wherey; < y, < yo,
then for some: betweer: andb the initial value problem (2)

y = f(t,y)
y(a) = Ya (15)
t € la,d.

has exactly one solution(t).

The fine print of Theorem 6.2 is important to understand, @aflg if your goal is to calculate
the solution numerically. Just because the initial valugbfgm satisfies a Lipschitz condition on
[a, b] x [y1, y=] containing the initial condition doesn’t guarantee a sotufor ¢ in the entire interval
[a,b]. The simple reason is that the solution may wander outsielg tange|y; , y2] for which the
Lipschitz constant is valid. The best that can be said is thatsolution exists on some shorter
interval [a, b]. This point is illustrated by the following example.

Example 6.5 Discuss existence and uniqueness for the initial valuelenob

y =2
y(0) =1 (16)
t €10,2].

The partial derivative of with respect tagy is 2y. If we apply Theorem 6.2 on the s@et< ¢ <
2,—10 <y < 10, for example, the Lipschitz constamiax |2y| = 20 is valid on the entire set. The
theorem guarantees a solution starting -at0 and existing out as far as some- 0, but we are not
guaranteed a solution on the entire interigab].

In fact, the solution of the differential equation (16) guaeed by the theoremaggt) = 1/(1 —
t), which can be easily checked. This solution goes to infinsty approaches. In other words,
the solution exists on the interval< ¢ < ¢ for any0 < ¢ < 1, but not forc = 2. As mentioned
above, the problem is easy to notice - the Lipschitz congaig valid for |y| < 10, buty along the
solution exceeds$0 long beforet reacheS.

Theorem 6.3 is the basic fact about stability (error amggltfan) for ordinary differential equa-
tions. If a Lipschitz constant exists for the right-handesiof the differential equation, then the
solution at a later time is a Lipschitz function of the inliti@lue, with a new Lipschitz constant
which is exponential in the original one.

Theorem 6.3 Assume thaff (¢, y) is Lipschitz in the variablg on the setS = [a,b] X [y1,y2]. If Y (¢)
andZ(t) are solutions irt' of the differential equation

y' = f(ty)
with initial conditionsY (a) andZ(a) respectively, then
Y (t) = Z(t)] < " V|Y (a) — Z(a)| (17)

forall t € [a,b].
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7
. @ \ SPOTLIGHT ON: Conditioning

Error magnification was discussed in Chapters 1 and 2 as aavqwantify the effects on a problem’s
solution due to small changes in the input data. The analoftleat question for initial value problems

is given a precise answer by Theorem 6.3. When initial camd{input data)y (a) is changed t&(a),

the greatest possible change in outptitme units laterY (t) — Z(t), is exponential irt. Alternatively,
for fixed timet in the future, the output change is linear in the initial abiod difference, which mear

we can talk of a "condition number” whose role is playecebyf—*.

S

Proof. First, if Y (a) = Z(a), then by uniqueness of solutioh¥t) = Z(t) and (17) is trivially
satisfied. We may assum&a) # Z(a), in which cas&’(t) # Z(t) for all ¢ in the interval to avoid

contradicting unigueness.

Defineu(t) = Y (t) — Z(t). Sinceu(t) is either strictly positive or strictly negative, and besau
(17) depends only ofu|, we may assume > 0. Thenu(a) = Y (a) — Z(a) and the derivative

' =Y"-27"= f(t,y) — f(t, z). The Lipschitz condition
u' = |f(t,Y) = f(t,Z)| < LIY (t) — Z(t)| = Llu(t)| = Lu(t)
implies that(Inu)’ = < L. By the Mean Value Theorem,

Inu(t) — Inu(a)
t—a

<,

which simplifies to

which is the desired result. O

Returning to Example 6.4, Theorem 6.3 implies that solstld(¢) and Z(t), starting at differ-

ent initial values, must not grow apart any faster than aiplidative factor ofe’ for 0 < ¢ < 1. In

fact, the solution at initial valu&; is Y (t) = (2 + Yp)e”/2 — t2 — 2, and so the difference between

two solutions is

V(1) = Z(t)] < |2+ Yo)e!' /2 — 1% =2 — (2 + Zo)e'™ /2 — 12 = 2)| < |[Yo — Zole!/?  (18)

which is less thanYy — Zy|e! for 0 < t < 1, as prescribed by Theorem 6.3.
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6.1.3 First-order linear equations

A special class of ordinary differential equations that barreadily solved provides a handy set of
illustrative examples. They are the first-order equationsse right-hand sides are linear in the
variable. Consider the initial value problem

y(a) = ya (19)

First note that ifg(¢) is continuous ona, b], a unique solution exists by Theorem 6.2, using-
max|, ;) ¢(t) as the Lipschitz constant. The solution is found by a trickjtiplying the equation
through by an "integrating factor”.

The integrating factor isxp( [ g(¢) dt), and multiplying both sides by it yields

(' — g(tyy)e= J9Od = = Ja® dipq)
(ye_fg(t) dt), — e—fg(t) dth(t)
ye_fg(t) e _ /e—fg(t) dth(t) dt

which can be solved as
y(t) = el 9) dt / e~ J 9O dtp ) gt (20)

If the integrating factor can be expressed simply, this etallows an explicit solution of the
first-order linear equation (19).

Example 6.6 Solve the first-order linear differential equation

y =ty +y°
{ y(0) =1 (@)

The integrating factor is

According to (20), the solution is

2 [ 2 g
y(t) = ez [ e 2t°dt

2 42 2 2
= 27 [—56_% —e T 4 C]
+2
= —t2-2+20ez

where the substitutiom = ¢?/2 was made. Solving for the integration constahtyields 1 =
—2+2C, soC = 3/2. The solution is

_ g2
y(t) =3e7 —t° —2.
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Exercises 6.1

6.1.1. Show that the functiop(t) = tsint is a solution of the differential equations @y t> cost = ty’ (b) y” =
2cost —y (€)t(y" +y) = 2y’ — 2sint.
6.1.2. Show that the functiop(t) = e¥™* is a solution of the initial value problems (8) = ycost,y(0) = 1 (b)
y" = (cost)y’ — (sint)y,y(0) = 1,4/(0) = 1 (c)y” = y(1 —Iny — (Iny)?),y(x) = 1,y (x) = —1.
6.1.3. (a) Show that if, # 0, the solution of the initial value problegi = ay + b,y(0) = yo isy(t) = 2(e* — 1) +
yoe®t. (b) Verify the inequality of Theorem 6.3 for solutiop$t), z(¢) with initial valuesyo andzo, respectively.
6.1.4. Use separation of variables to find solutions of the ¢iyen byy(0) = 1 and the following differential equations.
@y =t Oy =ty ©y=201+1)y
@y =5ty @y =1/ Oy =2/
[Ans.: (@)y(t) = e' () y(t) = /> (@ y(t) = " " (d)y = e (@ ut) = (3t + 1> (f) y(t) =
(3t* /4 + 1)1/
6.1.5. Find the solutions of the IVP given bhy0) = 0 and the following first-order linear differential equatton

@y =t+ty Oy =t—y @)y =4-2y

[Ans.: @y(t) =e¢' —t —1(0)y(t) =e "+t —1. (C)y(t) =e 2 +2t —1]

6.1.6. Which of these differential equations have uniquetsms for initial value problems of0, 1], as guaranteed by
Theorem 6.2? Find the Lipschitz constants.y(a} ¢ (b) v’ = v (c) v’ = —y (d) v’ = —¢>.

6.1.7. Sketch the slope field of the differential equationExercise 6.1.6, and draw rough approximations to the solu-
tions starting at the initial conditiong0) = 1, y(0) = 0, andy(0) = —1.

6.1.8. Find the solutions of the initial value problems irekocise 6.1.7. For each equation, use the Lipschitz corsstant
from Exercise 6.1.6, and verify the inequality of Theorer8 far the pair of solutions with initial conditions
y(0) = 0 andy(0) = 1.

6.1.9. Find the solution of the initial value problerh= ty? with (0) = 1. What is the largest intervé0, b] for which
the solution exists? [Ansy(t) = 2/(2 — t?), the intervall0, v/2]

6.1.10. (a) Write out the Euler's method formula for the I\WFExercise 6.1.3. (b) Set=b =1,h = 0.5,y0 = 1 and

carry out two steps to approximag€l ). (c) Change the step sizefio= 0.25 and carry out 4 steps to approximate
y(1). (d) Using the correct solution from Exercise- 6.1.3, corefhe errors of (b) and (c) at= 1.

6.1.11. Write out Euler's method for the IVPs in Exercise.4.1Using stepsizé = 1/4, calculate the Euler’s method
approximation on the intervdl, 1]. Compare to the correct solution found above, and find tts éotor at each
step.

6.1.12. Repeat Exercise 6.1.11 for the IVPs in Exercisé&6.1.

Computer Problems 6.1

6.1.1. Print the values of the Euler's method solution wittpssizeh = 0.1 in [0, 1] for the initial value problems in
Exercise 6.1.4.

6.1.2. Plotthe Euler's method approximate solutions ferl¥fPs in Exercise 6.1.4 0, 1] for stepsizes = 0.1, 0.05,
and0.025 along with the true solution.

6.1.3. Plot the Euler's method approximate solutions ferl¥fPs in Exercise 6.1.5 0, 1] for stepsizes = 0.1, 0.05,
and0.025 along with the true solution.

6.1.4. Forthe IVP’s in Exercise 6.1.4, plot the global eabEuler’s method at = 1 as a function oh = 0.1 x 2 for
0 < k < 5. Use semilog plot as in Figure 4.

6.1.5. Forthe IVP’s in Exercise 6.1.5, plot the global eabEuler’s method at = 1 as a function ok = 0.1 x 2 for
0< k<5
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6.2 Analysis of IVP solvers.

N this section we try to explain Figure 4. In that example, tlierdn the Euler’s method approx-
| imation seems decrease as stepsize is decreased. Is taralgettue? Can we make the error
as small as we want, just by decreasing the step size? A tame@stigation of error in Euler's
method will illustrate the issues for IVP solvers in general

yi+1

gi+1

i ti+1

Figure 5: One step of an ODE solverThe Euler method follows a line segment with the slope of
the vector field at the current point to the next pdint.;,w;+1). The upper curve represents the
true solution to the differential equation. The global ergp ; is the sum of the local errar;
and accumulated error from previous steps.

6.2.1 Local and global truncation error

Figure 5 shows a schematic picture for one step of a solverHildler's method when solving an
IVP of form
y = f(t.y)

y(a) = ya (22)
t € [a,b].

At stepi, the accumulated error from the previous steps is carriedgahnd perhaps amplified,
while new error from the Euler approximation is added. To becise let us define thglobal
truncation error

9i = |wi - yi|>

to be the difference between the Euler's method approxanatind the correct solution of the IVP.
Also, define thdocal truncation error , or one-step error, to be

eit1 = |wit1 — 2(tix1)l, (23)

the difference between the value of the Euler step on thatvat and the correct solution of the
"one-step initial value problem”

Yy
y(t;) = w; (24)
t
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The local truncation error is the error occurring just frosiragle step, taking the previous solution
approximationw; as the starting point. The global truncation error is theuamdated error from
the firsti steps. The local and global truncation errors are illusttém Figure 5. At each step, the
new global error is the sum of the amplified global error fréma previous step and the new local
error. Because of the amplification, the global error is moipsy the sum of the local truncation
errors.

Example 6.7 Find the local truncation error for Euler’s method.

According to the definition, this is the new error made on alsirstep of Euler's method.
Assume the previous step; is correct, solve the initial value problem (24) exactlydaompare
the exact solutiony(t;+1) to the Euler method approximation.

Assumingy” is continuous, the exact solutiontat; = t; + h is

h2

y(ti +h) = y(t:) + hy'(t:) + 5" (¢)
according to Taylor's Theorem, for some (unknowrsatisfyingt; < ¢ < t; 1. Sincey(t;) = w;
andy/'(t;) = f(t;,w;), this can be written as

2

h
y(tigr) = wi + hf(ts,w;) + Ey”(c)'

Meanwhile, Euler's method says
wit1 = w; + hf(t;,w;).

Subtracting the two expressions yields

h2
eir1 = |wix1 — y(tiy1)| = 7’?//(0)\

for somec in the interval. This is the local truncation errgrfor Euler's method. I1fM is an upper
bound fory” on [a, b], thene; < Mh? /2.

Now let’s investigate how the local errors add up to globedies: At the initial conditiory(a) =
Ya, the global error igy = |wo — yo| = |y« — ya| = 0. After one step, there is no accumulated error
from previous steps and the global error is equal to the ficsdllerror,g; = e; = |wy — y1|. After
two steps, let’s break dows, as in Figure 5, into the local truncation error plus the aadgated
error from the earlier step. Defingt) to be the solution of the initial value problem

y = f(ty)
y(t1) = wy (25)
t e [tl,tg].

(We give the solution the namebecause is already being used for the solution to the same IVP
starting at the exact initial condition(to) = vo.) Thusz(t2) is the exact value of the solution
starting at initial condition(¢,,w;). Note that if we use the initial conditioft;, y;) we would get
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7
. @ \ SPOTLIGHT ON: Convergence
Theorem 6.4 is the main theorem on convergence of one-stepaieers. The dependence of global ror

on h shows that we can expect error to decreask @sdecreased, so that (at least in exact arithmietic)

error can be made as small as desired. Which brings us to ltlee iatportant point - the exponentjal
dependence of global error én As time increases, the global error bound may grow extreragge.
For larget;, the step sizé required to keep global error small may be so tiny as to beactmal.

y2, Which is on the actual solution curve, unlik&s). Theney = |wy — z(t2)| is the local truncation

error of step 2. The other differencgts) — y2, is covered by Theorem 6.3, since it is the difference

between two solutions of the same equation with differeitiirconditionsw; andy;. Therefore

g2 = |wa —yo| = |wa — 2(t2) + 2(t2) — v
< we — 2(t2)| + |2(t2) — Yo
< e tethg
= ey + eLhel.

The argument is the same for step 3, which yields

g3 = |lws — ys3| < ez +e"gy <eg+ eMley + 2ley, (26)
and likewise the general stépatisfies
gi = lw; —yi| < e+ e, 1+ e*he, o+ ..+ e(i_l)Lhel. 27)
Now we bring in the local truncation error. Assume that itsfegs
e; < Chk+1
for a constant” > 0. Then
i < Chk-i—l(l + €Lh I e(i—l)Lh)
_ Chk+1 et —1
elh — 1
L(ti—a) _ 1
< Chk-{-lei
- Lh
ChF _
= (M- (28)

Note how the local truncation error is related to the globah¢ation error. The local truncation
error is proportional tdh* for someK. Roughly speaking, the global truncation error "adds up”
the local truncation errors over a number of steps propmatito 7', the reciprocal of the step size.
Thus the global error turns out to be proportionalstb This is the major finding of the above
calculation, and we state it in the following theorem.
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Theorem 6.4 Assume thaltf (¢, y) has a Lipschitz constarit for the variabley and that the valug; of
the solution of the initial value problem (2) gtis approximated byv; from a one-step IVP solver with
local truncation erroe; < Ch¥t1, for some constant’ andk > 0. Then for eachu < t; < b, the IVP
solver has global truncation error

i = b — il < T (M) — )R, 29)

If a method satisfies (29) &s— 0, we say that the method hasder k. Example 6.7 shows that
the local truncation error of Euler's method is of size bcmni1dbth2/2, so the order of Euler’s
method is 1. Restating the theorem in the Euler's method giass the following corollary.

Corollary 6.5 (Euler’s method convergence.) Assume that f(t,y) has a Lipschitz constant L for the
variable y and that the solution y; of the initial value problem (2) at ¢; is approximated by w; using
Euler’s method. Let M be an upper bound for |y (¢)| on [a, b]. Then

Mh

yil < S (e - 1), (30)

Example 6.8 Find an error bound for Euler's method in Example 6.2.

The Lipschitz constant o, 1] is L = 1. Now that the solutloqy( ) = 3¢t*/2 — 2~ 2is known, the
second derivative is determined to ¥&t) = (12 + 2)e /2 _ 9 whose absolute value is bounded
above or0, 1] by M = 3,/e — 2. Corollary 6. 5 implies that the global truncation errot at b = 1
must be smaller than
(3ve—2
2

el(1-0) = Bve=2) . ~ 1.004n. (31)

oL ¢

This upper bound is confirmed by the actual global truncagioars, shown in Figure 4, which are
roughly 2 timesh for small h.

So far, Euler's method seems to be foolproof. It is intuitimeconstruction, and the errors it
makes get smaller when the step size decreases, accord@gratlary 6.5. However, for more
difficult IVP’s, Euler’s method is rarely used. There exisbm@ sophisticated methods whose order,
or power ofh in (29), is greater than one. This leads to vastly reduceldaglerror, as we shall see.
We close this section with an innocent-looking example wlgerch a reduction in error is needed.

Example 6.9 Apply Euler's method to the IVP

y/ —4t3 2
y(—10) = 1/10001 (32)
t € [-10,0].

It is easy to check by substitution that the exact solutiop(i$ = 1/(t* + 1). The solution
is very well behaved on the interval of interest. We will &sséhe ability of Euler's method to
approximate the solution at= 0.
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-10 10 t

Figure 6: Approximation of Example 6.9 by Euler's method. From bottom to top, step sizes are
h =102 h = 10~* andh = 10~°. The correct solution hag0) = 1. Extremely small steps are
needed to get a reasonable approximation.

Figure 6 shows Euler's method approximations to the salytidth step sizes = 1072,10~*
and10~5, from bottom to top. The value of the correct solutiort at 0 is y(0) = 1. Even the best
approximation, which uses one million steps to reaeh0 from the initial condition, is noticeably
incorrect.

This example shows that more accurate methods are needeltid¢veaaccuracy in a reasonable
amount of computation. The remainder of the chapter is @elvti developing more sophisticated
methods that require fewer steps to get the same or betteraayc

6.2.2 The explicit trapezoid method

A small adjustment in the Euler's method formula makes atgreprovement in accuracy. Con-
sider the following geometrically motivated method:

Explicit trapezoid method

Wo = Yo

Wit1 = w;+ g(f(tl, wi) + f(tl + h, w; + hf(ti, wl))) (33)

For Euler's method, the slopg(¢;) governing the discrete step is taken from the slope field
at the left-hand end of the intervdl, t;11]. In the trapezoid method, this slope is replaced by the
average between the contributigh(¢;) from the left-hand endpoint and the corresponding slope
f(t; + hyw; + hf(t;,w;)) from the right-hand side. (See Figure 14(a).) Note that vweeuaing the
Euler's method "prediction” as the-value to evaluate the slope functignatt; ., = t; + h. The
Euler's method prediction is corrected by the trapezoidhoefwhich is more accurate, as we will
show.

The method is calle@éxplicit because the new approximatian,; can be determined by an
explicit formula in terms of previous;. The reason for the name "trapezoid method” is that in the
special case wherg(t, y) is independent of, the method

wisr = wi+ S[F() + (b + )
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Trapezoid W, .

Figure 7: Schematic view of single step of the explicit trapeoid method. The slopess;, =
ft,w;)andsg = f(t; + h,w; + hf(t;, w;)) are averaged to define the slope used to advance the
solution tot; ;1.

t;+h
can be viewed as adding a trapezoid rule approximation (€h&) of the integray f(t)dt
t;

to the currentw;. Since

ti+h ti+h
/t £(t) dt = / Y () dt = y(ts + h) — y(t),

% i

this corresponds to solving the differential equatién= f(t) by integrating both sides using the
trapezoid rule. The explicit trapezoid method is also catlee improved Euler method and the
Heun method in the literature, but we will use the more desieg and more easily remembered
title.

Let’s test the new method on an old example.

Example 6.10 Apply the explicit trapezoid method to the IVP (5) with imiticonditiony (0) = 1.

Formula (33) forf(t,y) = ty + 3 is

wy = Yo = 1
h
Wir1 = Wy + §(f(ti,w,-) + f(tz + h,w,- + hf(ti,w,-)))
h
= wi + 5ty + t3 4 (ti + h)(wi + h(tiy; +13)) + (t; + h)3)

Using step sizé, = 0.1, the iteration yields the following table.
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step| i w; Yi €

0O | 0.0] 1.0000| 1.0000| 0.0000
0.1] 1.0051| 1.0050| 0.0001
0.2 ] 1.0207| 1.0206| 0.0001
0.3] 1.0483| 1.0481| 0.0002
0.4] 1.0902| 1.0899| 0.0003
0.5] 1.1499| 1.1494| 0.0005
0.6 1.2323| 1.2317| 0.0006
0.7 ] 1.3437| 1.3429| 0.0008
0.8 1.4924| 1.4914| 0.0010
0.9] 1.6890| 1.6879| 0.0011
1.0| 1.9471| 1.9462| 0.0009

O© O ~NO UL WNPF

=
o

The comparison of Example 6.10 with the results of Euler'shme on the same problem in Exam-
ple 6.2 is striking. In order to quantify the improvementtttiee trapezoid method brings toward
solving IVP’s, we need to calculate its local truncatioroe(23).

The local truncation error is the error made on a single s$grting at an assumed correct solu-
tion point(¢;, y;), the correct extension of the solutiontat; can be given by the Taylor expansion

h? h3
Yir1 = y(ti +h) = yi + hy/(t:) + 71///(752‘) + Ey”’(c), (34)
for some number betweenrt; andt; 1, assuming,”” is continuous. In order to compare these terms
with the trapezoid method, we will write them a little difésitly. From the differential equation

y'(t) = f(t,y), differentiate both sides with respectttaising the chain rule:

V0 = P+ e

) )
a—{(w) + a—z(t7y)f(t7y)

The new version of (34) is

of

h2 [0 h3
Vi1 = Yi + hf(ti, i) + = ( f(tuyz') + a_y(tiyyi)f(tiayi)> + —y"(c), (35)

2 \ ot 6

We want to compare this expression to the explicit trapeawthod, using the two-dimensional
Taylor theorem to expand the term

fti +hyi +hfts,us) = f(ti,vi)
X
ot
+ O(n?).

(s y) + hf(tz-,y»g—z(ti,yi)
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The trapezoid method can be written

@(f(tbyi) + f(ti + hyyi + hf(ti yi))

2
h h
= oty )+ () 40 (G0 + St G t) +00)) )

Wiyl = Yi+

2
= yi +hf(ti,y) + % (%(tm%) + f(tuyz')g—g(ti,yi)) +0(h?). (36)

Subtracting (36) from (35) gives the local truncation easr
Yiy1 —wir1 = O(h%)

Theorem 6.4 shows that the global error of the trapezoid oaeth proportional toh?, meaning
that the method is of order two, compared with order one fdelEumethod. For smal this is a
significant difference, as shown by returning to Example 6.9

-10 10 t

Figure 8: Approximation of Example 6.9 by the trapezoid method. Step size i = 10~3. Note
the significant improvement in accuracy as compared to Butegthod in Figure 6.

Example 6.11 Apply the trapezoid method to the Example 6.9:

y/ — —47533/2
y(—10) = 1/10001
t € [-10,0].

/
. @ \ SPOTLIGHT ON:. Complexity
Is a second-order method more efficient or less efficient éfast-order method? On each step, the grror
is smaller, but the computational work is greater, sincénardy two function evaluations (of (¢, y)) are
required instead of one. A rough comparison goes like thigp8se an approximation has been run with
step sizeh, and one wants to double the amount of computation to impitee@pproximation. For the
same number of function evaluations, one can (a) halve ¢iesste of the first order method, multiplying
the global error byt /2, or (b) keep the same step size, but use a second order megplating théh in
Theorem 6.4 by:?, essentially multiplying the global error by For smallh, (b) wins.

=)
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Revisiting Example 6.9 with a more powerful method showseagimprovement in approxi-
mating the solution, for example at= 0. The correct valug(0) = 1 is attained within0015 with
a step size of = 10~ with the trapezoid method, as shown in Figure 8. This is diydzetter than
Euler with a step sizé = 10~°. Using the trapezoid method with= 10~ yields an error on the
order of10~7 for this relatively difficult initial value problem.

6.2.3 Taylor methods

So far we have learned two methods for approximating saistad ordinary differential equations.
The Euler method has order one, and the apparently supeajpezoid method has order two. In
this section we show that methods of all orders exist. Fon @asitive integek, there is a Taylor
method of ordek;, which we will describe next.

The basic idea is a straightforward exploitation of the dayxpansion. Assume the solution
y(t) is k + 1 times continuously differentiable. Given the current pdiny(¢)) on the solution
curve, the goal is to expregst + 1) in terms ofy(t) for some stepsizé, using information about
the differential equation. The Taylor expansiony¢f) aboutt is

1

1
o hky(lc) (t) + hk-l—ly(k-i-l)(c)

(k+1)!

wherec lies betweent andt + h. The last term is the Taylor remainder term. For= 1 the
expansion is

y(t+R) = y(t) + hy'(t) + %h%/’(t) P

y(t+h) = y(t)+hy'(t) +O(h?)
= y(t)+hf(ty) +OR?)
where we have used the differential equation to repldce with f. Settingw; = y(t) to be the
currenty position, we see that the method gives
wit1 = w; + hf(ti, w;),

with a local truncation error of ordér®>. Therefore we recognize the first-order Taylor method as
Euler’'s method.
For k = 2 we find a new method. The Taylor expansion is
1
3!
1
= y(t)+hf(ty) + Shf (6 y) + O()

y(t+h) = y(t)+hy/(t)+%h2y”(t)+...+ 3y (c)

where we have denoted the fidberivative

't y) = f(tyt) = filt,y) + fu(ty)y' (0).

We will use the notatiory; to denote the partial derivative gfwith respect ta, and similarly for
fy- Setting the currery position to bew; = y(t), the method is

Wi = wi o () 52l w) + fyltisw) (5, wi).
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Example 6.12 Determine the second-order Taylor method for

!/ 3
{y—ty~|—t 37)

y(0) = wo
Sincef(t,y) = ty + 3,

fltty) = fet fuf
= y+3t2 +t(ty + %),

and the method gives

1
wip1 = w; + h(twi +£7) + Sh? (wi + 387 + ti(tiw; + 7).
|

The second-order Taylor method gives a second-order meliibdiotice that manual labor on
the user’s part was required, to determine the partial divies. Compare this to the other second-
order method we have learned, where (33) requires only talisroutine that computes values of
f(t,y) itself.

Conceptually, the lesson represented by Taylor methodisiiSIDE methods of arbitrary order
exist. They can be derived by following the scheme shown ebélowever, they suffer from the
problem that extra work is needed to compute the partiavaives off that show up in the formula.
Since formulas of the same orders can be developed that @apiire these partial derivatives, the
Taylor methods are used only for specialized purposes.

Exercises 6.2

6.2.1. Compute the Euler's method error bound from Cornplab for the solution at = 1, for the initial value problems
of Exercise 6.1.5.

6.2.2. Write out the explicit trapezoid method for the IVRsExercise 6.1.4. Using stepsize= 1/4, calculate the
trapezoid method approximation on the interj@all]. Compare to the correct solution found in Exercise 6.1.4,
and find the total error at each step.

6.2.3. Carry out Exercise 6.2.2 for the IVPs in Exercise®.1.

6.2.4. Find a general formula, similar to (37), for the thirdier Taylor method.

6.2.5. Find the formula for the second-order Taylor methardtifie following differential equations. (af = ty (b)
Yy =t +y° (©y =ysiny (d)y = e’
[Ans. (@) wiy1 = w; + htiwi + $h*(wi + tiw;) (0) wit1 = wi + h(taw] + wi) + Lh*(w] + (2tiwi +
Sw?)(tiw? + w?)) (C) wit1 = w; + hw; sinw; + %hQ (sin w; + w; cos w; )w; sinw; (d) wit1 = w; + he“’it? +
%thwit? (2t; + t?ewit? )]

6.2.6. Same as Exercise 6.2.5, but determine the third-dejgor method.

6.2.7. Find the formula for the second-order Taylor methmaliad to the initial value problems in Exercise 6.1.4. dsin
step sizeh = 1/4, calculate the second-order Taylor method approximatiothe interval0, 1]. Compare to the
correct solution found in Exercise 6.1.4, and find the totadreat each step.

6.2.8. (a) Prove (26). (b) Prove (27)

Computer Problems 6.2
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6.2.1. Print the values of the explicit trapezoid methodioh on a grid of step sizé = 0.1 in [0, 1] for the initial
value problems in Exercise 6.1.4.

6.2.2. Plot the approximate solutions for the IVPs in Ex@d.1.4 orf0, 1] for step sizesh = 0.1,0.05, and0.025
along with the true solution.

6.2.3. For the IVP’s in Exercise 6.1.4, plot the global ewbthe explicit trapezoid method at= 1 as a function of
h = 0.1 x 2¥ for 0 < k < 5. Use a semilog plot as in Figure 4.

6.2.4. Print the values of the second-order Taylor methadtisa on a grid of step sizé = 0.1 in [0, 1] for the initial
value problems in Exercise 6.1.4.

6.3 Systems of ordinary differential equations.

PPROXIMATION of systems of differential equations can be done as a sinxpgm&ion of the
methodology for a single differential equation. Treatiggtems of equations greatly extends
our ability to model interesting dynamical behavior. In gidd, we will discuss the handling of
higher-order equations. Thader of a differential equation refers to the highest order deie
appearing in the equation.
A first-order system has form

y& = fl(t7 yl"" 7yn)
yé = fz(t7 yl"" 7yn)
y;z = fn(t>y17"'7yn)

Example 6.13 Apply Euler’s method to the first-order system of two equagio

Y o= ¥5—2u
Yo = y1—Y2—tys
y1(0) = 0
y2(0) = 1 (38)

First, check that the solution of the system (38) is the wegatued function

y(t) = te 2t
yao(t) = et

For the moment, forget that we know the solution and appleEsimethod. The Euler's method
formula is applied to each component in turn.

2
wiy11 = win + h(wjy — 2w;1)

2
wiy12 = wiz+ (w1 — w2 —tw;,)

Figure 9 shows the Euler method approximationg/pfand y, along with the correct solution.
Matlab code that carries this out is very similar to Prografn 6
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)

Figure 9: Equation (38) approximated by Euler method. Step sizeh = 0.1. The upper curve is
y1(t), along with its approximate solutian; ; (circles), while the lower curve ig;(¢) andw; .

% Program 6.2 Vector version of Euler method
function euler2(int,y0,h)
% input interval [a,b], initial vector y0, step size h
% Example usage: euler2([0 1],[0 1],0.1);
a=int(1);b=int(2);
t(1)=0; y(1,))=y0;
n=round((b-a)/h);
for i=1:n
t(i+1)=t(i)+h;
y(i+1,:)=eulerstep(t(i),y(i,:),h);
end
plot(t,y(:,1),ty(:,2));

function y=eulerstep(t,x,h)

%one step of the Euler method

%Input: t is current time, x is current vector, h is stepsize
%Output: the approximate solution vector at time t+h
y=x+h*ydot(t,x);

function ydot=ydot(t,y)

ydot(1) = y(2)"2-2*y(1);
ydot(2) = y(1)-y(2)-t'y(2)"2;

6.3.1 Higher order equations

A single differential equation of higher order can be cotegito a system. Let

y™ = ft,y 'y Y
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be annth-order ordinary differential equation. Define new valésh

g =y

Y2 = y’

Yys = "

Yn = y(n—l)

and notice that the original differential equation can bdtem

y;z = f(t>y17y2>"' >yn)

Together with the equations

Y=y
Yy = Y3
Y5 =
!
Y1 = Yn,

the nth-order differential equation can be converted to a sysiéfirst-order equations, which we
can solve using methods like the Euler or trapezoid methods.

Example 6.14 Convert the third-order differential equation

y" =a(y")? —y +yy" +sint )

to a system.

Sety; = y and define the new variables

Y2 =
y3 — //‘
Then in terms of first derivatives
Y o= 1
Yo = U3
Yy = ay3 —yo +y1ys +sint, (40)

and the solutiory(¢) of the third-order equation (39) can be found by solving tystem (40).
|

Because of the possibility of converting higher-order ¢igua to systems, we will restrict our
attention to systems of first-order equations. Note alsbalsystem of higher-order equations can
be converted in the same way to a system of first-order equgatio
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6.3.2 The pendulum

Figure 10 shows a pendulum swinging under the influence aftgraAssume that the pendulum
is hanging from a rigid rod that is free to swing through 36@rdes. Denote by the angle of the
pendulum with respect to the vertical, so that 0 corresponds to straight down. Therefgrand
y + 2m should be considered the same angle.

length |

Figure 10: The pendulum. Component of force in the tangential directionfis= —mgsiny,
wherey is the angle the pendulum bob makes with the vertical.

We will use Newton'’s law of motiornF' = ma to find the pendulum equation. The motion
of the pendulum bob is constrained to be along a circle ofusadiwherel is the length of the
pendulum rod. Ify is measured in radians, then the component of acceleratiment to the circle
is ly”, because the component of position tangent to the circlg.isThe component of force
along the direction of motion is1gsiny. It is a restoring force, meaning that it is directed in the
opposite direction from the displacement of the variapldhe differential equation governing the
frictionless pendulum is therefore

mly” = F = —mgsinvy, 41

according to Newton’s law of motion. This is a second-ord#&erkntial equation for the anglgof
the pendulum. The initial conditions are given by the ihidiagley(0) and angular velocity/’(0).

By settingy; = v and introducing the new variablg, = ¢/, the second-order equation is
converted to a first-order system

Y=y

yh = —% sin . (42)
If the pendulum is started from a position straight out toright, the initial conditions arg; (0) =
/2 andy2(0) = 0. Using MKS units, the gravitational acceleration at thetesusurface is about
9.8m/seé. We assume below that the pendulum rod iseter long. Using these parameters, we
can test the ability of the Euler method as a solver for thidesy.
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(a) (b)

Figure 11: Euler method applied to the pendulum equations.The curve of smaller amplitude
is the angley; in radians; the curve of larger amplitude is the angularsiglay.. (a) Stepsizé =
0.01 is too large; energy is growing. (b) Stepsize- 0.001 shows more reasonable trajectories.

Figure 11 shows Euler's method approximations to the pemdwquations with two different
step sizes. The smaller curve represents the angtea function of time, and the larger amplitude
curve is the instantaneous angular velocity. Note thaténeszof the angle, representing the vertical
position of the pendulum, correspond to the largest angrdéocity, positive or negative. The
pendulum is travelling fastest as it swings through the kieint. When the pendulum is extended
to the far right, the peak of the smaller curve, the velodtydro as it turns from positive to negative.

The inadequacy of Euler's method is apparent in Figure 1% Sibp sizé» = 0.01 is clearly
too large to get even the qualitative parts correct. An urmhpendulum started with zero velocity
should swing back and forth forever, returning to its starfposition with a regular periodicity. The
amplitude of the angle in Figure 11(a) is growing, which aatnpe correct. Using0 times more
steps, as in Figure 11(b), improves the situation at leasta¥y, but a total of0* steps are needed,
an extreme number for the routine dynamical behavior shonthé pendulum.

A second-order ODE solver like the trapezoid method can.héle will rewrite the Matlab
code to use the trapezoid method, and take the opportunitipstrate the ability of Matlab to do
simple animations.

The following codepend.m contains the same differential equation information gulerstep
is replaced byrapstep . In addition, the variablesod andbob are introduced to represent the
rod and pendulum bob, respectively. The Matialh command assigns attributes to variables. The
drawnow command plots theod andbob variables. Note that the erase mode of both variables is
set toxor , meaning that when the plotted variable is redrawn someswise, the previous position
is erased. Figure 10 is a screen shot of the animation.

% Program 6.3 Animation program for pendulum using IVP solve r
function pend(int,ic,h,p)

% Inputs: int = [a b] time interval,

% ic = [y(1,1) y(1,2)], initialize

% h = stepsize, p = steps per point plotted

% Calls a one-step method such as trapstep.m



284 6.3 SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

% Example usage: pend([0 10],[pi/2 0],.05,1)

clf % clear figure window
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i n total
y(1,:)=ic; % enter initial conds in y

t(1)=a;

set(gca,’XLim’,[-1.2 1.2],’YLim’,[-1.2 1.2], ...
XTick',[-1 0 1],YTick',[-1 0 1], ...
‘Drawmode’,'fast’,'Visible’,’on’,’'NextPlot’,’add’);
cla; % clear screen
plot(0,0,’ks’) % pivot where rod attached
axis square % make aspect ratio 1 - 1
bob = line(’color’,’r’,Marker’,’.’’markersize’,40,’ erase’,’xor’,...
'xdata’,[],'ydata’,[]);
rod = line(color’,’b’,'LineStyle’,’-’,'LineWidth’,3, ‘erase’,’xor’,...
'xdata’,[],'ydata’,[]);
for k=1:n
for i=1:;p
t(i+1) = t(i)+h;
y(i+1,:) = trapstep(t(i),y(i,:),h);
end
y(1,) = y(p+1,);t(1)=t(p+1);
xbob = cos(y(1,1)-pi/2); ybob = sin(y(1,1)-pi/2);
xrod = [0 xbob]; yrod = [0 ybob];
set(rod,’xdata’,xrod,’ydata’,yrod)
set(bob,’xdata’,xbob,’ydata’,ybob)
drawnow; pause(h)
end

function y = trapstep(t,x,h)

%one step of the trapezoid method
z1=ydot(t,x);

g=x+h*z1;

z2=ydot(t+h,qg);

y=x+h*(z1+z2)/2;

function ydot=ydot(t,y)
g=9.8;length=1;

ydot(1) = y(2);

ydot(2) = -(g/length)*sin(y(1));

Example 6.15 The damped pendulum.

The force of damping, such as air resistance or frictionftesnaonodelled as being proportional and
in the opposite direction to velocity. The pendulum equabecomes

yll = Y2

Yy = —% siny; — dya, (43)
whered > 0 is the damping coefficient. Unlike the undamped pendulunvebihis one will lose
energy through damping and with time approach the limitiggilérium solutiony; = y» = 0,
from any initial condition. Computer Problem 6.3.3 asks y@wn a damped version pend.m .
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Example 6.16 The forced damped pendulum.

Adding atime-dependent term to (43) represents outsidaigon the damped pendulum. Consider
adding the sinusoidal terrhsin(¢) to they, right-hand-side, yielding

Y=
yé = —% siny; — dys + fsint, (44)

This can be considered as a model of a pendulum that is affégten oscillating magnetic field,
for example.

A host of new dynamical behavior becomes possible whenrfgiisiadded. For a two-dimensional
autonomous system of differential equations, the PoirBaredixson Theorem from the theory of
differential equations says that trajectories can tendatdvwonly two types of limiting behavior:
stable equilibria like the down position of the pendulumstable periodic cycles like the pendu-
lum swinging back and forth forever. The forcing makes thstesy non-autonomous (it can be
rewritten as a three-dimensional autonomous system, iutvoedimensional) so that a third type
of trajectories are allowed: chaotic trajectories.

Setting the damping coefficient 6 = 1 and the forcing coefficient t¢ = 10 results in
interesting periodic behavior, explored in Computer Reobb.3.4. Moving the parameter fo= 15
introduces chaaotic trajectories.

Example 6.17 The double pendulum.

The programpend.m can be adapted to make an animation of the double penduluimbhgha
single pendulum with another pendulum hanging from the Habefirst pendulum. Ify; andys
are the angles of the two bobs with respect to the verticalsyistem of differential equations is

Y = Y2
,_ —3gsinys — gsin(y1 — 2y3) — 2sin(y1 — y3) (¥ — y5 cos(y1 — y3))
Y2 = — dy2
3 — cos(2y1 — 2y3)
ys = W
S = 2sin(y; — y3)[2y35 + 2g cos y1 + y3 cos(y1 — y3)]
o=

3 — cos(2y1 — 2y3)

The parameted represents friction at the pivot. df > 0, the pendulum will eventually move toward
the down position. The double pendulum is believed to betohémr d = 0.

%Program 6.? Animation program for double pendulum

function pend2(int,ic,h,p)

%Inputs: int = [a b] time interval,

%ic = [y(1,1) y(1,2) y(1,3) y(1,4)], initialize

%h = stepsize, p = steps per point plotted

%Calls a one-step method such as trapstep.m

%Example usage: pend2([0 100],[pi/2 O pi/2 0],.01,5)

clf % clear figure window
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i n total
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y(1,:)=ic; % enter initial conds in y

t(1)=a;

set(gca,’XLim’,[-2.2 2.2],’YLim’,[-2.2 2.2], ...
XTick',[-2 0 2],'YTick',[-2 0 2], ...
‘Drawmode’,'fast’,'Visible’,’on’,’'NextPlot’,’add’);

cla; % clear screen

axis square % make aspect ratio 1 - 1

plot(0,0,’ks’) % pivot where rod attached

bobl =line(color’,’r’,’Marker’,.’,’markersize’,40,
'xdata',[],'ydata’,[]);

rodl =line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,3
'xdata’,[],'ydata’,[]);

bob2 =line(’color’,’g’,’Marker’,’.’’markersize’,40,
'xdata',[],'ydata’,[]);

rod2 =line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,3
'xdata’,[],'ydata’,[]);

for k=1:n
for i=1:p

t(i+1) = t(i)+h;
y(i+1,:) = trapstep(t(i),y(i,:),h);

end
y(1,7) = y(p+1,)t(L)=t(p+1);
xbobl = cos(y(1,1)-pi/2); ybobl = sin(y(1,1)-pi/2);
xbob2 = xbobl+cos(y(1,3)-pi/2); ybob2 = ybobl+sin(y(1,3)
xrodl = [0 xbobl]; yrodl = [0 ybobl];

xrod2 = [xbobl xbob2]; yrod2 = [ybobl ybob2];
set(rodl,’xdata’,xrod1,'ydata’,yrod1)
set(bobl,’xdata’,xbob1,’ydata’,ybob1)
set(rod2,’xdata’,xrod2,'ydata’,yrod2)
set(bob2,'xdata’,xbob2,’ydata’,ybob2)
drawnow; pause(h)

end

function y = trapstep(t,x,h)

%one step of the trapezoid method
z1=ydot(t,x);

g=x+h*z1;

z2=ydot(t+h,qQ);

y=x+h*(z1+22)/2;

function ydot=ydot(t,y)

0=9.8;length=1,

a=y(1)-y(3);

ydot(1) = y(2);
ydot(2)=-3*g*sin(y(1))-g*sin(y(1)-2*y(3))-2*sin(a)*

ydot(2) = ydot(2)/(3-cos(2*a)) - .003*y(2);
ydot(3) = y(4);
ydot(4) = (2*sin(a)*(2*y(2)"2+2*g*cos(y(1))+y(4) 2*co

6.3.3 Orbital mechanics

‘erase’,’xor’,...
jerase’,’xor’,...
‘erase’,’xor’,...

,erase’,’xor’,...

-pif2);

(y(4)"2-y(2)"2*cos(a));

s(a)))/(3-cos(2*a));

As a first example we discuss the one-body problem of an ngodatellite. Newton'’s second law
of motion says that the acceleratiorof the satellite is related to the foréeapplied to the satellite
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asF' = ma, wherem is the mass. The law of gravitation expresses the force only ®omassn;
by a body of masg:» by an inverse-square law

_ gmimea

F
742
wherer is the distance separating the masses. In the one-bodyeprpline of the masses is
considered negligible compared to the other, as in the casesmall satellite orbiting a large
planet. This simplification allows us to neglect the forcehs satellite on the planet, so that the
planet may be regarded as fixed.

5 S, 5
N
=\
f // / / ///:\\1\ \\\\
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L
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Figure 12: Euler on one-body problem.(a) » = 0.01 and (b)h = 0.001

Place the large mass at the origin and denotéxrby) the position of the satellite. The distance
between the massesis= /2% + 32, and the force on the satellite is central, meaning in the
direction of the large mass. The direction vector, a unitaein this direction, is

Therefore the force on the satellite in terms of components i

(F;,C,F@»:(“C’mlm2 — ) (45)

w24+ y? 22 12 2? Fy? a2 2

Inserting these forces into Newton’s law of motion yields tvo second-order equations

noo_ o gnumar
mxs = (22 + y2)3/2

" agmimaoy
my = -

(22 + y2)3/2
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Introducing the variables, = =’ andv, = 3’ allows reduction of the two second-order equations
to a system of four first-order equations

= v,
v = — amax
z (22 + y2)3/2
y/ = Uy
o = agmay
Yy

(22 + y2)3/2

(46)

Applying Euler’'s method to a system of first-order equati@done componentwise: by using
Euler separately on each component. The Matlab code for alez Eep of (46) looks exactly like

the code for the scalar version, except that the inpista vector.

We have written Euler's method as a function to be called feodriver program, so that we
can substitute more sophisticated one-step methods |atee. following driver program called
and sequentially plot the results in the Matlab plotting adaw.

orbit.m callseulerstep.m

%Program 6.4 Plotting program for one-body problem by IVP so

function z=orbit(int,ic,h,p)

%Inputs: int = [a b] time interval,

% ic = [x0O vxO y0 vyQ], initialize x position, x velocity, y pos
% h = stepsize, p = steps per point plotted

%Calls a one-step method such as eulerstep.m

%Example usage: orbit([0 100],[0 1 2 0],.01,50)
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i
x0=ic(1);vx0=ic(2);y0=ic(3);vy0=ic(4); % grab initial c

y(1,))=[x0 vx0 y0 vyO];t(1)=a;
set(gca, ...
XLim',[-5 5],’YLim’,[-5 5], ...

% enter initial conds in y

"XTick’,[-5 0 5],’YTick’,[-5 0 5], ...

‘Drawmode’,'fast’, ...
Visible',’on’, ...
‘NextPlot',’add);

cla;

sun=line(’color’,’y’, ...
'Marker’,’.’, ...
'markersize’,25,...
'xdata’,0,’ydata’,0);

drawnow;

head = line( ...
‘color’,’r’, ...
'Marker’,’.’, ...
'markersize’,25, ...
‘erase’,’xor’, ...
'xdata’,[],'ydata’,[]);

tail=line( ...
‘color’,’b’, ...
‘LineStyle’,’-’, ...
‘erase’,’none’, ...
'xdata’,[],'ydata’,[]);

%[px,py,button]=ginput(1);

%[px1,pyl,button]=ginput(1);

%y(1,))=[px px1-px py pyl-pyl;

% include these three lines
% to enable two mouse clicks
% for setting initial condit

Iver

, Yy vel

onditions

ions
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for k=1:n
for i=1:;p
t(i+1)=t(i)+h;
y(i+1,:)=eulerstep(t(i),y(i,:),h);
end

y(1,)=y(p+1,);4(1)=t(p+1);
set(head,’xdata’,y(1,1),'ydata’,y(1,3))
set(tail,’xdata’,y(2:p,1),'ydata’,y(2:p,3))
drawnow;

end

function y=eulerstep(t,x,h)
%one step of the Euler method
y=x+h*ydot(t,x);

function ydot = ydot(t,x)
m2=3;g=1;mg2=m2*g;px2=0;py2=0;
px1=x(1);py1=x(3);vx1=x(2);vy1=x(4);
dist=sqrt((px2-px1)"2+(py2-pyl)"2);
ydot=zeros(1,4);

ydot(1)=vx1;
ydot(2)=(mg2*(px2-px1))/(dist™3);
ydot(3)=vyl;
ydot(4)=(mg2*(py2-py1))/(dist™3);

Running the Matlab scripbrbit.m immediately shows the limitations of Euler's method
for approximating interesting problems. Figure 12(a) shdlme outcome of runningrbit([O
100],J0 1 2 0],.01,50) . That means we follow the orbit over the time inter@lb] =
[0, 100], the initial position is(zo, yo) = (0, 2), the initial velocity is(v,,v,) = (1,0), the stepsize
is h = 0.01, and the current position is plotted once evegr 50 steps.

Solutions to the one-body problem must be conic sectiotisgregllipses, parabolas, or hyper-
bolas. The spiral seen in Figure 12(a) is a numerical atfifaeaning a misrepresentation caused
by errors of computation. In this case, it is the truncatiooreof Euler's method that leads to the
failure of the orbit to close up into an ellipse. If the stepsis cut by a factor of ten th = 0.001,
the result is improved as shown in Figure 12(b). Severakt®dre shown, and it is clear that even
with the greatly decreased stepsize, the accumulatedismoticeable.

Corollary 6.5 says that the Euler method, in principle, gapraximate a solution with as much
accuracy as desired, if the step sizés sufficiently small. However, results like Figures 6 and 12
show that the method is seriously limited in practice.

Figure 13 shows the clear improvement in the one-body pnobiesulting from the replace-
ment of the Euler step with the trapezoid step. The plot wademay replacing the function
eulerstep.m  bytrapstep.m inthe above code.

Exercises 6.3

6.3.1. Apply four steps of the Euler method with= 1/4 to the initial value problem.

y1=y1+y2 Y1 =—Y1 — Y2 Y= —Y2 Y1 =11 + 3y2
! ! ! !
Y2 =—y1t+y2 Y2 = —y1+y2 Y2 =1 Y2 = 2y1 + 292
a b C d
@ =1 @Y uo=1 " @y uo=1 @ nuo=s
y2(0) =0 y2(0) =0 y2(0) =0 y2(0) =0
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Figure 13: One-body problem approximated by the trapezoid nethod. Step sizeh = 0.01.
The orbit appears to close, at least to the resolution @sibthe plot.

Compare your answer at= 1 with the value of the correct solutions (8)(t) = e’ cost,y2(t) = —e'sint
(b) yi(t) = e Fcost,ya(t) = e 'sint (C) y1(t) = cost,ya2(t) = sint (d) y1(t) = 3e™" + 2™, ya(t) =
—2e~t 4 2¢*,

6.3.2. Apply four steps of the trapezoid method with= 1/4 to the initial value problems in Exercise 6.3.1. Compare
answers with the correct solutions.

6.3.3. Convert the higher-order ordinary differential &tipn to a first-order system of equations.
(@ 3" — ty = 0 (Airy’s equation)  (b)y” — 2ty’ + 2y = 0 (Hermite’s equation) ()’ —ty' —y =0

6.3.4. Apply four steps of the Euler method with= 1/4 to the initial value problems in 6.3.3, usipg0) = 3'(0) = 1.

6.3.5. (a) Show thay(t) = (e' + ¢™" — t?)/2 — 1 is the solution of the initial value problem” — 3’ = t with
y(0) = y'(0) = y"(0) = 0. (b) Convert the differential equation to a system of threst-firder equations. (c)
Use Euler's method with step size= 1/4 to approximate the solution df, 1]. (d) Compare your approximate
solution att = 1 with the correct solution.

Computer Problems 6.3

6.3.1. Apply Euler's method with step sizeks= 0.1 andh = 0.01 to the initial value problems in Exercise 6.3.1. Find
the solution o0, 1], and compare the solution vectortat 1 with the correct value to find the total error. How
much better is the error for the smaller step size? Does iespond to the difference predicted by the order of
Euler's method?

6.3.2. Repeat Computer Problem 6.3.1, but use the trapezsiaod.

6.3.3. Adaptpend.m to accept damping coefficients. Run the resulting code wits 0.1. Except for the initial
conditiony; (0) = m,y2(0) = 0, all trajectories move toward the straight down positiortiaee progresses.
Check the exceptional initial condition. What does the thesay, and what does the program do? Explain any
differences.

6.3.4. Adaptpend.m to build a forced, damped version of the pendulum. Run the egith d = 1 in the following.
(a) Set the forcing parametgr= 10. After moving through some temporary, transient behavfe,pendulum
will settle into a periodic trajectory. Describe this traj@ry qualitatively. Try different initial conditions. Do
all solutions end up at the same "attracting” periodic tijey? (b) Setf = 12. There are now two periodic
attractors, that are mirror images of one another. Desthibawo attracting trajectories, and find two initial
conditions(y1,y2) = (a,0) and(b, 0) where|a — b| < 0.1 that are attracted to different periodic trajectories. (c)
Setf = 15 to view chaotic motion of the forced damped pendulum.



Chapter 6 ORDINARY DIFFERENTIAL EQUATIONS 291

6.3.5. Adappend.m to build a damped pendulum with oscillating pivot. The gaah investigate the phenomenon of
parametric resonance, by which the inverted (rigid) pemuubecomes stable! The equation is

vy’ + (% +dy’ + acos 2nt)siny = 0,

whereaq is the forcing strength. Set = 0.1 and the length of the pendulum to B& meters. In the absence of
forcing a = 0, the downward pendulum = 0 is a stable equilibrium and the inverted pendulyms= = is an
unstable equilibrium. Find as accurately as possible thgeaf parameted for which the inverted pendulum
becomes stable. (Of course,= 0 is too small; it turns out thai = 30 is too large.) Use the initial condition

y = 3.1 for your test, and call the inverted position "stable” if fpendulum does not pass through the downward
position.

6.3.6. Use the parameter settings of Computer Problem @316monstrate the other effect of parametric resonance:
the stable equilibrium can become unstable with an osiciigpivot. Find the smallest (positive) value of the
forcing strengthu for which this happens. Classify the downward position agtalvle if the pendulum eventually
travels to the inverted position.

6.4 Runge-Kutta methods and applications.

THE Runge-Kutta methods are a family of methods that includé&tier and trapezoid methods,
and also more sophisticated methods of higher order. We $eee that Euler has order one
and the trapezoid method has order two. Another order twbadedf the Runge-Kutta type is the

Midpoint method

wo = Yo

h h
Wi+1 = W; + hf(tl + §,wi + §f(ti,wi)). (47)

To verify the order of the Midpoint method we must computdotsal truncation error. When we
did this for the trapezoid method, we found the expressié (3eful:

2 3
Yir1 =i + hf(ti,ys) + " <%(ti7yi) + g(%%)f@u%)) + e

"

To compute the local truncation error at stgpwe assumev; = y; and calculatey; 11 — w;11.
Repeating the use of the Taylor series expansion as forapezoid method, we can write

h h
wiy1 = yi+hf(ti+ 5ot Ef(tiayi))

B -, hof N, hyo o of

— vt n (S + o) + W ). @)
Comparing (48) and (49) yields

Yir1 — wip1 = O(h?)
and so the Midpoint method is of order two by Theorem 6.4.
Each function evaluation of the right-hand-side of theatéhtial equations, corresponding to an

s; above, is called atageof the method. Both the Trapezoid and Midpoint methods acediage,
second-order Runge-Kutta methods.
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In fact, the Trapezoid and Midpoint methods are just membérthe family of two-stage,
second-order Runge-Kutta methods, having form

1 h
wiy1 = w; + h(1 — %)f(tuwz’) + %f(ti + ah,w; + ahf(t;,w;)). (50)

for somea # 0. Settinga = 1 corresponds to the explicit trapezoid method, ang 1/2 to the
midpoint method. Exercise 6.4.5 asks you to verify the oadenethods in this family.

Tr idw idpoi
apezoid w_, . Midpoint w,

() (b)

Figure 14: Schematic view of two members of the RK2 family(a) The Trapezoid method uses
an average from the left and right endpoints to traverseritegval. (b) The Midpoint method uses
a slope from the interval midpoint

Figure 14 illustrates the intuition behind the Trapezoid Midpoint methods. The Trapezoid
method uses an Euler step to the right endpoint of the inteevaluates the slope there, and then
averages with the slope from the left endpoint. The Midpaoigthod uses an Euler step to the
midpoint of the interval, evaluates the slope there fibi + 7/2, w; + (h/2) f(t;, w;)), and uses
that slope to move fromy; to the new approximatiomw;,,. The methods use different approaches
to solving the same problem: acquiring a slope that reptedée entire interval better than the
Euler method, which uses only the slope estimate from thetef of the interval.

There are Runge-Kutta methods of all orders. A particulpdgular method is the

Runge-Kutta method of order four (RK4)
h
Wit1 = w; + E(Sl + 259 + 253 + 54) (51)
where
s1 = f(ti,w;)
h h
sy = f(t;+ §,’wz‘ + 531)
h h
s3 = f(t;+ §,’wz‘ + 532)
S4 = f(tl + h,wi + th)

This method is the workhorse of quick and dirty ODE solversaose of its simplicity and ease of
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/
. @ \ SPOTLIGHT ON: Convergence

The convergence properties of a fourth-order method, liKd,Rare far superior to those of the orde
and 2 methods we have discussed so far. Convergence here hwyafast the (global) error of the OL
approximation at some fixed tintegoes to zero as the stepsizgoes to zero. Fourth order means
for every halving of the stepsize, the error drops by appnaxely a factor 0p* = 16.

ri1
DE
hat

programming. It is a one-step method, so that it requireg anlinitial condition to get started, yet

as an order four method is much more accurate that eitherutes & trapezoid method.

The quantity%(sl + 2s9 + 2s3 + s4) in the fourth-order Runge-Kutta method takes the place
of slope in the Euler method. This quantity can be considesedn improved guess for the slope
of the solution in the intervalt;, t; + h]. Note thats; is the slope at the left end of the interval,
s9 Is the slope used in the midpoint methad,is an improved slope at the midpoint, angdis an
approximate slope at the right-hand endpejnt h. The algebra needed to prove that this method
is order four is similar to our derivation of the trapezoiddanidpoint methods, but a bit lengthy,

and can be found for example in [Henrici].

6.4.1 Classical examples

In this subsection we present two examples of both histoend ongoing interest. Computers
were in their early development stages in the middle of thentigth century. Some of the first
applications were to help solve hitherto intractable systef differential equations. In so doing,
Hodgkin and Huxley essentially began the field of computeatimeuroscience, and Edward Lorenz

first glimpsed in meteorological models what later becanmwnas chaos.

A landmark in the history of neuroscience was the developroka realistic firing model for
nerve cells, or neurons. The originators of the model, Hodgkd Huxley, won the Nobel Prize in

Biology in 1963. The model is a system of four coupled difféi@ equations, one of which mod

els

the voltage difference between the interior and exterighefcell. The three other equations model
activation levels of ion channels, which do the work of exadiag sodium and potassium ions

between the inside and outside. THedgkin-Huxley equationsare:

Cv = —gimPh(v— Ey) — gan*(v — Ba) — g3(v — E3) + Iin
m = am(v — Ep)(1 —m)Bm(v — Ey)m
n = an(v— Ep)(1 —m)B,(v— Ep)n
W = ap(v— Eo)(1—m)By(v— Ep)h, (52)
where 05 01
5 —0.1v v
an(v) = —5g1y 7 Om(v) = e,
0.1 — 0.01v 1 »
an(v) = maﬁn(v) = 56807
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and where .

The coefficientC denotes the capacitance of the cell, dpddenotes the input current from other
cells. Typical coefficient values areé = 1 (capacitance, in microFaradg), = 120, go = 36,93 =
0.3 (conductances), anbly = —65, £1 = 50, By = —77, E3 = —54.4 (voltages, in millivolts).

The' equation is an equation of current per unit area, in units itlamperes/cm, while the
three other activations:, n, andh are unitless. The coefficielt is the capacitance of the neuron
membraneg, g2, g3 are conductances, ard , > and F3 are the "reversal potentials”, which are
the voltage levels that form the boundary between currewtiiipinward and outward.

Hodgkin and Huxley carefully chose the form of the equatitmsnatch experimental data,
which was acquired from the squid giant axon. They also faupaters to the model. Although the
particulars of the squid axon differ from mammal neurons, rtiodel has held up in general terms
as a realistic depiction of neural dynamics. More generdlig useful as an example of excitable
media that translates continuous input into an all-or-imgthesponse.

an(v) = 0.07e" 20, B, (v)

% Program 6.5 Plotting program for Hodgkin-Huxley by IVP sol ver
function hh

% [a b] time interval,

% ic = initial voltage v, gating variables m, n, h

% h = stepsize

% Calls a one-step method such as rkdstep.m

% Example usage: hh

global pa pb pulse

inp=input(’square pulse start, square pulse end, muamps in [ 1 egq. [0 51 7]: ");
pa=inp(1);pb=inp(2);pulse=inp(3);

ic=[-65 0 .3 .6];

h=.05;p=10; %p steps per point plotted

a=0;b=100;n=ceil((b-a)/h); % plot n points in total

y(1,:)=ic; % enter initial conds in y

t(1)=a;

for i=1:n
t(i+1)=t(i)+h;
y(i+1,:)=rk4step(t(i),y(i,:),h);
end
subplot(3,1,1);
plot([a pa pa pb pb b],[0 O pulse pulse 0 0]);
grid;axis([0 100 0 2*pulse])
ylabel(input pulse’)
subplot(3,1,2);
plot(t,y(:,1));grid;axis([0 100 -100 100])
ylabel('voltage (mV)’)
subplot(3,1,3);
plot(t,y(:,2),t,y(:,3),t,y(:,4));0grid;axis([0 100 0 1] )
ylabel('gating variables’)
legend('m’,’'n’;’h’")
xlabel('time (msec)’)

function y=rk4step(t,w,h)
%one step of the Runge-Kutta order 4 method
sl=ydot(t,w);
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s2=ydot(t+h/2,w+h*s1/2);
s3=ydot(t+h/2,w+h*s2/2);
s4=ydot(t+h,w+h*s3);
y=w+h*(s1+2*s2+2*s3+54)/6;

function ydot = ydot(t,w)

global pa pb pulse
c=1;91=120;92=36;93=0.3;T=(pa+pb)/2;len=pb-pa;
e0=-65;e1=50;e2=-77;e3=-54.4;
in=pulse*(1-sign(abs(t-T)-len/2))/2;

% square pulse input on interval [pa,pb] of pulse muamps
v=w(1);m=w(2);n=w(3);h=w(4);

ydot=zeros(1,4);

ydot(1)=(in - gl*m*m*m*h*(v-el) - g2*n*n*n*n*(v-e2) - g3* (v-e3))/c;
v = v-e0; %modern convention

ydot(2)=(1-m)*(2.5-0.1*v)/(exp(2.5-0.1*v)-1) - m*4*ex p(-v/18);
ydot(3)=(1-n)*(0.1-0.01*v)/(exp(1-0.1*v)-1) - n*0.125 *exp(-v/80);

ydot(4)=(1-h)*0.07*exp(-v/20) - h/(exp(3-0.1*v)+1);
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Figure 15: Screenshots of Hodgkin-Huxley program(a) Square wave input of siZg, = 7 uA
attime 50 msecs, 1 msec duration, causes the model neuromémée. (b) Sustained square wave,
with i, = 7 pA causes the model neuron to fire periodically.

Without input, the Hodgkin-Huxley neuron stays quiescan voltage of approximatelf.
Setting [i, to be a square current pulse of length 1 msec and strength roames is sufficient
to cause a spike, a large depolarizing deflection of the geltarhis is illustrated in Figure 15.
Run the program to check thé9 pA is not sufficient to cause a full spike. It is this property of
greatly magnifying the effect of small differences in inpli&t may explain the neuron’s success at
information processing. Figure 15(b) shows that if the tnpurrent is sustained, the neuron will
fire a periodic volley of spikes.

The Lorenz equations are a simplification of a miniature afphere model that was designed
to study Rayleigh-Bénard convection, the movement of heatfluid like air from a lower warm
medium (such as the ground) to a higher cool medium (like gpeuatmosphere). In this model of
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a two-dimensional atmosphere, a circulation of air dev&kbiat can be described by the system of
three equations

T = —sx+ sy
= —xz4+rex—y
Z = xy—bz, (53)

called theLorenz equations The variabler denotes the clockwise circulation velocifymeasures

the temperature difference between the ascending andrifisgecolumns of air, and measures

the deviation from a strictly linear temperature profilehe wertical direction. The Prandtl number

s, the Reynolds number, andb are parameters of the system. The most common setting for the
parameters is = 10, » = 28, andb = 8/3, which results in the trajectory shown in Figure 16.

function ydot=ydot(t,y)
%Lorenz equations
s=10; r=28; b=8/3;

ydot(1) = -s*y(1)+s*y(2);
ydot(2) = -y(1)*y(3)+r*y(1)-y(2)
ydot(3) = y(1)*y(2) - b*y(3)

50

25

-25 0 25

Figure 16: One trajectory of the Lorenz equations (53), progcted to thexz-plane. Parameters
are settos = 10, = 28, andb = 8/3.

The Lorenz equations are an important example becausejbettries show great complexity,
despite the fact that the equations are deterministic, ainlgt 5imple (almost linear). The explana-
tion for the complexity is often calledensitive dependence on initial conditionswhich, in our
language, is just another way of saying that the problemtékats an initial condition as input and
gives the trajectory location as output has a high conditiember.

> REALITY CHECK 6: THE TACOMA NARROWS BRIDGE DISASTER <
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A mathematical model that attempts to model the Tacoma Marboidge incident was proposed
recently by McKenna and Tuama [MT]. The goal is to explain homgional, or twisting, oscillations
can be magnified by forcing that is strictly vertical.

Consider a roadway of widtll hanging between two suspended cables, as in Figure 17(a). We
will consider a two-dimensional slice of the bridge, igmgrithe dimension of the bridge’s length
for this model, since we are only interested in the sideide-motion. At rest, the roadway hangs
at a certain equilibrium height due to gravity; lgtdenote the current distance the center of the
roadway hangs below this equilibrium.

Hooke’s Law postulates a linear response, meaning thatetstering force the cables apply
will be proportional to the deviation. Let be the angle the roadway makes with the horizontal.
There are two suspension cables, stretehed sin # andy + [ sin # from equilibrium, respectively.
Assume a viscous damping term that is proportional to thecitgl Using Newton’s lawF" = ma
and denoting Hooke’s constant iy, the equations of motion fay andé are

Yy’ = —dy’—{E(y—lsinH)—i—E(y—i—lsinH)}
m m

0" = _d9,+3c039 [E(y—lsinﬂ)—g(y—klsin@}
l m m

However, Hooke’s law is designed for springs, where theorexj force is more or less equal
whether the springs is compressed or stretched. McKenndwaanta hypothesize that cables pull
back with more force when stretched than they push back whempessed. (Think of a string
as an extreme example.) They replace the linear Hooke’s leatoning forcef(y) = Ky with

a nonlinear forcef(y) = (K/a)(e®™ — 1), as shown in Figure 17(b). Both functions have the
same slopex aty = 0, but for the nonlinear force, a positiye(stretched cable) causes a stronger
restoring force than the corresponding negagiyslackened cable). Making this replacement in the
above equations yields

y// — _dy/ o £ [ey—lsine — 1+ ey—l—lsinB o 1]
ma
0K . i
9// _ —d9/ + 3C(Z)S % |:ey—lsm€ o €y+l51n6:| ) (54)

As the equations stand, the poi@at, ) = (0,0) is an equilibrium. Now turn on the wind.
Add the forcing termA sin wt to the right-hand-side of thg equation. This adds a strictly vertical
oscillation to the bridge.

Useful estimates for the physical constants can be made. m&ss of a one foot length of
roadway was about 2500 kg, and the spring constamias been estimated at 1000 Newtons. The
roadway was about 12 meters wide. For this simulation, thepitzg coefficient was set dt= 0.01
and the Hooke’s nonlinearity coefficient= 0.1. The vertical forcing supplied by the wind on
the final day caused the bridge to oscillate vertically almde every two seconds, so estimate
w = 27 /2 ~ 3. These coefficients are only guesses, but they suffice to slrages of motion that
tend to match photographic evidence of the bridge’s finallaions. Matlab code that runs this
model follows:

%Program 6.? Animation program for bridge using IVP solver
function tacoma(int,ic,h,p)
%Inputs: int = [a b] time interval,
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Figure 17: Schematics for the McKenna-Tuama model of the Tawma Narrows bridge. (a)
Denote the distance from the roadway center of mass to iiiagum position byy, and the angle
of the roadway with the horizontal 8y (b) Exponential Hooke’s Law curvg(y) = (K/a)(e® —

1).

%ic = [y(1,1) y(1,2) y(1,3) y(1,4)], initialize

%h = stepsize, p = steps per point plotted

%Calls a one-step method such as trapstep.m
%Example usage: tacoma([0 500],[1 O 0.001 0],.04,3)

clf % clear figure window
a=int(1);b=int(2);n=ceil((b-a)/(h*p)); % plot n points i
y(1,:)=ic; % enter initial conds in y
t(1)=a;len=6;

set(gca,’XLim’,[-8 8],’YLim’,[-8 8], ...
"XTick',[-8 0 8],'YTick',[-8 0 §], ...
‘Drawmode’,'fast’,'Visible',’on’,’'NextPlot’,’add’);
cla; % clear screen
axis square % make aspect ratio 1 - 1
road=line(’color’,’b’,’LineStyle’,’-",’LineWidth’,5
'xdata',[],'ydata’,[]);
Icable=line(’color’,’r’,'LineStyle’,’-",’LineWidth’
'xdata',[],'ydata’,[]);
rcable=line('color’,’r’,'LineStyle’,’-','LineWidth’
'xdata’,[],'ydata’,[]);
for k=1:n
for i=1:;p
t(i+1) = t(i)+h;
y(i+1,:) = trapstep(t(i),y(i,:),h);
end
y(1,7) = y(p+1,)t(L)=t(p+1);
z1(k)=y(1,1);z3(k)=y(1,3);
c=len*cos(y(1,3));s=len*sin(y(1,3));

n total

Jerase’,’xor’,...
,1,’erase’,’xor’, ...

,1,’erase’,’xor’,...
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set(road,’xdata’,[-c c],’'ydata’,[-s-y(1,1) -s-y(1,1)] )
set(lcable,’xdata’,[-c -c],’'ydata’,[-s-y(1,1) 8])

set(rcable,’xdata’,[c c],’'ydata’,[s-y(1,1) 8])

drawnow; pause(h)

end

function y = trapstep(t,x,h)

%one step of the trapezoid method
z1=ydot(t,x);

g=x+h*z1;

z2=ydot(t+h,qQ);

y=x+h*(z1+22)/2;

function ydot=ydot(t,y)
len=6;a=0.1;
al=exp(a*(y(1)-len*sin(y(3))));
a2=exp(a*(y(1)+len*sin(y(3))));

ydot(1) = y(2);
ydot(2) = -0.01*y(2)-0.4*(al+a2-2)/a+11*sin(3*t);
ydot(3) = y(4);
ydot(4) = -0.01*y(4)+1.2*cos(y(3))*(al-a2)/(len*a);

Runtacoma.m with the default parameter values, to see the phenomendulgiesl earlier. If
the angled of the roadway is set to any small nonzero value, verticaifgr cause$ to eventually
grow to a macroscopic value, leading to significant torsibthe roadway. The interesting point is
that there is no torsional forcing applied to the equatibme;"torsional mode” is excited completely
by vertical forcing.

This project is an example of experimental mathematics. &dueations are too difficult to
derive closed-form solutions, and even too difficult to graalitative results about. Equipped
with reliable ode solvers, we can generate numerical t@jies for various parameter settings, to
illustrate the types of phenomena available to this modeledJn this way, differential equations
models can predict behavior and shed light on mechanisn@éntgic and engineering problems.

Questions to consider:

1. What happens if with the default system if the initial anghd angular velocity, 6’ are set
to zero?

2. What ranges of forcing amplitudébetweer) and20 cause the torsional mode to be excited?
(Use the defaulty = 3.) What ranges of forcing frequency betweend and4? (Use the default
A = 11.) If the torsional mode is not excited, what happens to thgges? Try some large initial
0, say~ 0.1.

3. Print the time series af(¢t) andd(¢) from the code. Swap in an RK4 solver, and compare
accuracy of the series before and after. How large a stepsizebe used itrapstep  before
accuracy is lost?

4 <

Exercises 6.4

6.4.1. Write out the midpoint method for the IVPs in Exerdisg.4. Using stepsizeé = 1/4, calculate the midpoint
method approximation on the interjal 1]. Compare to the correct solution found in Exercise 6.1.4,fand the
total error at each step.
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6.4.2. Repeat Exercise 6.4.1 for the IVPs in Exercise 6.1.5.

6.4.3. Write out the order four Runge-Kutta method for th®#\n Exercise 6.1.4. Using stepsize= 1/4, calculate
the RK4 method approximation on the intery@ 1]. Compare to the correct solution found in Exercise 6.1.4,
and find the total error at each step.

6.4.4. Repeat Exercise 6.4.3 for the IVPs in Exercise 6.1.5.
6.4.5. Prove that for any # 0, the method (50) is second order.
6.4.6. Consider the IVR’ = \y,y(0) = 1. The solution ig(t) = e*.

(a) Calculatew; for RK4 in terms ofwy for this differential equation.

(b) Calculate the local truncation error by setting = yo = 1 and determining/; — w1. Show that the local
truncation error is of siz&(h®), as expected for a fourth-order method.

6.4.7. Assume that the right-hand sifi¢, v) = f(¢) doesn’'t depend op. Show thats; = s3 in fourth-order Runge-
Kutta and that RK4 is equivalent to Simpson'’s rule for thegnal [ *" f(s) ds.

Computer Problems 6.4

6.4.1. Write and test a Matlab m-file callekktep.m that can be substituted feulerstep.m  or trapstep.m
in the programs of the previous section.

6.4.2. Print the values of the midpoint method solution orrid gf step sizeh = 0.1 in [0, 1] for the initial value
problems in Exercise 6.1.4.

6.4.3. Print the values of the fourth-order Runge-Kuttahmdtsolution on a grid of step size= 0.1 in [0, 1] for the
initial value problems in Exercise 6.1.4.

6.4.4. Repeat Computer Problem 6.4.3 but plot the apprdrimsalutions or0, 1] for step sizest = 0.1,0.05, and
0.025 along with the true solution.

6.4.5. Repeat Computer Problem 6.4.3 for the equations erfdise 6.1.5.

6.4.6. For the IVP’s in Computer Problem 6.4.3, plot the gladaror of the RK4 method dt= 1 as a function of, as
in Figure 4.

6.5 Variable step-size methods.

P to this point the step-size has been treated as a constant in the implementation of tlie OD
U solver. However, there is no reason thhatannot be changed during the solution process.
A good reason to want to change the step size is for a solutiannhoves between periods of
small change and periods of fast change. To make the fixeestegmall enough to track the fast
changes accurately may mean that the rest of the soluti@iviscsintolerably slowly.

The key idea of a variable step-size method is to monitor tiar eroduced by the current step.
The user sets an error tolerance that must be met by the tategn Then the method is designed to
(1) reject the step and cut the step-size if the error toteramexceeded, or (2) if the error tolerance
is met, to accept the step and then choose a step:sizat should be appropriate for the next step.
The key need then is for some way to approximate the error mad@ch step. First let's assume
we have found such a way, and explain how to change the step siz

The simplest way to vary step size is to double or halve the sitee, depending on the current
error. Compare the error estimatg or relative error estimate; /|w;|, with the error tolerance.
(Here, as in the rest of this section, we will assume the ODBfesy being solved consists of one
equation. It is fairly easy to generalize the ideas of thigtisa to higher dimensions.) If the
tolerance is not met, the step is repeated with new step gz &#h, /2. If the tolerance is met too
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well, say if the error is less thaly 10 the tolerance, after accepting the step, the step size detbu
for the next step.

In this way, the step size will be adjusted automatically &ize that maintains the (relative)
local truncation error near the user-requested level. Wérdhe absolute or relative error is used
depends on the context; a good general purpose technigaeisetthe hybrid; / max(|w;|, ) to
compare with the error tolerance, whére- 0 protects against very small values:of.

A more sophisticated way to choose the appropriate stepfsiiows from knowledge of the
order of the ODE solver. Assume the solver has oggeso that the local truncation errey =
O(hP*1). Let T be the relative error tolerance allowed by the user for et sThat means the
goal is to ensure; /|w;| < T.

If the goale; /|w;| < T is met, then the step is accepted and a new step size for thetepxs
needed. Assuming that

e ~ ch‘?Jrl (55)
for some constant, the step sizé that best meets the tolerance satisfies
T|w;| = chP*1, (56)
Solving the equations (55) and (56) feryields
T|w; 1/p+1
hy = 0.8 % ( [ |> h; (57)
€;
where we have added a safety factof&f to be conservative. Thus the next step size will be set to

hiv1 = hs.

On the other hand, if the goaJ/|w;| < T is not met by the relative error, thén is set toh., for
a second try. This should suffice, because of the safetyrfddtawever, if the second try also fails
to meet the goal, then the step size is simply cut in half. Torginues until the goal is achieved.
As above, for general purposes, once should replace theveetaror bye; / max(|w;|, 6).

Both the simple and sophisticated methods described abepend heavily on some way to
estimate the error of the current step of the ODE salyet |w;;1 — y;+1|. An important constraint
is to gain the estimate without requiring a large amount ¢feezomputation.

The most widely-used way for obtaining such an error estnigto run a higher order ODE
solver in parallel with the ODE solver of interest. The higbeder method’s estimate far;, 1, call
it z;11, will be significantly more accurate than the origingl, |, so that the difference

e & |Zig1 — Wit (58)

is used as an error estimate for the current step fraimz; ;.

Following this idea, several “pairs” of Runge-Kutta methpdne of ordep and another of order
p + 1, have been developed that share much of the needed coropstdt this way the extra cost
of step size control is kept low. Such a pair is often calle@ravedded Runge-Kutta pair.

Example 6.18 RK2/3, An example of a Runge-Kutta order2/order 3 embeddérd p

The explicit trapezoid method can be paired with a thirdeof®K method to make an embedded
pair suitable for step size control. Set

s1+ s
Wiyl = wi+h12 2
s1+4s3+ s

6
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where

s1 = f(tivwi)
s = f(ti+ h,w; + hsi)

1 1. 514+ 39
= i+ —h,w; +=h
s3 f(tz+2 ,w2+2 5

)

In the abovew;; is the trapezoid step, ang,; represents a third-order method, which requires
the three Runge-Kutta stages shown. The third-order mathjust an application of Simpson’s
rule for numerical integration to the context of differahtequations. From the two ODE solvers,
an estimate for the error can be found by subtracting the ppocximations:

—2
hsl S$3+ S92 .

3 (59)

e X |wiy1 — ziy1| =

Using this estimate for the local truncation error allows itlnplementation of either of the step size
control protocols described above.

Although the step size protocol has been worked outifgr, it makes even better sense to use
the higher order approximatiot),; to advance the step, since it is available. This is cdthedl
extrapolation.

Example 6.19 The Bogacki-Shampine order2/order 3 embedded pair.

Matlab uses a different embedded pair indtee23 command. Let

s1 = f(tivwi)
1 1
S = f(ti+§h,wz’+§h81)
3 3
S3 = f(tz + Zh,wi + Zh~5’2)
h
Zit1 = w;+ 5(231 + 3s9 + 4s3)
sa. = [f(t+h,zi41)
h
Wit1 = w;+ ﬂ(’?Sl + 652 + 8s3 + 3s4) (60)

It can be checked that, is an order 3 approximation, and, ., despite having four stages, is
order 2. The error estimate needed for step size control is

h
ei = |zit1 — wit1] = 5\ — 5s1 + 652 + 8s3 — 9sy4]. (61)
Note thats, becomes; on the next step, if it is accepted, so there are no wastedsstag least

3 stages are needed anyway for a third-order Runge-KuttaadeT his design of the second order
method is called FSAL, for First Same As Last.
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Example 6.20 The Runge-Kutta-Fehlberg order 4/order 5 embedded pair.

st = f(ti,w;)
32 — 7 4 7w2 4 81
3 3 9
—  flti+ Sh,w; + —hs) + —h
53 f(t—|—8 w—|—32 81—1-32 $9)
12 1932 7200 7296
—  flti+ —h,w hsi — hsy 4+ 22,
= Fti+ ghwit oromhsy = oramhsy + o7 hss)
439 3680 845
ss = f(ti+h,w; + %hsl — 8hso + 513 hss — 4104h84)
1 8 3544 1859 11
=t + =h,w; — —hsy + 2hsy — h hsy — —h
% F(tit ghowi = ozhsy 4 2hsy = ooeshsy + mohss = 45hss)
wj = w-+h(£s +—14083 +—2197s - ls )
. 2161 " 2565 0 " 41047t 570
16 6656 28561 9 2
i+t1 = wi+h(— ~ T 62
#it wi (3591 100553 ¥ 56030 T 50%° T 550 (62)

It can be checked that. ; is an order 5 approximation, and tha, ; is order 4. The error estimate
needed for step size control is

o1 o217 12 ©3)
3601 42757 75240 T 5070 T 5570

e = |zig1 —wip1| =h

The Runge-Kutta-Fehlberg method (RKF45) is currently trastmvell-known variable step-size
one-step method. Implementation is simple, given the abmveulas. The user must set a relative
error tolerancd” and an initial step sizé. After computingwy, z; andey, the relative error test

€

<T (64)
|w|

is checked fori = 0. If successful, the new, is replaced with the locally extrapolated versian
and the program moves on to the next step. On the other hahe,riélative error test (64) fails, the
step is tried again with step sizegiven by (57) withp = 4, the order of the method producing.

(A repeated failure, which is unlikely, is treated by cuitstep size in half until success is reached.)
In either case, the step sizg for the next step should be calculated from (57).

Example 6.21 The Dormand-Prince order 4/order 5 embedded pair.
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s1 = f(ti,w;)
1 1
Sy = f(ti+ghawi+gh31)
3 3 9
S3 = f(tl + Eh7wi + Eh81 + 4—0h82)
4 44 56 39
= f(ti+ =h,w; + —=hsy — = hsy + 22h
S4 f( +5 w+45 51 T 32—1—9 s3)
8 19372 25360 64448 212
— fti+2howi +h - -2
% Pt Ghowi - h(Semeon = 517 92+ G561 %8~ 79°0)
— fhth ‘+h(9017 855 46732 49 )
% = ST LW T 1685 T 332 T H0a7 BT 176°Y T 18656 °
35 500 125 2187 11
Zit1 = wi+h(—81+—83+—84— S5—|——S6)

384 1113 192 6784 84
st = f(ti+h, zi11)
5179 7571 393 92097 187

1
202 L 65
576001 T 16695 % T 6a0 ™ 56+ 357 (69)

— wi+h _
wi + A 339200 T 2100°¢ T 10

Wi1

It can be checked that. ; is an order 5 approximation, and that, ; is order 4. The error estimate
needed for step size control is

71 noon 17253 22
57600 166952 " 1920°* " 339200°° ' 525

1
sg — —s7| (66)

st —wistl = R
€; |zz+1 w2+1| 40

Again local extrapolation is used, meaning that the stepvauiaced withz;; instead ofw;.
Note that in factw;. 1 heed not be computed — ondyis necessary for error control. Thisis a FSAL
method, like the Bogacki-Shampine method, siggbecomess; on the next step, if it is accepted.
There are no wasted stages - it can be shown that at least s siag) needed for a fifth-order
Runge-Kutta method.

The Matlab commandde45 uses the Dormand-Prince embedded pair along with step size
control roughly as described above. The user can set thaveelalerancel” as desired. The right-
hand side of the differential equation can be specified imatfan file, for example

function y=f(t,y)
y = trty+'3;
Then the command

>> opts=odeset(’RelTol’,1e-4,'Refine’,1,’'MaxStep’,1)
>> [t,y]=oded5(f,[0 1],1,0pts);

will solve the initial value problem of Example 6.1 with iiak conditiony, = 1, and relative error
tolerancel’ = 0.0001. If the parameteRelTol is not set, the default df.001 is used. Note that
the functionf input toode45 must be a function of two variables, in this casady, even if one of
them is absent in the definition of the function. The commaadlze run without an accompanying
function file by defining the functiorf "inline”, as

>> [t,y]=oded5(inline(’'t*y+t"3','t’,’y’),[0 1],1,0pts );
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The output fronode45 using the above parameter settings for this problem is

step t; W Yi €;

0 | 0.00000000f 1.00000000; 1.00000000f 0.00000000
1 | 0.54021287| 1.17946818| 1.17946345| 0.00000473
2 | 1.00000000f 1.94617812| 1.94616381 0.00001431

and if a relative tolerance d~6 is used,

step t; W Yi e

0 | 0.00000000f 1.00000000; 1.00000000; 0.00000000
0.21506262| 1.02393440, 1.02393440| 0.00000000
0.43012524| 1.10574441] 1.10574440) 0.00000001
0.68607729| 1.32535658 1.32535653| 0.00000005
0.91192246| 1.71515156| 1.71515144| 0.00000012
1.00000000| 1.94616394| 1.94616381] 0.00000013

a b wN P

The approximate solutions more than meet the relative tolenrance because of local extrapolation,
meaning that the;, ; is being used instead af,, 1, even though the step size is designed to be
sufficient forw; 1. This is the best we can do - if we had an error estimate;for, we could use

it to tune the step size even better, but we don’t have onee Alsb that the solutions stop exactly
at the end of the interval, 1], sinceode45 detects the end of the interval and truncates the step as

necessary.

In order to semde45 do its step size selection, we had to turn off some basic tefatiings
using theodeset command. ThdRefine parameter normally increases the number of solution
values reported beyond what is computed by the method, t@ makore beautiful graph, if and
when the output is used for that purpose. The default valug \which causes four times the
necessary number of points to be provided as output.MénStep parameter puts an upper limit
on the step sizé, and defaults to one-tenth the interval length. Using tHawdevalues for both of
these parameters would mean a step siZe6f0.1 would be used, and after refining by a factor of
4, the solution would be shown with a step sizé)®R25. In fact, running the command without an
output variable specified

>> opts=odeset('RelTol’,1e-6);
>> ode45(inline('t*y+t"3’,'t’,’y’),[0 1],1,0pts);

will cause Matlab to automatically plot the solution on edgof constant step siz&025, as shown
in Figure 18.

While it is tempting to crown variable step-size Runge-Kuttethods as the champion ODE
solvers, there are a few types of equations that they do matléaery well. Here is a particularly
simple example. See if you can decide where the problem lies.

Example 6.22 Useode45 to solve the initial value problem within a relative tolecarof10=*:

y'=10(1 - y)
y(0) =1/2 (67)
t € [0,100].

This can be accomplished in three lines of Matlab code:
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Figure 18: Matlab’'s ode45 command. Solution of the initial value problem of Example 6.1 is
computed, correct to withih0 6.

>> opts=odeset('RelTol’,1e-4);
>> [t,y]=oded5(inline(’10*(1-y)’,’t,’y’),[0 100],.5, opts);
>> length(t)

ans =

1241
>>

We have printed the number of steps because it seems excessig solution to the initial value
problem is easy to determing(t) = 1 — e~ 1%/ /2. Fort > 1 the solution has already reached its
equilibrium 1 within 4 decimal places, and it never moves any farther away ftonyet ode45
moves at a snail's pace, using an average step size of les8.thaWhy such a conservative step
size selection for such a tame solution?

Part of the answer is clear by viewing the output frone45 in Figure 19. Although the
solution is very close ta, the solver overshoots continually in trying to approxienekosely. The
differential equation is "stiff”, a term we will formally dime in the next section. For stiff equations,
a different strategy in numerical solution increases sgjwfficiency greatly. For example, note the
difference in steps needed when one of Matlab’s stiff sshage used:

>> opts=odeset('RelTol’,1e-4);
>> [t,y]=ode23s(inline("10*(1-y)",’'t’,’y’),[0 100],.5 ,opts);
>> length(t)

ans =
39

>>

Figure 19(b) plots the solution points from the soleeie23s . Relatively few points are needed
to keep the numerical solution within the tolerance. We imiliestigate how to build methods that
handle this type of difficulty in the next section.
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Figure 19: Numerical solution of the initial value problem of Example 6.22.(a) Usingode45
requires over 10 steps per unit time to stay within relatalerancel 0-%. (b) With ode23s , far
fewer steps are needed.

Computer Problems 6.5

6.5.1. Write a Matlab implementation of RK23 (Example 6.48Y apply to approximating the solutions of the IVPs in

Exercise 6.1.4 with a relative toleranceldf~® on [0, 1]. Ask the program to stop exactly at the endpairt 1.
Report the maximum step size used and the number of steps.

6.5.2. Compare the results of Computer Problem 6.5.1 wélatiplication of Matlab’®de23 to the same problem.
6.5.3. Repeat Computer Problem 6.5.1 for the Runge-Kuwgtdkherg method RKF45.
6.5.4. Compare the results of Computer Problem 6.5.3 wélafiplication of Matlab’®de45 to the same problem.

6.5.5. Apply a Matlab implementation of RKF45 to approximgtthe solutions of the systems in Exercise 6.3.1 with a

relative tolerance of0~° on |0, 1]. Report the maximum step size used and the number of steps.

6.6 Implicit methods and stiff equations.

The difficulty that occurs when using variable step-size dRKutta in Example 6.22 is that there

is a particular step-size that cannot be exceeded for thisrsapplied to this differential equation.
This phenomenon can be best understood in a much simplextont

Example 6.23 Apply Euler’s method to Example 6.22.
Euler’'s method for the right-hand sigét, y) = 10(1 — y) with step-sizeh is

Wiy1 = Wy + hf(ti, wi)
= w; +h(10)(1 — w;)
= w;(1 — 10R) + 10h. (68)
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Since the solution ig(t) = 1 — e~1%/2, the approximate solution must approdcim the long run.
Here we get some help from Chapter 1. Notice that (68) cand®ed as a fixed point iteration
with g(x) = z(1 — 10h) + 10h. This iteration has a fixed point at= 1, and it will be converged
to as long asg’(1)| = |1 — 10h| < 1. Solving this inequality yield® < 1 < 0.2. For any larger,
the fixed pointl will repel nearby guesses, and the solution will have no taiiEeing accurate.

Figure 20 shows this effect for Example 6.23. The solutiovelyy tame - an attracting equilibrium
aty = 1. An Euler step of sizés = 0.3 has difficulty finding the equilibrium because the slope
of the nearby solution changes so much between the begianitighe end of thé interval. This
causes overshoot in the numerical solution.

13

Backward Euler

Euler

0.7 ! ! !

Figure 20: Comparison of Euler and Backward Euler steps.The differential equation in Ex-
ample 6.22 is stiff. The equilibrium solutiojp = 1 is surrounded by other solutions with large
curvature (fast changing slope). The Euler step overshatite the Backward Euler step is more
consistent with the system dynamics.

Differential equations with this property, that attragtisolutions are surrounded with fast-
changing nearby solutions, are calkif. This is often a sign of multiple time scales in the system.
Quantitatively, it corresponds to the linear part of thentigand-sidef of the differential equa-
tion, in the variabley, being large and negative. (For a system of equations, triesponds to
an eigenvalue of the linear part being large and negativki3 definition is a bit relative, but that
is the nature of stiffness - the more large and negative, tiedler the step-size must be to avoid
overshoot. For Example 6.23, stiffness is measured by atia@l f /0y = —10 at the equilibrium
solutiony = 1.

One way to solve the problem depicted in Figure 20 is to somdiring in information from
the right side of the intervat;, ¢; + h|, instead of relying solely on information from the left side
That is the motivation behind the

Backward Euler method

wit1 = w; + hf(tig1, wig1). (69)
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Note the difference - while the Euler method uses the leftstope to step across the interval, Back-
ward Euler would like to somehow cross the interval so thatsllope is correct at the right end.

A price must be paid for this improvement. Backward Eulerusfirst example of ammplicit
method, meaning that the method does not give directly adtarfior the new approximatiomw; ;.
Instead, we must work a little to get it. For the examylle= 10(1 — y), the Backward Euler method
gives

Wi+l = w; + 10h(1 — wi+1),

which, after a little algebra, can be expressed as

wi—i-th
1+10h "

Settingh = 0.3 for example, the Backward Euler method gives; = (w; + 3)/4. We can again
evaluate the behavior as a fixed point iteration— g(w) = (w + 3)/4. There is a fixed point at
1, andg’(1) = 1/4 < 1, verifying convergence to the true equilibrium solutigr= 1. Unlike the
Euler method withh, = 0.3, at least the correct qualitative behavior is followed by ttumerical
solution. In fact, note that the Backward Euler method’'sisoh converges tg = 1 no matter how
large the step sizk (Exercise 6.6.1).

Because of the better behavior of implicit methods like Beenkl Euler in the presence of stiff
equations, it is worthwhile performing extra work requitedevaluate the next step, even though
it is not explicitly available. Example 6.23 was not chafjerg to solve forw;, 1, due to the fact
that the differential equation is linear, and it was posstblchange the original implicit formula to
an explicit one for evaluation. In general, however, thisaes possible, and we need to use more
indirect means.

If the implicit method leaves a nonlinear equation to solve, must refer to Chapter 1. Both
fixed point iteration and Newton’s method are often used beesior w; ;. This means there is an
equation-solving loop within the loop advancing the difatial equation. The next Example shows
how this can be done.

Wi1 =

Example 6.24 Apply the Backward Euler method to the initial value problem

y =y +8y° — 9y’
y(0) =1/2
t €10,3].

This equation, like the previous example, has an equilibraolutiony = 1. The partial derivative
df /0y = 1+ 16y — 27y evaluates te-10 aty = 1, identifying this equation as moderately stiff.
There will be a upper bound, similar to that of the previouanegle, forh such that Euler’s method
is successful. Thus we are motivated to try the BackwardrEnéthod

wiy1 = wi + hf(tig1, wit1)
= w; + h(wit1 + 8w22+1 — 9w§’+1).

This is a nonlinear equation im; 1, which we need to solve in order to advance the numerical
solution. Renaming = w; 1, we must solve the equatian= w; + h(z + 822 — 9z3), or

9hz® —8h22+ (1 —h)z —w; =0 (70)
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Figure 21: Numerical solution of the initial value problem of Example 6.24. True solution
is the dashed curve. The open circles denote the Euler methymwximation; the closed circles
denote Backward Euler. (&)= 0.3 (b) h = 0.15.

for the unknownz. We will demonstrate with Newton’'s method. To start Newsomethod, we
need an initial guess. Many choices could work - two choib@s tome to mind are the previous
approximationw;, and the Euler’s method approximation toy, ;. Although the latter is accessible
since Euler is explicit, it may not be the best choice foif giibblems, as shown in Figure 20. In
this case we will usey; as the starting guess.

Assembling Newton’s method for (70) yields

9hz® — 8hz? 4 (1 — h)z — w;
27hz2 — 16hz +1—h

Znew = 2 — (71)
After evaluating (71), replace with znew and repeat. For each Backward Euler step, Newton’s
method is run untikneyw — 2 is smaller than a preset tolerance (smaller than the etmatsate being
made in approximating the differential equation solution)

Figure 21 shows the results for two different step sizes.dudtiteon, numerical solutions from
Euler’s method are shown. Clearly= 0.3 is too large for Euler on this stiff problem. On the other
hand, whem is cut t00.15, both methods perform at about the same level. So-callédstvers
like Backward Euler allow sufficient error control with coaratively large step size, increasing
efficiency.

Exercises 6.6

6.6.1. Show that for every step sizethe Backward Euler approximate solution converges to thibrium solution
y = 1 ast; — oo for Example 6.23.
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6.6.2. Find all equilibrium solutions and the value of thealdian at the equilibria. Is the equation stiff? (4= y — y*
(b)y' = 10y — 10y% (c) ¢y’ = —10siny
[Ans.: @)y =0, fy(0) =1No.y =1, fy,(1) = =1 No. (b)y =0, f,(0) =10 No. y = 1, f,(1) = —10 Yes.
(c) y = n for all integersn, f,(oddr) = 10 No, f,(evenr) = —10 Yes.]

6.6.3. Consider the linear differential equatigh= ay + b for a < 0. (a) Find the equilibrium. (b) Write down the
Backward Euler method for the equation. (c) View BackwardeEas a Fixed Point Iteration to prove that the
method’s approximate solution will converge to the equilitn ast — oo.

Computer Problems 6.6

6.6.1. Compare Euler's method to Backward Euler for the IVP

v =y -y y' = 6y — 6y y' =6y — 3y’
@9 y(0)=1/2 (b)) y(0)=1/2 ()4 y(0)=1/2
t € [0,100]. t € [0, 100]. t € [0,100].

Which of the equilibrium solutions are approached by the@xdmate solution? For what range bfcan Euler
be used successfully? How large can the backward Eulerigeepes made, while achieving equivalent accuracy?

6.7 Multistep methods.

HE Runge-Kutta family that we have studied consists of onp-stethods, meaning that the
T newest stepv; 1 is produced on the basis of the differential equation andviiee of the
previous stepw;. This is in the spirit of well-defined initial value problem®r which a unique
solution exists starting at an arbitrauy.

The multistep methods suggest a different approach - usiedgnowledge of more than one
of the previousw; to help produce the next step. This will lead to ODE solveet tave order as
high as the one-step methods, but much of the computatiassay will be replaced by essentially
interpolating from past values on the solution path. ForgXa, while the second-order Midpoint
method

h h
Wi41 = Wj + hf(ti + §,wi + §f(ti,wl-))

needs two function evaluations of the ODE right-hand giger step, the
Adams-Bashforth Two-Step method

3 1
Wiy1 =w; +h §f(ti,wi) - §f(ti—1,wi—1) (72)

requires only one new evaluation per step (one is stored finenprevious step). We will see below
that (72) is also an second-order method. Therefore neytistethods can achieve the same order
with less computational effort - usually just one functisaleation per step.

Since multistep methods use more than one previowslues, they need help getting started.
The start-up phase for asistep method typically consists of a one-step method whegsuy
to produces — 1 valueswy, wo, ..., ws_1, before the multistep method can be used. The Adams-
Bashforth two-step method (72) neadsalong with the given initial conditiom in order to begin.
The following Matlab code uses the trapezoid method to piete start-up value, .
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% Program 6.6 Multistep method plotting program
function y=exmultistep(int,ic,h,s)
% Inputs: int= [a,b] time interval
% ic = [y0] initial condition
% h = stepsize, s = number of (multi)steps
% Calls a multistep method such as ab2step.m
% Example usage: exmultistep
a=int(1);b=int(2);n=ceil((b-a)/h);
% Start-up phase
y(1,:)=ic;t(1)=a;
for i=1:s-1 % start-up phase, using one-step method
t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,))=ydot(t(i).y(i,2));
end
for i=s:n % multistep method loop
t(i+1)=t(i)+h;
f(i,))=ydot(t(i).y(i,-));
y(i+1,:)=ab2step(t(i),i,y,f,h);
end

function y=trapstep(t,x,h)

%one step of the trapezoid method from section 6.2
z1=ydot(t,x);

g=x+h*z1;

z2=ydot(t+h,qQ);

y=x+h*(z1+22)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*f(i,:)/12-1(i-1,:)/2);

function z=another2step(t,i,y,f,h)
%one step of another 2-step method
z=y(i,:)/2+y(i-1,:)/2+n0*(7*(i,:)/4-f(i-1,)/4);

function z=unstable2step(t,i,y,f,h)
%one step of an unstable 2-step method
z=-y(i,:))+2*y(i-1,:)+h*(5*f(i,:)/2+f(i-1,:)/2);

function z=weaklystable2step(t,i,y,f,h)
%one step of a weakly-stable 2-step method
z=y(i-1,:)+h*2*(i,:);

function z=weaklystable2stepl(t,i,y,f,h)
%one step of another weakly-stable 2-step method
z=2*y(i,)-y(i-1,:)+h*(f(i,)-f(i-1,7);

function ydot = ydot(ty) % IVP from section 6.1
ydot = try+t*tHt;

Figure 22(a) shows the result of applying Adams-Bashfarti$tep method to the initial value
problem (5) from earlier in the chapter, using step dize 0.05, using the trapezoid method for
start-up. Part (b) of the figure shows the use of a differeotstep method. Its instability will be
the subject of our look at stability analysis in the next st
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() (b)

Figure 22: Two-step methods applied to IVP (5)Correct solution is the dashed curve. Step size
h = 0.05. (a) Adams-Bashforth two-step method plotted as circl¢dJfistable method (81) in
circles.

6.7.1 Generating multistep methods.

A generals-step method has the form
Wil = G1W; + AaWi—1 + ... + aWi—s1 + hlbo figx1 + b1fi +bafici + ...+ bs fi—st1]. (73)

The step size i& and we use the notational convenience
fi= f(ti,wi).

If by = 0, the method is explicit. by # 0, the method is implicit. We will discuss how to use
implicit methods below.

First, we want to show how multistep methods are derived,hamdto decide which ones will
work best. The main issues that arise with multistep metlvagisbe introduced in the relatively
simple case of two-step methods, so we begin there. A getvenastep method (setting = 2 in
(73)) has the form

Wit1 = a1w; + agw;—1 + hibo fit1 + b1 fi + bafi—1]. (74)

To develop a multistep method, we need to resort to Tayldneofem once more, since the
game remains to match as many terms of the solution’s Tayfmresion as possible with the terms
of the method. What remains will be the local truncation erro

We assume that all previous; are correct, i.e.w; = y; andw;_1 = y;_1 in (74). The
differential equation says thgf = f;, so that all terms can be expanded in a Taylor expansion as
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follows:
Wir1 = a1w; + aswi—1 + hlbo fir1 + b1 fi + bafi—1]
+oaly - hy o+ Sy - gy o+ sy -]
bohl g R By By g
+ bl[ hyl’] , \
bl ml - R+ By By g
Adding up yields
! h2 /!
wit1 = (a1 +a2)y; + (bo + b1 + b2 — az)hy; + (ag — 2by + 250)5%
h3 n h4 111,
+ (—CLQ + 3bg + 3b2)€y/ + (CLQ + 4bg — 4b2)ﬂyi” + ... (75)
y choosing thei; andb; appropriately, the local truncation errgr,; — w;.1, where
By ch they; andb tely, the local truncat £1 — wis1, wh
! h2 i h3 n
Yit1 = Yi + hy; + Eyi + F% +... (76)

can be made as small as possible, assuming the derivatix@gdad actually exist. Next, we will
investigate the possibilities.

6.7.2 Explicit multistep methods

To look for explicit methods, seéfy = 0. A second-order method can be developed by matching
terms in (75) and (76) up to and including thé term, making the local truncation error of size
O(h3). Comparing terms, we find we need to solve the system

ar+ay = 1
—as+bi+by = 1
ay — 2b2 =1 (77)

There are three equations in four unknowns, so it will be iptesso find infinitely many different
explicit order-two methods. (There is also one order-thmeghod that turns out to be not useful.
See Exercise 6.7.4.) Note that the equations can be writerms ofa; as follows:

ay = 1— al
1
b1 = 2- 5&1
1
by = —zm (78)
2
The local truncation error will be
1 3by —a
Yitl — Wit1 = 6h3y§” - %h‘gyé// +O(hh)
1—-3b
= R oY)
4
= S Bpsgr o), (79)

12
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s
. @ \ SPOTLIGHT ON: Complexity

The advantage of multistep methods to one-step methodsas @fter the first few steps, only one new
evalution of the right-hand side function need be made. Rersiep methods, it is typical for functipn
evaluations to be needed. Fourth-order Runge-Kutta, famgxe, needs four evaluations per step, while

the fourth-order Adams-Bashforth method needs only orez #fe startup phase.

We are free to sei; arbitrarily - any choice leads to a second-order method, @save just
shown. Setting:; = 1 yields the second-order Adams-Bashforth method (72). Natea, = 0
by the first equation, anth, = —1/2 andb; = 3/2. According to (79), the local truncation error is
%h?’y’”(ti) + O(h%).

Alternatively, we could set; = 1/2 to get another two-step second-order method with=
1/2,by = 7/4, andby = —1/4:

Another second-order two-step method

1 1 7
Wiyl = zw; + —wi—1 + h]

1
5 5 Zfi - Zfi—l]a (80)

which has local truncation errgh3y” (t;) + O(h*).
A third choice,a; = —1, gives

Unstable second-order two-step method

5 1
Wiyl = —w; + 2w;—1 + h[§fi + §fi—1] (81)

Figure 22 showed that the methods (72) and (81) are not eqedectiveness. The failure of (81)
brings out an important condition that must be met by malfistolvers, called stability. Consider
the even simpler IVP

y'=0
y(0)=0 (82)
t €10,1].

Write out method (81) for this example. It is

Wiyl = —w; + 2w;—1 + h[O] (83)

There are many solutionsv; } to (83). One isw; = 0. However, there are others. Substituting the
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form w; = c\? into (83) yields

AT e — 20N = 0

AT+ A -2 =0 (84)

The solutions of the "characteristic polynomial® +\ — 2 = 0 of this recurrence relation ateand
—2. The latter is a problem - it means that solutions of fgra2)’c are solutions of the method for
smallc. This allows small rounding and truncation errors to quiaitow to unit size and swamp
the computation, as seen in Figure 22. It is important to lbe that the roots of the characteristic
polynomial of the method stay bounded byn absolute value, to avoid this possibility. This leads

to the following definition.

Definition 6.6 The multistep method (73) &ableif the roots of the polynomiaP(z) = x* +a;z*~! +

...+ as are bounded by in absolute value, and any roots of absolute vdlaee simple roots. A stab

method for whichl is the only root of absolute valueis calledstrongly stable otherwise it isweakly
stable

e

The Adams-Bashforth method (72) has radend1, making it strongly stable, while (81) has roots

—2 and1, making it unstable.
The characteristic polynomial of the general two-step idams

plz) = 2% — a1z —ay
ac?—alx—1+a1
(x—1)(z—a;+1)

whose roots aré anda; — 1. Returning to (78), we can find a weakly stable second-ordsthoul

by settinga; = 0. Then the roots aréand—1, leading to a

Weakly stable second-order two-step method

Wit1 = Wi—1 + 2hf; (85)

Example 6.25 Apply strongly stable method (72), weakly stable method,(86d unstable method (81)

to the initial value problem

Yy
y(0) = (86)
t

The solution is the curvg = e~3!. We will use Program 6.3 to follow the solutions, whgo®t.m
has been changed to

function ydot = ydot(t,y)
ydot = -3*y;
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and ab2step.m is replaced by one of the three callb2step , weaklystable2step , or
unstable2step

Figure 23 shows the three solution approximations for &egs= 0.1. The weakly stable and
unstable methods seem to follow closely for a while, and there quickly away from the correct
solution. Reducing the step size does not eliminate thelgmglalthough it may delay the onset of
instability.

—i -1

(@) (b)

Figure 23: Comparison of second-order, two-step methods ggtied to IVP (86). (a) Adams-
Bashforth method (b) Weakly stable method (in circles) amstable method (in squares).

With two more definitions, we can state the fundamental #moof multistep solvers.

Definition 6.7 A multistep solver isconsistentif it has order at least. A solver isconvergentif the
approximate solutions converge to the exact solution fohézash — 0.

Theorem 6.8 (Dahlquist) Assume that the starting values are correcenTdmultistep method (73) is
convergent if and only if it is stable and consistent.

One root of the characteristic polynomial must belafsee Exercise 6.7.6). The Adams-
Bashforth methods are the ones whose other roots are(alFai this reason, the Adams-Bashforth
two-step method is considered the "most stable” of the ttep-methods.

The derivation of higher-order methods, using more stepstdcisely analogous to our deriva-
tion of two-step methods above. Strongly stable multistephiads include the following.
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Adams-Bashforth Three-Step Method(third-order)
h
Wiyl = w; + 3[23fi —16f;—1 + 5fi—2] (87)
Adams-Bashforth Four-Step Method(fourth-order)

h
Wiyl = w; + ﬁ[55fi —59f; 1 +37fi_o — 9fi_3] (88)

6.7.3 Implicit multistep methods

When the coefficienty in (73) is nonzero, the method is implicit. The simplest setorder im-
plicit method (see Exercise 6.7.3) is the

Implicit Trapezoid Method (second-order)

Wip1 = Wi + g[fi-i—l + fil (89)

If the f;,1 term is replaced by evaluatinfyat the "prediction” forw; 1 made by Euler's method,

then this becomes the explicit trapezoid method. The inptapezoid method is also called the
Adams-Moulton one-step method, by analogy with what foloin example of a two-step implicit

method is the

Adams-Moulton Two-Step Method(third-order)

h
Wiyl = w; + E[5fz'+1 +8fi — fi—1] (90)

There are significant differences between the implicit axglieit methods. First, it is possible to
get a stable third-order implicit method using only two stegnlike the explicit case. Second, the
corresponding local truncation error formula is smallerifiaplicit methods. On the other hand, the
implicit method has the inherent difficulty that it needs sokmd of help to evaluate the implicit
part.

For these reasons, implicit methods are often used as tihectar in a "predictor-corrector”
pair. Implicit and explicit methods of the same order aralusgether. Each step is the combination
of a prediction by the explicit method and a correction byithplicit method, where the implicit
method uses the predicted ,; to calculatef; ;. Predictor-corrector methods use approximately
twice the computational effort, since an evaluation of thieigkntial equation right-hand-sidg is
done on both the prediction and the correction parts of the. diowever, the added accuracy and
stability often make the price worth paying.

A simple predictor-corrector method pairs the two-step rAda@Bashforth explicit method as
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predictor with the one-step Adams-Moulton implicit methasl corrector. Both are second-order
methods. Matlab code looks similar to the Adams-Bashfootteaused earlier, but with a corrector
step added.

% Program 6.7 Adams-Bashforth-Moulton second-order predi ctor-corrector
function y=predcorr(int,ic,h,s)
% Inputs: int= [a,b] time interval
% ic = [y0] initial condition
% h = stepsize, s = number of steps for explicit method
% Calls multistep methods such as ab2step.m and amlstep.m
% Example usage: predcorr([0 1],1,.05,2)
a=int(1);b=int(2);n=ceil((b-a)/h);
% Start-up phase
y(1,)=ic;t(1)=4;
for i=1:s-1 % start-up phase, using one-step method
t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,))=ydot(t(i),y(i,2));
end
for i=s:n % multistep method loop
t(i+1)=t(i)+h;
f(i,))=ydot(t(i).y(i,-));
y(i+1,:)=ab2step(t(i),i,y,f,h); % predict
f(i+1,:)=ydot(t(i+1),y(i+1,));
y(i+1,:)=amlstep(t(i),i,y,f,h); % correct
end
plot(t,y(:,1),t,y(:,1),'0");

function y=trapstep(t,x,h)

%one step of the trapezoid method from section 6.2
z1=ydot(t,x);

g=x+h*z1;

z2=ydot(t+h,qQ);

y=x+h*(z1+22)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*(i,:)-f(i-1,:))/2;

function z=am1lstep(t,i,y.f,h)
%one step of the Adams-Moulton 1-step method
z=y(i,:)+h*(f(i+1,:)+f(i,:))/2;

function ydot = ydot(ty) % IVP
ydot = try+t*tt;

Deriving the Adams-Moulton two-step method is done justhes éxplicit methods were es-
tablished. Redo the set of equations (77) but without régmis, = 0. Since there is an extra
parameter nowd) we are able to match up (75) and (76) through the degree 3tqmtting the
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local truncation error in thé* term. The analogue to (77) is

ay+ay =
—ag+bo+b+by =
as + 2by — 2by =
—as 4+ 3bg +3by =

—_ = =

(91)

Satisfying these equations results in a third-order tvep-ginplicit method.
The equations can be written in termsagfas follows:

ay = 1—&1

bp = -+—m
by =

by = 5——m (92)

The local truncation error is

24 7t 24 :
1-— — 4b 4b
_ as o o + 2h4y£/// + O(h5)

= —Sh'y + O(). (93)

1 4bg — 4b
Yird — Wis1 = _h4y/_/// i) 2 + a2 h4y//// + O(h5)

The order of the method will be three as longzas# 0. Again, a, is a free parameter, so there are
infinitely many third-order two-step implicit methods. TA€dams-Moulton two-step method uses
the choicea; = 1. Exercise 6.7.8 asks you to verify that this method is styostable. Exercise
6.7.9 explores other choices @f.

Note one more special choice, = 0. From the local truncation formula we see that this two-
step method

Simpson’s Method
h
Wip1 = wi—1 + g[fi+1 +4fi + fiz1] (94)

will be fourth-order. Exercise 6.7.15 asks you to check thatonly weakly-stable. For this reason,
it is susceptible to error magnification.

The suggestive terminology of the Trapezoid Method (89) &imlpson’s Method (94) should
remind the reader of the numerical integration formulagnfi©hapter 5. In fact, although we have
not emphasized this approach, many of the multistep forsnwla have presented can be alter-
nately derived by integrating approximating interpolairis close analogy to numerical integration
schemes.

The basic idea behind this approach is that the differertialationy’ = f(¢,y) can be inte-
grated on the intervdt;, ¢, 1] to give

tit1
) —(t) = [ ) at (95
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Applying a numerical integration scheme to approximateiriegral in (95) results in a multistep
ODE method. For example, using the trapezoid rule for nurakimtegration from Chapter 5 yields

y(tiv1) —y(ti) = %(fi+1 + fi) + O(h?),

which is the second-order Trapezoid Method for ODE’s. If ppraximate the integral by Simp-
son’s Rule, the result is

Y(tisn) = y(t) = 5 (Fier +Afi+ fir) + O,

the fourth-order Simpson’s Method (94). Essentially, we approximating the right-hand-side of
the ODE by a polynomial and integrating, just as is done in enical integration. This approach
can be extended to recover various of the multistep methedsawe already presented, by changing
the degree of interpolation and the location of the inteafioh points. Although this approach is a
more geometric way of deriving some the the multistep methadjives no particular insight into
the stability of the resulting ODE solver.

By extending the previous methods, the higher-order Aditasliion methods can be derived,
in each case using, = 1:

Adams-Moulton Three-Step Method(fourth-order)

h
Wiyl = w; + ﬁ[gfi—i—l +19f; — 5fi—1 + fi—2] (96)

Adams-Moulton Four-Step Method (fifth-order)

h
Wit = w; + %[251]‘}41 + 646 f; — 264 f;_1 + 106f;—2 — 19fi_3] (97)

These methods are heavily used in predictor-corrector edstalong with an Adams-Bashforth pre-
dictor of the same order. Computer Problems 6.7.5 etc. asksoywrite Matlab code to implement
this idea.

Exercises 6.7

6.7.1. Write out the Adams-Bashforth method for the IVPs xeiEise 6.1.4. Using stepsize= 1/4, calculate the
approximation on the interval, 1]. Use the trapezoid method to create. Compare to the correct solution, and
find the total error at each step.

6.7.2. Repeat Exercise 6.7.1 for the IVPs in Exercise 6.1.5.
6.7.3. Show that the trapezoid rule (89) is a second-ordénade

6.7.4. Find a two-step, third-order explicit method. Istiethod stable? [Ansv; 1 = —4w;+5w;—1+h[4fi+2fi—1],
NO.]

6.7.5. Find a second-order two-step explicit method whoseacteristic polynomial has a double root at
6.7.6. Explain why the characteristic polynomial of an @ipbr implicit s-step method must have a rootlat

6.7.7. (a) For whichu; does there exist a strongly stable second-order two-sgixmethod? (b) Same question for
weakly stable. [Ans. (&) < a1 <2 (b) a1 =0,2]
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6.7.8. Show that the coefficients of the two-step Adams-kboulmplicit method satisfy (92) and that the method is
strongly stable.

6.7.9. Find the order and stability type of the following tatep implicit methods.
(@) wit1 =3w; —2w;—1 + %[13fi+1 —20fi —5fi-1]
(0) wit1 = %wi - %wi—l + %hfiJrl
(€) wiy1 = %wi — %wi71 + %[4fi+1 +4f; —2fi—1]
(d) wit1 = 3w; —2w;—1 + %[7fi+1 —8fi — 11f;1]
(€) wit1 =2w; —wi—1 + %[fiJrl — fi—1]
[Ans. (a) second order unstable (b) second order stronghylest(c) third order strongly stable (d) third order
unstable (e) third order weakly stable]

6.7.10. Find a second-order two-step implicit method thatéakly stable. [Ans. For example, = 0,a2 = 1,b; =
2 — bg, ba = by, Whereby # 0 is arbitrary.]
6.7.11. Find a third-order two-step implicit method thatvisakly stable.

6.7.12. (a) Find the conditions (analogous to (77))aerb; required for a third-order, three-step explicit method) (b
Show that the Adams-Bashforth three-step method sati$féeesdnditions. (c) Show that the Adams-Bashforth
three-step method is strongly stable. (d) Find a weakltstthird-order three-step explicit method and verify
these properties.

6.7.13. (a) Find the conditions (analogous to (77))aerb; required for a fourth-order, four-step explicit method) (b
Show that the Adams-Bashforth four-step method satisfiesdmditions. (c) Show that the Adams-Bashforth
four-step method is strongly stable.

6.7.14. (a) Find the conditions (analogous to (77))esb; required for a fourth-order, three-step implicit methol) (
Show that the Adams-Moulton three-step method satisfiesaheitions. (c) Show that the Adams-Moulton
three-step method is strongly stable.

6.7.15. Derive Simpson’s method (94) from (92) and showithaffourth-order and weakly stable.

Computer Problems 6.7

6.7.1. Adapt thexmultistep.m program to apply the Adams-Bashforth method to the IVPs er&ige 6.1.4. Using
stepsizeh = 0.1, calculate the approximation on the inter{@l1]. Compare to the correct solution, and find the
total error at each step.

6.7.2. Repeat Exercise 6.7.1 for the IVPs in Exercise 6.1.5.

6.7.3. Repeat Exercise 6.7.1 using the weakly-stable@2rtthod, and compare results with those from the Adams-
Bashforth 2-step method.

6.7.4. Repeat Exercise 6.7.1 using the Adams-BashforteBrsethod.

6.7.5. Change Program 6.4 into a third-order predictoremor method, using Adams-Bashforth three-step methdd an
the Adams-Moulton two-step method. Apply to the solutioi\d® (9) using step sizé = 0.05.

6.7.6. Same as previous problem, but with a fourth-ordetipter-corrector method.

6.8 Software and Further Reading

RADITIONAL sources for fundamentals on ordinary differential equmtiare [5, 6, 4, 10, 16].
Many books teach the basics of ODE’s along with ample contipmi@ and graphical help;
we mention ODE Architect [8] as a good example. Polking’s I&latodes and manual [19] are an
excellent way to learn and visualize ODE concepts.
To supplement our tour through one-step and multi-step nigalanethods for solving ordi-
nary differential equations, there are many intermediaig @dvanced texts. The texts [14, 11]
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are classics. A contemporary Matlab approach is taken by [EXher recommended texts are
[15, 20, 1, 17, 9, 7] and the comprehensive two volume set]3R,

There is a great deal of sophisticated software availablediwving ODESs. Details on the solvers
used by Matlab can be found in [22, 2]. Variable stepsizeiexphethods of the Runge-Kutta type
are usually successful for non-stiff or mildly stiff probis. In addition to Runge-Kutta-Fehlberg
and Dormand-Prince, the variant Runge-Kutta-Verner, derds/6 method, is often used. For stiff
problems, backward-difference methods and extrapolatiethods are typically used.

The IMSL library includes the double precision routine DRI, based on the Runge-Kutta-
Verner method, and DIVPAG for a multistep Adams-type mettinad can handle stiff problems.

The NAG library provides a driver routine DO2BJF that rurensiard Runge-Kutta steps. The
multistep driver is DO2CJF, which includes Adams-stylegoaons with error control. For stiff
problems, the DO2EJF routine is recommended, where thénasem option to specify the Jacobian
for faster computation.

The Netlib repository contains a Fortran routine RKF45 far Runge-Kutta-Fehlberg method
and DVERK for the Runge-Kutta-Verner method. The Netlibkzege ODE contains several multi-
step routines. The routine VODE handles stiff problems.

The collection ODEPACK is a public domain set of Fortran cadpelementing ODE solvers
developed at Lawrence Livermore National Laboratory (LD)NChe basic solver LSODE and its
variants are suitable for stiff and non-stiff problems. Tbetines are freely available at the LLNL
websitehttp://ww.lInl.gov/CASC/odepack
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