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Preface

The book Continuous System Simulation is the long overdue sequel to the
book Continuous System Modeling that had been published with Springer–
Verlag in 1991.

Whereas the book Continuous System Modeling dealt with the abstrac-
tion from a physical system to its mathematical description, the book Con-
tinuous System Simulation concerns itself with the transition from such a
mathematical description, usually formulated as either a set of ordinary dif-
ferential equations (ODEs) or a set of differential and algebraic equations
(DAEs), to the trajectory behavior.

Consequently, the companion book was essentially a book of theoretical
physics, whereas this book is a book of applied mathematics. It introduces
the concepts behind numerical ODE and DAE solvers, as well as symbolic
preprocessing algorithms that may be used to precondition a model in such
a way as to improve the run–time efficiency of the resulting simulation code.

Why do we need yet another book on numerical ODE solutions? Haven’t
there been written enough books on that topic already? This surely must
be a rather mature field of research by now.

In order to provide an answer to this question, the reader may allow us to
return in time to the mid seventies. In those days, one of the authors of this
book used to be a graduate student of control engineering at ETH Zurich.
As he thought of writing a Ph.D. dissertation concerning the simulation
of continuous systems with heavy discontinuities in the models, a good
research topic at that time, he asked for an appointment with Peter Henrici,
who headed the applied mathematics group at ETH in those years. He told
him about his plans, and asked him, whether he would consent to serve as a
co–advisor on this dissertation. Peter Henrici’s answer was that “he didn’t
know anything about simulation, but would be glad to learn about the
topic from the dissertation.” Yet, the truth was that Peter Henrici already
knew a lot about simulation . . . he only didn’t know that he knew a lot
about this topic.

The problem is that whereas engineers talk about “simulation,” applied
mathematicians write about “numerical ODEs.” While mathematicians
speak of “ODE solvers,” engineers refer to these same tools as “integration
algorithms.” When engineers concern themselves with “discontinuity han-
dling,” mathematicians ponder about “root solvers.” The two communities
don’t read each other’s literature, and have developed not only different
terminologies, but also different mathematical notations.

An engineer is likely to represent a dynamical system in the form of a



state–space model:

ẋ = f(x,u, t); x(t0) = x0

where x(t) is the state vector, u(t) is the input vector, and t is the inde-
pendent variable, always considered to be time.

A mathematician is more likely to write:

y′ = f(x, y)

calling the independent variable x, using a prime symbol instead of the dot
symbol for the derivative, and placing the variables in reverse order. Math-
ematicians rarely worry about distinguishing between scalars and vectors
in the way engineers do, they hardly ever think about input variables, and
they mention initial conditions explicitly only, when they need them for a
particular purpose.

The difference between the two representations is influenced by different
goals. An engineer is eager to specify a complete problem that can be sim-
ulated to generate a specific trajectory behavior, whereas a mathematician
is more inclined to look at the problem from the angle of finding general
solution techniques that will work for all initial conditions.

Other mathematicians even prefer a notation, such as:

x ∈ X ⊂ R; y ∈ Y ⊂ R
n; y′ ∈ Y ′ ⊂ R

n

f : X × Y → Y ′

which looks utterly foreign to most engineers.
This book is written by engineers for engineers. It uses a notation that is

common to engineers, which should make this book much more accessible
to engineers than the average numerical ODE book written by a mathe-
matician for an audience of mathematicians.

Also, most mathematicians consider it “elegant” to write their books as
much as possible in mathematical language: definition, lemma, proof. They
use English prose as sparingly as they can get away with. Also this book
is full of formulae and equations. However, much text is placed in between
these equations, providing plenty of rationale for what these equations are
supposed to mean. In this book, we use mathematical apparatus only for
the purpose of making a statement either more precise or more concise
or both. Mathematical apparatus is never being used as a goal in its own
right.

Yet, although this book caters to engineering and computer science ma-
jors primarily, it should still contain plenty of material of interest to applied
mathematicians as well. It introduces many exciting new algorithms that
were developed by the authors, and that cannot be found elsewhere. It
relies much more on graphical techniques than traditional ODE books do
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for illustrating the characteristics of particular algorithms, such as their
numerical stability, accuracy, and damping properties. Some of the known
algorithms were derived in novel, and maybe more elegant, ways than had
been explored before. Finally, the last two chapters of the book revolution-
ize in fundamental ways the manner that numerical ODEs are being looked
at. They offer a paradigm shift opening the door to an entirely new theory
of numerical ODEs that is based on state discretization in place of time
discretization.

The material covered in this book is clearly graduate–level material, even
for a mathematics department. An undergraduate curriculum would hardly
find the space necessary to dealing with numerical ODEs in such depth and
breadth. Yet, the material is presented in a fairly self–contained manner.
Thus, the book can as easily be used for self–study as in a class–room
setting.

In some ways, as happens frequently in science, the book wrote itself in
the end. Material wanted to be written. The authors were driven more by
their own curiosity and inner drive than by conscious design. The story
wanted to get out, and here it is.

When the companion book was written, we thought that this book would
contain three sections: one section on numerical ODEs, one section on pa-
rameter estimation, and one section on simulation in the presence of noise.

Yet, as we were researching the issues surrounding numerical ODEs and
DAEs, each new answer that we found led to at least two new questions that
wanted to be researched, and so, we ended up with a book on numerical
ODEs and DAEs only.

Maybe, one of these days, we may sit down and think once more deep
and hard about the remaining problems: about parameter estimation and
state identification, off–line methods and adaptive algorithms, supervised
and unsupervised learning; and a third volume may emerge, probably just
as broad and deep as this one, probably spread over just as many pages as
the first two volumes were; but for now, we are at peace. We are content
that the story is out. A story, that has kept us in its grip for a dozen
years, has finally been told; and we, the executors of that story, have been
released.

François E. Cellier and Ernesto Kofman
Zurich, Switzerland and Rosario, Argentina

September 2005
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About This Book

This text introduces concepts of simulating physical systems that are math-
ematically described by sets of differential and algebraic equations (DAEs).
The book is written for modeling and simulation (M&S) practitioners, who
wish to learn more about the “intestines” of their M&S environments. Mod-
ern physical systems M&S environments are designed to relieve the occa-
sional user from having to understand in detail, what the environment does
to their models. Simulation results appear magically upon execution of the
model.

Magic has its good and its bad sides. On the one hand, it enables us
to separate the discussion of the tasks of modeling from those of simula-
tion. The occasional user of M&S environments may be perfectly happy to
only learn about modeling, leaving the gruesome details of numerical DAE
solvers to the specialist.

Yet, for those among our readers, who are not in the habit of leaving
the railway station through platform 9 3/4, this book may be helpful, as
it explains, in lots of detail, how M&S environments operate. Thanks to
this knowledge, our readers will understand what they need to do, when
the magic fails, i.e., the simulation run is interrupted prematurely with an
error message. They will also be able to understand, why their simulation
program is consuming an unreasonable amount of execution time. Finally,
they will feel more comfortable with the simulation results obtained, as
they understand, how these results have been produced. “Magic” is awfully
difficult to explain to your boss.

The text contains 12 chapters that are unfortunately rather heavily de-
pendent on each other. Thus, reading one chapter of the book, because it
discusses a topic that you are currently interested in, may not get you very
far. Each chapter assumes the knowledge presented in previous chapters.

Chapters 1–4 introduce the concepts of numerical ODEs in a fairly clas-
sical way. After a general introduction to the topics that this book concerns
itself with, presented in Chapter 1, Chapter 2 offers an introduction to the
basic properties of numerical ODE solvers: numerical stability and accu-
racy. These are introduced by means of the two most basic explicit and
implicit ODE solvers to be found: the forward and backward Euler algo-
rithms.

Chapter 3 offers a discussion of single–step integration algorithms. New
concepts introduced include a new stability definition, called F–stability or
faithful stability, denoting algorithms, whose border of numerical stability
coincides with the imaginary axis of the complex eigenvalue plane. Another



new concept introduced is the frequency order star, leading to an attrac-
tive new definition of an accuracy domain. New ODE solvers include the

or L–stable.
Chapter 4 offers a discussion of linear multi–step integration algorithms.

All of these algorithms are derived by means of Newton–Gregory poly-
nomials, which offer a much more elegant way of introducing these algo-
rithms, than those found in most other numerical ODE textbooks. New
ODE solvers introduced in this chapter include a set of higher–order stiffly
stable BDF methods that are based on least squares extrapolation.

Chapters 5 and 6 complete the discussion of numerical ODEs. These
chapters can be skipped without making the subsequent chapters more
difficult to understand.

Chapter 5 discusses special–purpose ODE solvers for second–derivative
models, as they occur naturally in the mathematical description of mechan-
ical systems. This topic has been discussed in the past in a few mechanics
books, but it is hardly ever covered in the numerical ODE literature.

Chapter 6 offers a fairly classical discussion of the method–of–lines ap-
proximation to partial differential equations (PDEs). Thereby PDEs are
converted to sets of ODEs. This topic is not usually covered in the numeri-
cal ODE literature, but has been dealt with in the past in more specialized
textbooks on numerical PDEs. New in this chapter is the derivation of the
formulae for computing spatial derivatives by means of Newton–Gregory
polynomials. Also innovative is the use of Richardson extrapolation meth-
ods, previously introduced in Chapter 3 in their normal context, for the
computation of spatial derivatives.

Chapters 7 and 8 deal with the issues surrounding numerical DAEs.
Chapter 7 concerns itself with the symbolic conversion of sets of DAEs to
sets of ODEs that can subsequently be dealt with numerically using the
techniques introduced in earlier chapters of the book. Chapter 8, on the
other hand, deals with the numerical solution of DAEs without previous
conversion to explicit ODE form.

The symbolic tools presented in Chapter 7 are the result of a collabo-
ration between one of the authors of this book with Hilding Elmqvist of
Dynasim, a Swedish company specialized in the development of modern
physical systems M&S environments, and Martin Otter of the German
Aerospace Center (DLR) in Oberpfaffenhofen, Germany.

The numerical tools presented in Chapter 8 are a bit more classical. Some
of these concepts can be found in the numerical DAE literature. However,
the concepts presented previously in Chapter 7 help in presenting these
algorithms in a clear and easily understandable fashion, which is not true
for much of the existing numerical DAE literature.

We are convinced that the material presented in Chapters 7 and 8 makes
a significant contribution to advancing the maturity of understanding of the
relatively recent research field of numerical DAEs. New in Chapter 8 are

backinterpolation algorithms, which can be designed to be either F–stable
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the discussion of inline integration, and the way, in which we deal with the
problem of overdetermined DAEs. The problem of overdetermined DAEs
has only recently been recognized in the numerical DAE literature, and
furthermore, the techniques for tackling them proposed by other authors,
such as Ernst Hairer and Gerhard Wanner, are quite different from ours.

Chapter 9 discusses the problems surrounding the numerical simulation
across discontinuities. This is a topic that both authors of this book were
centrally concerned with in their respective Ph.D. dissertations. Chapter 9
presents the tools and technique developed by the first author, whereas
those used by the second author are postponed to Chapter 12.

Chapter 10 introduces the reader to the problems of performing simula-
tion runs in real time, i.e., synchronizing the numerical ODE solvers with
the real–time clock. Interesting in this context may be the discussion of
the linearly–implicit integration algorithms. More results, and more funda-
mental results concerning real–time simulation are provided in Chapter 12
of the book.

Up to this point, the book follows fairly classical approaches to numerical
ODE, PDE, and DAE solutions. All of the techniques presented discretize
the time axis, and perform the numerical simulation by means of extrap-
olations that are approximations of Taylor–series expansions. All of the
techniques presented are synchronous algorithms, as all differential equa-
tions are simulated synchronously, in step with the temporal discretization.

Chapters 11 and 12 represent a radical departure from these concepts.
In these chapters, the state variables themselves are being discretized. We
call this a spatial discretization instead of a temporal discretization. In con-
trast, the time axis is no longer discretized. Furthermore, these algorithms
proceed asynchronously, i.e., each state variable carries its own simulation
clock that it updates as needed. The simulation engine ensures that the
state variable that is currently the one most behind always gets updated
next. The different state variables communicate with each other by means
of state interpolation.

As these are the last two chapters in the book, they can be skipped with-
out any problem. Yet, these are easily the most interesting chapters in the
entire book, as they revolutionize the way of looking at numerical ODEs,
offer an exciting new theory of numerical stability, and lend themselves to
plenty of fascinating open research questions.
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