
1

Introduction, Scope,
Definitions

Preview

The purpose of this chapter is to provide a framework for what this book
is to cover. Which are the types of questions that it aspires to answer, and
what are the kinds of knowledge that you, the reader, can expect to gain by
working through the material presented in this book? What are the rela-
tions between real physical systems and their mathematical models? What
are the characteristics of mathematical descriptions of physical systems?
We shall then talk about simulation as a problem solving tool, and finally,
we shall offer a classification of the basic characteristics of simulation soft-
ware systems.

1.1 Modeling and Simulation: A Circuit Example

Let us begin by modeling a simple electrical circuit. The circuit diagram of
this circuit is provided in Fig.1.1.

U
0
=

1
0

R=20

C
=

1
.0

e
-6

L
=

0
.0

0
1
5

Ground

R
=

1
0

0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 1.1. Circuit diagram of electrical RLC circuit.

2 Chapter 1. Introduction, Scope, Definitions

Figure 1.1 was produced using Dymola [1.11, 1.13], which is currently
the most advanced among all of the commercially available physical sys-
tem modeling and simulation environments. The circuit diagram of Fig.1.1
is a mathematical model that can be used to simulate the circuit. It was
composed by dragging icons from the graphical electrical component li-
brary into the graphical modeling window, dropping them there, and in-
terconnecting them graphically. Associated with each of the icons is the
mathematical description of the properties of that particular component
model.

The diagram was then edited using a graphical editor to remove the nu-
merical values of the components, and to add names and directions for all
currents and voltages. Dymola creates its own names and direction conven-
tions, but does not show them on the circuit diagram using the standard
graphical electrical circuit library (this could be changed easily by modify-
ing the component definitions in the library accordingly).

What does Dymola do with the graphical model of the circuit? The model
is first captured in an alphanumerical form using a modeling language called
Modelica [1.21]. In the process of compiling the model, the Dymola model
compiler performs a lot of symbolic preprocessing on the original mathe-
matical representation. We shall learn more about the symbolic formulae
manipulation algorithms that Dymola employs in later chapters of this
book. Once a suitable simulation model has been derived, it is translated
into a C program that then gets compiled further. The compiled model
is then simulated by making calls to the numerical run–time library that
forms part of the overall Dymola modeling and simulation environment.

What if we were to use a professional circuit simulator, such as PSpice
[1.19], instead of the more general Dymola software? Modern versions of
Spice also offer a Graphical user Interface (GUI), usually called a schematic
capture program [1.17] in the context of circuit simulation. In the case of
Spice, the circuit diagram is captured alphanumerically in the form of a
so–called netlist. In older versions of Spice, the netlist constituted the user
interface, just like older versions of Dymola used a language similar to
Modelica as the input language for the description of models.

For the given circuit, the netlist could take the following form:

V in 1 0 DC 10Volts
R1 1 2 00Ohms
R2 2 0 20Ohms
C 2 0 1uF
L 1 0 1.5mH
.END

Spice, contrary to Dymola, performs hardly any symbolic preprocessing.
The netlist is parsed at the beginning of the simulation, and the informa-
tion contained in it is stored internally in a data structure that is then
interpreted at run time.

1.1 Modeling and Simulation: A Circuit Example 3

How about using MATLAB [1.15] to simulate this circuit? MATLAB
is of particular interest to us, since it is a wonderful language to describe
algorithms in, and since this book is all about algorithms, we shall use
MATLAB exclusively in this book for the documentation of these algo-
rithms, as well as for the homework problems that accompany each of the
chapters.

MATLAB is not geared toward simulation at all. It is a general purpose
programming language supporting high–level data structures that are par-
ticularly powerful for the description of algorithms. Since MATLAB wasn’t
designed to support modeling and simulation, the user will have to perform
considerably more work manually, before the circuit description can be fed
into MATLAB for the purpose of simulation.

As the circuit contains five separate components in five distinct branches
of the circuit, the dynamics of this circuits can be described by 10 variables,
namely the five voltages across each of the branches, and the five currents
flowing through them. Hence we shall need 10 separate and mutually in-
dependent equations to describe the model dynamics in terms of these
variables.

The 10 equations can be read out of the circuit diagram easily. Five of
them are the constitutive equations of the circuit components, relating the
voltage across and the current through each of the branches to each other:

u0 = 10 (1.1a)
u1 − R1 · i1 = 0 (1.1b)
u2 − R2 · i2 = 0 (1.1c)

iC − C · duC

dt
= 0 (1.1d)

uL − L · diL
dt

= 0 (1.1e)

Three additional equations can be obtained by applying Kirchhoff’s Volt-
age Law (KVL) to the circuit, which states that the voltages around a mesh
must add up to zero. These are therefore often called the mesh equations.

u0 − u1 − uC = 0 (1.2a)
uL − u1 − u2 = 0 (1.2b)

uC − u2 = 0 (1.2c)

The final two equations can be obtained by applying Kirchhoff’s Current
Law (KCL) to the circuit, which states that the currents flowing into a node
must add up to zero. These are therefore often called the node equations.
One of the node equations is always redundant, i.e., not linearly indepen-
dent, and must therefore be omitted. It has become customary to omit the

4 Chapter 1. Introduction, Scope, Definitions

node equation of the ground node. The two remaining node equations can
be written as:

i0 − i1 − iL = 0 (1.3a)
i1 − i2 − iC = 0 (1.3b)

These 10 equations together form another equivalent mathematical de-
scription of the circuit. They consist of a set of implicitly described partly
algebraic and partly differential equations. We call this mathematical de-
scription an implicit differential and algebraic equation (DAE) model.

We can make the model explicit by deciding, which variable to solve
for in each of the equations, and by arranging the equations in such a
manner that no variable is being used before it has been defined. We call
this the process of horizontally and vertically sorting the set of equations.
In Chapter 7 of this book, you shall learn how equations can be sorted
algorithmically. For now, let us simply present one possible solution to the
sorting process.

u0 = 10 (1.4a)
u2 = uC (1.4b)

i2 =
1

R2
· u2 (1.4c)

u1 = u0 − uC (1.4d)

i1 =
1

R1
· u1 (1.4e)

uL = u1 + u2 (1.4f)
iC = i1 − i2 (1.4g)

diL
dt

=
1
L

· uL (1.4h)

duC

dt
=

1
C

· iC (1.4i)

i0 = i1 + iL (1.4j)

In this model, the equal signs have assumed the role of assignments rather
than equalities, which was the case with the previous model. Each unknown
appears exactly once to the left of the equal sign, and all variables used in
the expressions of the right hand sides have been assigned values, before
they are being used.

Notice that the variables uC and iL are not treated as unknowns. Since
they are the outputs of integrators, they are computed by the integration
algorithm used in the simulation, and don’t need to be computed by the
model. Such variables are referred to as state variables in the literature.

1.1 Modeling and Simulation: A Circuit Example 5

We are still confronted with a mixture of algebraic and differential equa-
tions, but the model has now become explicit. We call this an explicit DAE
model.

Sometimes, the explicit DAE model is also called simulation model, since
the traditional simulation languages, such as ACSL [1.18], were able to deal
with this type of mathematical description directly.

Although MATLAB can deal with simulation models, this is still not the
preferred form to be used when simulating linear systems with MATLAB.

We can now plug the explicit equations into each other, substituting
the unknowns on the right hand side by the expressions defining these un-
knowns, until we end up with equations for the variables duC/dt and diL/dt,
the so–called state derivatives, that depend only on the state variables, uC

and iL, as well as the input variable, u0. These equations are:

duC

dt
= − R1 + R2

R1 · R2 · C · uC +
1

R1 · C · u0 (1.5a)

diL
dt

=
1
L

· u0 (1.5b)

We can add one or several output equations for those variables that we wish
to plot as simulation results. Let i2 be our output variable. We can obtain
an equation for i2 that depends only on state variables and input variables
in the same fashion:

i2 =
1

R2
· uC (1.6)

This mathematical representation is called an explicit ordinary differen-
tial equation (ODE) model. In the control literature, it is usually referred
to as the state–space model.

If the state–space model is linear, as in the given case, it can be written
in a matrix–vector form:

⎛
⎝duC

dt

diL

dt

⎞
⎠ =

⎛
⎝− R1+R2

R1·R2·C 0

0 0

⎞
⎠ ·
⎛
⎝uC

iL

⎞
⎠+

⎛
⎝ 1

R1·C

1
L

⎞
⎠ · u0 (1.7a)

i2 =
(

1
R2

0
) ·
⎛
⎝uC

iL

⎞
⎠ (1.7b)

This model finally is in an appropriate form for feeding it into MATLAB.
The following MATLAB code may be used to simulate the circuit:

6 Chapter 1. Introduction, Scope, Definitions

% Enter parameter values
%
R1 = 100;
R2 = 20;
L = 0.0015;
C = 1e-6;
%
% Generate system matrices
%
R1C = 1/(R1 ∗ C);

R2C = 1/(R2 ∗ C);
a11 = −(R1C + R2C);
A = [a11 , 0 ; 0 , 0];
b = [R1C ; 1/L];
c = [1/R2 , 0];
d = 0;
%
% Make a system and simulate
%
S = ss(A, b, c, d);
t = [0 : 1e-6 : 1e-4];
u = 10 ∗ ones(size(t));
x0 = zeros(2, 1);
y = lsim(S, u, t, x0);
%
% Plot the results
%
subplot(2, 1, 1)
plot(t, y, ′k − ′)
grid on
title(′\tex{Electrical RLC Circuit}′)
xlabel(′\tex{time}′)
ylabel(′\tex{$i 2$}′)
print −deps fig1 2.eps
return

The simulation results are presented in Fig.1.2.
Clearly, MATLAB employs a considerably lower–level user interface than

either Dymola or PSpice, but maybe that is good, since the purpose of this
book is to teach simulation methods.

Do we now understand more about how the simulation was performed
using MATLAB? Unfortunately, this question must be answered in the
negative. The entire simulation takes place inside the lsim box, which we
haven’t opened yet. The main purpose of this book is to open up the lsim
box, and understand, how it has been built, but more about that later.

To be fair to MATLAB, it must be mentioned that also MATLAB, just
like its competitors, offers a graphical user interface, called SIMULINK
[1.7]. However, SIMULINK is not a schematic capture program. It is only
a block diagram editor.

1.1 Modeling and Simulation: A Circuit Example 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0

0.02

0.04

0.06

0.08

0.1

Electrical RLC Circuit

time

i 2

FIGURE 1.2. Simulation results of electrical RLC circuit.

SIMULINK is thus located at the level of the explicit DAE model. Given
that model, we can start by drawing the two integrator boxes, and then
work ourselves backward toward the input variable, and forward toward
the output variable. The resulting block diagram is shown in Fig.1.3.

-

S1

+1

+1

A1

+

+1

+1

k={1/R1}

G1

-

S2

k={1/L}

G2 I1

I

k={1/C}

G3 I2

I

k={1} k={1/R2}

G4

k={1}

U0 u1

i1
i2

uC

duC

dtiC

uL iL
diL

dt

FIGURE 1.3. Block diagram of electrical RLC circuit.

Figure 1.3 was not drawn using SIMULINK, but instead, we chose to
draw the figure in Dymola, using Dymola’s graphical block diagram library.
We then edited the graph manually by adding the names of the variables
to each of the signals.

What was gained by representing the explicit DAE model graphically as
a block diagram? The only advantage of doing so is that it becomes evident
from the block diagram that the integrator computing the variable iL could
have been pruned away, as it does not contribute at all to computing the
output variable.

Block diagrams are useful tools for representing control systems. They
are not useful, however, for representing electrical circuits.

8 Chapter 1. Introduction, Scope, Definitions

1.2 Modeling vs. Simulation

In the previous section, we have shown a full modeling and simulation cycle,
starting out with a physical system, an electrical RLC circuit, and ending
with the display of the trajectory behavior of the output variable, i2.

The process of modeling concerns itself with the extraction of knowledge
from the physical plant to be simulated, organizing that knowledge appro-
priately, and representing it in some unambiguous fashion. We call the end
product of the modeling cycle the model of the system to be simulated.

The process of simulation concerns itself with performing experiments
on the model to make predictions about how the real system would behave
if these very same experiments were performed on it.

At the University of Arizona, we offer currently two senior/graduate level
classes dealing with the issues of modeling and simulating physical systems.
One of them, Continuous System Modeling, deals with the issues of creating
suitable models of physical systems. For it, the companion book of this
textbook, also entitled Continuous System Modeling [1.6], was developed.
The other, Continuous System Simulation, concerns itself with the issues
of simulating these models accurately and efficiently. For that class, this
textbook has been written.

A question that you, the reader, may already have begun to ask yourself
is the following: Where does modeling end and simulation begin?

In the old days, we might have answered that question in the following
way: Simulation is what is being done by the computer, whereas modeling
concerns the steps that the modeler has to undertake manually in order to
prepare the simulation program.

Yet, this answer is not very satisfactory. We have seen that, when using
MATLAB to simulate the circuit, the modeler had to do much more manual
preprocessing than when using either Dymola or Spice. The answer to the
above question would thus depend on the simulation tool that is being
used. This is not very useful.

A more gratifying answer may be obtained by looking at Fig.1.4.

Physical
System

Mathematical
Model

Simulation
Program

Trajectory
Behavior

Modeling SimulationModel
Compilation

User
Interface Interface

Run-time

FIGURE 1.4. Modeling vs. simulation.

The whole purpose of the mathematical model is to provide the human
user of the modeling and simulation environment with a means to represent
knowledge about the physical system to be simulated in a way that is as
convenient to him or her as possible. Modeling is thus indeed always done
manually. The mathematical model represents the user interface. It has

1.2 Modeling vs. Simulation 9

absolutely nothing to do with considerations of how that model is going to
be used by the simulation engine.

Which is the most appropriate mathematical model of a system to be
simulated depends on the nature of the physical system itself, and maybe
also on the types of experiments that are to be performed on the model.

We have already mentioned that a block diagram may be a suitable tool to
represent the knowledge needed to simulate a control system. It is certainly
not a convenient tool to represent the knowledge needed to simulate an
electrical circuit. A circuit diagram, on the other hand, may be the most
natural way to represent an electrical circuit, as long as the experiment
to be performed on the model does not concern itself with non–electrical
phenomena, such as the heating of the device that results from current
flowing through resistors, and the temperature dissipation of the package,
in which the circuit has been integrated. In that case, a bond graph may
be a much better choice for representing the physical knowledge needed to
simulate the circuit.

The bond graph of the above circuit is shown in Fig.1.5.

U0

e0=10
0 1 0

IL

I=
0.
00
15

R
=
10
0

RR
1

R=20
R
R2

C C C=1
e-
6

SE U0

U0

U0

i0

u1 i1

i1i1 i2

uCuC

uC iCiL

FIGURE 1.5. Bond graph of electrical RLC circuit.

Figure 1.5 was produced using Dymola’s graphical bond graph library
[1.3]. Bond graphs play an important role in the companion book, Contin-
uous System Modeling [1.6], to this text. They are of no concern to this
class, since they are only used to the left of the mathematical model in
Fig.1.4. In this textbook, we do not concern ourselves with issues to the
left of the mathematical model.

Once the mathematical model has been formulated, the modeling and
simulation environment can make use of that model to perform simula-
tions, and produce simulation results. For models as simple as our electrical
circuit, either of the three representations: the circuit diagram, the block
diagram, or the bond graph, can be simulated equally easily, accurately,
and efficiently. The user simply instructs Dymola to simulate the model,
Dymola then performs the necessary model compilations, executes the sim-
ulation run, and prepares the variables in a data base, such that the user
can then pick the output variable(s) he or she is interested in, and plot
them.

Since modeling of a physical system is always done manually, it is evi-

10 Chapter 1. Introduction, Scope, Definitions

dent that we need to offer a class, teaching the students, how to generate
a model of a physical system that is suitable for performing a given set
of experiments on it. Yet, if everything to the right of the mathematical
model in Fig.1.4 can be fully automated, why should an engineering stu-
dent concern him- or herself at all with simulation issues? Why not leave
these issues to the experts, i.e., the applied mathematicians?

Unfortunately, things are not going always as smoothly as in this simple
electrical RLC circuit. It happens more often than not that a simulation
does not produce the desired results the first time around. A user who only
understands modeling and uses the simulation environment as a black box
will most likely be at a total loss as to what went wrong and why, and he or
she will have no inkling as to how the problems can be overcome. In fact,
the more complex the symbolic formulae manipulation algorithms are that
are being employed by the modeling and simulation environment as part of
the model compilation, the less likely it is that an uninformed user of that
environment will be able to make sense out of error messages that result
from mishaps happening at run time, the so–called run–time exceptions.

The main purpose of this class and this textbook are to prepare the
student for anything that the modeling and simulation environment may
throw at him or her. The knowledge provided in this textbook will enable
the simulation practitioner to deal with all eventualities that he or she
may come across in the adventure of simulating a mathematical model
effectively and efficiently.

Let us return once more to Fig.1.4. What does the other interface, the
run–time interface, represent? The purpose of that interface is to define a
simulation model that can be simulated efficiently and accurately.

It was already mentioned that Spice essentially simulates the netlist di-
rectly, whereas Dymola performs a lot of symbolic preprocessing on the
model, i.e., the distance between the mathematical model and the simu-
lation program is very small in Spice, whereas it is impressively wide in
Dymola.

You shall learn in this class that it actually matters, which way we pro-
ceed. The algorithms underlying Spice simulations only work because the
possible structures of an electronic circuit are very well defined and don’t
change much from one circuit to the next. On the other hand, if we were
to simulate how a circuit heats up during simulation, and simultaneously
wanted to simulate how the electrical parameter values (the resistances and
capacitances) change in function of the current device temperature, the
algorithms underlying the Spice simulation, the so–called sparse tableau
equations that are used in a modified nodal analysis, would break down,
because the so modified model would contain additional algebraic loops
that these algorithms could not possibly handle.

Thus, the most appropriate run–time interface is also a function of the
system to be simulated, and possibly of the experiment or set of experi-
ments to be performed on the model. Yet, this interface only concerns itself

1.3 Time and Again 11

with the way, the simulation algorithms work. It has no bearing whatsoever
on how the user represents his or her mathematical model.

In which book are the model compilation issues to be discussed? Since
both interfaces move around, i.e., they are sometimes a little further to
the right, and sometimes a little further to the left, it is important to
look at these issues both from the perspective of a modeler and from that
of a simulation practitioner. Hence there is a certain degree of overlap
and redundance between the two textbooks as far as model compilation
algorithms are concerned. This decision was taken on purpose to allow the
students to take the two classes in any sequence. Neither of them depends
on the knowledge provided in the other.

1.3 Time and Again

In the real world, time simply happens. We can measure it, but we cannot
influence it. Every morning, when we wake up, we have aged by precisely
one day since the previous morning. There is nothing to be done about. If
we are slow, in getting something done, we have to hurry up, as we cannot
slow time down.

In simulation, time does not simply happen. We need to make it hap-
pen. When we simulate a system, it is our duty to manage the simulation
clock, and how effectively we are able to manage the simulation clock will
ultimately decide upon the efficiency of our simulation run.

In the previous two sections of this chapter, we have looked at different
ways for representing a model. At the bottom of the hierarchy, we encoun-
tered the explicit ODE model, which we also called the state–space model.
We simulated a simple electrical RLC circuit, represented as a linear state–
space model, by use of MATLAB, and obtained a trajectory for the output
variable, i2, as a function of time. That output trajectory was depicted
graphically in Fig.1.2.

The trajectory i2(t) seems to be a real–valued function of one real–valued
argument. For any value of t, we can obtain the appropriate value of i2.
Yet, this is only an illusion, created to make us believe that the simulation
is a faithful image of how we perceive the real system to work.

A digital computer has no means of computing numerically any real–
valued function of a real–valued argument. To do so would require an infi-
nite amount of real time. Instead, the time axis in the simulation must be
discretized, such that the total number of discrete time points within the
range of simulated time remains finite, and the simulation must proceed
by jumping from one discrete time point to the next. The coarser we can
choose the discretization in time, the smaller the total number of discrete
time points will be, and consequently, the less work needs to be done in the
simulation to evaluate the model at the output points. The discretization

12 Chapter 1. Introduction, Scope, Definitions

in time directly influences the efficiency of the simulation run.
Consequently, neither of the previously introduced model types can be

simulated directly. Inside the simulation box, the model gets converted once
more by reducing differential equation models to difference equation (ΔE)
models. Thereby, an explicit ODE model is converted to an explicit ΔE
model, whereas an implicit DAE model is converted to an implicit ΔAE
model, etc.

The illusion of a continuous i2(t) curve was created by making the plot
routine connect neighboring data points using a straight–line approxima-
tion. How often do we need to actually compute values of i2? We need to
do so sufficiently often that the straight–line approximation looks smooth
to the naked eye. We call the distance between two neighboring computed
output data points the communication interval. When we simulate a sys-
tem, the simulation software asks us to provide that information to it. In
the MATLAB code, we created a vector:

t = [0 : 1e-6 : 1e-4];

of communication points. It states that we wish to compute the output
variable once every 10−6 seconds up until the final time of 10−4 seconds,
giving us a result vector of 101 data points.

Does this mean that the simulation proceeds at the pace dictated by the
communication grid? Absolutely not. The communication grid was only
created to please the user, such that he or she can enjoy the illusion of a
smoothly looking output variable. The simulation pace, however, is dictated
by the numerical needs of the algorithm. The more accurately we wish to
simulate, the smaller the time steps of the simulation must be chosen.

Thus, the simulation clock can advance either more slowly than the com-
munication clock by allowing multiple simulation steps to occur within a
single communication interval, or it could proceed more rapidly. In the lat-
ter case, the intermediate output points are obtained not by simulation,
but by interpolation. If the interpolation routine can produce an interpo-
lation of the same order of approximation accuracy as the integration, this
is a perfectly valid way of computing output points.

Figure 1.6 depicts the relationship between the different types of time
that we have to deal with in a simulation.

Real
Time

Simulation
Time

Output
Time

Illusion of
Real Time

Discretization Straight-lineInterpolation

Approximation

User
Interface Interface
Run-time

FIGURE 1.6. The different faces of time.

Whereas the communication grid is usually equidistantly spaced, the
simulation grid is not. The step size, h, of the simulation is usually allowed

1.3 Time and Again 13

to adjust itself, such that the accuracy requirements are met. A simulation
user knows how to set the communication interval or sampling rate, ts, but
he or she wouldn’t know how to set the step size, h, of the simulation. Con-
sequently, most simulation software systems will ask the user to specify an
accuracy requirement instead. The integration algorithm uses some formula
to estimate the numerical integration error, and then uses a control scheme
to adjust the step size such that the integration error is kept as large as
possible, while not exceeding the specified maximum error.

Does the simulation clock at least advance monotonously with real time,
i.e., will the time difference, Δt, of the simulation clock between two sub-
sequent evaluations of the model be always positive? Unfortunately, also
this question must usually be answered in the negative for three separate
reasons.

1. The step size, h, is not necessarily identical with the time advance,
Δt, of model evaluations. Many integration algorithms, such as the
famous Runge–Kutta algorithms, which we shall meet in Chapter 3
of this book, perform multiple model evaluations within a single
time step. Thus, each time step, h, contains several micro–steps, Δt,
whereby Δt is not a fixed divider of h. Instead, the simulation clock
may jump back and forth within each individual time step.

2. Even if the integration algorithm used is such that Δt remains pos-
itive at all times, the simulation clock does not necessarily advance
monotonously with real time. There are two types of error–controlled
integration algorithms that differ in the way they handle steps that
exhibit an error estimate that is too large. Optimistic algorithms sim-
ply continue, in spite of the exceeded error tolerance, while reducing
the step size for the subsequent step. In contrast, conservative algo-
rithms reject the step, and repeat it with a smaller step size. Thus,
whenever a step is rejected, the simulation clock in a conservative
algorithm turns back to repeat the step, while not committing the
same error. Wouldn’t it be nice if we could do the same in the real
world?

3. Even if an optimistic algorithm with positive Δt values is being em-
ployed, the simulation clock may still not advance monotonously with
real time. The reason is that integration algorithms cannot integrate
across discontinuities in the model. Thus, if a discontinuity is encoun-
tered somewhere inside an integration step, the step size must be
reduced and the step must be repeated, in order to place the discon-
tinuity in between subsequent steps. These issues shall be discussed
in Chapter 9 of this book.

Hence the flow chart shown in Fig.1.6 is still somewhat oversimplified,
as it does not account for the micro–management of time within a single
integration step.

14 Chapter 1. Introduction, Scope, Definitions

The issues surrounding time management as part of the simulation algo-
rithms shall haunt us throughout the various chapters of this book.

1.4 Simulation as a Problem Solving Tool

Simulation has become the major analysis tool in essentially all of engi-
neering, and much of science. Industry nowadays demands that companies
providing parts for their products ship their parts with simulation models
that can be assembled in just about the same fashion as the real system
is. For example, when you buy these days an all–American car, you may
not want to check too closely what is under the hood, because you may
quickly discover that your car comes equipped with a German engine and
a Japanese transmission.

Car manufacturers these days allow two years from the conception of a
new model, until the first cars roll off the production line. During the first
year, the car itself is designed and its performance is optimized by means
of continuous system simulation; during the second year, the production
process of the car is designed, again involving a lot of simulation, though
mostly of a discrete event nature.

This can only work if the parts come equipped with ready–to–use simu-
lation models that can be plugged together quickly and painlessly. This is
only possible if the modeling methodology in use is object oriented, which
invariably leads to large sets of implicitly defined DAE systems.

To this end, the Modeling and Simulation (M&S) environment must be
able to deal with implicit DAE descriptions, either by simulating such de-
scriptions directly, or by automatically converting them to explicit ODE
descriptions beforehand. The days of 10,000 lines of spaghetti FORTRAN
code to e.g. simulate the flight of a missile, taking into account such gory
details as the seeker and its gyroscopically stabilized platform, as well as
the flopping around of the liquid fuel in the fuel tank, are thus finally over.

Whereas the issues surrounding object–oriented modeling are not the
aim of this book1, issues surrounding the symbolic model transformations
to precondition the simulation code for efficient run–time performance are
being dealt with in later chapters of this textbook.

Modern M&S environments, such as Dymola [1.11, 1.13], are capable of
automatically generating simulation code from an object–oriented mathe-
matical model that runs as efficiently as, if not more efficiently than, the
best among the hand–coded spaghetti simulation programs of the past.
The translation of the model is usually accomplished within seconds of real
time.

1These issues are discussed both extensively and intensively in the companion book
of this text, Continuous System Modeling [1.6].

1.5 Simulation Software: Today and Tomorrow 15

In the past, the life cycle of a simulation program often extended beyond
that of its designer. The engineer who originally designed and wrote the
spaghetti simulation code retired before the program itself had reached
the end of its usefulness. Maintaining these programs, after the original
designer could no longer be consulted, was an absolute nightmare. Also
these days are luckily over.

1.5 Simulation Software: Today and Tomorrow

We published an article with the same title, Simulation Software: Today
and Tomorrow, a little over 20 years ago [1.5], because at that time, we
felt that the earlier article discussing similar topics [1.4] had meanwhile
outlived its usefulness.

Reading through the 1983 paper once more, we recognize and happily
acknowledge how hopelessly outdated that article has meanwhile become.
This discovery is a cause of excitement, not depression, because it shows
us how incredibly active this research area has been over the past 20 years,
and how wonderfully dynamic this research area continues to be to this
day.

Although the principles of object–oriented modeling had been developed
already in the sixties [1.8], Simula 67 had only been designed for discrete
event simulation, not for continuous system simulation, and these concepts
could not easily be carried over to modeling physical systems. The reason
is that, in discrete event simulation, we always know what are the causes,
and which are their effects. In physical system modeling, this is not the
case. The computational causality of physical laws can therefore not be
predetermined, but depends on the particular use of that law. We cannot
conclude whether it is the current flowing through a resistor that causes a
voltage drop, or whether it is the difference between the potentials at the
two ends of the resistor that causes current to flow. Physically, these are
simply two concurrent aspects of one and the same physical phenomenon.
Computationally, we may have to assume at times one position, and at
other times the other.

First attempts at dealing with the problems of physical system modeling
in an object–oriented fashion were developed simultaneously in two sem-
inal Ph.D. dissertations By Elmqvist [1.11] and Runge [1.20]. Whereas
Elmqvist focused his attention on symbolic formulae manipulation as a
tool for preconditioning the model equations to obtain efficiently executing
simulation code, Runge attempted to solve implicit DAE models directly.

Whereas a first prototypical implementation of Dymola had been im-
plemented by Hilding Elmqvist already as part of his Ph.D. dissertation
[1.11], Dymola was not yet capable of dealing with large–scale engineering
models in those days. The code got stuck, as soon as it encountered either

16 Chapter 1. Introduction, Scope, Definitions

an algebraic loop or a structural singularity, which happened invariably in
most large–scale engineering models.

First attempts at tackling the algebraic loop and structural singular-
ity problems in a completely generic fashion were undertaken by Hilding
Elmqvist in 1993 [1.2]. This research was followed up in 1994 by an impor-
tant paper on symbolic tearing methods [1.10]. By 1997, heuristic proce-
dures had been developed to automatically identify a suitable set of tearing
variables. By that time, we finally had available a tool that could reduce, in
a fully automated fashion, any implicit DAE model to explicit ODE form.
We shall talk much more about these algorithms in Chapter 7 of this book.

A first prototype of a Graphical User Interface (GUI) for Dymola was
created by Hilding Elmqvist as early as 1982 [1.12]. The graphical software
HIBLIZ [1.12] had a number of interesting features, yet it was far ahead
of its time, as the computer hardware of those days wasn’t ready yet for
these types of applications. Elmqvist resumed his work on a GUI for Dy-
mola in 1993, which resulted in a very powerful modern graphical software
environment, of which you have already seen some samples earlier in this
chapter.

Elmqvist proved to be one of the most innovative and visionary re-
searchers in M&S methodology and technology of the last quarter of a
century, and his Dynamic Modeling Laboratory, Dymola, has become the
de facto industry standard by now. No other tool on the market comes even
close to Dymola in terms of flexibility and generality of its use.

On the numerical front, progress has been a bit less spectacular. The
4th–order Runge–Kutta algorithms in use today are still the same algo-
rithms that were known and used in 1983. However, the development of
production–grade direct DAE solvers [1.1], a direct outflow of Runge’s
earlier work, fell in this time frame, and stirred quite a bit of excitement
among applied mathematicians.

Furthermore, a lot has happened in terms of the development of better
software aiding the design of new numerical algorithms. MATLAB [1.15]
has become the de facto industry standard for the description of numerical
algorithms. All of the algorithms described in this book are explained in
terms of snippets of MATLAB code, and most of the homework problems
are designed to be solved using MATLAB.

In the same context, the quite impressive advances in the development
of tools for computational algebra deserve to be mentioned as well. Applied
mathematicians like to present the coefficients of their algorithms symboli-
cally as rational expressions, rather than numerically as numbers with many
digits after the dot, because in this way, the numerical accuracy of the al-
gorithm can fully exploit the available mantissa length of the computer on
which the algorithm is being implemented. Tools, such as MAPLE [1.16]
and Mathematica [1.22] have made the design of new algorithms consider-
ably less painful than in the past, and indeed, several errors were recently
discovered using computational algebra tools in a number of numerical al-

1.5 Simulation Software: Today and Tomorrow 17

gorithms that had been around for decades [1.14]. When developing this
book, we made frequent use of MATLAB’s symbolic toolbox, which is based
on MAPLE, to derive correct rational expressions for the coefficients of
new algorithms.

The advent of ever more powerful computer hardware made it possible
to search for new algorithms much more efficiently than in the past. For
example, we could not have developed the higher–order stiffly–stable linear
multi–step methods that are described in Chapter 4 of this book as little
as 10 years ago, since several of the search algorithms used in the process
milled for more than 30 minutes of real time on a 2.5 GHz personal com-
puter, whereas 10 years ago, we had to rely on a 1 MHz VAX computer
for all of our computations.

Finally, the automatic preconditioning of models by means of symbolic
formulae manipulation made it possible to employ highly promising nu-
merical algorithms that could not have been used previously, because they
would have forced the users to manually convert the models in a manner,
which would have been far too cumbersome for them. A good example of
this are the inline integration algorithms [1.9] that are discussed in Chap-
ter 8 of this book.

For these reasons, we expect that a good number of exciting new nu-
merical algorithms will appear in the open literature at a much more rapid
pace over the next few years.

What are tools that are still missing or unsatisfactory in Dymola? A first
issue to be improved is the mechanism, by which run–time exceptions are
reported back to the user. Advanced reverse engineering mechanisms ought
to be put in place to translate run–time exceptions back to terms that are
related to the original model, i.e., terms that the user of the Dymola M&S
environment can understand. Right now, the debugging of Dymola models
can be quite challenging.

A second issue to be looked into concerns Dymola’s way of handling
table–lookup functions. The treatment of tabular functions is unsatisfac-
tory on several counts.

1. If an input variable is provided to the simulation engine in the form
of a table, sampled once per communication interval, Dymola uses
linear interpolation to estimate intermediate values of the input vari-
able. Yet, the simulation engine may simulate the model using a
higher–order algorithm, possibly subdividing the communication in-
terval into several steps. This situation can be remedied easily by use
of the Nordsieck vector approach that is discussed in Chapter 4 of
this book.

2. If the independent variable of a table–lookup function is not time,
but a dependent variable of the model, the situation gets more com-
plicated. Yet, the necessary history information could be traced back
also in this case. Furthermore, the effects of reduced–order numerical

18 Chapter 1. Introduction, Scope, Definitions

approximations of table–lookup functions on the overall simulation
accuracy ought to be properly studied. This has not happened to
date. This could be a nice research topic for a young aspiring applied
mathematician.

3. The treatment of large tables, as currently implemented in Dymola,
is highly inefficient. This is a compiler issue that will need to be
addressed.

4. Large multi–dimensional tables need to be interpolated directly on
the storage medium, rather than loading them into the model, and
manipulating them at compile time. This is not currently the case.
However, the use of Modelica as the underlying alphanumerical model
representation helps in this respect. Modelica is a full–fledged lan-
guage, in which adequate table–lookup mechanisms could easily be
implemented [1.21].

A third and very interesting research issue concerns the automated as-
sembly of models. For example, if we wish to model a chemical reaction
system, we ought to be able to automatically extract the necessary param-
eters and table–lookup functions from the open literature.

How do we go about such modeling issues today? We probably would
use Google to find the missing information on the web. Google has become
the de facto standard for finding the answer to pretty much any question
that we may have. Google has become our most important interface to the
accumulated world knowledge.

Yet in order to use Google effectively, we must first come up with the
right keywords to find the most suitable articles on the web, and it will be
furthermore our task to manually sift through the articles returned to find
what we need.

We foresee the need to automate these two current user interfaces as part
of a future distributed M&S environment. The M&S environment ought to
be able to automatically query a distributed data base for the availability
of entire models, model parameter values, and table–lookup functions. This
demand could provide challenging and exciting research topics for several
Ph.D. students of computer science.

1.6 Summary

In this chapter, we started out with a set of different ways how a mathe-
matical model of a physical system can be formulated. We demonstrated
that it is important to distinguish the mathematical model (the user inter-
face) from the simulation program (the run–time interface), such that the
mathematical model can be defined to maximize the convenience for the

1.7 References 19

human user of the tool, whereas the simulation program can be defined to
optimize run–time efficiency of the simulation code.

We looked at the important issue of time management during execu-
tion of a continuous system simulation program with a bird’s eye’s view.
Whereas all of these issues will be revisited throughout the chapters of this
book, we considered it useful to bring these issues to the reader’s attention
early on.

The chapter ended with a discussion of where we stand today in terms
of modeling and simulation environments, and what additional features we
expect will be required in the near future.

1.7 References

[1.1] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[1.2] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–oriented Continuous System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.

[1.3] François E. Cellier and Robert T. McBride. Object–oriented Model-
ing of Complex Physical Systems Using the Dymola Bond–graph Li-
brary. In François E. Cellier and José J. Granda, editors, Proceedings
of the 2003 SCS Intl. Conf. on Bond Graph Modeling and Simula-
tion, pages 157–162, Orlando, Fl., 2003. The Society for Modeling and
Simulation International.

[1.4] François E. Cellier. Continuous System Simulation by Use of Digital
Computers: A State–of–the–Art Survey and Perspectives for Devel-
opment. In Mohamed H. Hamza, editor, Proceedings Simulation’75,
pages 18–25, Zurich, Switzerland, 1975. ACTA Press.

[1.5] François E. Cellier. Simulation Software: Today and Tomorrow.
In Jacques Burger and Yvon Varny, editors, Proceedings of the
IMACS Symposium on Simulation in Engineering Sciences, pages 3–
19, Nantes, France, 1983. North–Holland Publishing.

[1.6] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[1.7] James B. Dabney and Thomas L. Harman. Mastering SIMULINK
4. Prentice–Hall, Upper Saddle River, N.J., 2001. 432p.

[1.8] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard. Simula
67 Common Base Language. Technical report, Norwegian Computing
Center, Oslo, Norway, 1968.

20 Chapter 1. Introduction, Scope, Definitions

[1.9] Hilding Elmqvist, Martin Otter, and François E. Cellier. Inline
Integration: A New Mixed Symbolic/Numeric Approach for Solving
Differential–Algebraic Equation Systems. In Proceedings European
Simulation Multiconference, pages xxiii–xxxiv, Prague, Czech Repub-
lic, 1995.

[1.10] Hilding Elmqvist and Martin Otter. Methods for Tearing Systems
of Equations in Object–oriented Modeling. In Proceedings European
Simulation Multiconference, pages 326–332, Barcelona, Spain, 1994.

[1.11] Hilding Elmqvist. A Structured Model Language for Large Continu-
ous Systems. PhD thesis, Dept. of Automatic Control, Lund Institute
of Technology, Lund, Sweden, 1978.

[1.12] Hilding Elmqvist. A Graphical Approach to Documentation and Im-
plementation of Control Systems. In Proceedings 3rd IFAC/IFIP Sym-
posium on Software for Computer Control (SOCOCO’82), Madrid,
Spain, 1982.

[1.13] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den, 2004.

[1.14] Walter Gander and Dominik Gruntz. Derivation of Numerical
Methods Using Computer Algebra. SIAM Review, 41(3):577–593,
1999.

[1.15] Duane Hanselman and Bruce Littlefield. Mastering MATLAB 6.
Prentice–Hall, Upper Saddle River, N.J., 2001. 832p.

[1.16] André Heck. Introduction to Maple. Springer Verlag, New York, 2nd

edition, 1996. 525p.

[1.17] Marc E. Herniter. Schematic Capture with Cadence PSpice.
Prentice–Hall, Upper Saddle River, N.J., 2nd edition, 2002. 656p.

[1.18] Edward E. L. Mitchell and Joseph S. Gauthier. ACSL: Advanced
Continuous Simulation Language — User Guide and Reference Man-
ual. Mitchell & Gauthier Assoc., Concord, Mass., 1991.

[1.19] Franz Monssen. OrCAD PSpice with Circuit Analysis. Prentice–
Hall, Upper Saddle River, N.J., 3rd edition, 2001. 400p.

[1.20] Thomas F. Runge. A Universal Language for Continuous Network
Simulation. PhD thesis, Dept. of Computer Science, University of
Illinois, Urbana–Champaign, Ill., 1977.

[1.21] Michael M. Tiller. Introduction to Physical Modeling with Modelica.
Kluwer Academic Publishers, Boston, Mass., 2001. 368p.

1.8 Homework Problems 21

[1.22] Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc,
Champaign, Ill., 5th edition, 2003. 1488p.

1.8 Homework Problems

[H1.1] Different Mathematical Models

Given the electrical circuit shown in Fig.H1.1a.

R=100

R1

C
=

1
e

-6

C

R=100

R2

R
=

2
0

R
3

L=0.01

L

u
0

=
1

0

i4 = 4·u3

u1

i1 i2

u2

u3

i3iC u4

i4

iL

uL

u0

i0

i4

FIGURE H1.1a. Electrical circuit.

The circuit contains a constant voltage source, u0, and a dependent cur-
rent source, i4, that depends on the voltage across the capacitor, C, and
the resistor, R3.

Write down the element equations for the seven circuit elements. Since
the voltage u3 is common to two circuit elements, these equations contain
13 rather than 14 unknowns. Add the voltage equations for the three meshes
and the current equations for three of the four nodes. One current equation
is redundant. Usually, the current equation for the ground node is therefore
omitted.

Formulate an implicit DAE model of this circuit by placing all unknowns
to the left of the equal sign, and all known expressions to the right of the
equal sign.

Sort the equations both horizontally and vertically. Since you haven’t
learnt yet a systematic algorithm for doing this (such an algorithm shall
be presented in Chapter 7 of this book), use intuition to come up with the
sorted set of equations.

Formulate an explicit DAE model of this circuit using the sorted equa-
tions.

22 Chapter 1. Introduction, Scope, Definitions

Use variable substitution to derive a state–space model of this circuit in
matrix–vector form. We shall assume that u3 is our output variable.

Simulate the circuit across 50 μsec using MATLAB’s lsim function. Store
101 equidistantly spaced output values, and plot the output variable as a
function of time.

[H1.2] Discretization of State Equations

Given the following explicit ODE model:

ẋ = A · x + b · u (H1.2a)
y = c′ · x + d · u (H1.2b)

where:

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−2 −3 −4 −5

⎞
⎟⎟⎠ (H1.2c)

b =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ (H1.2d)

c′ =
(
1 0 0 0

)
(H1.2e)

d = 10 (H1.2f)

Engineers would usually call such a model a linear single–input, single–
output (SISO) continuous–time state–space model.

We wish to simulate this model using the following integration algorithm:

xk+1 = xk + h · ẋk (H1.2g)

which is known as the Forward Euler (FE) integration algorithm. If xk

denotes the state vector at time t∗:

xk = x(t)
∣∣∣∣
t=t∗

(H1.2h)

then xk+1 represents the state vector one time step later:

xk+1 = x(t)
∣∣∣∣
t=t∗+h

(H1.2i)

1.8 Homework Problems 23

Obtain an explicit ΔE model by substituting the state equations into
the integrator equations. You obtain a model of the type:

xk+1 = F · xk + g · uk (H1.2j)
yk = h′ · xk + i · uk (H1.2k)

which engineers would normally call a linear single–input, single–output
(SISO) discrete–time state–space model.

Let h = 0.01 sec, tf = 5 sec, u(t) = 5 · sin(2t), x0 = ones(4, 1), where tf
denotes the final time of the simulation.

Simulate the ΔE model using MATLAB by iterating over the difference
equations. Plot the output variable as a function of time.

[H1.3] Time Reversal

Given a state–space model of the form:

ẋ(t) = f(x(t),u(t), t) ; x(t = t0) = x0 ; t ∈ [t0, tf] (H1.3a)

which generates the trajectory behavior x(t).
The state–space model:

ẏ(τ) = −f(y(τ),u(τ), τ) ; y(τ = tf) = xf ; τ ∈ [tf , t0] (H1.3b)

generates the trajectory behavior y(τ).
Show that:

y(τ) = x(t0 + tf − t) (H1.3c)

In other words, any state–space model can be simulated backward through
time by simply placing a minus sign in front of every state equation.

[H1.4] Van–der–Pol Oscillator and Time Reversal

Given the following nonlinear system:

ẍ − μ(1 − x2)ẋ + x = 0 (H1.4a)

This system exhibits an oscillatory behavior. It is commonly referred
to as the Van–der–Pol oscillator. We wish to simulate this system with
μ = 2.0 and x0 = ẋ0 = 0.1.

Draw a block diagram of this system. The output variable is x. The
system is autonomous, i.e., it doesn’t have an input variable.

Derive a state–space description of this system. To this end, choose the
outputs of the two integrators as your two state variables.

Simulate the system across 2 sec of simulated time. Since the system is
nonlinear, you cannot use MATLAB’s lsim function. Use function ode45
instead.

24 Chapter 1. Introduction, Scope, Definitions

At time t = 2.0 sec, apply the time reversal algorithm, and simulate
the system further across another 2 sec of simulated time. This is best
accomplished by adjusting the model such that it contains a factor c in
front of each state equation. c = +1 during the first 2 sec of simulated
time, and c = −1 thereafter. You can interpret c as an input variable to
the model. Make sure that t = 2.0 sec defines an output point.

As you simulate the system backward through time for the same time
period that you previously used to simulate the system forward through
time, the final values of your two state variables ought to be identical to
the initial values except for numerical inaccuracies of the simulation. Verify
that this is indeed the case. How large is the accumulated error of the final
values? The accumulated simulation error is defined as the norm of the
difference between final and initial values.

Plot x(t) and ẋ(t) on the same graph.
Repeat the previous experiment, this time simulating the system forward

during 20 sec of simulated time, then backward through another 20 sec of
simulated time. What do you conclude?

1.9 Projects

[P1.1] Definitions

Get a number of simulation and/or system theory textbooks from your
library and compile a list of definitions of “What is a System”? Write a
term paper in which these definitions are critically reviewed and classified.
(Such a compilation has actually been published once.)

