
Math 481A Spring 2003 Page 1 of 12

5.4. RUNGE-KUTTA METHODS
As usual we are trying to find a numerical solution to the initial value problem

¢ y = f (t, y), y(t0) = y0 (1)

Runge-Kutta methods are a class of nonlinear methods of the form

yn+1 = yn + h biki
i=1

s
Â (2)

ki = f tn + cih, yn + h aijk j
j=1

s
Â

Ê

Ë

Á
Á

ˆ

¯

˜
˜
, i = 1,2,...,s (3)

subject to the constraints

ci = aij
j=1

s
Â (4)

bi
i=1

s
Â = 1 (5)

where 0 £ aij ,bj ,c j £ 1.

An alternative and equivalent way of writing (2) and (3) is

yn+1 = yn + h bi f (tn + cih, Yi)
i=1

s
Â (6)

Yi = yn + h aij f (tn + c jh, Yj), i = 1,2,...,s
i=1

s
Â (7)

In general, the c j will be less than one and therefore the function f (t,y) needs to be
evaluated at a grid spacing smaller than h, i.e., at tn + c jh for j =1,2,...,s.

The coefficients for a Runge-Kutta method are generally written in the form of the
following Butcher Array,

c1 a11 a12 L a1s
c2 a21 a2s
M M M

cs as1 as2 L ass
b1 b2 L bs

(8)

From equation (4), the ci are the row sums of the (aij) matrix.

Math 481A Spring 2003 Page 2 of 12

Runge Kutta methods are implicit unless aij = 0, j ≥ i . We will only be looking at
explicit Runge-Kutta methods, for which the matrix A is strictly lower triangular.
The Butcher Array for an explicit method is written as follows:

c1 0 0 L 0
c2 a21 0 M

M M O M

cs as1 L as,s-1 0
b1 b2 L bs

(9)

In general, the zeroes in the upper-triangular part of (aij) are omitted; furthermore, by
equation (4), c1 = 0 for an explicit matrix.

0
c2 a21
M M O

cs as1 L as,s-1
b1 b2 L bs

(10)

The number s is referred to as the number of stages in the method. This is because there
must be s function evaluations between each pair of grid-points (see equation 7).

Explicit Two-Stage Runge-Kutta Methods
The Butcher array for an explicit two-stage method can then be written as

c1
c2 a21

b1 b2

(11)

By equations (4) and (5), this becomes
0
a a

b 1- b
(12)

Thus there are only two independent parameters.
To determine these parameters, we explicitly write out the method. From equation (2)

yn+1 = yn + h(b1k1 + b2k2) = yn + h(bk1 + (1- b)k2) (13)

while from equation (3),

ki = f tn + cih, yn + h(ai1k1 + ai2k2)(), i = 1,2
= f (tn + cih, yn + hai1k2)

(14)

because ai2 = 0 in (12). Hence

Math 481A Spring 2003 Page 3 of 12

k1 = f (tn , yn) = fn
k2 = f (tn + ah, yn + hak1) = f (tn + ah, yn + hafn)

(15)

Substituting (15) into (13) gives
yn+1 = yn + h(bfn + (1- b) f (tn + ah, yn + hafn)) (16)

We don’t have any constraints on a and be except that they be in the interval [0, 1], but
we can make some observations about special values:
If a = 0, we get Euler’s method, regardless of the value of b:

yn+1 = yn + h(bfn + (1- b) f (tn, yn)) = yn + h(bfn + (1- b) fn)
= yn + hfn

(17)

If a = 1, we get a rule that looks very much like the theta-method:
yn+1 = yn + h(bfn + (1- b) f (tn + h, yn + hfn)) (18)

The only difference between (18) and the theta-method is the second argument of f,
which for the theta method is yn+1 instead of yn + hfn . In this case, the second argument
is an Euler’s method approximation to yn+1, not yn+1 itself.

If a = 1 and b =1/2 we get the Improved Euler Method:

yn+1 = yn + 1
2
h(fn + f (tn + h, yn + hfn)) (19)

We can ask the following question: what is (are) the best s-stage method(s)? Ideally it
would be the one with the highest order local truncation error.

Local Truncation Error for Runge-Kutta Methods
From Taylor’s theorem,

y(tn+1) = y(tn) + h ¢ y (tn) + 1
2

h2 ¢ ¢ y (tn) + 1
6

h3 ¢ ¢ ¢ y (tn) + O(h4) (20)

From equation (1), y(tn) = fn , and (omitting the “n” subscript), using the chain rule the
second derivative is

¢ ¢ y = d ¢ y
dt

= df
dt

= ∂f
∂t

+ ∂f
∂y

dy
dt

= ft + f y ¢ y = ft + f y f (21)

The third derivative requires use first of the product rule and then the chain rule. First, we
apply the product rule:

¢ ¢ ¢ y = d ¢ ¢ y
dt

= d
dt
(ft + f y f) = dft

dt
+ f y

df
dt

+ f
df y
dt

(22)

The derivative df /dt in the middle term is exactly what we calculated in (21).
Substituting that gives

¢ ¢ ¢ y = dft
dt

+ f y (ft + f y f) + f
df y
dt

(23)

Math 481A Spring 2003 Page 4 of 12

The other derivatives in (23) are calculated with the chain rule:
dft
dt

= ftt + fty ¢ y = ftt + fty f (24)

dfy
dt

= fty + f yy ¢ y = fty + f yy f (25)

Substituting (24) and (25) into (23) gives
¢ ¢ ¢ y = ftt + fty f + f y (ft + f y f) + f (fty + f yy f)

= ftt + 2 fty f + f 2 f yy + f y (ft + f y f)
(26)

To simplify the notation make the following substitutions:

F = ft + f y f , G = ftt + 2 fty + f 2 f yy (27)

Equation (26) becomes
¢ ¢ ¢ y = G + f yF (28)

and equation (22) becomes
¢ ¢ y = F (29)

Then the Taylor expansion in equation (20) is

y(tn+1) = yn + hfn + 1
2
h2Fn + 1

6
h3(Gn + f y,nFn) + O(h4) (30)

assuming that y(tn) = yn , and elsewhere the subscript “n” indicates, as usual, evaluation
at (tn,yn)

Lets drop the constraint (5) that the b’s sum to 1. For a two-stage method, from equation
(16), and Taylor’s theorem

yn+1 = yn + h(b1 fn + b2 f (tn + ah, yn + hafn))

= yn + hb1 fn + hb2 fn + ahft,n + ahfn f y,n +[
1
2

[(ah)2 ftt,n + 2(ah)2 fn fty,n + (ahfn)2 f yy,n] + O(h3)
˘
˚ ˙

(31)

where we have used the 2-variable Taylor expansion in equation (31)
f (x + h, y + k) = f (x, y) + hfx (x,y) + kf y (x,y)

+ 1
2
[h2 f xx (x,y) + 2hkf xy (x,y) + k2 f yy (x,y)]+ O(h3)

(32)

Using the notation of equation (27) in (31) gives

yn+1 = yn + hb1 fn + hb2[fn + ahFn + 1
2

(ah)2Gn + O(h3)]

= yn + hb1 fn + hb2 fn + h2ab2Fn + 1
2
a2b2h

3Gn + O(h4)
(33)

Math 481A Spring 2003 Page 5 of 12

The local truncation error for a two-stage RK method is then

LTE = yn+1 - y(tn+1)
h

= 1
h

yn + hfn + 1
2

h2Fn + 1
6

h3(Gn + f y,nFn) + O(h4)
È
Î Í

-yn - hb1 fn - hb2 fn - h2ab2Fn - 1
2

a2b2h3Gn + O(h4)
˘
˚ ˙

= fn[1- b1 - b2] + 1
2

hFn[1- 2ab2] + O(h2)

(34)

The necessary condition for the method to be O(h =) is precisely the constraint (4), that

b1 + b2 = 1 (35)

Let
b1 = b, b2 = 1- b . (36)

Furthermore, the condition for the method to be O(h2)is that

0 = 1- 2ab2 = 1- 2a(1- b) (27)

or

a(1- b) = 1
2

(30)

Thus there are an infinite number of possible 2-stage RK-methods that are second-order,
given by

yn+1 = yn + h
2a

[(2a -1) fn + f (tn + ah, yn + hafn)] (31)

Since

1- b = 1
2a

, b = 1- 1
2a

= 2a -1
2a

(32)

Observe that from equation (30), a π 0 so the definition (31), (32) makes sense. Any
value of 0 < a £1 will work, although values close to zero can lead to computational
problems because of divide-overflows near zero. Some of the two-stage second-order
methods have special names:

a =1/2: Polygon method:
yn+1 = yn + hf (tn + h /2, yn + (h /2) fn) (31)

a =1: Improved Euler’ method:
yn+1 = yn + (h /2)(fn + f (tn + h, yn + hfn)) (32)

Math 481A Spring 2003 Page 6 of 12

Local Truncation Error for Three-Stage Methods.

Again, we will drop the restriction on that the b’s sum to 1 and see if we can get
constraints to obtain higher order methods. The general 3-stage method is

yn +1 = yn + h(b1k1 + b2k2 + b3k3) (33)

ki = f (tn + cih, yn + h(ai1k1 + ai2k2 + ai3k3)) (34)

subject to the constraint
ci = ai1 + ai2 + ai3 (35)

The general lower-diagonal 3-stage Butcher array looks like this
c1
c2 a21
c3 a31 a32

b1 b2 b3

(36)

This and the observation (from (35)) that c1 = 0 simplifies (34) to

k1 = f (tn , yn) = fn (37)

k2 = f (tn + c2h, yn + ha21 fn) (38)

k3 = f (tn + c3h, yn + h(a31 fn + a32k2)) (39)

From (35), in addition to c1 = 0 we also have a21 = c2, a31 + a32 = c3, so that the
Butcher array in (36) becomes

0
a21 a21

a31 + a32 a31 a32
b1 b2 b3

(40)

Renaming the coefficients a = a21, b = a31, g = a32 we can rewrite (40) as

0
a a

b + g b g
b1 b2 b3

(41)

With this notation, and omitting the subscript “n” in the following steps where the
meaning is clear (to shorten the notation), equations (38) and (39) become

k2 = f (t + ah, y + ahf) (42)

k3 = f (t + h(b + g), y + h(bf + gk2)) (43)

Expanding k2 in a Taylor series about (t,y) to O(h3) leads to

Math 481A Spring 2003 Page 7 of 12

k2 = f (t + ah, y + ahf)
= f + ahft + ahff y

 +
1
2

(a 2h2 ftt + 2a 2h2 ffty + a 2h2 f 2 f yy) + O(h3)

= f + ah(ft + ff y) +
1
2

a 2h2(ftt + 2 ffty + f 2 f yy) + O(h3)

= f + ahF +
1
2

a 2h2G + O(h3)

(43)

where equation (27) has been used in the last step.
Similarly, when we expand k3 (from equation 43) about the point (t,y) we get

k3 = f (t + h(b + g), y + h(bf + gk2))
= f + h(b + g) ft + h(bf + gk2) f y

+
1
2
h2(b + g)2 ftt + 2h2(b + g)(bf + gk2) fty + h2(bf + gk2)2 f yy()

+O(h3)

(44)

The expression bf + gk2 which appears multiple times in (44) can be written as

bf + gk2 = bf + g (f + ahF +
1
2

a 2h2G + O(h3))

= (b + g) f + aghF +
1
2

ga 2h2G + O(h3)
(45)

Furthermore, squaring (45) and keeping terms only to less than O(h) (the reason will
become clear in the next step):

(bf + gk2)2 = (b + g)2 f 2 + O(h) (46)

Using (45) and (46) to simplify (44) gives

k3 = f + h(b + g) ft + hf y[(b + g) f + aghF +
1
2

ga 2h2G + O(h3)]

 +
1
2

[h2 ftt (b + g)2 + 2h2(b + g) fty ((b + g) f + O(h))

 + h2 f yy ((b + g)2 f 2 + O(h))] + O(h3)

(47)

Collecting terms by each order of h,

k3 = f + h(b + g)(ft + ff y) + h2{agFfy

 +
1
2

[ftt (b + g)2 + 2 fty f (b + g)2 + f yy (b + g)2 f 2} + O(h3)

= f + h(b + g)F + h2[agFfy +
1
2

(b + g)2G] + O(h3)

(48)

Math 481A Spring 2003 Page 8 of 12

Therefore substituting from equations (37), (43) and (48) for k1,k2,k3 into equation (33),

yn+1 = yn + hb1 f + hb2[f + ahF +
1
2

a 2h2G + O(h3)]

+hb3[f + h(b + g)F + h2[agFfy +
1
2

(b + g)2G] + O(h3)]

= yn + h(b1 + b2 + b3) f + h2[b2aF + b3(b + g)F]

+h3[1
2
b2a 2G + ab3gFfy +

1
2
b3(b + g)2G] + O(h4)

(49)

From equation (30)

y(tn+1) = yn + hf +
1
2
h2F +

1
6
h3(G + f yF) + O(h4) (50)

Thus
h ¥ LTE = yn+1 - y(tn+1)

= yn + h(b1 + b2 + b3) f + h2[b2aF + b3(b + g)F]

+h3[
1
2
b2a 2G + ab3gFfy +

1
2
b3(b + g)2G]

-yn - hf -
1
2
h2F -

1
6
h3(G + f yF) + O(h4)

= hf (b1 + b2 + b3 - 1) + h2F[b2aF + b3(b + g) -
1
2

]

+h3[(ab3g -
1
6

)Ffy +
1
2

(b2a 2 + b3(b + g)2 -
1
3

)G)] + O(h4)

(51)

and therefore the local truncation error is

LTE = f (b1 + b2 + b3 -1) + hF[b2aF + b3(b + g) -
1
2
]

+h2[(ab3g -
1
6
)Ffy +

1
2
(b2a2 + b3(b + g)2 -

1
3
)G)] + O(h3)

(52)

To ensure the method is at least O(h) we must force the term that does not depend on h
to be zero, and hence require that

b1 + b2 + b3 = 1 (53)

Similarly, to ensure that the method is at least O(h2) we require, in addition to (53), that
the coefficient of h is also zero, so that

b2aF + b3(b + g) =
1
2

(54)

Finally, to ensure that the method is at least O(h3) we require, in addition to (54) and
(54), that the coefficient of h2 be zero in equation (52):

Math 481A Spring 2003 Page 9 of 12

(ab3g -
1
6

)Ff y +
1
2

(b2a 2 + b3(b + g)2 -
1
3

)G) = 0 (55)

Since equation (55) must hold for all functions f, it must hold for all functions F and G.
Thus the coefficients of both F and G in (55) must be zero, giving us the conditions

ab3g =
1
6

(56)

b2a 2 + b3(b + g)2 =
1
3

(57)

The following theorem summarizes our results.

Theorem. A 3-stage explicit Runge-Kutta method is given by
yn +1 = yn + h(b1k1 + b2k2 + b3k3)
k1 = f (tn , yn) = fn
k2 = f (t + ah, y + ahf)
k3 = f (t + h(b + g), y + h(bf + gk2))

and the method is O(h3) for all functions f if and only if the following constraints are
satisfied:

(I) b1 + b2 + b3 = 1

(II) b2aF + b3(b + g) =
1
2

(III) ab3g =
1
6

(IV) b2a2 + b3(b + g)2 =
1
3

Furthermore, there are no three-methods that are fourth order.
We did not prove the last statement; to do so would required expanding all of Taylor
series one step further.

Since there are four constraints to be satisfied, but there are six arbitrary constants
(b1,b2,b3,a,b,g) there are an infinite number of possible third order three stage methods.

Math 481A Spring 2003 Page 10 of 12

Heun’s Method is given by the Butcher Array
0

1/3 1/3
2 /3 0 2 /3

1/4 0 3/4

It is straightforward to verify from a = 1/3, b = 0, g = 2 /3, b1 = 1/4, b2 = 0, b3 = 3/4 ,
that Heun’s method is third order. The iteration formulas can be written as:

k1 = f (tn , yn) = fn (58)

k2 = f (tn +
1
3
h, yn +

1
3
hfn) (59)

k3 = f (tn +
2
3

h, y +
2
3

hk2) (60)

yn+1 = yn + h(1
4
k1 +

3
4
k3) (61)

While it is possible to combine these into a single formula, this is rarely done since no
advantage is conferred by doing so.

Kutta’s Third-Order Method is given by the Butcher Array
0
1/2 1/2
1 -1 2

1/6 2 /3 1/6

This third order method has the following iteration formulas:
k1 = fn

k2 = f tn +
h
2

 yn +
hk1
2

Ê
Ë

ˆ
¯

k3 = f (tn + h, y - h(k1 - 2k2))

yn+1 = yn + h 1
6
k1 +

2
3
k2 +

1
6
k3

Ê
Ë

ˆ
¯

Math 481A Spring 2003 Page 11 of 12

Fourth Order Methods

Fourth order methods can be derived by expanding the Taylor series to O(h3) and
repeating the process of setting the coefficients of the constant, h,h2 and h3 terms equal
to zero. Also before there turn out to be an infinite number of possible methods.
However, there is one method is particularly common; when the expression “Runge-
Kutta Method” is used without qualification it almost always means this method, which
we will refer to as the Classical Runge Kutta Method.
The Butcher array is given by

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

The iteration formulas are:
k1 = fn

k2 = f tn +
1
2

h, yn +
1
2

hk1
Ê
Ë

ˆ
¯

k3 = f tn +
1
2

h, yn +
1
2

hk2
Ê
Ë

ˆ
¯

k4 = f tn + h, yn + k3h()
yn +1 = yn + h 1

6
k1 +

1
3

k2 +
1
3

k3 +
1
6

k4
Ê
Ë

ˆ
¯

For a general purpose solve, we would write the algorithm like this:
Input(a, ya ,h, f (x,y))
x0 = a; y0 = ya;
For i = 1,2, 3,...
 k1 = f (xi-1, yi-1)
 k2 = f (xi-1 + h / 2, yi-1 + hk1 / 2)
 k3 = f (xi-1 + h / 2, yi-1 + hk2 / 2)
 k4 = f (xi-1 + h, yi-1 + hk3)

 yi = yi-1 + h 1
6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4()

 xi = h + xi-1
Return(y1,y2, y3,...)

For any given differential equation, we could instead first find an iteration formula
specific to that equation, as in the following example:

Math 481A Spring 2003 Page 12 of 12

Example. Compute the iteration formula for the Classical Runga Kutta method for ¢ y = y .

Since f (x, y) = y ,

k1 = f xn , yn() = yn

k2 = f xn + 1
2 h, yn + 1

2 hk1() = yn + 1
2
hyn = yn 1 + 1

2
h()

k3 = f xn + 1
2 h, yn + 1

2 hk2() = yn + 1
2
hyn 1+ 1

2
h() = yn 1 + 1

2
h + 1

4
h2()

k4 = f xn + h, yn + hk3() = yn + hyn 1 + 1
2
h + 1

4
h2() = yn 1 + h + 1

2
h2 + 1

4
h3()

and therefore

yn+1 = yn + h 1
6 k1 + 1

3 k2 + 1
3 k3 + 1

6 k4()
= yn + h 1

6 yn + 1
3 yn 1+ 1

2
h() + 1

3 yn 1+ 1
2
h + 1

4
h2() + 1

6 yn 1+ h + 1
2
h2 + 1

4
h3()Ê

Ë
ˆ
¯

= 1+ 1
6 h + 1

3 h 1+ 1
2
h() + 1

3 h 1+ 1
2
h + 1

4
h2() + 1

6 h 1+ h + 1
2
h2 + 1

4
h3()Ê

Ë
ˆ
¯ yn

= 1 + h +
1
2
h2 +

1
6
h3 +

1
24
h4()yn

Higher Order Methods
Runga-Kutta methods to many higher orders have been tabulated in numerous places.
One is apt to expect from our study of one, two and three stage methods that the number
of stages required is equal to the order of the method; in general this is not true, and in
fact in general for higher order methods one requires more than n stages for an nth order
method.

