
Chapter 10

Initial value Ordinary
Differential Equations

Consider the problem of finding a function y(t) that satisfies the following
ordinary differential equation (ODE):

dy

dt
= f(t, y), a ≤ t ≤ b.

The function f(t, y) is given, and we denote the derivative of the sought
function by y′ = dy

dt
and refer to t as the independent variable.

The last three chapters deal with the question of how to approximate,
differentiate or integrate numerically an explicitly known function. Here,
similarly, the function f is given and the sought result is different from f
but related to it. The main difference though is that f depends on y, and
we would like to be able to compute y possibly for all t in the interval [a, b],
given the ODE which characterizes the relationship between the function and
some of its derivatives.

Example 10.1
The function f(t, y) = −y+ t defined for t ≥ 0 and any real y gives the ODE

y′ = −y + t, t ≥ 0.

You can verify directly that for any scalar α the function

y(t) = t− 1 + αe−t

satisfies the ODE.
If it is given, in addition, that y(0) = 1, then 1 = 0−1+αe0, hence α = 2

and the unique solution is

y(t) = t− 1 + 2e−t.

¨

329

330 Chapter 10: Initial value ODEs

θ

r

q1

q2

Figure 10.1: A simple pendulum.

It is convenient for presentation purposes to concentrate on just one
(scalar) initial value ODE, because this makes the notation easier when intro-
ducing numerical methods. We should note though that scalar ODEs rarely
appear in practice; they almost always arise as (sometimes large) systems. In
the case of systems of ODEs we use vector notation and write our prototype
ODE system as

y′ ≡ dy

dt
= f(t,y), a ≤ t ≤ b.

We shall assume that y has m components.
In general, as in Example 10.1, there is a family of solutions depending

on m parameters for this ODE. The solution becomes unique (under some
mild assumptions) if m initial conditions are specified,

y(a) = c.

This is then an initial value problem.

Example 10.2
Consider a tiny ball of mass 1 attached to the end of a rigid, massless rod of
length r = 1. At its other end the rod’s position is fixed at the origin of a
planar coordinate system. (See Figure 10.1.)

Denoting by θ the angle between the pendulum and the (negative) vertical
axis, the friction-free motion is governed by the ODE

d2θ

dt2
≡ θ′′ = −g sin θ,

Chapter 10: initial value ODEs 331

where g is the (scaled) constant of gravity (e.g., g = 9.81) and t is time.
This is a simple, nonlinear ODE for θ. The initial position and velocity
configuration translate into values for θ(0) and θ′(0).

We can write this as a first order system: Let

y1(t) = θ(t), y2(t) = θ′(t).

Then y′1 = y2 and y′2 = −g sin y1. The problem is then written as

y′ = f(t,y), t ≥ 0,

y(0) = c,

where

y =




y1

y2



 , f(t,y) =




y2

−g sin y1



 , c =




θ(0)

θ′(0)



 .

¨

Whereas in the previous three chapters we denote the independent vari-
able by x, here we denote it by t, because it is convenient to think of initial
value problems as depending on time, as in Example 10.2. (However, t does
not have to correspond to physical time in all applications.)

Going back to scalar ODE notation, we note that in principle we can
write the initial value ODE in integral form,

y(t) = c+

∫ t

a

f(s, y(s))ds, a ≤ t ≤ b.

This highlights both similarities to and differences from the problem of nu-
merical integration considered in Sections 9.3–9.7. Specifically, on the one
hand both prototype problems involve integration, but on the other hand,
here we are recovering a function rather than a value (as in definite integra-
tion), and even more importantly, the integrand f depends on the unknown
function.

10.1 Euler’s method

Euler’s method, which is also known as the forward Euler method (to
distinguish it from its backward Euler counterpart, which we will discuss
soon) is the simplest numerical method for approximately solving initial value
ODEs. We first consider finding an approximate solution for the scalar initial
value ODE at equidistant abscissae. Thus, define the points t0 = a, ti = a+

332 Chapter 10: Initial value ODEs

ih, i = 0, 1, 2, . . . , N , where h = b−a
N

is the step size. Denote the approximate
solution for y(ti) by yi.

Recall from Section 9.1 the forward difference formula

y′(ti) =
y(ti+1)− y(ti)

h
− h

2
y′′(ξi).

By the ODE, y′(ti) = f(ti, y(ti)), so

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi).

This is satisfied by the exact solution y(t) of the ODE. Dropping the trunca-
tion term we obtain the Euler method which the approximate solution {yi}Ni=0

satisfies (and is defined by):

y0 = c,

yi+1 = yi + hf(ti, yi), i = 0, 1, . . . , N − 1.

See Figure 10.2. (We omit the details of the problem for which the graph
was produced, since the points made in the figure are not specific to one
particular problem.)

This simple formula allows us to march forward in t. Assuming that the
various parameters and the function f are specified, the following Matlab

script does the job:

t = [a:h:b];

y(1) = c;

for i=1:N

y(i+1) = y(i) + h * f(t(i),y(i));

end

Thus we will have produced an array of abscissae and ordinates, (ti, yi),
which is good for plotting. In other applications, fewer output points may be
required. For instance, if only the approximate value of y(b) is desired then
we can save storage by the script:

t = a-h;

y = c;

for i=1:N

t = t + h;

y = y + h * f(t,y);

end

This script works also if c, y and f are arrays (of the same size), corresponding
to an ODE system.

Chapter 10: initial value ODEs 333

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

t

y

Figure 10.2: The forward Euler method. The exact solution is the curved
solid line, and the numerical values obtained by the Euler scheme are circled
and lie on a broken line that interpolates them. The broken line is tangential
at the beginning of each step to the ODE trajectory passing through the
corresponding point (dashed lines). Notice that the step size need not be
uniform. In this example the second step size is double the first.

Example 10.3
Consider the simple, linear initial value ODE

y′ = y, y(0) = 1.

The exact solution is y(t) = et.

Here, f(t, y) = y. Thus, Euler’s Method reads

y0 = 1

yi+1 = yi + hyi = (1 + h)yi, i = 0, 1, 2, . . .

We obtain the results listed in Table 10.1. The (absolute) errors clearly
reduce by a factor of roughly 1/2 when h is cut from 0.2 to 0.1. We also note
that the absolute error increases as t increases in this particular example.
Even the relative error increases with t, although not as fast. ¨

The forward difference formula that leads to the (forward) Euler method

334 Chapter 10: Initial value ODEs

h=0.2 h=0.1

ti y(ti) yi error yi error

0 1.000 1.000 0.0 1.000 0.0

0.1 1.105 1.100 0.005

0.2 1.221 1.200 0.021 1.210 0.011

0.3 1.350 1.331 0.019

0.4 1.492 1.440 0.052 1.464 0.028

0.5 1.694 1.611 0.038

0.6 1.822 1.728 0.094 1.772 0.050

Table 10.1: Absolute errors using the forward Euler method for the ODE
y′ = y.

can be replaced by a backward formula,

y′(ti+1) ≈
y(ti+1)− y(ti)

h
,

which leads to the backward Euler method:

y0 = c,

yi+1 = yi + hf(ti+1, yi+1), i = 0, 1, . . . , N − 1.

One might be tempted to think of the backward Euler formula as a minor
variation not much different from the forward scheme. But there is a sub-
stantial difference here: In the backward Euler formula, the computation of
yi+1 depends implicitly on yi+1 itself! This leads to the important notion of
explicit and implicit methods. If the evaluation of yi+1 involves the eval-
uation of f at the unknown point yi+1 itself, then the method is implicit and
requires a solution of a usually nonlinear equation for yi+1. If on the other
hand the evaluation of yi+1 involves the evaluation of f only at known points
(i.e. values obtained in previous iterations, such as yi), then the method is
explicit. Hence, the forward Euler method is explicit, whereas the backward
Euler method is implicit. Explicit methods are significantly easier to imple-
ment. This is what has given the forward Euler method its great popularity
in numerous areas of applications. The backward Euler, in contrast, while
easy to understand conceptually, requires a deeper understanding of numer-
ical issues, and cannot be programmed as easily and seamlessly as forward
Euler can. However, as we shall see later, backward Euler and in general

Chapter 10: initial value ODEs 335

implicit methods have numerical properties that in certain cases, and for
certain applications, make them superior to explicit methods.

Local trunction error and global error

The local truncation error is the amount by which the exact solution fails
to satisfy the difference equation written in divided difference form.

The concept is general; let us demonstrate it for the forward Euler method:

di =
y(ti+1)− y(ti)

h
− f(ti, y(ti)).

Note that di = h
2
y′′(ξi) = O(h). In general, if nothing goes wrong we expect

that the global error

ei = y(ti)− yi, i = 0, 1, . . . , N,

be of the same order, namely, we expect

ei = O(h).

We have seen such behaviour in Example 10.3. Let us show that this is true
in general under very mild conditions on f(t, y).

Since the local truncation error satisfies

di =
y(ti+1)− y(ti)

h
− f(ti, y(ti)), and also

0 =
yi+1 − yi

h
− f(ti, yi),

we subtract the two expressions and obtain for the error ek = y(tk)− yk the
difference formula

di =
ei+1 − ei

h
− [f(ti, y(ti))− f(ti, yi)].

Assume that f satisfies a Lipschitz condition, i.e., there is a constant L such
that

|f(t, v)− f(t, w)| ≤ L|v − w| for all a ≤ t ≤ b, v, w ∈ D
for some appropriate domain D. Then we can write the error difference
equation as

|ei+1| = |ei + h[f(ti, y(ti))− f(ti, yi)] + hdi|
≤ |ei|+ hL|ei|+ hd

where d is a bound on the local truncation errors, d ≥ max
0≤i≤N−1

|di|. For

instance, if we know
M = max

a≤t≤b
|y′′(t)|

336 Chapter 10: Initial value ODEs

then set

d =
M

2
h.

It follows that

|ei+1| ≤ (1 + hL)|ei|+ hd

≤ (1 + hL)[(1 + hL)|ei−1|+ hd] + hd = (1 + hL)2|ei−1|+ (1 + hL)hd+ hd

≤ . . . ≤ (1 + hL)i+1|e0|+ hd
i∑

j=0

(1 + hL)j

≤ d[eL(ti+1−a) − 1]/L

≤ Mh

2L
[eL(ti+1−a) − 1].

Above, to arrive at the one inequality before last we used e0 = 0 and a bound
for the geometric sum of powers of 1 + hL.

This provides a proof that the global error in Euler’s method is indeed
first order in h, as observed in Example 10.3. Note also that the bound may
indeed grow with t. This is realistic to expect when the exact solution grows.
The relative error is more meaningful then. But when the exact solution
decays then the above bound on the absolute error becomes too pessimistic.'

&

$

%

Note:
Since deriving discretization formulae for differential equations involves

numerical differentiation, there is an unavoidable roundoff error that be-
haves like O(h−1); recall the discussion in Section 9.2. However, roundoff
error is typically a secondary concern here, especially when using dou-
ble precision (which is the default in Matlab). This is so both because
h is usually not incredibly small (for reasons of efficiency and modeling
limitations) and because y, and not y′, is the function for which the ap-
proximations are sought.

Example 10.4
A more challenging problem originates in plant physiology and is defined by
the following Matlab script:

function f = hires(t,y)

% f = hires(t,y)

% High irradiance response function arising in plant physiology

f = y;

Chapter 10: initial value ODEs 337

f(1) = -1.71*y(1) + .43*y(2) + 8.32*y(3) + .0007;

f(2) = 1.71*y(1) - 8.75*y(2);

f(3) = -10.03*y(3) + .43*y(4) + .035*y(5);

f(4) = 8.32*y(2) + 1.71*y(3) - 1.12*y(4);

f(5) = -1.745*y(5) + .43*y(6) + .43*y(7);

f(6) = -280*y(6)*y(8) + .69*y(4) + 1.71*y(5) - .43*y(6) + .69*y(7);

f(7) = 280*y(6)*y(8) - 1.81*y(7);

f(8) = -280*y(6)*y(8) + 1.81*y(7);

This ODE system (which has m = 8 components) is to be integrated from
a = 0 to b = 322 starting from y(0) = y0 = (1, 0, 0, 0, 0, 0, 0, .0057)T . The
script

h = .005; t = 0:h:322;

y = y0 * ones(1,length(t));

for i = 2:length(t)

y(:,i) = y(:,i-1) + h*hires(t(i-1),y(:,i-1));

end

plot(t,y(6,:))

(plus labelling) produces Figure 10.3. To gauge accuracy of the Euler method
we repeat the solution process with a more accurate method (from Section
10.2) and regard the difference between these approximate solutions as the
error for the less accurate forward Euler. Based on this the maximum ab-
solute error occurs after 447 steps at t∗ = 2.235, where y(t∗) = .4483 and
|y(t∗)− y447| = 4.67× 10−4.

¨

10.2 Runge-Kutta methods

Euler’s method is only first order accurate. This implies inefficiency for
many applications, as the step size must be taken rather small (and thus, N
becomes rather large) to achieve satisfactory accuracy.

To obtain higher order methods there are extensions of Euler’s method
in several directions. The two most common directions lead to

• Runge-Kutta methods. A special class of these, not discussed here fur-
ther, are Extrapolation methods.

• Multistep methods. These are discussed in Section 10.3.

Consider our prototype ODE over one step, from ti to ti+1. Thus, we
assume that an approximation yi to y(ti) is known at the point ti (never
mind how we got it) and consider ways to obtain an approximation yi+1 to

338 Chapter 10: Initial value ODEs

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

y 6

Figure 10.3: The 6th solution component of the HIRES model.

y(ti+1) at the next point ti+1. Integrating from ti to ti+1 we can write the
ODE as

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y(t))dt.

Now, consider applying a basic quadrature rule (Section 9.3). For instance,
the trapezoidal rule gives

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi+1))

and the midpoint rule gives

yi+1 = yi + hf(ti+1/2,
yi + yi+1

2
)

where we denote

ti+1/2 =
ti + ti+1

2
= ti + h/2.

The problem is that both these last two schemes (which are O(h2)-
accurate) are implicit, recall the definition in Section 10.1. Thus, the evalu-
ation of yi+1 requires solving a generally nonlinear equation for yi+1. This is

Chapter 10: initial value ODEs 339

a major difference between numerical quadrature and numerical integration
of differential equations. For an ODE system of size m we get a nonlinear
system of m equations to solve for a vector yi+1 at each step i. One would
like to avoid this expense and complication, if possible (although not at any
cost, as becomes clear in Section 10.4).

Thus, apply Euler’s method to evaluate an approximation for y at ti+1/2

first:

yi+1 = yi + hf(ti+1/2, Y), where

Y = yi +
h

2
f(ti, yi).

This is the explicit midpoint scheme, and it is an instance of an explicit
Runge-Kutta method. It can be shown to have the local truncation error
di = O(h2). 1 At each step i we evaluate Y and then yi+1. This requires
two function evaluations per step, so the method is roughly twice as expensive
as Euler’s method per step.

The classical Runge-Kutta method is based on the Simpson quadra-
ture rule, and uses four stages (four function evaluations per step) to achieve
O(h4) accuracy:

Y1 = yi,

Y2 = yi +
h

2
f(ti, Y1),

Y3 = yi +
h

2
f(ti+1/2, Y2),

Y4 = yi + hf(ti+1/2, Y3),

yi+1 = yi +
h

6

(
f(ti, Y1) + 2f(ti+1/2, Y2)

+ 2f(ti+1/2, Y3) + f(ti+1, Y4)
)
.

Showing that this formula is actually 4th order accurate is not a simple mat-
ter, unlike for the composite Simpson quadrature, and will not be discussed
further.

It is common to abbreviate Runge-Kutta to RK. Here is a simple Matlab

function that implements the classical RK method using a fixed step size. It is
written for an ODE system, with the extension from the scalar ODE method
requiring almost no effort. Note that instead of storing the Yj’s we evaluate
and store Kj = f(tj, Yj):

function [t,y] = rk4(f,tspan,y0,h)

1The local truncation error is defined in general in the same way as it is defined for
the forward Euler method in Section 10.1: It is the resulting residual when we insert the
exact solution into the difference equation which the numerical solution satisfies.

340 Chapter 10: Initial value ODEs

%

% [t,y] = rk4(f,tspan,y0,h)

%

% A simple integration routine to solve the

% initial value ODE y’ = f(t,y), y(a) = y0,

% using the clascical 4-stage Runge-Kutta method

% with a fixed step size h.

% tspan = [a b] is the integration interval.

% Note that y and f can be vector functions

y0 = shiftdim(y0); % make sure y0 is a column vector

m = length(y0); % problem size

t= tspan(1):h:tspan(2); % output abscissae

N = length(t)-1; % number of steps

y = zeros(m,N+1);

y(:,1) = y0; % initialize

% Integrate

for i=1:N

% Calculate the four stages

K1 = feval(f, t(i),y(:,i));

K2 = feval(f, t(i)+.5*h, y(:,i)+.5*h*K1);

K3 = feval(f, t(i)+.5*h, y(:,i)+.5*h*K2);

K4 = feval(f, t(i)+h, y(:,i)+h*K3);

% Evaluate approximate solution at next step

y(:,i+1) = y(:,i) + h/6 *(K1+2*K2+2*K3+K4);

end

The appearance of methods of different orders in this section motivates
us to explore the question how we can test that a particular method comes
close to reflecting its order. A way to go about this is the following: If the
error at fixed t is e(h) ≈ chq then with step size 2h, e(2h) ≈ c(2h)q ≈ 2qe(h).
Thus, calculate

Rate(h) = log2

(
e(2h)

e(h)

)

.

This convergence rate, or observed order is compared to the predicted order
q of the given method. See Exercise 3.

Example 10.5
Consider the scalar problem

y′ = −y2, y(1) = 1.

Chapter 10: initial value ODEs 341

The exact solution is y(t) = 1
t
. We compute and list absolute errors at

t = 10 in Table 10.2.

h Euler Rate RK2 Rate RK4 Rate

0.2 4.7e-3 3.3e-4 2.0e-7

0.1 2.3e-3 1.01 7.4e-5 2.15 1.4e-8 3.90

0.05 1.2e-3 1.01 1.8e-5 2.07 8.6e-10 3.98

0.02 4.6e-3 1.00 2.8e-6 2.03 2.2-11 4.00

0.01 2.3e-4 1.00 6.8e-7 2.01 1.4e-12 4.00

0.005 1.2e-4 1.00 1.7e-7 2.01 8.7e-14 4.00

0.002 4.6e-5 1.00 2.7e-8 2.00 1.9e-15 4.19

Table 10.2: Errors and calculated convergence rates for the forward Euler,
the explicit midpoint (RK2) and the classical Runge–Kutta (RK4) methods.

By using the approach described above for computing “rates”, we see
that indeed the three methods introduced demonstrate orders 1, 2 and 4,
respectively. Note that for h very small, roundoff error effects show up in the
error with the more accurate formula RK4. Given the cost per step, a fair
comparison with roughly equal computational effort would be of Euler with
h = .005, RK2 with h = .01 and RK4 with h = .02. Clearly the higher order
methods are better if an accurate approximation (say error below 10−7) is
sought.

But bear in mind that for rougher accuracy (and for rougher ODEs) lower
order methods may become more competitive.

¨

Example 10.6
Next, we unleash our function rk4 on the following problem of size m = 2:

y′1 = .25y1 − .01y1y2, y1(0) = 80,

y′2 = −y2 + .01y1y2, y2(0) = 30.

Integrating from a = 0 to b = 100 with step size h = 0.01, we plot the
solution in Figure 10.4.

This is a simple predator-prey model, originally due to Volterra. There
is one prey species whose number at any given time is y1(t). The number of
prey grows unboundedly in time if unhunted by the predator. There is only

342 Chapter 10: Initial value ODEs

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

t

y
1

y
2

Figure 10.4: Predator-prey model: y1(t) is number of prey, y2(t) is number
of perdator.

one predator species whose number at a any given time is y2(t). The number
of predators whould shrink to extinction if they do not encounter prey. But
they do, and thus a life cycle forms. Note the way the peaks and lows in
y1(t) are related to those of y2(t).

In Figure 10.5 we plot y1 vs y2. A limit cycle is obtained, suggesting that
at least according to this simple model neither species will become extinct
or grow unboundedly at any future time.

¨

In the RK methods we have seen so far, each internal stage Yj depends
on the previous Yj−1. More generally, each internal stage Yj depends on all
previously computed stages Yk, so the explicit, s-stage RK method looks
like

yi+1 = yi + h

s∑

j=1

bjf(Yj), where

Yj = yi + h

j−1
∑

k=1

ajkf(Yk).

Here we assume no explicit dependence of f on the independent variable t,
to save on notation. For instance, the explicit midpoint method is written in
this form with s = 2, a11 = a12 = a22 = 0, a21 = 1/2, b1 = 0 and b2 = 1.

Chapter 10: initial value ODEs 343

70 80 90 100 110 120 130
15

20

25

30

35

40

y 2

y
1

Figure 10.5: Predator-prey solution in phase plane: plotting y1(t) vs y2(t)
yields a limit cycle.

The even more general implicit, s-stage RK method is written as

yi+1 = yi + h
s∑

j=1

bjf(Yj), where

Yj = yi + h
s∑

k=1

ajkf(Yk).

The implicit midpoint method is an instance of this, with s = 1, a11 = 1/2
and b1 = 1. Implicit RK methods become interesting when considering stiff
problems (see Section 10.4).

The definitions of local truncation error and order, as well as the proof
of convergence and global error bound given in Section 10.1, readily extend
for any Runge-Kutta (RK) method.

Some of the advantages and disadvantages of Runge-Kutta methods are
evident by now. Advantages are:

• Simplicity in concept and in starting the integration process.

• Flexibility in varying the step size.

• Flexibility in handling discontinuities in f(t, y) and other events (e.g.
collision of bodies whose motion is being simulated).

Disadvantages of Runge-Kutta methods include:

344 Chapter 10: Initial value ODEs

'

&

$

%

Note: It is often convenient to suppress the explicit dependence of f(t,y)
on t and to write the ODE as

y′ = f(y).

Indeed, there are many problem instances such as those in Examples 10.2,
10.4 and 10.6 where there is no explicit dependence on t in f . But even
if there is such dependence, it is possible to imagine t as yet another de-
pendent variable, i.e. define a new independent variable x = t, and let
ỹT = (yT , t) and f̃T = (fT , 1). Then y′ = f(t,y) becomes

dỹ

dx
= f̃(ỹ).

We are not proposing to actually carry out such a transformation, only to
imagine it in case you don’t know how to handle t when implementing a
particular discretization formula.

• The number of function evaluations required – our measure of work in
Sections 9.3–9.7 – is relatively high, compared to multistep methods.

• There are difficulties with adaptive order variation. (So, in practice
people settle on one method of a certain order and vary only the step
size to achieve error control, as described below.)

• More involved and possibly more costly procedures are required for
stiff problems, the topic of Section 10.4, than upon using multistep
methods.

10.2.1 Error control and estimation

As in the case with quadrature and quads (Section 9.6), we wish to write
a mathematical software routine where a user would specify f(t, y), a, b,
c and a tolerance Tol, and the routine would calculate {yi}Ni=0 accurate to
within Tol. However, here the situation is significantly more complex than
for numerical integration:

• The global error ei = y(ti)− yi is not simply a sum of the local errors
made at each previous step j for j = 0, . . . , i− 1. Indeed, as the error
bound that we have derived for the forward Euler method indicates,
the global error may grow exponentially in time, which means that the
contribution of each local error may also grow in time.

Chapter 10: initial value ODEs 345

• If we use a method such as RK4 for a given step from ti to ti+1 and
then subdivide and apply RK4 on each subinterval to obtain an er-
ror estimate (analogously to what is described in Section 9.6 using the
Simpson rule) then the same function values cannot be used and es-
sentially everything must be recalculated afresh. Hence the process of
local error estimation may be very expensive if done simplistically.

The first of these concerns is the more traumatic one. There are methods
to estimate the global error by recalculating the entire solution on [a, b], but
we want a local error control, i.e. we want to adapt the step size locally!
Relating this to the global error is hard, so we adjust expectations and are
typically content to control the local error

li+1 = ȳ(ti+1)− yi+1

where ȳ(t) is the solution of the ODE y′ = f(t, y) which satisfies ȳ(ti) = yi

(but ȳ(0) 6= c in general). See Figure 10.6.
Thus, we consider the ith subinterval as if there is no error accumulated

at its left end ti, and wonder what might result at the right end ti+1. To
control the local error we keep the step size small enough, so in particular,
h = hi is no longer the same for all steps i.

Suppose now that we use a pair of schemes, one of order q and the other
of order q + 1, to calculate two approximations yi+1 and ŷi+1 at ti+1, both
starting from yi at ti. Then we can estimate

|li+1| ≈ |ŷi+1 − yi+1|.

So, at the ith step we calculate these two approximations and compare:
If

|ŷi+1 − yi+1| ≤ Tol

then the step is accepted: set yi+1 ← ŷi+1 (the more accurate of the two
values calculated) and i← i+ 1.

If the step is not accepted then we decrease h to h̃ and repeat the proce-
dure starting from the same (ti, yi). This is done as follows: Since the local
error in the less accurate method is li+1 ≈ chq+1, upon decreasing h to a
satisfactory h̃ the local error will become ch̃q+1 ≈ 0.9 Tol, where the factor
0.9 is for safety. Dividing, we get

h̃q+1

hq+1
≈ 0.9 Tol

|ŷi+1 − yi+1|
.

Thus, set

h̃ = h

(
0.9 Tol

|ŷi+1 − yi+1|

) 1
q+1

.

346 Chapter 10: Initial value ODEs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

t

t
i

t
i+1

y
i+1

y
i

exact
thru (t

i
,y

i
)

next approx

Figure 10.6: The exact solution y(ti) which lies on the lowest of the three
curves is approximated by yi which lies on the middle curve. If we integrate
the next step exactly, starting from (ti, yi), then we obtain (ti+1, ȳ(ti+1)),
which also lies on the middle curve. But we don’t: rather, we integrate the
next step approximately as well, obtaining (ti+1, yi+1), which lies on the top
curve. The difference between the two curve values at the argument ti+1 is
the local error.

Chapter 10: initial value ODEs 347

We caution again that the meaning of Tol here is different from that in
the adaptive quadrature section 9.6. Here we attmept to control the local,
not the global error.

How is the value of h selected upon starting the ith time step? A rea-
sonable choice is the final step size of the previous time step. But then the
sequence of step sizes only decreases and never grows! So, some mechanism
must be introduced that allows occasional increase of the starting step size.
For instance, if in the past two time steps no decrease was needed we can
hazard a larger initial step size for the current step.

The only question left is how to choose the pair of formulae of orders q
and q + 1 wisely. This is achieved by searching for a pair of formulae which
share the internal stages Yj as much as possible. A good RK pair of orders 4
and 5 would use only 6 (rather than 9 or 10) function evaluations per step.
Such pairs of formulae are implemented in Matlab’s ODE45. See Exercise
8 for a detailed example demonstrating the power of a variable step code.

Example 10.7 (The Lorenz equations)
The famous Lorenz equations provide a simple example of a chaotic system.
They are given by

y′ = f(y) =








σ(y2 − y1)

ry1 − y2 − y1y3

y1y2 − by3







,

where σ, r, b are positive parameters. Following Lorenz we set σ = 10, b =
8/3, r = 28. We then integrate, starting from y(0) = (0, 1, 0)T , using
ODE45. Plotting y3(t) vs. y1(t) we obtain the famous “butterfly” depicted
in Figure 10.7. It is interesting to note that upon changing the error toler-
ance and rerunning the integration software ODE45, say for 0 ≤ t ≤ 100, the
solution at t = 100 is quite different, as befits a chaotic system. And yet, the
delicate features of the phase plane plot in Figure 10.7 are reproduced, even
without pointwise accuracy of the numerical solution. Sometimes, there is
free lunch!

¨

10.3 Multistep methods

The basic idea of multistep methods is very simple: once we are in the midst
of integrating the ODE we really have at the start of step i knowledge not
only of yi (the approximate solution at ti which is all that Runge-Kutta

348 Chapter 10: Initial value ODEs

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

y
1

y
3

Figure 10.7: Lorenz “butterfly” in the y1 × y3 plane.¶
µ

³
´

Note: It is possible to read almost all of Section 10.4 without going first
in detail through Section 10.3.

methods use) but also of previous solution values: yi−1 at ti−1, yi−2 at ti−2,
and so on. So, use polynomial interpolation of these values in order to obtain
cheap yet accurate approximations for the next unknown, yi+1.

Assuming (for simplicity) a uniform grid, ti = ih, i = 0, 1, . . . , where h
is the step size in time t, these methods use solution values at previous time
steps to generate high accuracy approximations of the given ODE. An s-step
method reads

s∑

j=0

αjyi+1−j = h

s∑

j=0

βjfi+1−j .

Here, fi+1−j = f(ti+1−j, yi+1−j) and αj, βj are coefficients; let us set α0 = 1
for definiteness, because the entire formula can obviously be rescaled.

The need to evaluate f at the unknown point yi+1 depends on β0: The
method is explicit if β0 = 0 and implicit otherwise. It is called linear because,
unlike general Runge–Kutta, the expression in the multistep formula is linear
in f . (Of course f itself may still be nonlinear in y.)

Let us define the local truncation error for the general multistep method

Chapter 10: initial value ODEs 349

as

di = h−1

s∑

j=0

αjy(ti+1−j)−
s∑

j=0

βjy
′(ti+1−j).

This is the amount by which the exact solution fails to satisfy the difference
equations, divided by h. Thus, the method has accuracy order q if for all
problems with sufficiently smooth exact solutions y(t),

di = O(hq).

Example 10.8
The forward Euler method is a particular instance of a linear multistep
method, with s = 1, α1 = −1, β1 = 1, and β0 = 0 as an explicit method
ought to have.

The backward Euler method is also a particular instance of a linear mul-
tistep method, with s = 1, α1 = −1, β0 = 1, and β1 = 0.

The other RK methods that we have seen in Section 10.2 are not linear
multistep methods.

¨

The most popular families of linear multistep methods are the Adams
family and the backward differentiation formula (BDF) family.

The Adams methods are derived by considering integrating

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y(t))dt

and approximating the integrand f(t, y) by an interpolating polynomial through
previously computed values of f(tl, yl). In the general form of multistep
methods we therefore set, for all Adams methods,

α0 = 1, α1 = −1, and αj = 0, j > 1.
The s-step explicit Adams method, also called Adams-Bashforth method,

is obtained by interpolating f through the previous points t = ti, ti−1, . . . , ti+1−s,
giving an explicit method. Since there are s interpolation points which are
O(h) apart we expect (and obtain) order of accuracy q = s.

Example 10.9
With s = 2 we interpolate f at the points ti and ti−1. This gives the straight
line

p(t) = fi +
fi − fi−1

h
(t− ti)

350 Chapter 10: Initial value ODEs

which is then integrated:

∫ ti+1

ti

[fi +
fi − fi−1

h
(t− ti)]dt

= [fit+
fi − fi−1

2h
(t− ti)2]

ti+1

ti

= h[
3fi

2
− fi−1

2
].

The formula is, therefore,

yi+1 = yi +
h

2
(3fi − fi−1).

¨

Table 10.3 gives the coefficients of the Adams–Bashforth methods for s
up to 6. For s = 1 we obtain the forward Euler method.

q s j → 1 2 3 4 5 6

1 1 βj 1

2 2 2βj 3 −1

3 3 12βj 23 −16 5

4 4 24βj 55 −59 37 −9

5 5 720βj 1901 −2774 2616 −1274 251

6 6 1440βj 4277 −7923 9982 −7298 2877 −475

Table 10.3: Coefficients of Adams–Bashforth methods up to order 6.

The s-step implicit Adams method, also called Adams-Moulton method,
is obtained by interpolating f through the previous points plus the next

one, t = ti+1, ti, ti−1, . . . , ti+1−s, giving an implicit method. Since there are
s+1 interpolation points which are O(h) apart we expect (and obtain) order
of accuracy q = s + 1. For instance, Exercise 5 shows that, upon passing a
quadratic through the points (ti+1, fi+1), (ti, fi) and (ti−1, fi−1), the following
formula is obtained:

yi+1 = yi +
h

12
(5fi+1 + 8fi − fi−1).

Table 10.4 gives the coefficients of the Adams–Moulton methods for s
up to 5. Note that there are two one-step methods here: backward Euler

Chapter 10: initial value ODEs 351

q s j → 0 1 2 3 4 5

1 1 βj 1

2 1 2βj 1 1

3 2 12βj 5 8 −1

4 3 24βj 9 19 −5 1

5 4 720βj 251 646 −264 106 −19

6 5 1440βj 475 1427 −798 482 −173 27

Table 10.4: Coefficients of Adams–Moulton methods up to order 6.

(s = q = 1),

yi+1 = yi + hfi+1,

and trapezoidal (s = 1, q = 2),

yi+1 = yi +
h

2
(fi + fi+1).

Example 10.10
For the scalar problem

y′ = −y2, y(1) = 1,

the exact solution is y(t) = 1
t
. We compute and list absolute errors at

t = 10 in Tables 10.5 and 10.6 which provide a comparison with Table 10.2
of Example 10.5. For the additional initial values necessary we use the exact
solution, excusing this form of cheating by claiming that we are interested
here only in the global error behaviour.

We can see that the observed order of the methods is as advertised. The
error constant (i.e. c in e(h) = chq) is smaller for the Adams-Moulton method
of order q > 1 than for the corresponding Adams-Bashforth of the same
order. This is not surprising: the s interpolation points are more centered
with respect to the interval [ti, ti+1] where the ensuing integration takes place.

The error constant in RK2 is comparable to that of the trapezoidal
method in Table 10.6. The error constant in RK4 is smaller than that in
the corresponding 4th order methods here. ¨

352 Chapter 10: Initial value ODEs

Step h (1, 1) error Rate (2, 2) error Rate (4, 4) error Rate

0.2 4.7e-3 9.3e-4 1.6e-4

0.1 2.3e-3 1.01 2.3e-4 2.02 1.2e-5 3.76

0.05 1.2e-3 1.01 5.7e-5 2.01 7.9e-7 3.87

0.02 4.6e-4 1.00 9.0e-6 2.01 2.1e-8 3.94

0.01 2.3e-4 1.00 2.3e-6 2.00 1.4e-9 3.97

0.005 1.2e-4 1.00 5.6e-7 2.00 8.6e-11 3.99

0.002 4.6e-5 1.00 9.0e-8 2.00 2.2e-12 3.99

Table 10.5: Example 10.10: Errors and calculated convergence rates for
Adams–Bashforth methods; (k, q) denotes the k-step method of order q.

Predictor-corrector methods

The great advantage of multistep methods is their cost in terms of function
evaluation: for instance, only one function evaluation is required to advance
the explicit Adams-Bashforth formula by one step. However, for the higher
order Adams-Bashforth formulae there are some serious limitations in terms
of absolute stability – a concept made clear in the next section. For now,
suffice it to say that Adams-Bashforth methods are usually not used as stand-
alone discretizations with s > 2.

For the implicit Adams-Moulton methods, which are naturally more ac-
curate and more stable than the corresponding explicit methods of the same
order, we need to solve nonlinear equations for yi+1. Worse, for ODE sys-
tems we generally have a nonlinear system of algebraic equations at each
step. Fortunately, everything implicit and nonlinear is multiplied by h in the
formula (because only f , and not y′, may be nonlinear in the ODE), so for
h sufficiently small a simple fixed point iteration converges under fairly mild
conditions (unless the ODE system is stiff – see Section 10.4).

To start the fixed point iteration for a given s-step Adams-Moulton for-
mula we need a starting iterate, and since all those previous values of f are
stored anyway we may well use them to apply the corresponding Adams-
Bashforth formula. This explicit formula yields a predicted value for yi+1

which is then corrected by the fixed point formula based on Adams-Moulton.

But next, note that the fixed point iteration need not be carried to con-
vergence: alll it yields in the end is an approximation for y(ti+1) anyway.
The most popular predictor-corrector variant, denoted PECE, reads as

Chapter 10: initial value ODEs 353

Step h (1, 1) error Rate (1, 2) error Rate (3, 4) error Rate

0.2 6.0e-3 1.8e-4 1.1e-5

0.1 2.4e-3 1.35 4.5e-5 2.00 8.4e-7 3.73

0.05 1.2e-3 1.00 1.1e-5 2.00 5.9e-8 3.85

0.02 4.6e-4 1.00 1.8e-6 2.00 1.6e-9 3.92

0.01 2.3e-4 1.00 4.5e-7 2.00 1.0e-10 3.97

0.005 1.2e-4 1.00 1.1e-7 2.00 6.5e-12 3.98

0.002 4.6e-5 1.00 1.8e-8 2.00 1.7e-13 3.99

Table 10.6: Example 10.10: Errors and calculated convergence rates for
Adams–Moulton methods; (k, q) denotes the k-step method of order q.

follows:

1. Use an s-step Adams-Bashforth method to calculate y0
i+1, calling the

result the Predicted value.

2. Evaluate f 0
i+1 = f(ti+1, y

0
i+1).

3. Apply an s-step Adams-Moulton method using f 0
i+1 for the unknown,

calling the result the Corrected value yi+1.

4. Evaluate fi+1 = f(ti+1, yi+1).

The last evaluation is carried out in preparation for the next time step and
in order to maintain an acceptable measure of absolute stability.

Example 10.11
Combining the two-step Adams–Bashforth formula with the second order
one-step Adams–Moulton formula (i.e., the trapezoidal method), we obtain
the following method for advancing one time step.

Given yi, fi, fi−1,

1. y0
i+1 = yi + h

2
(3fi − fi−1),

2. f 0
i+1 = f(ti+1, y

0
i+1),

3. yi+1 = yi + h
2
(fi + f 0

i+1),

4. fi+1 = f(ti+1, yi+1).

354 Chapter 10: Initial value ODEs

This is an explicit, second order method which has the local truncation error

di = − 1

12
h2y′′′(ti+1) +O(h3).

This method really looks like an “explicit-trapezoidal” variant of a Runge-
Kutta method. The power of the predictor-corrector approach really shines
when more steps are involved, because the same simplicity – and cost of two
function evaluations per step! – remains for higher order methods, whereas
higher order Runge-Kutta methods get significantly more complex and ex-
pensive per step. ¨

In the common situation where the orders of the predictor formula and of
the corrector formula are the same, the principal term of the local truncation
error for the PECE method is the same as that of the corrector. It is then
possible to estimate the local error in a very simple manner. Error control in
the spirit of Subsection 10.2.1 is then facilitated. In fact, it is also possible to
vary the order (by varying s) of the PECE pair adaptively. Varying the step
size, however, is overall more complicated (even though certainly possible)
than in the case of one-step, RK methods.

Comparing multistep methods to Runge-Kutta methods, the comments
we have made just before Subsection 10.2.1 are relevant (except that now
what was worse in RK is better here and what was better in RK is rel-
atively worse here). Briefly, the important advantages are the cheap high
order PECE pairs with the local error estimation that comes for free. The
important disadvantages are the need for additional initial values (all s initial
values must be O(hq)-accurate for a method of order q - they are obtained
using another method which requires fewer steps), and the relatively cum-
bersome adjustment to local changes such as lower continuity, event location,
and drastically adapting the step size. In the 1980s, linear multistep methods
were the methods of choice for most general-purpose ODE codes. With less
emphasis on cost and more on flexibility, however, RK methods have more
recently taken the popularity lead. This is true except for stiff problems, for
which BDF methods are still the bee’s knee.

Backward differentiation formulae (BDF)

The s-step BDF method is obtained by evaluating f only at the right
end of the current step, (ti+1, yi+1), driving an interpolating polynomial
of y (rather than f) through the previous points plus the next one, t =
ti+1, ti, ti−1, . . . , ti+1−s, and differentiating it. This gives an implicit method
of accuracy order q = s. Table 10.7 gives the coefficients of the BDF methods
for s up to 6. For s = 1 we obtain again the backward Euler method.

Chapter 10: initial value ODEs 355

q s β0 α0 α1 α2 α3 α4 α5 α6

1 1 1 1 −1

2 2 2
3 1 −4

3
1
3

3 3 6
11 1 −18

11
9
11 − 2

11

4 4 12
25 1 −48

25
36
25 −16

25
3
25

5 5 60
137 1 −300

137
300
137 −200

137
75
137 − 12

137

6 6 60
147 1 −360

147
450
147 −400

147
225
147 − 72

147
10
147

Table 10.7: Coefficients of BDF methods up to order 6.

Example 10.12
Continuing with Example 10.10, we now compute errors for the same ODE
problem, namely, y′ = −y2, y(1) = 1, using the BDF methods. The results
in Table 10.8 below are to be compared against those in Tables 10.5 and 10.6.

Step h (1, 1) error Rate (2, 2) error Rate (4, 4) error Rate

0.2 6.0e-3 7.3e-4 7.6e-5

0.1 2.4e-3 1.35 1.8e-4 2.01 6.1e-6 3.65

0.05 1.2e-3 1.00 4.5e-5 2.00 4.3e-7 3.81

0.02 4.6e-4 1.00 7.2e-6 2.00 1.2e-8 3.91

0.01 2.3e-4 1.00 1.8e-6 2.00 7.8e-10 3.96

0.005 1.2e-4 1.00 4.5e-7 2.00 4.9e-11 3.98

0.002 4.6e-5 1.00 1.8e-8 2.00 1.3e-12 3.99

Table 10.8: Example 10.12: Errors and calculated convergence rates for BDF
methods; (k, q) denotes the k-step method of order q.

The results are clearly comparable, although the error constants for meth-
ods of similar order are worse here. Again, the advantage of BDF methods
comes to life in the context of stiff problems, which is our next topic.

¨

356 Chapter 10: Initial value ODEs

10.4 Absolute stability and stiffness

The methods described in Sections 10.2 and 10.3 are routinely used in many
applications and they often give satisfactory results in practice. An excep-
tion is the case of stiff problems, where explicit Runge-Kutta methods are
forced to use a very small step size and thus become unreasonably expen-
sive. (Adams multistep methods meet a similar fate.) But before we define
stiffness, we should introduce a few important notions related to stability.

Absolute stability

To understand the phenomenon involved, consider the test equation

y′ = λy

where λ is a constant. The exact solution is y(t) = eλty(0). So, the exact
solution increases if λ > 0 and decreases otherwise.

Euler’s method gives

yi+1 = yi + hλyi = (1 + hλ)yi

= . . . = (1 + hλ)i+1y(0).

If λ > 0 then the approximate solution grows, and so does the absolute error,
yet the relative error remains reasonably small. But if λ < 0 then the exact
solution decays so we must require at the very least that the approximate
solution not grow:

|yi+1| ≤ |yi|.
For the (forward) Euler method this corresponds to the requirement

|1 + hλ| ≤ 1⇒ h ≤ 2

|λ| .

This is a requirement of absolute stability.
Of course the test equation is very simple. In general we consider a

nonlinear ODE system
y′ = f(y).

Here, absolute stability properties are determined by the Jacobian matrix,

J(y) =
∂f(y)

∂y
.

A surprisingly good estimate of the stability properties of a numerical method
for the nonlinear system is obtained by considering the test equation for each
of the eigenvalues of the Jacobian matrix. One important generalization
to the test equation that this implies, though, is that we must consider a

Chapter 10: initial value ODEs 357

−6 −5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

Re(z)

Im
(z

)
Stability regions in the complex z−plane

Figure 10.8: Stability regions for q-stage explicit Runge–Kutta methods of
order q, q = 1, 2, 3, 4. The inner circle corresponds to forward Euler, q = 1.
The larger q is, the larger the stability region. Note the “ear lobes” of the
fourth-order method protruding into the right half-plane.

complex scalar λ, because eigenvalues are in general complex scalars. See
Example 10.13 below. Thus, instead of an absolute stability bound we are
really looking at an absolute stability region in the complex plane.

For instance, the forward Euler restriction

|1 + hλ| ≤ 1

is written as

|1 + z| ≤ 1

for the variable z = hλ. Clearly, the points z satisfying this constraint are
all inside (and on the boundary of) the circle of radius 1 centered at the
point (−1, 0) in the complex z-plane. Figure 10.8 depicts stability regions
for explicit Runge-Kutta methods of orders up to 4.

Example 10.13
Let us return to the mildly nonlinear problem of Example 10.4. The 8 × 8

358 Chapter 10: Initial value ODEs

Jacobian matrix is

J(y) =


























−1.71 .43 8.32 0 0 0 0 0

1.71 −8.75 0 0 0 0 0 0

0 0 −10.03 .43 .035 0 0 0

0 8.32 1.71 −1.12 0 0 0 0

0 0 0 0 −1.745 .43 .43 0

0 0 0 .69 1.71 0 .69 0

0 0 0 0 0 −280y8 − .43 0 −280y6

0 0 0 0 0 280y8 −1.81 280y6

0 0 0 0 0 −280y8 1.81 −280y6


























.

The eigenvalues of J , like J itself, depend on the solution y(t). The Matlab

command eig reveals that at the initial state t = 0, where y = y0, the
eigenvalues of J are (up to the first few leading digits)

0,−10.4841,−8.2780,−0.2595,−0.5058,−2.6745± 0.1499ı,−2.3147.

There is a conjugate pair of eigenvalues, while the rest are real. To get them
all into the circle of absolute stability for the forward Euler method the most
demanding condition is

−10.4841h > − 2,

implying that h = .1 would be a safe choice.
However, integration of this problem with a constant step size h = .1

yields a huge error. The integration process becomes unstable. The good
results in Example 10.4 are obtained by carrying out the integration process
with the much smaller h = .005.

Indeed it turns out that at t ≈ 10.7 the eigenvalues are approximately

−211.7697,−10.4841,−8.2780,−2.3923,−2.1400,−0.4907,−3.e−5,−3.e−12.

The stability bound that the most negative eigenvalue yields is

−211.7697h > − 2,

implying that h = .005 would be a safe choice, but h > .01 would not.
¨

Chapter 10: initial value ODEs 359

Stiffness

The problem is stiff if the step size needed to maintain absolute stability of
the Euler method is much smaller than the step size needed to represent the
solution accurately.

The problem of Examples 10.4 and 10.13 is stiff. The simple problem of
the following example is even stiffer.

Example 10.14
For the ODE

y′ = −1000(y − cos t)− sin t, y(0) = 1

the solution is y(t) = cos t. A broken line interpolation of y(t), which is what
Matlab uses by default for plotting, looks good already for h = 0.1. But
stability decrees that for Euler’s method we need

h ≤ 1

500

for any reasonable accuracy! ¨

From Figure 10.8 we see that increasing the order of an explicit RK
method does not do much good when it comes to solving stiff problems. In
fact this turns out to be true for any of the explicit methods that we have
seen.

For stiff problems, we therefore seek other methods. Implicit methods
such as trapezoidal or implicit midpoint become more attractive then, be-
cause their region of absolute stability is the entire left half z-plane. (Please
verify this.)

So does the backward Euler method

yi+1 = yi + hf(yi+1), i = 1, 2, . . . ,

which we briefly introduced in Section 10.1. For the test equation we obtain
yi+1 = yi + hλyi+1, hence

yi+1 =
1

1− hλyi.

Therefore, the region of absolute stability is defined by the inequality

|1− z| = |1− hλ| ≥ 1.

This includes in particular the entire left half z-plane. Even more impor-
tantly, if the real part of z is negative (<(z) < 0) then, as <(z) → −∞,

1
1−hλ

→ 0. Therefore yi+1 → 0, as does the exact solution y(h) under these
circumstances. This is called L-stability.

360 Chapter 10: Initial value ODEs

Carrying out an integration step

The inherent difficulty in implicit methods is that the unknown solution at
the next step, yi+1, is defined implicitly. Using the backward Euler method,
for instance, we have to solve a nonlinear equation at each step. This diffi-
culty gets significantly worse when an ODE system is considered. Now there
is a nonlinear system of algebraic equations to solve, see Chapter 6. Even
if the ODE is linear there is a system of linear equations to solve at each
integration step. This can get costly if the size of the system, m, is large.

For instance, applying the backward Euler method to our ODE system
we are facing at the ith step the following system of algebraic equations,

g(yi+1) ≡ yi+1 − hf(yi+1)− yi = 0.

Recalling Newton’s method from Section 6.1 and our current notation for the
Jacobian matrix of f(y) we have an iterative method for yi+1. For a good

starting iterate we can take y
(0)
i+1 = yi. Then the Newton iteration is:

for k = 0, 1, . . . , until convergence:
solve the linear system

(I − hJ(y
(k)
i+1))pk = −g(y

(k)
i+1)

obtaining pk,
set y

(k+1)
i+1 = y

(k)
i+1 + pk.

All this is to be done at every integration step! The saving grace is that
the initial guess yi is only O(h) away from the solution yi+1 of this nonlinear
system, so we may expect an O(h2) closeness after only one Newton iteration
due to the quadratic convergence rate of Newton’s method. Therefore, one
such iteration is usually sufficient. (Indeed, in sophisticated codes less than
one Jacobian evaluation per step is applied on average.) This then yields the
semi-implicit backward Euler method

(I − hJ(yi))yi+1 = (I − hJ(yi))yi + hf(yi), or

yi+1 = yi + h(I − hJ(yi))
−1f(yi).

This semi-implicit method still involves the solution of a linear system of
equations at each step. Note also that it is no longer guaranteed to be stable
for any z in the left half plane (can you see why?!).

Example 10.15
The problem of Examples 10.4 and 10.13 is stiff, to recall. With a uniform
step size the forward Euler method requires 322/.005 = 64, 400 integration
steps in Example 10.4.

Chapter 10: initial value ODEs 361

A solution which is qualitatively similar to the one displayed in Fig-
ure 10.3 is obtained by the semi-implicit Backward Euler method using
h = 0.1, resulting in only 3, 220 steps. The script is

h = 0.1; t = 0:h:322;

y = y0 * ones(1,length(t));

for i = 2:length(t)

A = eye(8) - h*hiresj(y(:,i-1));

y(:,i) = y(:,i-1) + h* A \ hires(y(:,i-1)));

end

plot(t,y)

The function hiresj returns the Jacobian matrix given in Example 10.13.
Thus, if an accuracy level of around .01 is satisfactory then for this exam-

ple the implicit method is much more efficient than the explicit one despite
the need to solve a linear system of equations at each integration step.

¨

For higher order methods, required for the efficient computation of high
accuracy solutions, BDF are the methods of choice, although there are also
some popular implicit Runge-Kutta methods. Their implementation is not
much more complicated than backward Euler, except for the need for ad-
ditional initial values and the cumbersome step size modification typical of
all multistep methods. Moreover, their behaviour (especially the two- and
three-step methods) is generally similar to that of backward Euler as well.

10.5 Exercises

1. The following ODE system:

y′1 = α− y1 −
4y1y2

1 + y2
1

,

y′2 = βy1

(

1− y2

1 + y2
1

)

,

where α and β are parameters, represents a simplified approximation
to a chemical reaction. There is a parameter value βc = 3α

5
− 25

α
such

that for β > βc solution trajectories decay in amplitude and spiral in
phase space into a stable fixed point, whereas for β < βc trajectories
oscillate without damping and are attracted to a stable limit cycle.
[This is called a Hopf bifurcation.]

(a) Set α = 10 and use any of the discretization methods introduced
in this chapter with a fixed step size h = 0.01 to approximate the

362 Chapter 10: Initial value ODEs

solution starting at y1(0) = 0, y2(0) = 2, for 0 ≤ t ≤ 20. Do this
for the parameter values β = 2 and β = 4. For each case plot y1

vs. t and y2 vs. y1. Describe your observations.

(b) Investigate the situation closer to the critical value βc = 3.5. [You
may have to increase the length of the integration interval b to get
a better look.]

2. To draw a circle of radius r on a graphics screen, one may proceed to
evaluate pairs of values x = r cos θ, y = r sin θ for a succession of values
θ. But this is computationally expensive. A cheaper method may be
obtained by considering the ODE

ẋ = −y, x(0) = r,

ẏ = x, y(0) = 0,

where ẋ = dx
dθ

, and approximating this using a simple discretization
method. However, care must be taken so as to ensure that the obtained
approximate solution looks right, i.e., that the approximate curve closes
rather than spirals.

Carry out this integration using a uniform step size h = .02 for 0 ≤
θ ≤ 120, applying forward Euler, backward Euler, and the trapezoidal
method. Determine if the solution spirals in, spirals out, or forms an
approximate circle as desired. Explain the observed results. [Hint:
This has to do with a certain invariant function of x and y, rather than
with the order of the methods.]

3. The convergence rate (observed order) defined prior to Example 10.3 is
based on the assumption that the calculation is carried out once with
h1 = h and once with h2 = 2h. Show that, more generally,

Rate(h) = log2

(
e(h2)

e(h1)

)

/ log2

(
h2

h1

)

.

4. Consider the ODE

dy

dt
= f(t, y), 0 ≤ t ≤ b,

where bÀ 1.

(a) Apply the stretching transformation t = τb to obtain the equiva-
lent ODE

dy

dτ
= b f(τb, y), 0 ≤ τ ≤ 1.

(Strictly speaking, y in these two ODEs is not quite the same
function. Rather, it stands in each case for the unknown function.)

Chapter 10: initial value ODEs 363

(b) Show that applying any of the discretization methods in this chap-
ter to the ODE in t with step size h = ∆t is equivalent to applying
the same method to the ODE in τ with step size ∆τ satisfying
∆t = b∆τ . In other words, the same stretching transformation
can be equivalently applied to the discretized problem.

5. Derive the 2-step Adams-Moulton formula

yi+1 = yi +
h

12
(5fi+1 + 8fi − fi−1).

6. In molecular dynamics simulations using classical mechanics modeling,
one is often faced with a large nonlinear ODE system of the form

Mq′′ = f(q), where f(q) = −∇U(q).

Here q are generalized positions of atoms, M is a constant, diagonal,
positive mass matrix, and U(q) is a scalar potential function. Also,
∇U(q) = (∂U

∂q1
, . . . , ∂U

∂qm
)T . A small (and somewhat nasty) instance of

this is given by the Morse potential where q = q(t) is scalar, U(q) =
D(1 − e−S(q−q0))2, and we use the constants D = 90.5 · 0.4814e − 3,
S = 1.814, q0 = 1.41, and M = 0.9953.

(a) Defining the velocities v = q′ and momenta p = Mv, the corre-
sponding first-order ODE system for q and v is given by

q′ = v,

Mv′ = f(q).

Show that the Hamiltonian

H(q,p) = pTM−1p/2 + U(q)

is constant for all t > 0.

(b) Use a library nonstiff Runge–Kutta code based on a 4(5) em-
bedded pair to integrate this problem for the Morse potential
on the interval 0 ≤ t ≤ 2000, starting from q(0) = 1.4155,
p(0) = 1.545

48.888
M . Using a tolerance TOL = 1.e−4, the code should

require a little more than 1000 times steps. Plot the obtained val-
ues for H(q(t), p(t))−H(q(0), p(0)). Describe your observations.

7. The first order ODE system introduced in the previous exercise for q
and v is in partitioned form. It is also a Hamiltonian system with a
separable Hamiltonian; i.e., the ODE for q depends only on v and the
ODE for v depends only on q. This can be used to design special
discretizations. Consider a constant step size h.

364 Chapter 10: Initial value ODEs

(a) The symplectic Euler method applies backward Euler to the ODE
q′ = v and forward Euler to the other ODE. Show that the re-
sulting method is explicit and first-order accurate.

(b) The leapfrog, or Verlet, method can be viewed as a staggered mid-
point discretization:

qi+1/2 − qi−1/2 = h vi,

M(qi+1/2)(vi+1 − vi) = h f(qi+1/2);

i.e., the mesh on which the q-approximations “live” is staggered
by half a step compared to the v-mesh. The method can be kick-
started by

q1/2 = q0 + h/2v0.

To evaluate qi at any mesh point, the expression

qi =
1

2
(qi−1/2 + qi+1/2)

can be used.

Show that this method is explicit and second-order accurate.

8. The following classical example from astronomy gives a strong motiva-
tion to integrate initial value ODEs with error control.

Consider two bodies of masses µ = 0.012277471 and µ̂ = 1 − µ (earth
and sun) in a planar motion, and a third body of negligible mass (moon)
moving in the same plane. The motion is governed by the equations

u′′1 = u1 + 2u′2 − µ̂
u1 + µ

D1

− µu1 − µ̂
D2

,

u′′2 = u2 − 2u′1 − µ̂
u2

D1

− µ u2

D2

,

D1 = ((u1 + µ)2 + u2
2)

3/2,

D2 = ((u1 − µ̂)2 + u2
2)

3/2.

Starting with the initial conditions

u1(0) = 0.994, u2(0) = 0, u′1(0) = 0,

u′2(0) = −2.00158510637908252240537862224,

the solution is periodic with period < 17.1. Note thatD1 = 0 at (−µ, 0)
and D2 = 0 at (µ̂, 0), so we need to be careful when the orbit passes
near these singularity points.

The orbit is depicted in Figure 10.9. It was obtained using ODE45 with
a local error tolerance 1.e− 6. This necessitated 204 time steps.

Chapter 10: initial value ODEs 365

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

u
1

u
2

Figure 10.9: Astronomical orbit using ODE45.

Using the classical Runge–Kutta method of order 4, integrate this prob-
lem on [0, 17.1] with a uniform step size, using 100, 1000, 10,000, and
20,000 steps. Plot the orbit for each case. How many uniform steps
are needed before the orbit appears to be qualitatively correct?

10.6 Additional notes and references

The material covered in this brief chapter is a distillation of a few topics from
the first five chapters of Ascher & Petzold [2]. More is covered in the books
by Hairer, Norsett and Wanner [20] and by Hairer & Wanner [21].

Many iterative methods in optimization and linear algebra, including
most of those described in Chapters 2, 5 and 6, can be written as

yi+1 = yi + αif(yi), i = 0, 1, . . .

where αi is a scalar step size. This reminds one of Euler’s method for the
ODE system

dy

dt
= f(y).

The independent variable t is an “artificial time” variable. Much has been
made of such connections recently, and this simple observation does prove
important in some instances. But caution should be exercised here: always

366 Chapter 10: Initial value ODEs

ask yourself if the “discovery” of the artificial ODE actually adds something
in your quest for better algorithms for your given problem.

The problem described in Example 10.4 is one in a set of initial value
ODE applications used for testing research codes and maintained in

http://pitagora.dm.uniba.it/~testset/

by F. Mazzia and F. Iavernaro.
This chapter discusses only methods for initial value ODEs. For a com-

prehensive (as distinct from user friendly) treatise of numerical methods for
boundary value ODEs see Ascher, Mattheij & Russell [1].

A lot of recent attention has been devoted to numerical methods for
dynamical systems, see Stuart & Humphries [34] and Strogatz [33]. A lot
of recent research work has been carried out in the context of Geometric
integration, and we refer to Hairer, Lubich & Wanner [19] for a comprehensive
account on this topic.

