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Single–step Integration
Methods

Preview

This chapter extends the ideas of numerical integration by means of a
Taylor–Series expansion from the first–order (FE and BE) techniques to
higher orders of approximation accuracy. The well–known class of explicit
Runge–Kutta techniques is introduced by generalizing the predictor–correc-
tor idea.

The chapter then explores special classes of single–step techniques that
are well suited for the simulation of stiff systems and for that of marginally
stable systems, namely the extrapolation methods and the backinterpolation
algorithms. The stability domain serves as a good vehicle for analyzing the
stability properties of these classes of algorithms.

We are then delving more deeply into the question of approximation
accuracy. The accuracy domain is introduced as a simple tool to explore
this issue, and the order star approach is subsequently introduced as a more
refined and satisfying alternative.

The chapter ends with a discussion of the ideas behind step–size control
and order control, and the techniques used to accomplish these in the realm
of single–step algorithms.

3.1 Introduction

In Chapter 2, we have seen that predictor–corrector techniques can be
used to merge explicit and implicit algorithms into more complex entities
that are overall of the explicit type, while inheriting some of the desirable
numerical properties of implicit algorithms.

In particular, we introduced the following predictor–corrector method:

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h · ẋk

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk + h · ẋP
k+1

Let us now perform a nonlinear error analysis of this simple predictor–
corrector technique. To this end, we plug all the equations into each other.
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We obtain:
xk+1 = xk + h · f(xk + h · fk, tk + h) (3.1)

We wish to pursue the error analysis up to the quadratic term. Let us thus
develop the expression f(xk + h · fk, tk + h) into a multidimensional Taylor
Series around the point < xk, tk >. Since this term in Eq.3.1 is multiplied
by h, we may truncate the Taylor Series after the linear term.

Remember that:

f(x + Δx, y + Δy) ≈ f(x, y) +
∂f(x, y)

∂x
· Δx +

∂f(x, y)
∂y

· Δy (3.2)

Thus:

f(xk +h · fk, tk +h) ≈ f(xk, tk)+
∂f(xk, tk)

∂x
· (h · fk)+

∂f(xk, tk)
∂t

·h (3.3)

where ∂f/∂x is the meanwhile well–known Jacobian of the system. Plugging
Eq.(3.3) into Eq.(3.1), we find:

xk+1 ≈ xk + h · f(xk, tk) + h2 · (∂f(xk, tk)
∂x

· fk +
∂f(xk, tk)

∂t
) (3.4)

Let us compare this with the true Taylor Series of xk+1 truncated after
the quadratic term:

xk+1 ≈ xk + h · f(xk, tk) +
h2

2
· ḟ(xk, tk) (3.5)

where:

ḟ(xk, tk) =
df(xk, tk)

dt
=

∂f(xk, tk)
∂x

· dxk

dt
+

∂f(xk, tk)
∂t

(3.6)

and:

dxk

dt
= ẋk = fk (3.7)

Comparing the true Taylor–Series expansion of xk+1 with the results ob-
tained from the predictor–corrector method, we find that we almost got
a match. Only the factor 2 in the denominator of the quadratic term is
missing. Thus, the predictor–corrector technique can be written as:

xPC(k + 1) ≈ xk + h · f(xk, tk) + h2 · ḟ(xk, tk) (3.8)

We notice at once that a simple blending of FE and PC will give us a
method that is second order accurate:
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x(k + 1) = 0.5 · (xPC(k + 1) + xFE(k + 1)) (3.9)

or, in other words:

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h · ẋk

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk + 0.5 · h · (ẋk + ẋP
k+1)

which is Heun’s method. This method is sometimes also referred to under
the name modified Euler method.

In the following section, we want to generalize the idea behind Heun’s
method by parameterizing the search strategy for higher–order algorithms
of this kind.

3.2 Runge–Kutta Algorithms

Heun’s method uses an FE step as a predictor, and then a blend of an FE
and a BE step as a corrector. Let us generalize this idea somewhat:

predictor: ẋk = f(xk, tk)
xP = xk + h · β11 · ẋk

corrector: ẋP = f(xP, tk + α1 · h)
xC

k+1 = xk + h · (β21 · ẋk + β22 · ẋP)

This set of methods contains four different parameters. The βij parameters
are weighting factors of the various state derivatives that are computed
during the step, and the α1 parameter specifies the time instant at which
the first stage of the technique is evaluated.

Plugging the parameterized equations into each other and developing
functions that are not evaluated at time tk into Taylor Series, we obtain:

xC
k+1 = xk + h ·(β21+β22) ·fk +

h2

2
· [2 ·β11 ·β22 · ∂fk

∂x
·fk + 2 ·α1 ·β22 · ∂fk

∂t
]

(3.10)
The Taylor Series of xk+1 truncated after the quadratic term can be written
as:

xk+1 ≈ xk + h · fk +
h2

2
· [∂fk

∂x
· fk +

∂fk
∂t

] (3.11)

A comparison of Eq.(3.10) and Eq.(3.11) yields three nonlinear equations
in the four unknown parameters:
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β21 + β22 = 1 (3.12a)
2 · α1 · β22 = 1 (3.12b)
2 · β11 · β22 = 1 (3.12c)

Thus, there exist infinitely many such algorithms. Clearly, Heun’s method
belongs to this set of algorithms. Heun’s method can be characterized by:

α =
(

1
1

)
; β =

(
1 0

0.5 0.5

)
(3.13)

α2 characterizes the time when the corrector is evaluated, which obviously
always happens at tk+1, thus, α2 = 1.0. β is a lower triangular matrix.

Many references represent the method in a slightly different form:

0 0 0
1 1 0
x 1/2 1/2

which is called the Butcher tableau of the method. The first row of the
Butcher tableau here indicates the function evaluation at time tk. The sec-
ond row represents the predictor, and the third row denotes the corrector.

Another commonly used algorithm of this family of methods is charac-
terized by the following α–vector and β–matrix:

α =
(

0.5
1

)
; β =

(
0.5 0
0 1

)
(3.14)

with the Butcher tableau:
0 0 0

1/2 1/2 0
x 0 1

This method is sometimes referred to as explicit midpoint rule. It can be
implemented as:

predictor: ẋk = f(xk, tk)
xP

k+ 1
2

= xk + h
2 · ẋk

corrector: ẋP
k+ 1

2

= f(xP
k+ 1

2

, tk+ 1
2
)

xC
k+1 = xk + h · ẋP

k+ 1
2

This technique evaluates the predictor at time tk +h/2. It is a little cheaper
than Heun’s algorithm due to the additional zero in the β–matrix.

The entire family of such methods is referred to as second–order Runge–
Kutta methods, abbreviated as RK2.

The idea can be further generalized by adding more stages. The general
explicit Runge–Kutta algorithm can be described as follows:
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0th stage: ẋP0 = f(xk, tk)

jth stage: xPj = xk + h ·∑j
i=1 βji · ẋPi−1

ẋPj = f(xPj , tk + αj · h)

last stage: xk+1 = xk + h ·∑�
i=1 β�i · ẋPi−1

where � denotes the number of stages of the method. The most popular of
these methods is the following fourth–order accurate Runge–Kutta (RK4)
technique:

α =

⎛
⎜⎜⎝

1/2
1/2
1
1

⎞
⎟⎟⎠ ; β =

⎛
⎜⎜⎝

1/2 0 0 0
0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6

⎞
⎟⎟⎠ (3.15)

or:

0th stage: ẋk = f(xk, tk)

1st stage: xP1 = xk + h
2 · ẋk

ẋP1 = f(xP1 , tk+ 1
2
)

2nd stage: xP2 = xk + h
2 · ẋP1

ẋP2 = f(xP2 , tk+ 1
2
)

3rd stage: xP3 = xk + h · ẋP2

ẋP3 = f(xP3 , tk+1)

4th stage: xk+1 = xk + h
6 · [ẋk + 2 · ẋP1 + 2 · ẋP2 + ẋP3 ]

or yet more simply:

0th stage: k1 = f(xk, tk)

1st stage: k2 = f(xk + h
2 · k1, tk + h

2 )

2nd stage: k3 = f(xk + h
2 · k2, tk + h

2 )

3rd stage: k4 = f(xk + h · k3, tk + h)

4th stage: xk+1 = xk + h
6 · [k1 + 2 · k2 + 2 · k3 + k4]

This RK4 algorithm is particularly attractive due to the many zero elements
in its β–matrix. As it is a four–stage algorithm, it involves four function
evaluations. These are taken at tk, tk+1/2, tk+1/2, and tk+1. Thus, it is
possible to think of this RK4 algorithm as a macro–step consisting of four
micro–steps, two of length h/2, and two of length 0.
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The Butcher tableau of this method can be written as:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0
x 1/6 1/3 1/3 1/6

In general:

c A
x b′

The c–vector contains the time instants when the various function eval-
uations are performed, the A–matrix contains the weights of the various
predictor stages, and the b′–vector contains the weights of the corrector
stage.

Notice that the number of stages and the approximation order are not
necessarily identical. Higher–order RK algorithms require a larger number
of stages to achieve a given order of accuracy. Table 3.1 provides a historic
overview of the development of RK algorithms.

Developer Year Order # of Stages
Euler [3.8] 1768 1 1
Runge [3.21] 1895 4 4
Heun [3.14] 1900 2 2
Kutta [3.17] 1901 5 6
Huťa [3.15] 1956 6 8
Shanks [3.22] 1966 7 9
Curtis [3.4] 1970 8 11

TABLE 3.1. History of Runge–Kutta Algorithms.

It is interesting to notice that, although the general mechanism for de-
signing such algorithms had been known for quite some time, higher–order
RK algorithms were slow in coming. This is due to the fact that the setting
up of the nonlinear equations and their subsequent solution is an utterly
tedious process. The original algorithm by Kutta contained an error that
went unnoticed until it was corrected by Nyström [3.20] in 1925. Curtis fi-
nally had to deal with a large number of very awkward nonlinear equations
in more than 200 unknowns. Symbolic formulae manipulation programs,
such as Mathematica or Maple, would make it much easier today to set up
and solve these sets of equations without making errors on the way, but
such programs were unavailable at the time, and so, at least for these re-
searchers, mathematics wasn’t always fun . . . but required lots of patience,
perseverance, and suffering.
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It is possible to design RK algorithms in the same number of stages as
the approximation order only up to fourth order. It can be shown that no
five–stage RK method can be found that is fifth–order accurate. Of course,
it is important to keep the number of stages as small as possible, since each
additional stage requires an extra function evaluation.

Additional requirements are usually formulated that are not inherent in
the technique itself, but make a lot of practical sense. Obviously, we want
to request that, in an �–stage algorithm:

α� = 1.0 (3.16)

since we wish to end the step at tk+1. Also, we usually want to make sure
that:

αi ∈ [0.0, 1.0] ; i = {1, 2, . . . , �} (3.17)

that is, all function evaluations are performed at times that lie between tk
and tk+1.

If we want to prevent the algorithm from ever “integrating backward
through time,” we shall add the constraint that:

αj ≥ αi ; j ≥ i (3.18a)

If we want to disallow micro–steps of length 0, we make this condition even
more stringent:

αj > αi ; j > i (3.18b)

The previously introduced classical RK4 algorithm violates Eq.(3.18b).
Why is this last condition important? Modelers sometimes wish to ex-

plicitly use derivative operations in their models. This is generally a bad
idea, but it may not always be avoidable. For example, if u is a real–time
input that stems from a measurement sensor, and the model requires u̇,
there is nothing in the world that can save us from actually having to dif-
ferentiate the input. The typical simulationist would then approximate the
derivative by:

u̇ ≈ u − ulast

t − tlast
(3.19)

where tlast is the time of the previous function evaluation, and ulast is
the value of the input u at that time. Therefore, if it should ever happen
that t = tlast, the numerical differentiation algorithm would get itself into
trouble.

Two caveats are called for. While we were able to develop Heun’s method
using a matrix–vector notation, this technique won’t work anymore as we
proceed to third–order algorithms. Let us explain.

We found that:
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df
dt

=
∂f
∂x

· dx
dt

+
∂f
∂t

(3.20)

or, in shorthand notation:

ḟ = fx · f + ft (3.21)

When we proceed to third–order algorithms, we need an expression for the
second absolute derivative of f with respect to time. Thus, we are inclined
to write formally:

f̈ = (fx · f + ft)̇
= ḟx · f + fx · ḟ + ḟt
= (ḟ)x · f + fx · (ḟ) + (ḟ)t

= (fx · f + ft)x · f + fx · (fx · f + ft) + (fx · f + ft)t

= fxx · (f)2 + 2 · (fx)2 · f + 2 · fxt · f + 2 · fx · ft + ftt (3.22)

but it is not clear, what this is supposed to mean. Obviously, f̈ is a vec-
tor, and so is ftt, but what is fxx · (f)2 supposed to mean? Is it a tensor
multiplied by the square of a vector? Quite obviously, the formal differ-
entiation mechanism doesn’t extend to higher derivatives in the sense of
familiar matrix–vector multiplications. Evidently, we must treat the ex-
pression fxx · (f)2 differently.

Butcher [3.3] developed a new syntax and a set of rules for how these
higher derivatives must be interpreted. In essence, it turns out that, in this
new syntax:

1. sums remain commutative and associative,

2. derivatives can still be computed in any order, i.e., (ḟ)x = (fx)̇, and

3. the multiplication rule can be generalized, thus: (fx · f)x = fxx · f +
(fx)2.

It is not necessary for us to learn Butcher’s new syntax. It is sufficient
to know that we can basically proceed as before, but must abstain from
interpreting terms involving higher derivatives as consisting of factors that
are combined by means of the familiar matrix–vector multiplication.

Prior to Butcher’s work, all higher–order RK algorithms had simply been
derived for the scalar case, and were then blindly applied to integrate en-
tire state vectors. And here comes the second caveat. Butcher discovered
that several of the previously developed and popular higher–order RK al-
gorithms drop one or several orders of accuracy when applied to a state
vector instead of a scalar state variable.

The reason for this somewhat surprising discovery is very simple. Already
when computing the third absolute derivative of f with respect to time, the
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two terms fx · fxx · (f)2 and fxx · f · fx · f appear in the derivation. In the
scalar case, these two terms are identical, since:

a · b = b · a (3.23)

Unfortunately —and not that surprisingly after all— Eq.(3.23) does not ex-
tend to the vector case. Our new animals in the mathematical zoo of data
structures and operations exhibit a property that we are already quite fa-
miliar with from matrix calculus, namely that multiplications are no longer
commutative:

A · B = (B′ · A′)′ �= B · A (3.24)

where A′ denotes the transpose of A. So, algorithms that had been de-
veloped without grouping such terms together continued to work properly
also in the vector case, whereas algorithms that had made use of the com-
mutative nature of scalar multiplications did work well for scalar problems,
but dropped one or several approximation orders when exposed to vector
problems.

The details of the Butcher syntax are of no immediate concern to us, since
we never plan to actually perform these new operations. All we need in order
to develop new RK algorithms is to be able to extract their coefficients.
To this end, we can pretend that the normal rules of matrix and vector
calculus still apply.

3.3 Stability Domains of RK Algorithms

Since all the previously presented RK algorithms are explicit algorithms,
we expect their stability domains to look qualitatively like that of the FE
algorithm, or more precisely, we expect the contours of marginal stability
to bend into the left half (λ · h)–plane.

Let us plug the linear system of Eq.(2.12) into Heun’s algorithm. We
find:

predictor: ẋk = A · xk

xP
k+1 = xk + h · ẋk

corrector: ẋP
k+1 = A · xP

k+1

xC
k+1 = xk + 0.5 · h · (ẋk + ẋP

k+1)

or:

xC
k+1 = [I(n) + A · h +

(A · h)2

2
] · xk (3.25)

i.e.,

F = I(n) + A · h +
(A · h)2

2
(3.26)
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Since a two–stage algorithm contains only two function evaluations, no
powers of h larger than two can appear in the F–matrix. Since the technique
is second–order accurate, it must approximate the analytical solution:

F = exp(A · h) = I(n) + A · h +
(A · h)2

2!
+

(A · h)3

3!
+ . . . (3.27)

up to the quadratic term. Consequently, all two–stage RK2 algorithms
share the same stability domain, and the same holds true for all three–stage
RK3s, and for all four–stage RK4s. The situation becomes more compli-
cated in the case of the fifth–order algorithms, since there doesn’t exist a
five–stage RK5. Consequently, the F–matrices of RK5s necessarily contain
a term in h6 (with incorrect coefficient), and since there is no reason why
these sixth–order terms should carry the same coefficient in different RK5s,
their stability domains will look slightly different one from another.

Let us apply our general–purpose stability domain plotting algorithm
that was presented in Chapter 2. We find:
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I
m
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FIGURE 3.1. Stability domains of explicit RK algorithms.

Some of the RK5s are among those algorithms with small stable islands
somewhere out in the unstable right half (λ · h)–plane.

The reader may notice that these algorithms try indeed (and not sur-
prisingly) to approximate the analytical stability domain, i.e., higher–order
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RKs follow the imaginary axis better and better. Also, the stability do-
mains grow with increasing approximation order. This is very satisfying,
since higher–order algorithms call for larger step sizes.

3.4 Stiff Systems

Although the term “stiff system” has been popular at least since Gear’s
1971 book [3.10] appeared, the numerical ODE literature still doesn’t
provide a crisp definition of what a stiff system really is. Even the 1991
book by Lambert [3.18] treats “the nature of stiffness” on as many as nine
pages. Lambert observes that:

Statement #1: “A linear constant coefficient system is stiff if all
of its eigenvalues have negative real part and the stiffness ratio
is large.”

Statement #2: “Stiffness occurs when stability requirements,
rather than those of accuracy, constrain the step-
length.”

Statement #3: “Stiffness occurs when some components of the
solution decay much more rapidly than others.”

Statement #4: “A system is said to be stiff in a given interval of
time if in that interval the neighboring solution curves approach
the solution curve at a rate which is very large in comparison
with the rate at which the solution varies in that interval.”

The first statement is not overly useful since it relates to linear systems only.
The second statement is not very precise since the accuracy requirements
are not specified. Thus, one and the same system may be stiff, according to
this statement, if the accuracy requirements are loose, and non–stiff if the
accuracy requirements are tight. The third statement indirectly refers to
the superposition principle, and is therefore, in a strict sense, again limited
to linear systems. The fourth statement is basically a reformulation of the
third.

Lambert concludes his exposé of the matter with the following definition:

Definition #1: “If a numerical method with a finite region of ab-
solute stability, applied to a system with any initial conditions,
is forced to use in a certain interval of integration a steplength
which is excessively small in relation to the smoothness of the
exact solution in that interval, then the system is said to be
stiff in that interval.”

Again, what exactly means “excessively small”?
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Our remarks may sound critical of Lambert’s work. They are not meant
to be. Lambert’s 1991 book represents a significant contribution to the
numerical ODE literature. All we want to convey is that here is a term
that has been around for more than a quarter of a century, and yet, the
term is still fuzzy.

Let us attempt a more crisp definition of the term “stiff system”:

Definition #2: “An ODE system is called stiff if, when solved
with any nth–order accurate integration algorithm and a local
error tolerance of 10−n, the step size of the algorithm is forced
down to below a value indicated by the local error estimate due
to constraints imposed on it by the limited size of the numeri-
cally stable region.”

Our definition comes closest to Lambert’s statement #2, except that we
added a definition of what we mean by accuracy requirements. Our defini-
tion is still somewhat fuzzy since it is possible that a system may fall under
the category stiff when solved with one nth–order accurate integration al-
gorithm, and doesn’t when solved with another. Yet, as we shall see, the
grey zone of “marginally stiff” systems is fairly narrow, and moreover, this
is exactly what these systems are: marginally stiff.

It is treacherous to rely on the eigenvalues of the Jacobian of a nonlinear
or even linear but time–variant system to conclude anything about stiffness.
Let us explain.

Given the system:

ẋ = A(t) · x =
( −2.5 1.5 · exp(−100t)
−0.5 · exp(100t) −0.5

)
· x (3.28a)

with initial conditions:

x0 =
(

23
11

)
(3.28b)

Its analytical solution is:

x1(t) = 5 · exp(−101t) + 18 · exp(−102t) (3.29a)
x2(t) = 5 · exp(−t) + 6 · exp(−2t) (3.29b)

Therefore, the system is awfully stiff. Yet, the eigenvalues of its Jacobian
are −1.0 and −2.0, i.e., they are perfectly tame at all times.

If we plug this system into the FE algorithm (or RK1, which is the same
algorithm), we find:

F(t) = I(n)+A(t)·h =
( −2.5 · h + 1.0 1.5 · h · exp(−100t)
−0.5 · h · exp(100t) −0.5 · h + 1.0

)
(3.30)
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Thus, the eigenvalues of the discrete–time system are at:

λ1 = 1 − h ; λ2 = 1 − 2h (3.31)

which is what we would have expected from the locations of the eigenvalues
of the continuous–time system and the stability domain of Fig.2.7. Thus,
the stability domain doesn’t indicate any foul play in this case. Codes that
rely on the Jacobian for computing local error estimates will be fooled by
this problem.

However, this is a particularly malignant problem, and fortunately one
that physics doesn’t usually prescribe. We may not truly want to simulate
this system anyway since, already at simulated time t = 10.0, the element
a21 has acquired a value of −0.5 · exp(1000), something our simulator will
most certainly complain bitterly about.

It is therefore still useful to search for methods that include in their
numerically stable region the entire left half (λ · h)–plane, or at least a
large portion thereof.

Definition: A numerical integration scheme that contains the
entire left half (λ · h)–plane as part of its numerical stability
domain is called absolute stable, or, more simply, A–stable.

One way to obtain A–stable algorithms is to modify the recipe for develop-
ing RK algorithms by allowing non–zero elements also above the diagonal
of the β–matrix [3.2] [3.13]. Such algorithms are invariably implicit. They
are therefore called implicit Runge–Kutta schemes, abbreviated as IRK. A
special role among those algorithms employ methods that limit the non-
zero elements in their respective β–matrices to the first super–diagonal.
Using the Butcher tableau representation, its A–matrix is still lower trian-
gular, but contains nonlinear elements along its diagonal. Such algorithms
are called diagonally implicit Runge–Kutta schemes, abbreviated as DIRK.
They are implicit in each stage, but each stage can be iterated separately,
and it is therefore fairly easy to implement a Newton iteration on them.

However, rather than looking at the problem of defining general IRK and
DIRK algorithms through their α–vectors and β–matrices, we want to turn
to two special classes of such algorithms that have interesting properties:
the extrapolation techniques, and the backinterpolation techniques. We shall
discuss some other classes of implicit Runge–Kutta algorithms in Chapter 8
in the context of solving sets of mixed differential and algebraic equations
(DAEs).

3.5 Extrapolation Techniques

The idea behind the (Richardson) extrapolation techniques is quite straight-
forward. We repeat the same integration step with several low–order tech-
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niques and blend the results to get a higher–order technique. Let us explain
the concept by means of the linear system:

ẋ = A · x (3.32)

We shall integrate the system four times across one macro–step of length
h each time using the FE algorithm with different micro–step sizes: η1 =
h, η2 = h/2, η3 = h/3, and η4 = h/4. Accordingly, we need only one
micro–step of length η1, but we need four micro–steps of length η4. The
corresponding discrete–time systems are:

xP1(k + 1) = [I(n) + A · h] · x(k)

xP2(k + 1) = [I(n) +
A · h

2
]2 · x(k)

xP3(k + 1) = [I(n) +
A · h

3
]3 · x(k)

xP4(k + 1) = [I(n) +
A · h

4
]4 · x(k) (3.33a)

with the corrector:

xC(k+1) = α1 ·xP1(k+1)+α2 ·xP2(k+1)+α3 ·xP3(k+1)+α4 ·xP4(k+1)
(3.33b)

Multiplying the predictor formulae out, we find:

xP1 =[I(n) + A · h] · x(k)

xP2 =[I(n) + A · h +
(A · h)2

4
] · x(k)

xP3 =[I(n) + A · h +
(A · h)2

3
+

(A · h)3

27
] · x(k)

xP4 =[I(n) + A · h +
(A · h)2

8
+

(A · h)3

16
+

(A · h)4

256
] · x(k) (3.34a)

and for the corrector, we obtain:

xC(k + 1) =[(α1 + α2 + α3 + α4) · I(n)

+ (α1 + α2 + α3 + α4) · A · h
+ (

α2

4
+

α3

3
+

3α4

8
) · (A · h)2

+ (
α3

27
+

α4

16
) · (A · h)3 +

α4

256
· (A · h)4] · xk (3.34b)

Comparing Eq.(3.34b) with the correct Taylor Series truncated after the
fourth–order term, we obtain four linear equations in the four unknown αi

parameters:
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⎛
⎜⎜⎝

1 1 1 1
0 1/4 1/3 3/8
0 0 1/27 1/16
0 0 0 1/256

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
1/2
1/6
1/24

⎞
⎟⎟⎠ (3.35)

which can be solved directly. We find:

α1 = −1
6

; α2 = 4 ; α3 = −27
2

; α4 =
32
3

(3.36)

Thus, we just discovered another way to construct an RK4 algorithm since
the extrapolation technique is fourth–order accurate . . . at least for linear
systems. We didn’t bother to check whether the algorithm is also accurate
up to fourth order for nonlinear systems, since unfortunately, the technique
is quite inefficient. It took 10 function evaluations to complete a single
macro–step. Compare this with the four function evaluations needed when
performing an ordinary RK4 step.

Let us try another idea. The order of the algorithm wouldn’t be all that
important if we only could make the step size sufficiently small. Unfortu-
nately, this would mean that we would have to perform many such steps
in order to complete the simulation run . . . or doesn’t it?

We can write:

xk+1(η) = xk+1 + e1 · η + e2 · η2

2!
+ e3 · η3

3!
+ . . . (3.37)

where xk+1 is the true (yet unknown) value of x at time tk + h, whereas
xk+1(η) is the numerical value that we find when we integrate the system
from time tk to time tk + h using the micro–step size η. Obviously, this
value contains an error. We now develop the numerical value into a Taylor
Series in η around the (unknown) correct value. The ei vectors are error
vectors [3.6].

We truncate the Taylor Series after the cubic term, and write Eq.(3.37)
down for the same values of ηi as before. We find:

xP1(η1) ≈ xk+1 + e1 · h +
e2

2!
· h2 +

e3

3!
· h3

xP2(η2) ≈ xk+1 + e1 · h

2
+

e2

2!
· (h

2
)2 +

e3

3!
· (h

2
)3

xP3(η3) ≈ xk+1 + e1 · h

3
+

e2

2!
· (h

3
)2 +

e3

3!
· (h

3
)3

xP4(η4) ≈ xk+1 + e1 · h

4
+

e2

2!
· (h

4
)2 +

e3

3!
· (h

4
)3 (3.38)

or in matrix notation:
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⎛
⎜⎜⎝

xP1

xP2

xP3

xP4

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎝

h0 h1 h2 h3

(h/2)0 (h/2)1 (h/2)2 (h/2)3

(h/3)0 (h/3)1 (h/3)2 (h/3)3

(h/4)0 (h/4)1 (h/4)2 (h/4)3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

xk+1

e1

e2/2
e3/6

⎞
⎟⎟⎠ (3.39)

By inverting the Van–der–Monde matrix, we can solve for the unknown
xk+1 and the three error vectors. Since we aren’t interested in the errors,
we only look at the first row of the inverted Van–der–Monde matrix. It
turns out that the values in this row don’t depend at all on the step size
h. We find:

xk+1 ≈ (− 1
6 4 − 27

2
32
3

) ·
⎛
⎜⎜⎝

xP1

xP2

xP3

xP4

⎞
⎟⎟⎠ (3.40)

Obviously, xk+1 is no longer the truly correct solution since we had trun-
cated the Taylor Series in η after the cubic term. However, the algorithm
did the best it could to estimate the true value given the available data
. . . by raising the approximation order of the method to four.

Thus, we got precisely the same answers as before. We just found another
way to derive the extrapolation method. Both approaches have their pros
and cons. The first technique unveiled that the resulting method is indeed
fourth–order accurate (at least for linear systems). The second method
didn’t show this fact explicitly . . . it was more like swinging a magic wand.
On the other hand, the first approach made explicitly use of the fact that
each micro–step was performed by means of the FE algorithm. The second
approach was not based on any such assumption.

Thus, we could now replace each of the micro–steps by a BE step of the
same length, e.g. using Newton iteration if the system to be simulated is
nonlinear, and still use the same corrector. The overall implicit extrapola-
tion (IEX) technique then presents itself as:
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1st predictor: k1 = xk + h · f(k1, tk+1)

2nd predictor: k2a = xk + h
2 · f(k2a, tk+ 1

2
)

k2 = k2a + h
2 · f(k2, tk+1)

3rd predictor: k3a = xk + h
3 · f(k3a, tk+ 1

3
)

k3b = k3a + h
3 · f(k3b, tk+ 2

3
)

k3 = k3b + h
3 · f(k3, tk+1)

4th predictor: k4a = xk + h
4 · f(k4a, tk+ 1

4
)

k4b = k4a + h
4 · f(k4b, tk+ 1

2
)

k4c = k4b + h
4 · f(k4c, tk+ 3

4
)

k4 = k4c + h
4 · f(k4, tk+1)

corrector: xk+1 = − 1
6 · k1 + 4 · k2 − 27

2 · k3 + 32
3 · k4

A complete analysis of the nonlinear accuracy order of this technique is
quite involved, and we have not attempted it. However, by following our
initial approach at deriving the extrapolation method now for BE steps
in place of FE steps, it is a simple exercise to verify that the method
indeed carries fourth-order accuracy for solving linear systems. As was to
be expected from the latter way of reasoning, the αi–parameters turn out
to be exactly the same for BE steps as for FE steps.

Let us look at the stability domain of this method. It is presented in
Fig.3.2. The method is A–stable, and has a nicely large unstable region in
the right half (λ · h)–plane.

Implicit extrapolation techniques, such as the IEX4 technique explained
above, have, in comparison with IRK or DIRK algorithms, the distinct
advantage that they are easy to construct. They have the disadvantages
that no formal nonlinear accuracy analysis is currently available, and that
they are still fairly inefficient. IEX4 is a 10–stage algorithm. In contrast,
a fourth–order fully-implicit IRK algorithm can be constructed with only
two stages, as shall be demonstrated in Chapter 8.

3.6 Marginally Stable Systems

We have seen in Chapter 2 that neither the FE nor the BE algorithm will
do a decent job when confronted with eigenvalues on or in the vicinity of the
imaginary axis. Unfortunately, this situation occurs quite frequently, and
there exists an entire class of applications, namely the hyperbolic PDEs
that, when converted to sets of ODEs, exhibit this property as we shall see
later. It seems thus justified to analyze what can be done to tackle such
problems. Let us start with a proper definition:
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FIGURE 3.2. Stability domain of implicit extrapolation method.

Definition: A dynamical system whose Jacobian has its domi-
nant eigenvalues on or in the vicinity of the imaginary axis is
called marginally stable.

The dominant eigenvalues of a matrix are those eigenvalues that have the
most positive real parts, i.e., that are located most to the right in the
λ–plane.

In order to tackle such problems decently, we require integration algo-
rithms that approximate the imaginary axis particularly well. Such algo-
rithms do exist, and, in fact, algorithms of arbitrary order can be con-
structed whose borders of numerical stability coincide with the imaginary
axis. We shall study these algorithms in due course.

Definition: A numerical integration scheme that contains the
entire left half (λ ·h)–plane and nothing but the left half (λ ·h)–
plane as its numerical stability domain is called faithfully stable,
or, more simply, F–stable.

The reader may now be inclined to think that F–stable algorithms must
be the answer to all our prayers. Unfortunately, this is not so. F–stable
algorithms will perform poorly when asked to integrate stiff systems. The
reason for this surprising disclosure is the following: If we think of the
complex (λ ·h)–plane as an infinitely large plane, we are inclined to assume
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that each point at infinity is infinitely far away from each other point at
infinity. However, it turns out to be more accurate to think of the complex
(λ · h)–plane as an infinitely large globe. From wherever we stand on that
globe, infinity is the single one spot that is farthest away from us. Thus,
infinity is a “single spot” in the sense that the numerical properties of any
integration algorithm based on Taylor–Series expansion will be exactly the
same irrespective of the direction from which we approach infinity.

Consequently, since (by definition) the entire imaginary axis belongs to
the margin of stability, so does the infinity “spot” itself. This means that,
although the entire left half (λ · h)–plane is indeed stable, as we approach
infinity along the negative real axis, points along the negative real axis
will become less and less stable until, at point infinity, stability is lost.
Similarly, although the entire right half (λ · h)–plane is indeed unstable, as
we approach infinity along the positive real axis, points along the positive
real axis will become less and less unstable until, at point infinity, stability
is reconquered.

The λ–plane has different properties. As we move along a line parallel
to the real axis to the left, the damping of an eigenvalue located at that
position increases constantly until it reaches a value of infinity at point
infinity. In fact, the damping of an eigenvalue is identical with its distance
from the imaginary axis.

An F–stable algorithm can obviously not mimic this facet of the λ–plane,
and consequently, it will perform poorly when exposed to eigenvalues lo-
cated far out to the left on the λ–plane. The time response due to these
eigenvalues will not properly be dampened out. The F–stably simulated
system with eigenvalues at such locations will therefore behave more slug-
gishly than the real system.

Definition: A numerical integration scheme that is A–stable,
and, in addition, whose damping properties increase to infinity
as Re{λ} → −∞, is called L–stable.

The various numerical stability definitions are, in a strict sense, only mean-
ingful for linear time–invariant systems, but they are often good indicators
when applied to nonlinear systems as well.

When dealing with stiff systems, it is not sufficient to demand A–stability
from the integration algorithm. We need to look more closely at the damp-
ing behavior. L–stability may be a desirable property. Evidently, all F–
stable algorithms are also A–stable, but never L–stable.

A system that is both marginally stable and stiff is difficult to cope with.
Such systems exist, and we shall provide an example of one such system
in due course. As of now, we are somewhat at a loss when asked which
algorithm we recommend in this situation. What might possibly work best
is an L–stable algorithm with an extra large unstable region in the right
half (λ·h)–plane, but best may still not be very good. We shall demonstrate
how such algorithms can be constructed.
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3.7 Backinterpolation Methods

We shall now look at yet another class of special IRK methods, called
backinterpolation techniques, abbreviated as BI algorithms. Similar to the
previously discussed extrapolation techniques, BI methods are easy to con-
struct. However, they offer much better control over the accuracy order
in comparison with the IEX algorithms even when applied to nonlinear
systems. Also, they are considerably more efficient than IEX algorithms.
BI algorithms can be made F–stable, L–stable, or anything in between,
depending on the current needs of the user, and they lend themselves con-
veniently to stability domain shaping.

Let us look once more at the BE algorithm:

xk+1 = xk + h · ẋk+1 (3.41)

We can rearrange Eq.(3.41) as follows:

xk = xk+1 − h · ẋk+1 (3.42)

Thus, a step forward through time from time tk to time tk+1 using the BE
algorithm with a step size of h can also be interpreted as a step backward
through time from time tk+1 to time tk using the FE algorithm with a step
size of −h.

Thus, one way to implement the BE algorithm is to start out from an
estimate of the yet unknown value xk+1, and integrate backward through
time to tk. We then iterate on the unknown “initial” condition xk+1 until
we hit the known “final” value xk accurately. We accept the last guess
of xk+1 as the correct value, and estimate xk+2. Now we integrate again
backward through time to tk+1 until we hit xk+1.

This idea can, of course, be extended to any RK algorithm. For example,
we can take any off–the–shelf RK4 algorithm to replace the former FE
algorithm in integrating backward through time. This is the basic idea
behind backinterpolation. These simplest of all BI algorithms are therefore
sometimes called backward Runge–Kutta methods, or, abbreviated, BRK
methods.

This gives us a series of algorithms of increasing order with the F–
matrices:

F1 = [I(n) − A · h]−1 (3.43a)

F2 = [I(n) − A · h +
(A · h)2

2!
]−1 (3.43b)

F3 = [I(n) − A · h +
(A · h)2

2!
− (A · h)3

3!
]−1 (3.43c)

F4 = [I(n) − A · h +
(A · h)2

2!
− (A · h)3

3!
+

(A · h)4

4!
]−1 (3.43d)
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Their numerical stability domains are shown in Fig.(3.3). Evidently, these
stability domains are the mirror images of the stability domains of the
explicit RK algorithms. This is not further surprising, since they are the
same algorithms with h replaced by −h.
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FIGURE 3.3. Stability domains of basic backinterpolation methods.

Let us now discuss whether we can exploit the backinterpolation idea to
generate a set of F–stable algorithms of increasing order.

Several F–stable algorithms have been known for a long time. One of
those algorithms is the trapezoidal rule:

1st stage: xk+ 1
2

= xk + h
2 · ẋk

2nd stage: xk+1 = xk+ 1
2

+ h
2 · ẋk+1

The trapezoidal rule is an implicit algorithm that can be envisaged as a
cyclic method consisting of a semi–step of length h/2 using FE followed by
another semi–step of length h/2 using BE.

Its F–matrix is thus:

FTR = [I(n) − A · h

2
]−1 · [I(n) + A · h

2
] (3.44)

The trapezoidal rule exploits the symmetry of the stability domains of its
two semi–steps.
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Since we can implement the BE semi–step as a BRK1 step using the
backinterpolation method, we can extend this idea also to higher–order
algorithms. Their F–matrices will be:

F1 =[I(n) − A · h

2
]−1 · [I(n) + A · h

2
] (3.45a)

F2 =[I(n) − A · h

2
+

(A · h)2

8
]−1 · [I(n) + A · h

2
+

(A · h)2

8
] (3.45b)

F3 =[I(n) − A · h

2
+

(A · h)2

8
− (A · h)3

48
]−1·

[I(n) + A · h

2
+

(A · h)2

8
+

(A · h)3

48
] (3.45c)

F4 =[I(n) − A · h

2
+

(A · h)2

8
− (A · h)3

48
+

(A · h)4

384
]−1·

[I(n) + A · h

2
+

(A · h)2

8
+

(A · h)3

48
+

(A · h)4

384
] (3.45d)

All these techniques are F–stable. F2 is not very useful, since F1 is, by
accident, already second–order accurate.

The implementation of these algorithms is straightforward. For example,
F4 can be implemented in the following way. We start out from time tk
and integrate forward through time across a semi–step from time tk to
time tk+ 1

2
using any off–the–shelf RK4 algorithm. We store the resulting

state xleft
k+ 1

2

for later reuse. We then estimate the value xk+1, e.g. by letting

xk+1 = xleft
k+ 1

2
, and integrate backward through time across the second

semi–step from tk+1 to tk+ 1
2

using the same off–the–shelf RK4 algorithm.

The resulting state is xright

k+ 1
2

. We now iterate on the unknown state xk+1,

until xright

k+ 1
2

= xleft
k+ 1

2
. We then use the final value of xk+1 as the initial

condition for the next integration macro–step.
We need to analyze the iteration process somewhat more. Chapter 2

taught us that a poor choice of the iteration algorithm can foul up our
stability domain.

When applying Newton iteration to the BI1 algorithm, we can set:

F(xk+1) = xright

k+ 1
2

− xleft
k+ 1

2
= 0.0 (3.46)

and find:
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xleft
k+ 1

2

= FE(xk, tk, h
2 )

x0
k+1 = xleft

k+ 1
2

J0
k+1 = J (x0

k+1, tk+1)
xright 1

k+ 1
2

= FE(x0
k+1, tk+1,−h

2 )

H1 = I(n) − h
2 · J0

k+1

x1
k+1 = x0

k+1 − H1−1 · (xright 1

k+ 1
2

− xleft
k+ 1

2

)
ε1
k+1 = ‖x1

k+1 − x0
k+1‖∞

J1
k+1 = J (x1

k+1, tk+1)
xright 2

k+ 1
2

= FE(x1
k+1, tk+1,−h

2 )

H2 = I(n) − h
2 · J1

k+1

x2
k+1 = x1

k+1 − H2−1 · (xright 2

k+ 1
2

− xleft
k+ 1

2

)
ε2
k+1 = ‖x2

k+1 − x1
k+1‖∞

etc.

where J denotes the Jacobian. For Heun’s method (BI2), we find:

xleft
k+ 1

2

= Heun(xk, tk, h
2 )

x0
k+1 = xleft

k+ 1
2

J0
k+1 = J (x0

k+1, tk+1)
xright 1

k+ 1
2

= Heun(x0
k+1, tk+1,−h

2 )

J0
k+ 1

2

= J (xright 1

k+ 1
2

, tk+ 1
2
)

H1 = I(n) − h
4 · (J0

k+1 + J0
k+ 1

2

· (I(n) − h
2 · J0

k+1))

x1
k+1 = x0

k+1 − H1−1 · (xright 1

k+ 1
2

− xleft
k+ 1

2

)
ε1
k+1 = ‖x1

k+1 − x0
k+1‖∞

J1
k+1 = J (x1

k+1, tk+1)
xright 2

k+ 1
2

= Heun(x1
k+1, tk+1,−h

2 )

J1
k+ 1

2

= J (xright 2

k+ 1
2

, tk+ 1
2
)

H2 = I(n) − h
4 · (J1

k+1 + J1
k+ 1

2

· (I(n) − h
2 · J1

k+1))

x2
k+1 = x1

k+1 − H2−1 · (xright 2

k+ 1
2

− xleft
k+ 1

2

)
ε2
k+1 = ‖x2

k+1 − x1
k+1‖∞

etc.

The algorithm stays basically the same, except that we now need two Jaco-
bians evaluated at different points in time, and the formula for the Hessian
becomes a little more involved.
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If we assume that the Jacobian remains basically unchanged during one
integration step (modified Newton iteration), we can compute both the
Jacobian and the Hessian at the beginning of the step, and we find for BI1:

J = J (xk, tk) (3.47a)

H = I(n) − h

2
· J (3.47b)

and for BI2:

J = J (xk, tk) (3.48a)

H = I(n) − h

2
· J +

h2

8
· J2 (3.48b)

We recognize the pattern. Clearly, the sequence of H–matrices is:

H1 = I(n) − J · h

2
(3.49a)

H2 = I(n) − J · h

2
+

(J · h)2

8
(3.49b)

H3 = I(n) − J · h

2
+

(J · h)2

8
− (J · h)3

48
(3.49c)

H4 = I(n) − J · h

2
+

(J · h)2

8
− (J · h)3

48
+

(J · h)4

384
(3.49d)

We may even decide to keep the same Jacobian for several steps in a row,
and, in that case, we won’t need to compute a new Hessian either, unless
we decide to change the step size in between.

Evidently, the sequence in which we execute the forward and the back-
ward semi–steps can be interchanged. The F–matrix of the interchanged
BI1 algorithm is:

FMP = [I(n) + A · h

2
] · [I(n) − A · h

2
]−1 (3.50)

which corresponds to the algorithm:

xk+1 = xk + h · ẋk+ 1
2

(3.51)

which is the well–known implicit midpoint rule, the one–legged twin of the
trapezoidal rule. In the same manner, it is possible to generate algorithms of
higher orders as well. The two twins are identical in their linear properties,
but they behave differently with respect to their nonlinear characteristics.
The original BI algorithms are a little more accurate than their one–legged
twins, since we read out the value of the state at the end of the iteration
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rather than after the forward semi–step. On the other hand, the one–legged
variety has somewhat better nonlinear stability (contractivity) properties,
as shown in [3.5].

BI techniques have a certain resemblance with Padé approximation meth-
ods, which we shall abbreviate as PA methods. The idea behind PA methods
is the following: Every numerical ODE solver tries to somehow approximate
the analytical F–matrix, which would be:

F = exp(A · h) (3.52)

Equation (3.52) can be rewritten as:

F = exp(A
h

2
) · exp(A

h

2
) = [exp(A(−h

2
))]−1 · exp(A

h

2
) (3.53)

According to [3.19], this can be approximated by:

F ≈ D(p, q)−1 · N(p, q) (3.54)

with:

D(p, q) =
q∑

j=0

(p + q − j)! q!
(p + q)! j! (q − j)!

· (−Ah)j (3.55a)

N(p, q) =
p∑

j=0

(p + q − j)! p!
(p + q)! j! (p − j)!

· (Ah)j (3.55b)

which, for p = q, leads to the following set of F–matrices:

F2 =[I(n) − A · h

2
]−1 · [I(n) + A · h

2
] (3.56a)

F4 =[I(n) − A · h

2
+

(A · h)2

12
]−1 · [I(n) + A · h

2
+

(A · h)2

12
] (3.56b)

F6 =[I(n) − A · h

2
+

(A · h)2

10
− (A · h)3

120
]−1·

[I(n) + A · h

2
+

(A · h)2

10
+

(A · h)3

120
] (3.56c)

F8 =[I(n) − A · h

2
+

3(A · h)2

28
− (A · h)3

84
+

(A · h)4

1680
]−1·

[I(n) + A · h

2
+

3(A · h)2

28
+

(A · h)3

84
+

(A · h)4

1680
] (3.56d)

As the indices indicate, these formulae are all accurate to the double order,
i.e., while the individual semi–steps are no longer proper Runge–Kutta
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steps (they are themselves only first–order accurate), the overall method
attains a considerably higher order of linear accuracy. Due to the symmetry
between D(p, q) and N(p, q), i.e., due to selecting p = q, all these methods
are still F–stable.

PA techniques have been intensively studied in [3.13, 3.16]. The problem
with them is that an accuracy analysis is only available for the linear case.
When exposed to nonlinear systems, the methods may drop several orders
of accuracy. Thereby, F8 may degenerate to an algorithm of merely second
order.

The BI algorithms don’t share this problem. While they are less accu-
rate than their corresponding PA counterparts for the same computational
effort when solving linear problems, their order of accuracy never drops.
When using BI4, we shall retain fourth–order accuracy even when solv-
ing nonlinear problems, since each of its semi–steps itself is fourth–order
accurate for nonlinear as well as linear problems.

Let us check whether we can transform our F–stable BI techniques into
a set of more strongly stable BI techniques. The previous set of F–stable
backinterpolation techniques did exploit the symmetry of the stability do-
mains of its two semi–steps. However, there is no compelling reason why
the two semi–steps have to meet exactly in the middle. The explicit semi–
step could span a distance of ϑ · h, and the implicit semi–step could span
the remaining distance (1 − ϑ) · h. Such a technique is called ϑ–method.
The resulting algorithm would still be accurate to the same order as its
two semi–steps. Using this technique, the stability domain can be shaped.

The case with ϑ > 0.5 is of not much interest, but the case with ϑ < 0.5 is
very useful. It produces a series of techniques with ever increasing stability
until, at ϑ = 0.0, we obtain a set of L–stable algorithms. The F–matrices
of the ϑ–methods are:

F1 =[I(n) − A(1 − ϑ)h]−1 · [I(n) + Aϑh] (3.57a)

F2 =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
]−1·

[I(n) + Aϑh +
(Aϑh)2

2!
] (3.57b)

F3 =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
− (A(1 − ϑ)h)3

3!
]−1·

[I(n) + Aϑh +
(Aϑh)2

2!
+

(Aϑh)3

3!
] (3.57c)

F4 =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
− (A(1 − ϑ)h)3

3!
+

(A(1 − ϑ)h)4

4!
]−1 · [I(n) + Aϑh +

(Aϑh)2

2!
+

(Aϑh)3

3!
+
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(Aϑh)4

4!
] (3.57d)

Figure 3.4 shows the stability domains of the BI algorithms that result for:

ϑ = 0.4 (3.58)

These methods result in very nice stability domains with large unstable
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FIGURE 3.4. Stability domains of backinterpolation ϑ–methods.

regions in the right half (λ ·h)–plane. The selection of a good value for ϑ is
a compromise. ϑ should be chosen large enough to generate meaningfully
large unstable regions in the right half (λ · h)–plane, yet small enough to
dampen out the high frequency components appropriately in the left half
(λ · h)–plane. The fourth–order algorithm of Fig.3.4 is no longer A–stable.
Its unstable region reaches slightly into the left half (λ · h)–plane. Such
a method is called (A,α)–stable, where α denotes the largest angle away
from the negative real axis that contains only stable territory. BI40.4 is
(A,86o)–stable.

The previously mentioned BRK algorithms are special cases of this new
class of ϑ–methods with ϑ = 0, and the explicit RK algorithms are special
cases of this class of ϑ–methods with ϑ = 1. The F–stable BI algorithms
are special cases with ϑ = 0.5.
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A set of L–stable BI algorithms with ϑ > 0 can be constructed by choos-
ing the approximation order of the implicit semi–step one order higher than
that of the explicit semi–step. For stiff engineering problems, a BI4 algo-
rithm using an RK4 method for its explicit semi–step and a BRK5 method
for its implicit semi–step together with ϑ = 0.45 turns out to be generally
an excellent choice [3.24]. This method will be abbreviated as BI4/50.45.

3.8 Accuracy Considerations

It is now time to revisit the problem of the approximation accuracy, and
discuss this issue with a little more insight and detail.

We start out with our standard linear test problem:

ẋ = A · x ; x(t0) = x0 (3.59)

with the same A–matrix that we already used when constructing the sta-
bility domain:

A =
(

0 1
−1 2 cos(α)

)
(3.60)

and with the standardized initial condition:

x0 =
(

1
1

)
(3.61)

Let us apply the following fourth–order Runge–Kutta algorithm:

function [x] = rk4(A, h, x0)
%
h2 = h/2; h6 = h/6;

x(:, 1) = x0;
%
for i = 1 : 10/h,

xx = x(:, i);
k1 = A ∗ xx;
k2 = A ∗ (xx + h2 ∗ k1);
k3 = A ∗ (xx + h2 ∗ k2);
k4 = A ∗ (xx + h ∗ k3);
x(:, i + 1) = xx + h6 ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4);

end
return

to simulate this system across 10 seconds of simulated time.
We want to compare the simulated solution xsimul with the analytical

solution:

xanal = exp(A · (t − t0)) · xo (3.62)
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We define the global error as follows:

εglobal = ‖xanal − xsimul‖∞ (3.63)

and vary the step size, h, until the global error matches a prescribed toler-
ance:

function [hmax] = hh2(alpha, hlower, hupper, tol)
%
A = aa(alpha);
x0 = ones(2, 1);
maxerr = 1E-6; err = 100;
while err > maxerr,

h = (hlower + hupper)/2;
xsimul = rk4(A, h, x0);
for i = 0 : 10/h,

xanal(:, i + 1) = expm(A ∗ h ∗ i) ∗ x0;
end,

eglobal = norm(xanal − xsimul,’inf’);
err = eglobal − tol;
if err > 0,

hupper = h;
else

hlower = h;
end,
err = abs(err);

end
hmax = h;

return

This routine looks very similar to the one that was presented in Chapter 2
for the computation of the stability domain.

We again sweep over a range of α values, and plot hmax as a function of
α in polar coordinates. Figure 3.5 shows the results of our efforts.

The chosen error tolerance was tol = 10−4.
Just like the stability domain, the accuracy domain can be plotted in the

(λ ·h)–plane. If we were to select a pair of eigenvalues in the λ–plane twice
as far away from the origin and use a step size, h, that is half as large,
we would get exactly the same accuracy. This happens because both the
analytical F–matrix:

Fanal = exp(A · h) (3.64)

and its numerical counterpart:

FRK4 = I(n) + A · h +
(A · h)2

2!
+

(A · h)3

3!
+

(A · h)4

4!
(3.65)

are functions of A · h.
On first sight, this seems to be an important discovery — accuracy can

be treated in the same way as stability. Unfortunately, this is not quite true.
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FIGURE 3.5. Accuracy domain of explicit fourth–order Runge–Kutta method.

The problem is that the accuracy domain depends heavily on the selected
initial condition. The largest step size that can be chosen for a prescribed
tolerance is approximately inverse proportional to the largest gradient in
the simulation, and since:

‖ẋ‖∞ ≈ ‖A‖∞ · ‖x‖∞ (3.66)

hmax is also approximately inverse proportional to any norm of the initial
condition for stable systems. Notice the asymmetry of the accuracy domain
with respect to the imaginary axis. If the poles are located in the analyt-
ically stable left half λ–plane, the transients die out with time, and the
largest errors are committed early on in the game. On the other hand, if
the poles are located in the analytically unstable right half λ–plane, the
transients grow larger and larger, and the committed errors grow accord-
ingly for any fixed step size. This is the major reason why an accurate
simulation of analytically unstable systems is a quite expensive enterprize
as we have to fight accumulation errors in that case.

Figure 3.6 shows the accuracy domains of the RK4 algorithm for three
different error tolerances: tol1 = 10−4 (as before), tol2 = 10−3, tol3 = 10−2,
and finally, tol4 = 10−1. The stability domain has been plotted on top of
the three accuracy domains.

It can be noticed that all three accuracy domains are safely within the
numerically stable region, at least as far as the left–half λ · h–plane is
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FIGURE 3.6. Accuracy domains of RK4 for different tolerance values.

concerned. However, this is deceiving. As the norm of the state vector
decays for analytically stable eigenvalue locations, the step size could be
chosen larger and larger to achieve the same tolerance.

The solution decays as exp(−σ · t). Let us assume that the two eigen-
values are located at −1.0. In this case, the damping, σ, is 1.0. The norm
of the chosen initial condition is ‖x0‖ = 1.0. With this initial condition,
the accuracy domain intersects the negative real axis at about −0.1. Thus,
when the norm of the state vector has decayed to roughly ‖x‖ = 0.04, the
accuracy domain has grown to the size of the stability domain, and from
then onward, the step size will actually be controlled by the numerical sta-
bility requirements, and no longer by accuracy requirements. This happens
after about 3.2 seconds of simulated time . . . and this is approximately,
how long we would usually simulate such a system before the trajecto-
ries become utterly uninteresting, as long as no input function adds to the
“excitement.”

If we now simulate a system, in which fast phenomena are superposed
to slow phenomena, then the simulation run length will be determined
by the slowest time constant whereas the step size will be dictated by
the numerical stability requirements of the fastest component. This is the
problem that was addressed under the heading stiff system. As the above
calculation shows, it doesn’t take a very large difference in time scales
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before stiffness becomes a problem. A time scale factor of 10 is probably
still acceptable, one of 100 is already quite problematic. Many engineering
applications call for simulations with time scale differences of several orders
of magnitude. A typical example of such applications are electronic circuits.
This is one of the reasons why all circuit simulators use implicit integration
schemes.

However, let us now return to the question of accuracy. As Fig.3.6 shows,
the difference in step size needed to improve the accuracy by a factor of
10 is not very large. By cutting the step size in half, we can improve the
accuracy by one order of magnitude.

Let us explore this thought a little further. To this end, we shall keep
the eigenvalues at −1.0, and we shall vary the step size to see how accurate
the simulation will be. Figure 3.7 shows the results of this experiment.
I plotted the number of function evaluations, which equals the number of
stages of the algorithm multiplied by the number of steps performed during
the simulation as a function of the achieved accuracy.
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FIGURE 3.7. Simulation cost as a function of accuracy for different RKs.

It turns out that RK4 was cheaper than RK3, which in turn was cheaper
than RK2 for all error tolerance values. This is not very surprising. By
cutting the step size in half, we double the number of function evaluations
needed to complete the simulation run. For the same “money,” we could
have kept the step size the same and instead doubled the accuracy order
(at least for low–order algorithms). Thereby we would have gained two
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orders of magnitude in improved accuracy as opposed to only one order by
reducing the step size.

Euler’s performance is not shown in Fig.3.7. We also tried RK1 (FE),
but we couldn’t get a global accuracy of 10% (corresponding to a local
accuracy of roughly 1%) for below 1000 function evaluations.

For a required global accuracy of 10%, the three algorithms shown in
Fig.3.7 have a quite comparable price. For a 1% accuracy, RK2 is already
out of the question, whereas both RK3 and RK4 still perform decently.
For a 0.1% global accuracy, RK3 has become expensive, while RK4 still
performs acceptably well.

Remembering that we usually control the local integration error rather
than the global integration error, which is roughly one order of magnitude
better, we see that indeed RK4 will work well for local errors of up to about
10−4. If we want to compute more accurately than that, we definitely should
turn to higher–order algorithms.

Notice that all these computations were performed on a 32 bit machine
in double precision, thus, the roundoff error is negligible in comparison with
the truncation error. Just for fun, we repeated the same computations in
simulated single precision by chopping eight digits off the state vector at
the end of each integration step using the MATLAB statement:

x = chop(x, 8)

The results of this effort are shown in Fig.3.8.
If the accuracy requirements are low, the simulation can use large step

sizes, and therefore, roundoff is not a problem. Consequently, the algo-
rithms behave in the same way as before. However, for higher accuracy
requirements, roundoff sets in (due to small step sizes), and accordingly, a
further reduction of the step size will not help to meet the required accu-
racy. No algorithm of any order will get us a global accuracy of better than
10−5 in this case.

To summarize this discussion, problems with roundoff make simulation
in single precision on a 32 bit machine quite problematic for any model
using any integration algorithm. Accuracy requirements put a lower bound
on the approximation order of the integration algorithm. A local error tol-
erance of εlocal = 10−k calls for at least a kth–order integration algorithm.
Lower–order algorithms aren’t necessarily cheaper even if the accuracy re-
quirements aren’t stringent. Accuracy domains aren’t quite as handy as
one could hope for due to their heavy dependence on the chosen initial
conditions.

Let us see whether we can come up with yet another tool to describe the
accuracy of an integration algorithm, a tool that isn’t plagued by the same
flaw as the accuracy domain.

Let us look once more at our standard linear test problem of Eq.3.59
with the analytical solution of Eq.3.62. Obviously, the analytical solution
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FIGURE 3.8. Cost for accuracy for different RKs in single precision.

is correct for any value of t, t0, and x0, and in particular, it is true for
t0 = tk, x0 = xk and t = tk+1. With this substitution, we find:

xk+1 = exp(A · h) · xk (3.67)

Thus, the analytical F–matrix of this system is:

Fanal = exp(A · h) (3.68)

For a scalar problem, we can specialize the general solution of Eq.3.62 into:

x(t) = c1 · exp(−σ · t) · cos(ω · t) + c2 · exp(−σ · t) · sin(ω · t) (3.69)

where σ is the distance of the eigenvalue from the imaginary axis and is
called the damping of the eigenvalue, whereas ω is the distance of the eigen-
value from the real axis and is called the eigenfrequency of the eigenvalue.

It is easy to show that the eigenvalues of the analytical Fanal–matrix are
related to those of the A–matrix through:

Eig{Fanal} = exp(Eig{A} · h) (3.70)

or:

λdisc = exp(λcont·h) = exp((−σ+j ·ω)·h) = exp(−σ·h)·exp(j ·ω·h) (3.71)
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Consequently, the damping, i.e., the distance of an eigenvalue from the
imaginary axis in the λ–plane maps into a distance from the origin in
the exp(λ · h)–plane, whereas the eigenfrequency, i.e., the distance of an
eigenvalue from the real axis in the λ–plane maps into an angle away from
the positive real axis in the exp(λ · h)–plane.

Notice that we just introduced a new plane: the exp(λ ·h)–plane. Control
engineers call this plane the z–domain, where:

z = exp(λ · h) (3.72)

Since even the analytical Fanal–matrix depends on the step size, h, it makes
sense to introduce a discrete damping, σd = h · σ, and a discrete frequency,
ωd = h · ω. Obviously, we can write:

|z| = exp(−σd) (3.73a)
∠z = ωd (3.73b)

Now, let us replace the analytical Fanal–matrix by the one that belongs
to the numerical integration routine, Fsimul. The numerical Fsimul–matrix
is either a rational (for implicit integration algorithms) or a polynomial
(for explicit integration algorithms) approximation of the analytical Fanal–
matrix. We define:

ẑ = exp(λ̂d) (3.74)

with:

λ̂d = −σ̂d + j · ω̂d (3.75)

Therefore:

|ẑ| = exp(−σ̂d) (3.76a)
∠ẑ = ω̂d (3.76b)

As ẑ approximates z, so must σ̂d be an approximation of σd, and ω̂d must
approximate ωd. It makes sense to study the relationship between the an-
alytical discrete damping, σd, on the one hand, and the numerical discrete
damping, σ̂d, on the other. Similarly, we can study the relationship between
the analytical discrete frequency, ωd, and the numerical discrete frequency,
ω̂d.

We can define:

εσ = σd − σ̂d (3.77a)
εω = ωd − ω̂d (3.77b)
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where εσ denotes the damping error, and εω denotes the frequency error
committed by the numerical integration algorithm.

Since the case of all continuous eigenvalues being negative and real occurs
so frequently (e.g. all thermal systems are of that nature), it is worthwhile
to study the damping error when moving an eigenvalue left or right along
the negative real axis. We can plot σd and σ̂d as functions of σd itself.
The following program will compute σ̂d for any single–step integration al-
gorithm.

function [sdhat] = damp(sd, algor)
%
f = ff(−sd, 1, algor);
sdhat = − log(f);

return

We can then sweep across a range of σd–values, and plot both −σd and
−σ̂d against −σd. Such a graph is called a damping plot. Figure 3.9 shows
the damping plot of RK4.
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FIGURE 3.9. Damping plot of RK4.

In the vicinity of the origin, the numerical damping value, σ̂d, follows
the analytical damping, σd, very well. However, already for very moderate
eigenvalue locations, the numerical damping behavior deviates drastically
from the analytical one, and somewhere around σd = 2.8, the numerical
damping becomes negative, which coincides with the border of numerical
stability. The area where the approximation of σd by σ̂d is accurate, is
called the asymptotic region of the integration algorithm.

Let us now look at the damping plot of BI4. This plot is shown in Fig.3.10.
Since BI4 is A–stable, the numerical damping stays positive for all values

of λ. Since BI4 is F–stable, the numerical damping approaches zero as λ
approaches −∞. Figure 3.11 shows the damping plot of the ϑ–method with
ϑ = 0.4.

Now, the damping no longer approaches zero, but it doesn’t go to infinity
either. From Eq.3.57d, we can conclude that:
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FIGURE 3.10. Damping plot of BI4.
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FIGURE 3.11. Damping plot of BI4 with ϑ = 0.4.

σ̂d(−∞) = −4 · log(
ϑ

1 − ϑ
) (3.78)

Consequently, for ϑ = 0.5, we find that σ̂d(−∞) = 0.0, a fact that we
already knew (F–stability), and for ϑ = 0.4, we find that σ̂d(−∞) = 1.6219.
The algorithm with ϑ = 0.0, i.e., BRK4, is L–stable, since σ̂d(−∞) → −∞.
Unfortunately, the true power of L–stability is not as glamorous as one
might think, as the BRK4 damping plot of Fig.3.12 demonstrates. Although
BRK4 is L–stable, the increase in damping when moving the pole to the
left is despairingly slow as a result of the logarithm function in Eq.(3.78).
For σd = −10−9, we find that σ̂d ≈ −80. L–stability is thus somewhat
overrated.

Just for completeness, let us draw the damping plot of IEX4 as well. It is
shown inf Fig.3.13. Now, this is interesting. Somewhere around σd = −6.7,
the numerical damping, σ̂d, intersects with the analytical damping, σd, thus
the damping error is exactly equal to zero.

Let us extend our search to the entire complex (λ ·h)–plane. Figure 3.14
plots σ̂d − σd over the complex plane.

Points on Fig.3.14 with positive amplitude represent a surplus in numer-
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FIGURE 3.12. Damping plot of BRK4.
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FIGURE 3.13. Damping plot of IEX4.

ical damping, whereas points with negative amplitude represent a lack in
numerical damping. We can strip away the magnitude information, and
only display the sign of the damping error. This is shown in Fig.3.15. ‘+’
means that there is surplus damping at this point, whereas ‘−’ indicates
that there is not enough damping.

There obviously exists a locus of at least partially connected points of the
λ ·h–plane, where the damping error is zero. This locus has been plotted in
Fig.3.16 for the IEX4 method. Such a locus is called an order star [3.13,
3.16, 3.23].

Figure 3.14 shows that there exist points where the simulated damping
σ̂d is infinite. Contrary to Fanal, which is a very smooth function, any
rational function approximation Fsimul has poles, i.e., points with infinite
numerical damping.

The F–matrix of IEX4 can be written as follows:

F = −1
6
· [I(n) − A · h]−1 + 4 · [I(n) − A · h

2
]−2

−27
2

· [I(n) − A · h
3

]−3 +
32
3

· [I(n) − A · h
4

]−4 (3.79)
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FIGURE 3.14. 3D–plot of damping error for IEX4.
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FIGURE 3.15. Damping error sign for IEX4.

Let us analyze the scalar case with:

q = λ · h
We can write:

f = −1
6
· 1
1 − q

+ 4 · 1
(1 − q/2)2

− 27
2

· 1
(1 − q/3)3

+
32
3

· 1
(1 − q/4)4

(3.80)

f is a rational function with 10 poles located at +1 (single pole), +2 (double
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FIGURE 3.16. Damping order star for IEX4.

pole), +3 (triple pole), and +4 (quadruple pole). As with any respectable
integration algorithm, all the poles are in the right half complex plane. The
pole locations are marked on Fig.3.16 as ‘×’. f has also nine zeros, which
are located at 3.277 ± 0.2155j, 2.1918, 1.3622 ± 0.6493j, 0.9562, −5.6654,
−8.7506, and −65.0105. They were marked on Fig.3.16 as ‘o’. Since:

σ̂d = − log(|f |) (3.81)

zeros show up on the damping plot (Fig.3.13) as negative poles, and on the
3D–plot (Fig.3.14) as positive poles.

Figure 3.14 shows a very rugged terrain just to the right of the origin of
the complex plain. For this reason, extrapolation techniques surely aren’t
suitable for the integration of unstable systems.

In stiff system integration, we requested that σ̂d → −∞ as λ → ∞.
From Eq.(3.81), we conclude that f → 0 as q → ∞. This is obviously only
possible if f is a strictly proper rational function. This is the reason why
explicit integration algorithms can never be L–stable.

IEX4 also has many zeros, some of which are even in the left half complex
plain. This can pose a problem. The BRK algorithms don’t have any zeros.
This may sometimes be beneficial.

Let us now look at the damping order star of a backinterpolation tech-
nique. It is shown for BI4 on Fig.3.17.

The terrain in the vicinity of the origin (the asymptotic region) is much
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FIGURE 3.17. Damping order star for BI4.

smoother than in the case of IEX4. BI4 has four poles and four zeros that
are marked on Fig.3.17. As in the case of IEX4, BI4 has zeros in the left
half complex plane, but at least none on the negative real axis.

Let us now discuss the frequency error. It may be worthwhile to study the
frequency error when moving an eigenvalue up or down along the positive
imaginary axis. We can plot ωd and ω̂d as functions of ωd itself. The fol-
lowing program will compute ω̂d for any single–step integration algorithm.

function [wdhat] = freq(wd, algor)
%
f = ff(wd, 1, algor);
wdhat = atan2(imag(f),real(f));

return

We can then sweep across a range of ωd–values, and plot both ωd and ω̂d

against ωd. Such a graph is called a frequency plot. Figure 3.18 shows the
frequency plot of RK4.

The frequency plot of RK4 seems to exhibit a discontinuity around ωd =
2.5. Yet, the plot is misleading. The discrete frequency ωd is 2π–periodic.
The “discontinuity” simply represents a jump of ω̂d from +π to −π. We
could easily compensate for the jump, and get a ω̂d curve that is totally
smooth, as long as the chosen path for ωd doesn’t lead through either a
pole or a zero.
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FIGURE 3.18. Frequency plot of RK4.

Does this mean that we can plot a frequency order star in the same
fashion as we drew the damping order star? Unfortunately, there still is
a problem. The damping order star is a contour plot, i.e., a plot of an
equipotential line, namely that for the zero potential. Contour plots, how-
ever, can only be drawn for potential fields, i.e., single-valued functions in
two real variables or one complex variable. The damping error function is
indeed single–valued. Unfortunately, the same does not hold for the fre-
quency error function. For each value of the complex independent variable
sd = σd + j ·ωd, the dependent variable ω̂d assumes infinitely many values,
as ω̂d is 2π–periodic.

Can we fix the problem by eliminating the artificial discontinuities, as
proposed above? Unfortunately, this does not solve the problem. If we
choose a closed path in sd that encircles either a pole or a zero, the to-
tal frequency contribution around the pole or zero is ±2π. The terrain of
the ω̂d function in the vicinity of any pole or zero looks like an infinitely
long spiral staircase. Consequently, the ω̂d–function is not a potential field.

The ω̂d–function can be turned into a potential field by limiting its range
to e.g. (−π,+π], in which case we can indeed plot a frequency order star
just as easily as in the case of the damping order star.

Figure 3.19 shows the frequency order star of BI4, and Fig.3.20 exhibits
the frequency order star of IEX4.

Frequency order stars aren’t depicted often, although they should be,
and were it only for their exquisite beauty.

What can we do with these tools? We have seen that both the damp-
ing plot and the frequency plot exhibit asymptotic regions, i.e., regions,
in which Fsimul deviates only little from Fanal both in terms of the ab-
solute value (damping) and in terms of the phase value (frequency). The
asymptotic region surrounds the origin. Figure 3.21 shows the asymptotic
regions of the RK4 algorithm. The top graph shows the asymptotic region
for sd = −σd, whereas the bottom graph depicts the asymptotic region for
sd = j · ωd.
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FIGURE 3.19. Frequency order star of BI4.

Hence it may make sense to define an error function that accounts for
both types of errors, the damping error and the frequency error, simulta-
neously, e.g.:

oserr = |σd − σ̂d| + |ωd − ω̂d| (3.82)

If both the damping error and the frequency error are defined such that
they form potential fields, then the order star error function, oserr, must
also form a potential field. Consequently, we can draw equipotential lines
of oserr = 10−4, oserr = 10−3, and oserr = 10−2 as contour plots, and
superpose them onto the same graph. Figure 3.22 depicts the order star
accuracy domain of the RK4 algorithm.

The order star accuracy domain has an important advantage over the
previously introduced accuracy domain. It is totally independent of the
problem to be solved or the initial conditions being used. It only depends
on the algorithm itself. It is a metric that is as “pure” as the stability
domain.

Notice that the order star accuracy domain is not asymmetric w.r.t. the
imaginary axis. The reason is simple. The order star accuracy domain com-
pares the analytical solution of the original continuous–time problem with
the equally analytical solution of the derived discrete–time problem. Con-
sequently, it only accounts for the truncation error. It does not consider



100 Chapter 3. Single–step Integration Methods

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x x x xo o o
oo

o

o

o

Frequency Order Star of IEX4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.20. Frequency order star of IEX4.

either the roundoff or the accumulation errors. The roundoff error is rela-
tively harmless, as it can be easily controlled by the length of the mantissa
used in the numerical computation. The accumulation error, on the other
hand, is anything but harmless. It is responsible for the narrow region of
accurate simulations in the right half plane of the accuracy domain. As the
order star accuracy domain doesn’t account for accumulation errors, it al-
lows for an equally large region of accurate computations in the right–half
λ · h–plane as in the left–half λ · h–plane.

Hence and in spite of its other shortcomings, the previously introduced
accuracy domain is a considerably more conservative measure of the ability
of a code to perform accurate simulations than the newly introduced order
star accuracy domain.

Figure 3.23 shows the order star accuracy domain of the IEX4 algorithm.
This time, the order star accuracy domain is indeed asymmetrical to the
imaginary axis. However, the reason here is not related to the accumulation
errors, but rather to the poles and zeros of this algorithm that are located
close to the origin in the right–half λ · h–plane, leading to a very rugged
terrain of the order star in this region. Hence the IEX4 algorithm has no
chance of simulating accurately unstable systems, even irrespective of the
problem of error accumulation.
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FIGURE 3.21. Asymptotic regions of RK4.

3.9 Step–size and Order Control

Although we have talked about the various sources of errors that can cor-
rupt our numerical integration results, we have done nothing so far to con-
tain them. We know that smaller step sizes will, in general, lead to smaller
integration errors at a higher computational cost, whereas larger step sizes
will lead to larger errors at a smaller cost. The right step size is a com-
promise between containment of error and cost. However, we don’t know
how to choose the most appropriate step size. As engineers, we certainly
know how accurate we need our results to be, and we also know how much
money we are willing to spend in order to get them, but while this knowl-
edge indirectly determines the step size, we don’t have a good algorithm
yet that would translate the error/cost knowledge into an adequate value
for the step size. This problem will be discussed next.

Since the relationship between error/cost on the one hand and the step
size on the other depends heavily on the numerical properties of the system
to be integrated, it is not clear that a fixed step size will lead to the same
integration error throughout the simulation. It may well be that a variation
of the step size during the simulation period in order to keep the error at
a constant level close to the maximum allowed error tolerance can reduce
the overall cost of the simulation. This observation leads to the demand
for variable–step integration algorithms, which in turn call for a step–size
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FIGURE 3.22. Order star accuracy domain of RK4.

control algorithm.
The following step–size control algorithm may work. Take any two arbi-

trary Runge–Kutta algorithms, and repeat the same step twice, once with
each of the algorithms. The results of these two algorithms will differ by
ε. If ε is larger than the tolerated error tolabs, the step is rejected and re-
peated with half the step size. If ε is smaller than 0.5 · tolabs during four
steps in a row, the next step will be computed with 1.5 · h.

This algorithm is very heuristic and somewhat unsatisfactory on several
counts, but the reader certainly has no problems in understanding how the
algorithm is supposed to work. The difference between the two solutions,
ε, is taken as an estimate for the local integration error and is compared
against the tolerated error. If the estimate is larger than the tolerated error,
the step size needs to be reduced, but if it is smaller, the step size can be
increased.

The first objection that comes to mind is the use of the absolute error as
a performance measure. Intuitively, if the state variable (i.e., the output of
the integrator) has a value of the order of 106, we can tolerate a much larger
absolute error than if the state variable has a value of 10−6. It therefore may
make sense to replace the absolute error by a relative error. The modified
algorithm looks as follows:
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εrel =
|x1 − x2|

|x1| (3.83a)

if εrel > tolrel ⇒ hnew = 0.5 · h (3.83b)
if εrel < 0.5 · tolrel during four steps ⇒ hnew = 1.5 · h (3.83c)

where x1 is the value of the state variable obtained by one of the two
algorithms, whereas x2 is the value obtained by the other algorithm.

Also this algorithm has its flaws. What if, by accident, x1 = 0.0 at some
point in time? This problem can be countered by modifying Eq.(3.83a) in
the following fashion:

εrel =
|x1 − x2|

max(|x1|, |x2|, δ) (3.84)

where δ is a fudge factor, e.g., δ = 10−10.
If an entire state vector needs to be integrated, the user may specify

different relative error tolerances for each of the state variables separately.
The above algorithm could then be applied to each of the state variables
separately, resulting in different suggestions for the next step size, hnew, to
be taken. The smallest of those values would then be applied.
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The only remaining problem is the price tag associated with this proce-
dure. Each step must be computed twice, i.e., the step–size control algo-
rithm at least doubles the cost of the numerical integration. Is this truly
necessary?

Edwin Fehlberg [3.9] didn’t think so. He proposed to make use of the
freedom in assigning the α and β parameters of the regular RK algorithms
in designing a step–size controlled algorithm in which both RK methods
share the early stages of the scheme, and vary only in the later stages.
He created pairs of algorithms one order apart. The most commonly used
among his methods is RKF4/5 with the Butcher tableau:

0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0
3/8 3/32 9/32 0 0 0 0

12/13 1932/2197 −7200/2197 7296/2197 0 0 0
1 439/216 -8 3680/513 −845/4104 0 0

1/2 −8/27 2 −3544/2565 1859/4104 −11/40 0
x1 25/216 0 1408/2565 2197/4104 −1/5 0
x2 16/135 0 6656/12825 28561/56430 −9/50 2/55

where:

f1(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1

104
q5 (3.85a)

f2(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1

120
q5 +

1
2080

q6 (3.85b)

Thus, x1 is a five–stage RK4, and x2 is a six–stage RK5. However, the
RK4 and RK5 algorithms have the first five stages in common. Therefore,
the step–size controlled algorithm is overall still a six–stage RK5, and the
only additional cost associated with step–size control is the computation
of the corrector of RK4. Step–size control comes almost for free.

How about the heuristic algorithm for modifying the step size? Luckily,
we can do better than that. Since we have explicit expressions for f1(q)
and f2(q), we can provide an explicit formula for the error estimate:

ε(q) = f1(q) − f2(q) =
1

780
q5 − 1

2080
q6 (3.86)

In a first approximation, we can write:

ε ∼ h5 (3.87)

or:

h ∼ 5
√

ε (3.88)

It makes sense to use the following step–size control algorithm:

hnew = 5

√
tolrel · max(|x1|, |x2|, δ)

|x1 − x2| · hold (3.89)
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The rational behind this algorithm is very simple. As long as:

|x1 − x2|
max(|x1|, |x2|, δ) = tolrel (3.90)

we got the right step size, and the step size won’t change. However, as soon
as |x1 − x2| becomes too large, the step size will be reduced. On the other
hand, if |x1 − x2| becomes too small, the step size will be enlarged.

Contrary to the previously proposed algorithm, no step will ever be re-
peated. The algorithm accepts too large errors in a single step and just
tries to prevent mishap from repeating itself. Algorithms that operate in
this fashion are called optimistic algorithms, whereas algorithms that repeat
steps exhibiting errors that are too large are called conservative algorithms.

The above procedure might work very well indeed if only we could trust
that one of the algorithms always overestimates the true value, while the
other always underestimates it, with the additional constraint that both
algorithms smoothly approximate the true value as h → 0.

Unfortunately, such a guarantee cannot be given. It is entirely feasi-
ble that both algorithms agree, by accident, on the same incorrect result.
Thus, the algorithm can be fooled. Luckily, this doesn’t happen too often
in practice, and consequently, engineers are usually quite happy with this
algorithm.

Kjell Gustafsson [3.11] had an even better idea. Kjell had a background
in control engineering, and therefore viewed the step–size control problem
from a control engineering perspective. This view is shown in Fig.3.24.

u(t)

x(t)ẋ x

εrel

εrel

tolrel e

hnew

Controller

State–Space
Model

Integration
Algorithm

+

−

FIGURE 3.24. Step–size control viewed as a control problem.

The integration algorithm interacts with the state space model in a closed
loop. We have seen that loop before. However, it also generates another
output, namely the estimate of the relative integration error, εrel. This
quantity is fed back and compared with the desired relative error, tolrel.
The resulting error signal, e, is then fed into a controller box that computes
the next value of the step size, hnew.

The controller can be designed using standard control theory. It turns
out that the previously proposed step–size adaptation rule of Eq.3.89 cor-
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responds to a discrete proportional controller (P–controller). However, we
can just as well implement either a discrete PI–controller or a discrete
PID–controller. All we need to do is to modify Eq.3.89 accordingly.

Gustafsson found that a PI–controller can be implemented using the
following modified step–size control algorithm:

hnew =
(

0.8 · tolrel
εrelnow

) 0.3
n

·
(

εrellast

εrelnow

) 0.4
n

· hold (3.91)

where:

εrelnow =
‖x1 − x2‖∞

max(‖x1‖2, ‖x2‖2, δ)
(3.92a)

εrellast = same quantity one time step back (3.92b)

and n is the approximation order of the integration algorithm, in the case
of RKF4/5, n = 5.

In Fig.3.24, it was assumed that the same relative error applies to all
state variables, i.e., we can operate on norms of the two state vectors rather
than on individual state variables. Therefore, εrel is a scalar rather than
a vector. However, the vector case could have been treated in exactly the
same fashion.

In Chapter 2, we have seen that we always have a choice between a high–
order algorithm with a larger step size and a low–order algorithm with a
smaller step size. Although it has been shown in Chapter 3 that low–order
algorithms aren’t really suitable in most situations, the question remains
whether order control might be a viable alternative to step–size control.

Several authors have extended the idea of embedded RK algorithms (RK
algorithms of different orders sharing their early stages) for the purpose of
order control [3.1]. However, beside from some interesting research papers,
these efforts didn’t go anywhere. The reason is simple. Low–order RK al-
gorithms are dubious anyway. Step–size controlled low–order RKs are even
worse, since the relative overhead paid for step–size control is larger for low–
order algorithms. The additional overhead paid for the embedding makes
these algorithms non–economic for practically all applications. Order con-
trol is a fashionable subject in multi–step integration, algorithms that will
be discussed in the next chapter of this book. However, the order–control
issue is, in our opinion, overrated even in the context of those algorithms.

3.10 Summary

This chapter has extended the general observations on numerical ODE
integration made in Chapter 2 to a large class of higher–order integration
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algorithms, namely the so–called Runge–Kutta methods. Both explicit [3.3,
3.12] and implicit versions [3.13] of these algorithms were discussed, and
their stability as well as accuracy properties were analyzed.

Most engineering applications call for fourth–order algorithms. The step–
size controlled RKF4/5 algorithm [3.9] is easily the most popular among
the explicit RK techniques. More recently, DOPRI4/5 [3.7, 3.11] became
also fairly popular due to its somewhat smaller error coefficient (97/120, 000
in comparison with 1/780 of RKF4/5), which is paid for by one additional
stage, i.e., one additional function evaluation per step.

The most popular implicit RK algorithms for stiff system simulation are
the fully–implicit Radau algorithms [3.13]. These algorithms are highly
efficient, and good (robust) implementations are available. They shall be
discussed in greater detail in Chapter 8 of this book. Backinterpolation
techniques, and in particular BI4/50.45, are a new and viable alternative
that, in our opinion, will receive more attention in the future.

Implicit extrapolation techniques have been advocated for use on parallel
processor architectures [3.6]. Parallelization of these algorithms is trivial,
since the predictor stages can be computed in parallel. In this way, the
number of consecutive stages of a fourth-order extrapolation method can
be reduced from 10 to four. These algorithms have been successfully applied
to the simulation of complex chemical processing plants, such as distillation
columns with 50 trays.

F–stable algorithms for the simulation of marginally stable systems are a
more specialized breed of animals in the zoo of numerical ODE integration
algorithms. They will never become as popular as either the non–stiff ex-
plicit algorithms or the stiffly–stable implicit algorithms, since the number
of suitable applications for these algorithms is more limited. However, these
algorithms should be looked at more closely in the context of method–of–
lines solutions to hyperbolic PDE problems.
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Numerical Treatment of Differential Equations, volume 631 of Lecture
Notes in Mathematics, pages 9–18. Springer–Verlag, New York, 1976.

[3.2] Kevin Burrage. Efficiently Implementable Algebraically Stable
Runge–Kutta Methods. SIAM J. Numerical Analysis, 19:245–258,
1982.

[3.3] John C. Butcher. The Numerical Analysis of Ordinary Differential
Equations: Runge–Kutta and General Linear Methods. John Wiley,
Chichester, United Kingdom, 1987. 512p.



108 Chapter 3. Single–step Integration Methods

[3.4] Alan R. Curtis. An Eighth Order Runge–Kutta Process With Eleven
Function Evaluations Per Step. Numerische Mathematik, 16:268–277,
1970.

[3.5] Germund G. Dahlquist, Werner Liniger, and Olavi Nevanlinna. Sta-
bility of Two–Step Methods for Variable Integration Steps. SIAM J.
Numerical Analysis, 20(5):1071–1085, 1983.

[3.6] Peter Deuflhard. Extrapolation Integrators for Quasilinear Implicit
ODEs. In Peter Deuflhard and Björn Enquist, editors, Large Scale
Scientific Computing, volume 7 of Progress in Scientific Computing,
pages 37–50, Birkhäuser, Boston, Mass., 1987.

[3.7] John R. Dormand and Peter J. Prince. A Family of Embedded
Runge–Kutta Formulae. J. of Computational and Applied Mathemat-
ics, 6(1):19–26, 1980.

[3.8] Leonhard Euler. De integratione æquationum differentialium per ap-
proximationem. In Opera Omnia, volume 11 of first series, pages
424–434. Institutiones Calculi Integralis, Teubner Verlag, Leipzig, Ger-
many, 1913.

[3.9] Edwin Fehlberg. Classical 5th–, 6th–, 7th–, and 8th–Order Runge–
Kutta Formulas. Technical Report NASA TR R–287, NASA Johnson
Space Center, Houston, Texas, 1968.

[3.10] C. William Gear. Numerical Initial Value Problems in Ordinary
Differential Equations. Series in Automatic Computation. Prentice–
Hall, Englewood Cliffs, N.J., 1971. 253p.

[3.11] Kjell Gustafsson. Control of Error and Convergence in ODE Solvers.
PhD thesis, Dept. of Automatic Control, Lund Institute of Technology,
Lund, Sweden, 1992.

[3.12] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving Ordi-
nary Differential Equations I: Nonstiff Problems, volume 8 of Series in
Computational Mathematics. Springer–Verlag, Berlin, Germany, 2nd

edition, 2000. 528p.

[3.13] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems, volume 14 of
Series in Computational Mathematics. Springer–Verlag, Berlin, Ger-
many, 2nd edition, 1996. 632p.

[3.14] Karl Heun. Neue Methoden zur approximativen Integration der Dif-
ferentialgleichungen einer unabhängigen Veränderlichen. Zeitschrift
für Mathematische Physik, 45:23–38, 1900.



3.12 Homework Problems 109
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3.12 Homework Problems

[H3.1] Family of Explicit RK2 Algorithms

Verify that Eq.(3.10) is indeed the correct Taylor–Series expansion describ-
ing the parameterized family of all two–stage explicit RK2 algorithms.
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[H3.2] Family of Explicit RK3 Algorithms

Derive the constraint equations in the αi and βij parameters that charac-
terize the family of all three–stage explicit RK3 algorithms.

To this end, the Taylor–series of f(x+Δx, y+Δy) must now be expanded
up to the quadratic terms:

f(x + Δx, y + Δy) ≈ f(x, y) +
∂f(x, y)

∂x
· Δx +

∂f(x, y)
∂y

· Δy +

∂2f(x, y)
∂x2

· Δx2

2
+

∂2f(x, y)
∂x · ∂y

· Δx · Δy +
∂2f(x, y)

∂y2
· Δy2

2
(H3.2a)

[H3.3] Runge–Kutta–Simpson Algorithm

Given the four–stage Runge–Kutta algorithm characterized by the Butcher
tableau:

0 0 0 0 0
1/3 1/3 0 0 0
2/3 -1/3 1 0 0
1 1 -1 1 0
x 1/8 3/8 3/8 1/8

Write down the stages of this algorithm. Determine the linear order of
approximation accuracy of this method. How would you judge this method
in comparison with other Runge–Kutta algorithms discussed in this chap-
ter?

[H3.4] RK Order Increase by Blending

Given two separate nth–order accurate RK algorithms in at least (n + 1)
stages:

f1(q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ c1 · qn+1 (H3.4a)

f2(q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ c2 · qn+1 (H3.4b)

where c2 �= c1.
Show that it is always possible to use blending:

xblended = ϑ · x1 + (1 − ϑ) · x2 (H3.4c)

where x1 is the solution found using method f1(q) and x2 is the solution
found using method f2(q), such that xblended is of order (n + 1).

Find a formula for ϑ that will make the blended algorithm accurate to
the order (n + 1).



3.12 Homework Problems 111

[H3.5] Stability Domains of RKF4/5

Find the stability domains of the two algorithms used in RKF4/5. Interpret
the results. Is it better to use the fourth–order approximation to continue
with the next step, or should the fifth–order approximation be used?

[H3.6] Runge–Kutta Integration

Given the following linear time–invariant continuous–time system:

ẋ =

⎛
⎜⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 −9613
250 −5060 −12079 −8586 −4826
−750 15101 36086 25637 14420
250 −4963 −11896 −8438 −4756

⎞
⎟⎟⎟⎟⎠ · x +

⎛
⎜⎜⎜⎜⎝

5
2
1
−3
1

⎞
⎟⎟⎟⎟⎠ · u

y =
(−1 26 59 43 23

) · x (H3.6a)

with initial conditions:

x0 =
(
1 −2 3 −4 5

)T (H3.6b)

This is the same system that was used in Hw.[H2.1] Simulate the system
across 10 seconds of simulated time with step input using the RK4 algo-
rithm with the α–vector and β–matrix of Eq.(3.15). The following fixed
step sizes should be tried:

1. h = 0.32,

2. h = 0.032,

3. h = 0.0032.

Plot the three trajectories on top of each other. What can you conclude
about the accuracy of the results?

[H3.7] Implicit Extrapolation

Derive the α1 and α2 coefficients of the IEX2 method using the two ap-
proaches demonstrated in the chapter. Show that you indeed obtain the
same coefficients using either of the two methods.

[H3.8] Implicit Extrapolation

Repeat Hw.[H3.6], this time using the IEX4 algorithm. Since the system
to be simulated is linear, the implicit algorithm can be implemented by
matrix inversion rather than by Newton iteration.

Which algorithm is more accurate for the same step size: RK4 or IEX4?



112 Chapter 3. Single–step Integration Methods

[H3.9] Explicit Integration Methods and Their Stability
Domains

Prove that all explicit RK algorithms have stability domains that look
qualitatively like that of FE, i.e., bend into the left–half λ ·h plane. To this
end, show that all explicit RK algorithms are characterized by a polynomial
rather than rational f(q), and analyze f(q) for large values of q → ∞.

[H3.10] Implicit Integration Methods and Their Stability
Domains

Prove that all implicit RK algorithms with strictly proper rational f(q)
functions have stability domains that look qualitatively like that of BE,
i.e., bend into the right–half λ · h plane.

Show furthermore that no integration algorithm with a non–strictly proper
f(q) function can exhibit infinite damping far away from the origin of the
complex λ · h plane.

[H3.11] Stability Domains of BI4/5ϑ

Find the stability domain of BI4/5ϑ using the approximation of Eq.(3.85a)
for the explicit semi–step, and the approximation of Eq.(3.85b) for the
implicit semi–step using the following ϑ values:

ϑ = {0.4, 0.45, 0.475, 0.48, 0.5} (H3.11a)

For this problem, it may be easier to use MATLAB’s contour plot, than
your own stability domain tracking routine.

[H3.12] BI4/50.45 for Linear Systems

Repeat Hw.[H3.6] this time using BI4/50.45. The explicit semi–step uses the
fourth–order approximation of RKF4/5. There is no need to compute the
fifth–order corrector. The implicit semi–step uses the fifth–order corrector.
There is no need to compute the fourth–order corrector. Since the system
to be simulated is linear, the implicit semi–step can be implemented using
matrix inversion. No step–size control is attempted.

Compare the accuracy of this algorithm with that of RK4 and IEX4.

[H3.13] Stability Domain and Newton Iteration

Show that Newton iteration indeed does not modify the stability domain
of BI2.

[H3.14] BI4/50.45 for Nonlinear Systems

Repeat Hw.[H3.12]. This time, we want to replace the matrix inversion by
Newton iteration. Of course, since the problem is linear and time–invariant,
Newton iteration and modified Newton iteration are identical. Iterate until
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δrel ≤ 10−5, where:

δrel =
‖xright

k+ 1
2

− xleft
k+ 1

2

‖∞
max(‖xleft

k+ 1
2

‖2, ‖xright

k+ 1
2

‖2, δ)
(H3.14a)

Compare the results obtained with those found in Hw.[H3.12].

[H3.15] Backinterpolation With Step–Size Control

We want to repeat Hw.[H3.14] once more, this time using a step–size con-
trolled algorithm. The step–size control to be used is the following. On the
explicit semi–step, compute now both correctors, and find εrel according to
the formula:

εrel =
‖x1 − x2‖∞

max(‖x1‖2, ‖x2‖2, δ)
(H3.15a)

If εrel ≤ 10−4, use the Gustafsson algorithm to compute the step size to be
used in the next step:

hnew =
(

0.8 · 10−4

εrelnow

)0.06

·
(

εrellast

εrelnow

)0.08

· hold (H3.15b)

except during the first step, when we use:

hnew =
(

0.8 · 10−4

εrelnow

)0.2

· hold (H3.15c)

However, if εrel > 10−4, we reject the step at once, i.e., we never even pro-
ceed to the implicit semi–step, and compute a new step size in accordance
with Eq.(H3.15c).

If a step was repeated, the step size for the immediately following next
step is also computed according to Eq.(H3.15c) rather than using Eq.(H3.15b).

Apply this step–size control algorithm to the same problem as before,
and determine the largest global relative error by comparing the solution
with the analytical solution of this linear time–invariant system.

Compute also the largest global relative error of the three solutions of
Hw.[H3.14].

Compute the number of floating–point operations of the step–size con-
trolled algorithm as well as the numbers of floating–point operations of the
fixed–step algorithms of Hw.[H3.14].

Use the product of accuracy and cost:

Q = # of floating point operations×largest global relative error (H3.15d)

as a performance measure, and rank the four solutions accordingly. Is the
step–size controlled algorithm economical when using this performance
measure?
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[H3.16] CSMP–III

The most widely used simulation software in the 70s was a program from
IBM called Continuous System Modeling Program III (CSMP–III). That
software offered, as its default integration algorithm, the classical 4th–order
Runge–Kutta algorithm presented in Eq.(3.15). For step–size control, the
algorithm used an implementation of Simpson’s rule, also known under the
name of 4th–order Milne algorithm, an implicit linear multi–step method
that we shall meet again in Chapter 4 of this book. The algorithm is usually
written as:

xk+1 = xk−1 +
h

3
· (fk+1 + 4 · fk + fk−1) (H3.16a)

However, by shrinking the step size by a factor of two, it can also be written
as:

xk+1 = xk +
h

6
· (fk+1 + 4 · fk+ 1

2
+ fk) (H3.16b)

CSMP–III implemented this formula as a predictor–corrector technique,
using two semi–steps of FE to estimate the unknown derivative values,
fk+ 1

2
and fk+1.

Write down the Butcher tableau of the combined RK4/Simpson algo-
rithm, sharing as many stages between the two algorithms as possible.

Find the linear order of approximation accuracy of this implementation
of Simpson’s rule. How would you characterize this method?

What can you conclude about the usefulness of this technique for step–
size control of the RK4 algorithm?

[H3.17] Embedded RK Algorithms

Given the two embedded RK algorithms characterized by the following
Butcher tableau:

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
x1 1/2 1/2 0
x2 1/6 1/6 2/3

Write down the stages of these two algorithms. Determine the linear
order of approximation accuracy for each of them.

[H3.18] Accuracy Domains

Determine the accuracy domains (left–half plane only) of IEX4 and BI4/50.45

for tol = 10−4, and compare them to the accuracy domain of RK4. What
do you conclude?
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[H3.19] Order Star

Find the damping order star for BI4/50.45, and plot it together with the
pole and zero locations. Compare with the order star of Fig.3.17. Find the
frequency order star for BI4/50.45, and plot it together with the pole and
zero locations. Compare with the order star of Fig.3.19. Finally, compute
and plot the order star accuracy domain of this method.

[H3.20] Lie-series Integration, Algebraic Differentiation

The Van–der–Pol oscillator can be described by the following 2nd–order
differential equation:

ẍ − μ · (1 − x2) · ẋ + x = 0 (H3.20a)

Write down a state–space model of the Van–der–Pol oscillator with x1 = x,
and x2 = ẋ.

Create a MATLAB function:

[f , ḟ , f̈ ] = vdp(x) (H3.20b)

that computes the first, second, and third state derivative vectors. Use alge-
braic differentiation to symbolically find expressions for the higher deriva-
tives.

We wish to simulate the Van–der–Pol oscillator with μ = 2.0 during
20 seconds using a step size of h = 0.1 by means of Lie–series integration,
i.e., by making direct use of the Taylor–series expansion of the exponential
function:

xk+1 = xk + h · fk +
h2

2
· ḟk +

h3

6
· f̈k (H3.20c)

Use six different sets of initial conditions:

1. x10 = 0.1, x20 = 0.1,

2. x10 = 0.1, x20 = −0.1,

3. x10 = −0.1, x20 = 0.1,

4. x10 = −0.1, x20 = −0.1,

5. x10 = −2.0, x20 = 2.0,

6. x10 = 2.0, x20 = −2.0,

and plot x2(t) as a function of x1(t) in the phase plane, superposing the
six solutions onto the same graph.
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3.13 Projects

[P3.1] Accuracy Domain vs. Order–star Accuracy Domain

Draw the accuracy domains and order–star accuracy domains for different
integration algorithms, and determine the relationship between these two
approaches to characterizing the accuracy of an integration algorithm.

3.14 Research

[R3.1] ϑ–Method

Study the relationship between the locations of the eigenvalues of the Ja-
cobian matrix of the system to be simulated, and the choice of the theta–
parameter in BI4/5ϑ.

Design a general–purpose control algorithm to modify theta as a function
of the (usually time–dependent) eigenvalue locations of the Jacobian matrix
of the system to be simulated.

[R3.2] L–Stability

Analyze the effects of the shape of the damping plot on the accuracy of a
stiff system integrator. Quantify the importance of L–stability. Determine
a method to systematically find L–stable algorithms that minimize the
distance between σd and σ̂d in a least–square sense within a reasonable
range of the negative real axis of the damping plot.




