
4

Multi–step Integration
Methods

Preview

In this chapter, we shall look at several families of integration algorithms
that all have in common the fact that only a single function evaluation
needs to be performed in every integration step, irrespective of the order of
the algorithm. Both explicit and implicit varieties of this kind of algorithms
exist and shall be discussed. As in the last chapter, we shall spend some
time discussing the stability and accuracy properties of these families of
integration algorithms.

Whereas step–size and order control were easily accomplished in the case
of the single–step techniques, these issues are much more difficult to tackle
in the case of the multi–step algorithms. Consequently, their discussion
must occupy a significant portion of this chapter.

The chapter starts out with mathematical preliminaries that shall sim-
plify considerably the subsequent derivation of the multi–step methods.

4.1 Introduction

In the last chapter, we have looked at integration algorithms that, in one
way or other, all try to approximate Taylor–Series expansions of the un-
known solution around the current time instant. The trick was to never
compute the higher derivatives explicitly, but to replace these higher deriva-
tives by additional function evaluations to be taken at various time instants
inside the integration step.

One disadvantage of this approach is that, with every new step, we start
out again with an empty slate, i.e., in each new step, we have to build up
the higher–order algorithms from scratch. Isn’t it a pity that, at the end
of every step, all the higher–order information is thrown away again? Isn’t
that wasteful? Wouldn’t it be possible to preserve some of this information
so that, in the subsequent step, the number of function evaluations can be
kept smaller? The answer to this question is a definite yes. In fact, it is
possible to find entire classes of integration algorithms of arbitrary order
of approximation accuracy that require only a single function evaluation in
every new step, because they preserve the complete information from the
previous steps. That is the topic of our discussion in this chapter.

118 Chapter 4. Multi–step Integration Methods

There are many ways how these families of algorithms can be derived.
However, in order to make their introduction and derivation easy, we need
some additional mathematical apparatus that we shall introduce first. To
this end, we shall initially not talk about numerical integration at all. In-
stead, we shall focus our interest on higher–order interpolation (extrapola-
tion) polynomials.

4.2 Newton–Gregory Polynomials

Given a function of time, f(t). We shall denote the values of this function at
various points in time, t0, t1, t2, etc. as f0, f1, f2, etc. We shall introduce Δ
as a forward difference operator , thus, Δf0 = f1−f0, Δf1 = f2−f1, etc.

Higher–order forward difference operators can be defined accordingly:

Δ2f0 =Δ(Δf0) = Δ(f1 − f0) = Δf1 − Δf0 = f2 − 2f1 + f0 (4.1a)

Δ3f0 =Δ(Δ2f0) = f3 − 3f2 + 3f1 − f0 (4.1b)
etc.

In general:

Δnfi = fi+n−n ·fi+n−1+
n(n − 1)

2!
·fi+n−2− n(n − 1)(n − 2)

3!
·fi+n−3+ . . .

(4.2)
or:

Δnfi =
(

n

0

)
fi+n −

(
n

1

)
fi+n−1 +

(
n

2

)
fi+n−2 −

(
n

3

)
fi+n−3 + · · · ±

(
n

n

)
fi

(4.3)
Let us now assume that the time points at which the fi values are given are
a fixed distance h apart from each other. We wish to find an interpolation
(extrapolation) polynomial of nth order that passes through the (n + 1)
given function values f0, f1, f2, . . . , fn at the given time instants t0, t1 =
t0 + h, t2 = t0 + 2h, . . . , tn = t0 + n · h.

Let us introduce an auxiliary variable s defined as follows:

s =
t − t0

h
(4.4)

Thus, for t = t0 ↔ s = 0.0, for t = t1 ↔ s = 1.0, etc. The real–valued
variable s assumes integer values at the sampling points. At those points,
the value of s corresponds to the index of the sampling point.

The desired interpolation polynomial can be written as a function of s:

4.2 Newton–Gregory Polynomials 119

f(s) ≈
(

s

0

)
f0 +

(
s

1

)
Δf0 +

(
s

2

)
Δ2f0 + · · · +

(
s

n

)
Δnf0 (4.5)

This is called a Newton–Gregory forward polynomial . It is easy to prove
that this polynomial indeed possesses the desired qualities. First of all, it
is clearly an nth–order polynomial in s. Since s is linear in t, it is also an
nth–order polynomial in t. By plugging in integer values of s in the range 0
to n, we can verify easily that the polynomial indeed passes through f0 to
fn. Since there exists exactly one nth–order polynomial that passes through
any given set of (n + 1) points, the assertion has been proven.

Sometimes, it is more useful to have an nth–order polynomial that passes
through (n + 1) time points in the past. The Newton–Gregory backward
polynomial can be written as:

f(s) ≈ f0 +
(

s

1

)
Δf−1 +

(
s + 1

2

)
Δ2f−2 +

(
s + 2

3

)
Δ3f−3 + . . .

+
(

s + n − 1
n

)
Δnf−n (4.6)

It is equally easy to show that this nth–order polynomial passes through
the (n + 1) points f0, f−1, f−2, . . . , f−n at the time instants t0, t−1, t−2,
. . . , t−n by plugging in values of s = 0.0, s = −1.0, s = −2.0, . . . , s = −n.

It is common practice to also introduce a backward difference operator ,
∇, defined as:

∇fi = fi − fi−1 (4.7)

with the higher–order operators:

∇2fi = ∇(∇fi) = ∇(fi − fi−1) = ∇fi −∇fi−1

= fi − 2 fi−1 + fi−2 (4.8a)
∇3fi = ∇(∇2fi) = fi − 3fi−1 + 3fi−2 − fi−3 (4.8b)
etc.

or, in general:

∇nfi =
(

n

0

)
fi −

(
n

1

)
fi−1 +

(
n

2

)
fi−2 −

(
n

3

)
fi−3 + · · · ±

(
n

n

)
fi−n (4.9)

The Newton–Gregory backward polynomial can be expressed in terms of
the ∇–operator as:

120 Chapter 4. Multi–step Integration Methods

f(s) ≈ f0+
(

s

1

)
∇f0+

(
s + 1

2

)
∇2f0+

(
s + 2

3

)
∇3f0+· · ·+

(
s + n − 1

n

)
∇nf0

(4.10)
It is also quite common to introduce yet another operator, namely the shift
operator , E . It is defined as:

Efi = fi+1 (4.11)

with the higher–order operators:

E2fi = E(Efi) = E(fi+1) = fi+2 (4.12a)
E3fi = E(E2fi) = E(fi+2) = fi+3 (4.12b)
etc.

It is obviously true that:

Δfi = Efi − fi = (E − 1)fi (4.13a)
∇fi = fi − E−1fi = (1 − E−1)fi (4.13b)

E(∇fi) = E(fi − fi−1) = fi+1 − fi = Δfi (4.13c)

By abstraction:

Δ = E − 1 (4.14a)
∇ = 1 − E−1 (4.14b)
Δ = E∇ (4.14c)

Since these are all linear operators, we can formally calculate with them as
with other algebraic quantities. In particular:

Δn = (E − 1)n = En − nEn−1 +
(

n

2

)
En−2 −+ · · · ±

(
n

n − 1

)
E ∓ 1 (4.15)

Using this calculus, the derivation of the two Newton–Gregory polynomials
becomes trivial.

f(s) ≈ Esf0 = (1 + Δ)sf0 =
[
1 +
(

s

1

)
Δ +

(
s

2

)
Δ2 +

(
s

3

)
Δ3 + . . .

]
f0

(4.16)
is the Newton–Gregory forward polynomial, and:

4.3 Numerical Integration Through Polynomial Extrapolation 121

f(s) ≈ (1 −∇)−sf0 =
[
1 +
(

s

1

)
∇ +

(
s + 1

2

)
∇2 +

(
s + 2

3

)
∇3 + . . .

]
f0

(4.17)
is the Newton–Gregory backward polynomial.

Since differentiation is also a linear operation, we can find the first time
derivative of f(t) in the following manner:

ḟ(t) =
d

dt
f(t) =

∂

∂s
f(s) · ds

dt

≈ 1
h
· ∂

∂s

(
f0 + sΔf0 +

s(s − 1)
2!

Δ2f0 + . . .

)
(4.18)

and in particular:

ḟ(t0) ≈ 1
h
·
(

Δf0 − 1
2
Δ2f0 +

1
3
Δ3f0 − · · · ± 1

n
Δnf0

)
(4.19)

We introduce a new operator, the differentiation operator , D, as:

D =
1
h
·
(

Δ − 1
2
Δ2 +

1
3
Δ3 − · · · ± 1

n
Δn

)
(4.20)

Consequently, we can compute the second derivative as:

D2 =
1
h2

·
(

Δ − 1
2
Δ2 +

1
3
Δ3 − · · · ± 1

n
Δn

)2

=
1
h2

·
(

Δ2 − Δ3 +
11
12

Δ4 − 5
6
Δ5 + . . .

)
(4.21)

etc.
A more thorough discussion of these and other interpolation polynomials

can be found in [4.7]. However, for our purpose, the material presented
here will suffice.

4.3 Numerical Integration Through Polynomial
Extrapolation

The idea behind multi–step integration is straightforward. We can employ
a Newton–Gregory backward polynomial setting tk = t0 and evaluating for
s = 1.0. This should give us an estimate of x(tk+1) = f1. The back values
f0, f−1, f−2, etc. are the previously computed solutions x(tk), x(tk−1),
x(tk−2), etc. Until here, we have written the Newton–Gregory polynomials

122 Chapter 4. Multi–step Integration Methods

for the scalar case, but the concept extends without complications also to
the vector case.

The trick is to somehow modify the notation of the Newton–Gregory
backward polynomial such that values of ḟ are used beside from the values
of f in order to incorporate the knowledge available through the state–
space model, but such that higher derivatives, as f̈ , are avoided, since they
are difficult to compute accurately.

4.4 Explicit Adams–Bashforth Formulae

Let us write a Newton–Gregory backward polynomial for the state deriva-
tive vector ẋ(t) around the time point tk:

ẋ(t) = fk +
(

s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . . (4.22)

where:

fk = ẋ(tk) = f(x(tk), tk) (4.23)

is the state derivative vector at time tk. We wish to find an expression for
x(tk+1). Therefore, we need to integrate Eq.(4.22) in the interval [tk, tk+1]:

tk+1∫
tk

ẋ(t)dt = x(tk+1) − x(tk)

=

tk+1∫
tk

[
fk +

(
s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . .

]
dt

=

1.0∫
0.0

[
fk +

(
s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . .

]
· dt

ds
· ds

(4.24)

Thus:

x(tk+1) =x(tk) + h

1∫
0

[
fk + s∇fk +

(
s2

2
+

s

2

)
∇2fk

+
(

s3

6
+

s2

2
+

s

3

)
∇3fk + . . .

]
ds (4.25)

4.4 Explicit Adams–Bashforth Formulae 123

and therefore:

x(tk+1) = x(tk) + h

(
fk +

1
2
∇fk +

5
12

∇2fk +
3
8
∇3fk + . . .

)
(4.26)

If we truncate Eq.(4.26) after the quadratic term and expand the ∇–
operators, we obtain:

x(tk+1) = x(tk) +
h

12
(23fk − 16fk−1 + 5fk−2) (4.27)

which is the well–known third–order Adams–Bashforth algorithm, abbre-
viated as AB3. Since the expressions on the right are multiplied by h, we
obtain a third–order approximation by truncating the infinite series after
the quadratic term.

If we truncate Eq.(4.26) only after the cubic term, we obtain:

x(tk+1) = x(tk) +
h

24
(55fk − 59fk−1 + 37fk−2 − 9fk−3) (4.28)

which is the AB4 algorithm.
Also these algorithms can be represented through an α–vector and a

β–matrix. These are:

α =
(

1 2 12 24 720 1440
)T (4.29a)

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
3 −1 0 0 0 0
23 −16 5 0 0 0
55 −59 37 −9 0 0

1901 −2774 2616 −1274 251 0
4277 −7923 9982 −7298 2877 −475

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.29b)

Here, the ith row contains the coefficients of the ABi algorithm, i.e., the
coefficients of the ith order Adams–Bashforth algorithm. The ith row of the
β–matrix contains the multipliers of the f–vectors at different time points,
and the ith row of the α–vector contains the common denominator, i.e., the
divider of h.

All algorithms within the class of ABi algorithms are explicit algorithms.
Of course, AB1 is:

x(tk+1) = x(tk) +
h

1
(1fk) (4.30)

which is immediately recognized as the FE–algorithm. There exists only
one explicit first–order algorithm, namely the Forward Euler algorithm.

Let us now look at the stability domains of the ABi algorithms. However,
before we can do so, we must find the F–matrices of the ABi algorithms. Let

124 Chapter 4. Multi–step Integration Methods

us look at AB3 for example. Applying Eq.(4.27) to the linear homogeneous
problem, we find:

x(tk+1) =
[
I(n) +

23
12

Ah

]
x(tk) − 4

3
Ah x(tk−1) +

5
12

Ah x(tk−2) (4.31)

We can transform the third–order vector differential equation into three
first–order vector differential equations with the substitutions:

z1(tk) = x(tk−2) (4.32a)
z2(tk) = x(tk−1) (4.32b)
z3(tk) = x(tk) (4.32c)

With these substitutions, we find:

z1(tk+1) = z2(tk) (4.33a)
z2(tk+1) = z3(tk) (4.33b)

z3(tk+1) =
5
12

Ah z1(tk) − 4
3
Ah z2(tk) +

[
I(n) +

23
12

Ah

]
z3(tk) (4.33c)

or, in a matrix form:

z(tk+1) =

⎛
⎝O(n) I(n) O(n)

O(n) O(n) I(n)

5
12Ah −4

3Ah (I(n) + 23
12Ah)

⎞
⎠ · z(tk) (4.34)

Thus, for a 2×2 A–matrix, we obtain a 2i×2i F–matrix for ABi. The sta-
bility domains that result when plugging these F–matrices into the general
routine of Chapter 2 are shown in Fig.4.1.

As the ABi methods are explicit algorithms, their borders of stability
must loop into the left–half complex λ · h–plane. This was to be expected.
Unfortunately, the stability domains of the ABi algorithms look very disap-
pointing. We proceed to higher orders of approximation accuracy, in order
to use larger step sizes . . . yet, the stability domains shrink ! AB7 is even
totally unstable.

As we proceed to higher orders, the step size will very soon be limited
by the stability domain rather than by the accuracy requirements. In com-
parison with the RK algorithms, it is true that we need only one function
evaluation per step, yet, we probably will have to use considerably smaller
step sizes due to the disappointingly small stable regions in the left–half
λ · h–plane.

The reasons for these unfortunate results are easy to understand. It is
not true that higher–order polynomials necessarily lead to a more accu-
rate interpolation everywhere. They only allow us to fit more points pre-
cisely. In between these points, higher–order polynomials have a tendency

4.5 Implicit Adams–Moulton Formulae 125

−2.5 −2 −1.5 −1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

6

Stability Domains of AB

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.1. Stability domains of explicit AB algorithms.

to oscillate. Worse, while higher–order polynomial interpolation may still be
acceptable, higher–order polynomial extrapolation is a disaster. These poly-
nomials have a tendency to deviate quickly from the approximated curve
outside the interpolation interval. Unfortunately, extrapolation is what nu-
merical integration is all about.

The previous paragraph indicates that the discovered shortcoming of
this class of algorithms will not be limited to the explicit Adams–Bashforth
methods, but is an inherent disease of all multi–step integration algorithms.

4.5 Implicit Adams–Moulton Formulae

Let us check whether we have more luck with implicit multi–step algo-
rithms. To this end, we again develop ẋ(t) into a Newton–Gregory backward
polynomial, however this time, we shall develop the polynomial around the
point tk+1.

ẋ(t) = fk+1 +
(

s

1

)
∇fk+1 +

(
s + 1

2

)
∇2fk+1 +

(
s + 2

3

)
∇3fk+1 + . . . (4.35)

We integrate again from time tk to time tk+1. However, this time, s = 0.0
corresponds to t = tk+1, thus, we need to integrate across the range s ∈

126 Chapter 4. Multi–step Integration Methods

[−1.0, 0.0].
We find:

x(tk+1) = x(tk) + h

(
fk+1 − 1

2
∇fk+1 − 1

12
∇2fk+1 − 1

24
∇3fk+1 + . . .

)
(4.36)

Expanding the ∇–operators and truncating after the quadratic term, we
find:

x(tk+1) = x(tk) +
h

12
(5fk+1 + 8fk − fk−1) (4.37)

which is the well–known implicit Adams–Moulton third–order algorithm,
abbreviated as AM3. Truncating after the cubic term, we obtain:

x(tk+1) = x(tk) +
h

24
(9fk+1 + 19fk − 5fk−1 + fk−2) (4.38)

which is the AM4 algorithm. We can again represent the class of AMi
algorithms through an α–vector and a β–matrix:

α =
(

1 2 12 24 720 1440
)

(4.39a)

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
5 8 −1 0 0 0
9 19 −5 1 0 0

251 646 −264 106 −19 0
475 1427 − 798 482 − 173 27

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.39b)

Clearly, AM1 is the same as BE. This was to be expected since there
can exist only one implicit first–order integration algorithm. AM2 is the
trapezoidal rule, thus while AM1 is L–stable, AM2 is F–stable.

Let us now look at the stability domains of the higher–order AMi for-
mulae. Plugging the linear homogeneous system into AM3, we find:

[
I(n) − 5

12
Ah

]
x(tk+1) =

[
I(n) +

2
3
Ah

]
x(tk) − 1

12
Ah x(tk−1) (4.40)

Using the same substitution as in the case of the ABi formulae, we find:

F =
(

O(n) I(n)

−[I(n) − 5
12Ah]−1 · [1

12Ah] [I(n) − 5
12Ah]−1 · [I(n) + 2

3Ah]

)
(4.41)

Thus, for a 2 × 2 A–matrix, we obtain a 2(i − 1) × 2(i − 1) F–matrix for
AMi. The stability domains that result when plugging these F–matrices
into the general routine of Chapter 2 are shown in Fig.4.2.

4.6 Adams–Bashforth–Moulton Predictor–Corrector Formulae 127

−7 −6 −5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

Stability Domains of AM

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.2. Stability domains of implicit AM algorithms.

As in the case of the ABi algorithms, the results are disappointing. AM1
and AM2 are useful algorithms . . . but they were already known to us under
different names. Starting from the third–order, the stability domains of the
AMi algorithms loop again into the left–half λ ·h–plane. It is unclear to us
why we should want to pay the high price of Newton iteration, if we don’t
get a stiffly–stable technique after all.

4.6 Adams–Bashforth–Moulton
Predictor–Corrector Formulae

The ABi algorithms were rejected due to their miserably small stable re-
gions in the left–half λ · h–plane. The AMi algorithms, on the other hand,
were rejected because they are implicit, yet not stiffly–stable. Maybe all is
not lost yet. We can try a compromise between ABi and AMi. Let us con-
struct a predictor–corrector method with one step of ABi as a predictor,
and one step of AMi as a corrector. For example, the (third–order accurate)
ABM3 algorithm would look as follows:

128 Chapter 4. Multi–step Integration Methods

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h
12 (23ẋk − 16ẋk−1 + 5ẋk−2)

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk + h
12 (5ẋP

k+1 + 8ẋk − ẋk−1)

Evidently, the overall algorithm is explicit. Therefore, no Newton iteration
is needed, and consequently, the fact that the method won’t be stiffly–stable
is of no concern. However, for the price of a second function evaluation per
step, we may have bargained for a considerably larger stability domain than
in the case of AB3.

Replacing the nonlinear problem by the linear homogeneous problem in
the predictor–corrector technique, and plugging the predictor formula into
the corrector, we find:

x(tk+1) =
[
I(n) +

13
12

Ah +
115
144

(Ah)2
]
x(tk) −

[
1
12

Ah +
5
9
(Ah)2

]
x(tk−1)

+
25
144

(Ah)2x(tk−2) (4.42)

with the F–matrix:

F =

⎛
⎝ O(n) I(n) O(n)

O(n) O(n) I(n)

25
144 (Ah)2 − [1

12Ah + 5
9 (Ah)2

] [
I(n) + 13

12Ah + 115
144 (Ah)2

]
⎞
⎠

(4.43)
The stability domains of some ABMi algorithms are shown in Fig.4.3.

Indeed, the approach worked. The stability domains of the ABMi algo-
rithms are considerably larger than those of the ABi algorithms, although
they are still considerably smaller than those of the AMi algorithms —
especially for orders three and four. Since Newton iteration takes usually
about three iterations per step, i.e., three additional function evaluations in
the case of these multi–step algorithms, ABMi is about twice as expensive
as ABi, and AMi is about twice as expensive as ABMi. Thus, if ABMi
allows us to use a step size that is at least twice as large as the step size
we could employ when using ABi, the predictor–corrector method becomes
economical. If AMi allows us to use a step size that is at least four times
as large as the step size we could employ when using ABi, the implicit
algorithm becomes economical in spite of the need for Newton iteration.

4.7 Backward Difference Formulae

Let us check whether we can find a set of multi–step formulae whose sta-
bility domains loop into the right–half λ · h–plane. This time, we write the

4.7 Backward Difference Formulae 129

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

3
4 5

6

Stability Domains of ABM

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.3. Stability domains of predictor–corrector ABM algorithms.

Newton–Gregory backward polynomial in x(t) rather than in ẋ(t) around
the time instant tk+1. Thus:

x(t) = xk+1+
(

s

1

)
∇xk+1+

(
s + 1

2

)
∇2xk+1+

(
s + 2

3

)
∇3xk+1+. . . (4.44)

or:

x(t) = xk+1 +s∇xk+1 +
(

s2

2
+

s

2

)
∇2xk+1 +

(
s3

6
+

s2

2
+

s

3

)
∇3xk+1 + . . .

(4.45)
We now compute the derivative of Eq.(4.45)) with respect to time:

ẋ(t) =
1
h

[
∇xk+1 +

(
s +

1
2

)
∇2xk+1 +

(
s2

2
+ s +

1
3

)
∇3xk+1 + . . .

]
(4.46)

We evaluate Eq.(4.46) for s = 0.0, and obtain:

ẋ(tk+1) =
1
h

[
∇xk+1 +

1
2
∇2xk+1 +

1
3
∇3xk+1 + . . .

]
(4.47)

Multiplying Eq.4.47 with h, truncating after the cubic term, and expanding
the ∇–operators, we obtain:

130 Chapter 4. Multi–step Integration Methods

h · fk+1 =
11
6

xk+1 − 3xk +
3
2
xk−1 − 1

3
xk−2 (4.48)

Eq.(4.48) can be solved for xk+1:

xk+1 =
18
11

xk − 9
11

xk−1 +
2
11

xk−2 +
6
11

· h · fk+1 (4.49)

which is the well–known third–order backward difference formula, abbre-
viated as BDF3. We can obtain BDFi algorithms of other orders by trun-
cating Eq.(4.47) after fewer or more terms.

Also the BDFi algorithms can be expressed through an α–vector and a
β–matrix:

α =
(
1 2/3 6/11 12/25 60/137

)T (4.50a)

β =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
4/3 −1/3 0 0 0

18/11 −9/11 2/11 0 0
48/25 −36/25 16/25 −3/25 0

300/137 −300/137 200/137 −75/137 12/137

⎞
⎟⎟⎟⎟⎠ (4.50b)

where the ith row represents the BDFi algorithm. The coefficients of the β–
matrix are here the multipliers of past values of the state vector x, whereas
the coefficients of the α–vector are the multipliers of the state derivative
vector ẋ at time tk+1. The BDF techniques are implicit algorithms, thus
clearly, BDF1 is the same as BE.

The stability domains of the BDFi algorithms are presented in Fig.4.4.
It becomes evident at once that, finally, we have found a set of stiffly–

stable multi–step algorithms. Unfortunately, they (not unexpectedly) also
suffer from the high–order polynomial extrapolation disease. As the order
of the extrapolation polynomials grows, the methods become less and less
stable. Although the stability domains loop into the right–half λ · h–plane,
they are pulled over more and more into the left–half plane. BDF6 (not
shown on Fig.4.4) has only a very narrow band of stable area to the left
of the origin. BDF6 is thus only useful for simulation of problems with
all eigenvalues strictly on the negative real axis, such as method–of–lines
solutions to parabolic PDEs. BDF7, is unstable in the entire λ · h–plane.

Yet, due to the simplicity of these techniques, the BDFi algorithms are
today easily the most widely used stiff system solvers on the market. In the
engineering literature, these algorithms are often called Gear algorithms,
after Bill Gear who discovered their stiffly–stable properties [4.5]. The
most widely used code based o the BDF formulae is DASSL. DASSL is the
default simulation algorithm used in Dymola. We shall talk more about
DASSL in Chapter 8 of this book.

4.8 Nyström and Milne Algorithms 131

−5 0 5 10 15 20

−10

−5

0

5

10

1

2
3 4

5

Stability Domains of BDF

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.4. Stability domains of implicit BDF algorithms.

By evaluating Eq.(4.46) for s = −1.0, we can obtain a series of explicit
BDFi algorithms. Unfortunately, they are not useful, since they are all
unstable in the entire λ · h–plane.

4.8 Nyström and Milne Algorithms

There exist two more classes of multi–step techniques that are sometimes
talked about in the numerical ODE literature, the explicit Nyström tech-
niques [4.10], and the implicit Milne methods [4.10]. Let us derive them
and look at their stability behavior.

We start again out with Eq.(4.22). However this time, we integrate from
tk−1 to tk+1, thus, from s = −1.0 to s = +1.0. We find:

x(tk+1) = x(tk−1) + h

(
2fk +

1
3
∇2fk +

1
3
∇3fk + . . .

)
(4.51)

The term in ∇fk drops out. Truncating Eq.(4.51) after the cubic term and
expanding the ∇–operators, we obtain:

x(tk+1) = x(tk−1) +
h

3
(8fk − 5fk−1 + 4fk−2 − fk−3) (4.52)

which is the fourth–order Nyström algorithm, abbreviated as Ny4.

132 Chapter 4. Multi–step Integration Methods

The Nyi algorithms are characterized by the following α–vector and β–
matrix:

α =
(

1 1 3 3 90
)T (4.53a)

β =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
2 0 0 0 0
7 − 2 1 0 0
8 − 5 4 − 1 0

269 −266 294 −146 29

⎞
⎟⎟⎟⎟⎠ (4.53b)

The Nyström algorithms have unfortunately a serious drawback. They are
unstable in the entire λ · h–plane. Ny1 is the explicit midpoint rule with a
double step size, which by accident is already 2nd–order accurate. Ny2 is the
same algorithm as Ny1. Even Ny2 (Ny1) is an unstable algorithm though,
since it is interpreted here as a multi–step technique, rather than as a
single–step algorithm with an FE predictor step, as proposed in Chapter 3.

If we start out with Eq.4.35, but integrate from time tk−1 to time tk+1,
corresponding to the interval s ∈ [−2.0, 0.0], we get:

x(tk+1) = x(tk−1) + h

(
2fk+1 − 2∇fk+1 +

1
3
∇2fk+1 + 0∇3fk+1 + . . .

)
(4.54)

This time around, the term in ∇3fk+1 drops out. Truncating Eq.4.54 after
the cubic term (the quadratic term really) and expanding the ∇–operators,
we find:

x(tk+1) = x(tk−1) +
h

3
(fk+1 + 4fk + fk−1) (4.55)

which is the implicit fourth–order Milne algorithm, abbreviated as Mi4.
The same algorithm is also known under the name of Simpson’s rule.

The α–vector and β–matrix for the Mii algorithms are as follows:

α =
(

1 1 3 3 90
)T (4.56a)

β =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
1 4 1 0 0
1 4 1 0 0

29 124 24 4 − 1

⎞
⎟⎟⎟⎟⎠ (4.56b)

Mi1 is recognizable as backward Euler with a double step size. Mi2 is by
accident explicit, since the coefficient of fk+1 drops out. Mi2 is the same as
Ny2, i.e., the explicit midpoint rule with a double step size.

4.9 In Search for Stiffly–stable Methods 133

Mi4 is truly remarkable. Due to a combination of “lucky” circumstances,
a lot of terms dropped away, leading to a fourth–order accurate multi–
step methods with only two memory elements (two past values are used in
the algorithm). It is truly regrettable that our “good fortune” comes at a
high price. The stability domain of Mi4 is extremely small — it consists of
the origin only (!) Therefore, while Simpson’s rule is very fashionable for
quadrature problems (to numerically determine the integral of a function),
it is entirely useless for solving differential equations. The higher–order
Milne formulae are all unstable as well.

Nyström and Milne formulae are sometimes useful as partners within
predictor–corrector methods. The fact that these formulae are unstable by
themselves does not preclude the possibility that they may be combined
with other formulae either in a predictor-corrector scheme, or in a blended
method, or in a cyclic method, thereby leading to perfectly usable algo-
rithms with appropriate stability properties.

4.9 In Search for Stiffly–stable Methods

Until now, we used the Newton–Gregory polynomials to derive multi–step
algorithms. This technique has its advantages. In particular, it generates
the integration algorithms using the ∇–operator, which is useful. However,
the technique called for lots of symbolic or at least semi–symbolic opera-
tions that are hard to implement in MATLAB in search for new algorithms
with pre–specified stability and/or accuracy properties.

To this end, let us introduce another technique that can alternatively be
used to derive the coefficients of multi–step integration algorithms. Let us
derive once again the BDF3 algorithm.

We know that every nth–order multi–step algorithm is defined through
an nth–order polynomial fitted through (n + 1) points, a mixture of state
values and state derivative values, at the time points tk+1, tk, tk−1, etc.
Let us write this polynomial once again in the variable s, assuming that
s = 1.0 corresponds to t = tk+1, s = 0.0 corresponds to t = tk, etc. The
polynomial can be written as:

p(s) = a0 + a1 s + a2 s2 + a3 s3 + · · · + an sn (4.57)

in the yet unknown coefficients ai. The time derivative of p(s) can be writ-
ten as:

h · ṗ(s) = a1 + 2a2 s + 3a3 s2 + · · · + n an sn−1 (4.58)

In the case of BDF3, we know that p(0) = xk, p(−1) = xk−1, p(−2) = xk−2,
and h · ṗ(+1) = h · fk+1. This gives us four equations in the four unknowns
a0, a1, a2, and a3. These are:

134 Chapter 4. Multi–step Integration Methods

h · fk+1 = a1 + 2a2 + 3a3 (4.59a)
xk = a0 (4.59b)

xk−1 = a0 − a1 + a2 − a3 (4.59c)
xk−2 = a0 − 2a1 + 4a2 − 8a3 (4.59d)

or, in a matrix form:

⎛
⎜⎜⎝

h · fk+1

xk

xk−1

xk−2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 2 3
1 0 0 0
1 −1 1 −1
1 −2 4 −8

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎠ (4.60)

which can be solved for the unknown parameter vector by matrix inversion.
We wish to evaluate:

xk+1 = p(+1) = a0 + a1 + a2 + a3 (4.61)

Thus, we simply add up the elements in each column of the inverse matrix,
and receive directly the desired coefficients of BDF3:

xk+1 =
6
11

h · fk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (4.62)

This procedure can easily be automated in a MATLAB function.
You had been told that BDF6 is not a very useful technique due to its

narrow corridor of stable territory to the left of the origin. The method is
(A,α)–stable, but only with α = 19o. Let us ascertain whether the above
outlined procedure allows us to find a better sixth–order stiffly–stable al-
gorithm than BDF6.

Obviously, any sixth–order linear multi–step method can be written as:

p(s) = a0 + a1 s + a2 s2 + a3 s3 + a4 s4 + a5 s5 + a6 s6 (4.63)

in seven unknown parameters. Consequently, we must provide seven so-
lution points through which the polynomial will be fitted. In the past, we
talked about the high–order extrapolation disease. Maybe, it will work bet-
ter if we shorten the tail of the algorithm by providing both values for x
and for f at s = 0, at s = −1, and at s = −2. Clearly, the list of data
points must contain f(tk+1) in order for the method to be implicit. The
rationale for this idea is that the interpolated curve may look more like a
polynomial over a shorter time span.

Thus:

4.9 In Search for Stiffly–stable Methods 135

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h · fk+1

xk

h · fk

xk−1

h · fk−1

xk−2

h · fk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M · a (4.64)

where:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 − 1 1 − 1 1 − 1 1
0 1 − 2 3 − 4 5 − 6
1 − 2 4 − 8 16 − 32 64
0 1 − 4 12 − 32 80 −192

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.65)
Computing the inverse of M and adding up columns, we find:

xk+1 =
3
11

h·fk+1− 27
11

xk+
27
11

h·fk+
27
11

xk−1+
27
11

h·fk−1+xk−2+
3
11

h·fk−2

(4.66)
This is a beautiful new method, it is clearly sixth–order accurate, and it
has only one single drawback . . . it is unfortunately unstable in the entire
λ · h–plane (!)

Thus, we need to expand our search. Let us allow values to be included
as far back as t = tk−5, corresponding to s = −5. Since we definitely
want fk+1 to be included and since we can pick either x–values or f–values
otherwise, we need to pick six items out of 12. This gives us 924 different
methods to try.

I quickly programmed this problem in MATLAB, calculating the F–
matrices for all 924 techniques, and checking for each of them whether or
not its stability domain intersects with the positive real axis, making it a
potential candidate for a stiffly–stable algorithm.

Most of the 924 methods are entirely unstable. Others behave like Adams–
Moulton. Only six out of the 924 methods have an intersection of their
respective stability domains with the positive real axis. These are:

xk+1 =
20
49

h · fk+1 +
120
49

xk − 150
49

xk−1 +
400
147

xk−2 − 75
49

xk−3

+
24
49

xk−4 − 10
147

xk−5 (4.67a)

136 Chapter 4. Multi–step Integration Methods

xk+1 =
308
745

h · fk+1 +
1776
745

xk − 414
149

xk−1 +
944
447

xk−2 − 87
149

xk−3

− 288
745

h · fk−4 − 2
15

xk−5 (4.67b)

xk+1 =
8820
21509

h · fk+1 +
52200
21509

xk − 63900
21509

xk−1 +
400
157

xk−2

− 28575
21509

xk−3 +
6984
21509

xk−4 +
600

21509
h · fk−5 (4.67c)

xk+1 =
179028
432845

h · fk+1 +
206352
86569

xk − 34452
12367

xk−1 +
26704
12367

xk−2

− 65547
86569

xk−3 − 83808
432845

h · fk−4 +
24
581

h · fk−5 (4.67d)

xk+1 =
12
29

h · fk+1 +
1728
725

xk − 81
29

xk−1 +
64
29

xk−2 − 27
29

xk−3

+
97
725

xk−5 +
12
145

h · fk−5 (4.67e)

xk+1 =
30
71

h · fk+1 +
162
71

xk − 675
284

xk−1 +
100
71

xk−2 − 54
71

xk−4

+
127
284

xk−5 +
15
71

h · fk−5 (4.67f)

Among those six methods, Eq.(4.67a) is the well-known BDF6 technique.
The methods of Eq.(4.67b) and Eq.(4.67f) are useless, since their stability
domains also intersect with the negative real axis. The stability domains
of the survivors are shown in Fig.4.5.

How can we evaluate the relative merits of these four algorithms against
each other? One useful criterium is the angle α of the A(α) stability. Gear
[4.5] proposed an alternate method to judge the stability of a stiffly–stable
method consisting of two parameters, the distance a away from the imag-
inary axis that the stability domain reaches into the left–half λ · h–plane,
and the distance c away from the negative real axis, which defines the clos-
est distance of the stability domain to the negative real axis. These three
parameters are shown in Fig.4.6.

Yet, we shall need to look at accuracy as well. It has become customary
[4.10] to judge the accuracy of a multi–step method in the following way.
Any multi–step method can be written in the form:

xk+1 =
�∑

i=0

ai · xk−i +
�∑

i=−1

bi · h · fk−i (4.68)

where � is a suitably large index to include the entire history needed for
the method. We can take all terms to the left–hand side of the equal sign,
and shift the equation by � steps into the future. By doing so, we obtain:

m∑
i=0

αi · xk+i + h ·
m∑

i=0

βi · fk+i = 0 (4.69)

4.9 In Search for Stiffly–stable Methods 137

−20 −10 0 10 20 30 40
−25

−20

−15

−10

−5

0

5

10

15

20

25

a
c

d

e

Stability Domains of Stiffly-Stable Methods

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.5. Stability domains of some stiffly–stable algorithms.

where αi, βi, and m can be easily expressed in terms of the previously
used parameters ai, bi, and �. Assuming that our system is smooth, i.e.,
the solution is continuous and continuously differentiable at least n times,
where n is the order of the integration algorithm, we can develop xk+i and
fk+i into Taylor series around xk and fk, and come up with an expression
in xk and its derivatives:

c0 · xk + c1 · h · ẋk + · · · + cq · hq · x(q)
k + . . . (4.70)

where x(q)
k is the qth time derivative of xk. The coefficients can be expressed

in terms of the previously used parameters αi, βi, and m as follows:

c0 =
m∑

i=0

αi (4.71)

c1 =
m∑

i=0

(i · αi − βi) (4.72)

... (4.73)

cq =
m∑

i=0

(
1
q!

· iq · αi − 1
(q − 1)!

· iq−1 · βi

)
, q = 2, 3, . . . (4.74)

138 Chapter 4. Multi–step Integration Methods

−15 −10 −5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

Stability Parameters of BDF6

Re{λ · h}

I
m
{λ

·h
}

α

c

a

FIGURE 4.6. Stability parameters of a stiffly–stable algorithm.

Since the function that has been developed into a Taylor series is the zero
function, all of these coefficients ought to be equal to zero. However, since
the approximation is only nth–order accurate, the coefficients for q > n
may be different from zero. Hence we can define the dominant of those
coefficients as the error coefficient of the multi–step integration algorithm:

cerr =
m∑

i=0

(
1

(n + 1)!
· in+1 · αi − 1

n!
· in · βi

)
(4.75)

A small value of the error coefficient is indicative of a good nth–order
multi–step formula.

We may also wish to look at the damping properties of the algorithm.
The damping plot, that had been introduced in Chapter 3 of this book,
can easily be extended to multi-step methods by redefining the discrete
damping as:

σd = − log(max(abs(eig(F)))) (4.76)

The damping plots of BDF6 and the other three surviving algorithms are
shown in Fig.4.7. The top graph shows the damping plots as depicted in
the past. The bottom graph shows the same plots using a semi–logarithmic
scale for the independent variable.

4.9 In Search for Stiffly–stable Methods 139

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BDF6

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

BDF6

Damping Plot of Stiffly-Stable Methods

−σd

Logarithmic Damping Plot for Stiffly-Stable Methods

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 4.7. Damping plots of BDF6 and other 6th–order stiffly–stable algo-
rithms.

The top graph of Fig.4.7 shows that the asymptotic region of BDF6 is
clearly larger than that of its three competitors. The graph shows further-
more that the discrete damping of the method exhibits a sharp bend at the
place where it starts deviating from the analytical damping, i.e., at approx-
imately σd = −0.125. This bend is caused by a spurious eigenvalue taking
over at that point. This is a new phenomenon that we didn’t observe in the
case of the single–step algorithms. Since the F–matrix is of a larger size
than the A–matrix, it has more eigenvalues, which may become dominant
eventually.

The bottom graph shows that BDF6 is L–stable, whereas its three con-
tenders are not. Although the concept of L–stability is somewhat overrated
in the numerical ODE literature (at σd = 106, the discrete damping of the
BDF6 method assumes only a value of σ̂d = 2.5), this is still a nice property
for a stiffly–stable method to possess.

Hence, and in spite of all our efforts, we haven’t hit a mark yet. BDF6
is still the winner.

Looking at the surviving algorithms, we notice at once that all of them
make use of the entire interpolation span. Quite obviously, it was a lousy
idea to try to shorten the tail of the algorithm. The reason for this result
is also understandable. By extending the interpolation range, the relative
distance of extrapolation necessary to predict xk+1 becomes shorter. This is
beneficial. Thus, let us extend this idea, and allow also interpolation points

140 Chapter 4. Multi–step Integration Methods

at time tk−6, tk−7, etc without increasing the order of the polynomial.
We decided to extend the search all the way to tk−11. Although it would

have been possible to include both previous state values and previous
derivative values in the search, we limited our search to past state val-
ues only, since no stiffly–stable method makes use of past derivative values.
We have to pick six values out of 12.

Some 924 methods later ...
314 methods were found that exhibit properties similar to those of BDF6.

Their performance parameters are summarized in Table 4.1.

BDF6 Other stiffly–stable methods
α = 19o α ∈ [19o, 48o]
a = −6.0736 a ∈ [−6.0736,−0.6619]
c = 0.5107 c ∈ [0.2250, 0.8316]
cerr = −0.0583 cerr ∈ [−7.4636,−0.0583]
as.reg. = −0.14 as.reg. ∈ [−0.30,−0.01]

TABLE 4.1. Properties of stiffly–stable 6th–order algorithms.

Evidently, BDF6 exhibits the worst behavior of all of these algorithms
w.r.t. its α and a values. Yet, BDF6 is characterized by the smallest error
coefficient. Unfortunately, as the length of the tail of the algorithm grows,
so does the error coefficient. The c parameter is somewhere in the middle
range, and so is the asymptotic region, which we defined as the value of
σd, where |σ̂d − σd| = 0.01.

How can these 314 algorithms be rank–ordered? To this end, we shall
need to define a performance index, something along the lines of:

P.I.i =
|αi|
‖α‖ − |ai|

‖a‖ +
|ci|
‖c‖ − k · |cerri

|
‖cerr‖ +

|as.reg.i|
‖as.reg.‖ = max! (4.77)

where each of the five parameters is normalized to make them comparable
with each other. A k–factor was assigned to the error coefficient to be able to
vary the importance of the error coefficient within the overall performance
index. We chose a value of k = 20.

The best three methods are now compared with BDF6. Their coefficients
are given by:

xk+1 =
72
167

h · fk+1 +
2592
1169

xk − 2592
1169

xk−1 +
1152
835

xk−2

− 324
835

xk−3 +
81

5845
xk−7 − 32

5845
xk−8 (4.78a)

xk+1 =
420
977

h · fk+1 +
19600
8793

xk − 2205
977

xk−1 +
1400
977

xk−2

4.9 In Search for Stiffly–stable Methods 141

− 1225
2931

xk−3 +
40

2931
xk−6 − 7

8793
xk−9 (4.78b)

xk+1 =
44
103

h · fk+1 +
5808
2575

xk − 242
103

xk−1 +
484
309

xk−2

− 363
721

xk−3 +
242
7725

xk−5 − 4
18025

xk−10 (4.78c)

Table 4.2 summarizes the five performance parameters of these methods.

BDF6 SS6a SS6b SS6c
α = 19o α = 45o α = 44o α = 43o

a = −6.0736 a = −2.6095 a = −2.7700 a = −3.0839
c = 0.5107 c = 0.7994 c = 0.8048 c = 0.8156
cerr = −0.0583 cerr = −0.1478 cerr = −0.1433 cerr = −0.1343
as.reg. = −0.14 as.reg. = −0.21 as.reg. = −0.21 as.reg. = −0.21

TABLE 4.2. Properties of stiffly–stable 6th–order algorithms.

The stability domains of the four methods are presented in Fig.4.8. The
damping plots are shown in Fig.4.9.

−15 −10 −5 0 5 10 15 20 25 30 35

−20

−15

−10

−5

0

5

10

15

20

BDF6

SS6a

SS6b

SS6c

Stability Domain of Stiffly-Stable Methods

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.8. Stability domains of BDF6 and other 6th–order stiffly–stable algo-
rithms.

142 Chapter 4. Multi–step Integration Methods

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BDF6

SS6a,SS6b,SS6c

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

BDF6

SS6a

SS6b

SS6c

Damping Plot of Stiffly-Stable Methods

−σd

Logarithmic Damping Plot for Stiffly-Stable Methods

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 4.9. Damping plots of BDF6 and other 6th–order stiffly–stable algo-
rithms.

The asymptotic regions of these three algorithms are almost identical and
considerably larger than that of BDF6. Consequently, it may be possible
to use larger step sizes with any of these algorithms. Thus, either of these
methods may be more economic than BDF6. A large asymptotic region may
be considered an alternative to a small error coefficient as an indicator for
a good algorithm from the point of view of integration accuracy.

The logarithmic decay rate of BDF6 is a little better than those of its
three contenders. Yet, this issue may not be of much concern.

4.10 High–order Backward Difference Formulae

Although it is known that there are no stable BDF algorithms of orders
higher than six, this statement only applies to the algorithms without ex-
tended memory tail. We can apply the same procedure as before to search
for BDF algorithms of order seven, allowing the tail of the algorithm to
reach back all the way to e.g. tk−13. Hence we need to choose seven ele-
ments from a list of 14.

Of the possible 3432 algorithms, 762 possess properties similar to BDF6,
i.e., they are A(α)–stable and also L–stable. The search was limited to
algorithms with α ≥ 10o. Their performance parameters are tabulated in
Table 4.3.

4.10 High–order Backward Difference Formulae 143

BDF6 7th–order stiffly–stable methods
α = 19o α ∈ [10o, 48o]
a = −6.0736 a ∈ [−6.1261,−0.9729]
c = 0.5107 c ∈ [0.0811, 0.7429]
cerr = −0.0583 cerr ∈ [−6.6498,−0.1409]
as.reg. = −0.14 as.reg. ∈ [−0.23,−0.01]

TABLE 4.3. Properties of stiffly–stable 7th–order algorithms.

The smallest error coefficient is now almost three times larger than in
the case of the 6th–order algorithms. The other parameters are comparable
in their ranges with those of the 6th–order algorithms.

This time, we used a value of k = 15 in Eq.(4.77). The best three algo-
rithms are characterized by the following sets of coefficients:

xk+1 =
5148
12161

h · fk+1 +
552123
243220

xk − 200772
85127

xk−1 +
184041
121610

xk−2

− 184041
425635

xk−3 +
20449

1702540
xk−8 − 4563

851270
xk−10 +

99
121610

xk−12

(4.79a)

xk+1 =
234
551

h · fk+1 +
13689
6061

xk − 492804
212135

xk−1 +
4056
2755

xk−2

− 4563
11020

xk−3 +
169

19285
xk−8 − 507

121220
xk−11 +

54
30305

xk−12

(4.79b)

xk+1 =
3276
7675

h · fk+1 +
17199
7675

xk − 191646
84425

xk−1 +
596232
422125

xk−2

− 74529
191875

xk−3 +
1183

191875
xk−8 − 882

422125
xk−12 +

2106
2110625

xk−13

(4.79c)

Their performance parameters are tabulated in Table 4.4.

BDF6 SS7a SS7b SS7c
α = 19o α = 37o α = 39o α = 35o

a = −6.0736 a = −3.0594 a = −2.9517 a = −3.2146
c = 0.5107 c = 0.6352 c = 0.6664 c = 0.6331
cerr = −0.0583 cerr = −0.3243 cerr = −0.3549 cerr = −0.3136
as.reg. = −0.14 as.reg. = −0.15 as.reg. = −0.16 as.reg. = −0.15

TABLE 4.4. Properties of stiffly–stable 7th–order algorithms.

The error coefficients of these methods have grown quite a bit, but luckily,
the asymptotic regions haven’t shrunk yet significantly.

144 Chapter 4. Multi–step Integration Methods

The stability domains of the three methods are presented in Fig.4.10,
where they are also compared to that of BDF6. The damping plots are
shown in Fig.4.11.

−15 −10 −5 0 5 10 15 20 25 30 35

−20

−15

−10

−5

0

5

10

15

20

BDF6

SS7a

SS7b SS7c

Stability Domain of Stiffly-Stable Methods

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.10. Stability domains of BDF6 and a set of 7th–order stiffly–stable
algorithms.

The three algorithms are very similar indeed in almost every respect,
and they should also perform quite similarly in simulations.

We can now proceed to algorithms of 8th order. We searched for algo-
rithms with tails reaching all the way back to tk−15. Hence we had to choose
8 elements out of a list of 16 candidates. Of the possible 12870 algorithms,
493 exhibit properties similar to those of BDF6.

Their performance parameters are tabulated in Table 4.5.

BDF6 8th–order stiffly–stable methods
α = 19o α ∈ [10o, 48o]
a = −6.0736 a ∈ [−5.3881,−1.4382]
c = 0.5107 c ∈ [0.0859, 0.6485]
cerr = −0.0583 cerr ∈ [−6.4014,−0.4416]
as.reg. = −0.14 as.reg. ∈ [−0.16,−0.01]

TABLE 4.5. Properties of stiffly–stable 8th–order algorithms.

4.10 High–order Backward Difference Formulae 145

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BDF6

SS7a,SS7b,SS7c

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

BDF6

SS7a,SS7b,SS7c

Damping Plot of Stiffly-Stable Methods

−σd

Logarithmic Damping Plot for Stiffly-Stable Methods

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 4.11. Damping plots of BDF6 and a set of 7th–order stiffly–stable algo-
rithms.

The smallest error coefficient has unfortunately again grown by about a
factor of three, and this time, also the largest asymptotic region has begun
to shrink.

This time around, we used a factor of k = 10 in Eq.(4.77). Two among
the best of these algorithms are characterized by the following sets of co-
efficients:

xk+1 =
112
267

h · fk+1 +
71680
31239

xk − 2800
1157

xk−1 +
179200
114543

xk−2

− 3920
8811

xk−3 +
112

12015
xk−9 − 160

12727
xk−13 +

7168
572715

xk−14

− 35
10413

xk−15 (4.80a)

xk+1 =
208
497

h · fk+1 +
216320
93933

xk − 93600
38269

xk−1 +
16640
10437

xk−2

− 67600
147609

xk−3 +
5408

469665
xk−9 − 1280

147609
xk−12 +

3328
574035

xk−14

− 65
31311

xk−15 (4.80b)

Their performance parameters are tabulated in Table 4.6.
Their stability domains and damping plots look almost the same as for

146 Chapter 4. Multi–step Integration Methods

BDF6 SS8a SS8b
α = 19o α = 35o α = 35o

a = −6.0736 a = −3.2816 a = −3.4068
c = 0.5107 c = 0.5779 c = 0.5456
cerr = −0.0583 cerr = −0.9322 cerr = −0.8636
as.reg. = −0.14 as.reg. = −0.14 as.reg. = −0.13

TABLE 4.6. Properties of stiffly–stable 8th–order algorithms.

the 7th–order algorithms. We therefore refrained from printing these plots.
Let us now proceed to 9th–order algorithms. We decided to search for

algorithms with their tails reaching back as far as tk−17. Hence we had to
choose 9 elements from a list of 18. Of the 48620 candidate algorithms,
only 152 exhibit properties similar to those of BDF6.

Their performance parameters are tabulated in Table 4.7.

BDF6 9th–order stiffly–stable methods
α = 19o α ∈ [10o, 32o]
a = −6.0736 a ∈ [−5.0540,−2.4730]
c = 0.5107 c ∈ [0.0625, 0.4991]
cerr = −0.0583 cerr ∈ [−5.9825,−1.2492]
as.reg. = −0.14 as.reg. ∈ [−0.10,−0.02]

TABLE 4.7. Properties of stiffly–stable 9th–order algorithms.

The smallest error coefficient has once again grown by about a factor of
three, and also the largest asymptotic region has now shrunk significantly.

This time, we used a factor of k = 5 in Eq.(4.77). Two among the best
of these algorithms are characterized by the following sets of coefficients:

xk+1 =
4080
9947

h · fk+1 +
165240
69629

xk − 16854480
6336239

xk−1 +
1664640
905177

xk−2

− 5618160
9956947

xk−3 +
23120

1462209
xk−8 − 332928

9956947
xk−14 +

351135
6336239

xk−15

− 29160
905177

xk−16 +
1360

208887
xk−17 (4.81a)

xk+1 =
1904
4651

h · fk+1 +
719712
302315

xk − 62424
23255

xk−1 +
6214656
3325465

xk−2

− 873936
1511575

xk−3 +
18496

1046475
xk−8 − 249696

16627325
xk−13 +

7803
302315

xk−15

− 6048
302315

xk−16 +
952

209295
xk−17 (4.81b)

Their performance parameters are tabulated in Table 4.8.

4.11 Newton Iteration 147

BDF6 SS9a SS9b
α = 19o α = 18o α = 18o

a = −6.0736 a = −4.3280 a = −4.3321
c = 0.5107 c = 0.3957 c = 0.3447
cerr = −0.0583 cerr = −1.7930 cerr = −1.6702
as.reg. = −0.14 as.reg. = −0.10 as.reg. = −0.08

TABLE 4.8. Properties of stiffly–stable 9th–order algorithms.

Their stability domains and damping plots look almost the same as for
the 7th and 8th–order algorithms.

In this section, a number of new algorithms have been developed and
presented that extend the concept of BDF algorithms to higher orders.

4.11 Newton Iteration

As we have seen, many of the truly interesting multi–step algorithms are
implicit. Let us look once more at BDF3.

xk+1 =
6
11

h · fk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (4.82)

Plugging in the α–vector and the β–matrix of the BDF3 method, we find:

xk+1 = α3 h · fk+1 + β31 xk + β32 xk−1 + β33 xk−2 (4.83)

Thus, the ith–order BDFi algorithm can be written as:

xk+1 = αi h · fk+1 +
i∑

j=1

βij xk−j+1 (4.84)

Plugging in the linear homogeneous problem and solving for xk+1, we find:

xk+1 = −
[
αi · (A · h) − I(n)

]−1 i∑
j=1

βij xk−j+1 (4.85)

On a nonlinear problem, we cannot apply matrix inversion. We can rewrite
Eq.(4.84) as:

F(xk+1) = αi h · f(xk+1, tk+1) − xk+1 +
i∑

j=1

βij xk−j+1 = 0.0 (4.86)

and use Newton iteration on Eq.(4.86):

x�+1
k+1 = x�

k+1 − [H�]−1 · [F�] (4.87)

148 Chapter 4. Multi–step Integration Methods

where the Hessian H can be computed as:

H = αi · (J · h) − I(n) (4.88)

and J is the Jacobian of the system. By plugging the linear homogeneous
system into Eq.(4.87), it is easy to show that we get Eq.(4.85) back, i.e.,
Newton iteration doesn’t change the stability domain of the method.

Most of the professional multi–step codes use modified Newton iteration,
i.e., they do not reevaluate the Jacobian during the iteration. They usually
don’t evaluate the Jacobian even once every step. Instead, they use the
error estimate of the method as an indicator when the Jacobian needs to be
reevaluated. As long as the error estimate remains approximately constant,
the Jacobian is still acceptable. However, as soon as the absolute gradient
of the error estimate starts to grow, indicating the need for a change in step
size, this is a clear indication that a new Jacobian computation is in order,
and only if a reevaluation of the Jacobian doesn’t get the error estimate
back to where it was before, will the step size of the method be adjusted.

Even the Hessian is not reevaluated frequently. The Hessian needs to be
recomputed either if the Jacobian has been reevaluated, or if the step size
has just been modified.

Most professional codes offer several options for how to treat the Jaco-
bian. The user can choose between (i) providing an analytical expression
for the Jacobian, (ii) having the full Jacobian evaluated by means of a nu-
merical approximation, and (iii) having only the diagonal elements of the
Jacobian evaluated by means of a numerical approximation ignoring the
off–diagonal elements altogether.

Both the convergence speed and the convergence range of the Newton
iteration scheme are strongly influenced by the quality of the Jacobian. A
diagonal approximation is cheap, but leads to a heavy increase in the num-
ber of iterations necessary for the algorithm to converge, and necessitates
more frequent Jacobian evaluations as well. In our experience, it hardly
ever pays off to consider this option.

The full Jacobian is usually determined by first–order approximations.
The ith state variable, xi, is modified by a small value, Δxi. The state
derivative vector is then reevaluated using the modified state value. We
find:

∂f(x, t)
∂xi

≈ fpert − f
Δxi

(4.89)

where f is the state derivative vector evaluated at the current nominal val-
ues of all state variables, whereas fpert is the perturbed state derivative
vector evaluated at xi + Δxi with all other state variables being kept at
their currently nominal values. Thus, an nth–order system calls for n ad-
ditional function evaluations in order to obtain one full approximation of
the Jacobian.

4.11 Newton Iteration 149

Yet, even by spending these additional n function evaluations, we gain
only a first–order approximation of the Jacobian. Any linear model can
be converged in precisely one step of Newton iteration with the correct
Jacobian being used, irrespective of the location of its eigenvalues or the size
of the system. Using the first–order approximation, however, we may need
three to four iterations in order to get the iteration error down to a value
below the integration error . On a sufficiently nasty nonlinear problem, the
ratio of the numbers of iterations needed to converge may be even worse.

For these reasons, we strongly advocate the analytical option. In the past,
this option has rarely been used . . . because we engineers are a lazy lot. An
nth–order model calls for n2 additional equations in order to analytically
describe its Jacobian. Moreover, these equations may be longer and more
involved than the original n equations due to the analytical differentiation.
Thus, deriving the Jacobian equations by hand is a tedious and error–prone
process.

However, there is really no good reason why these equations should have
to be derived by hand. As you already know if you read the companion
book to this text Continuous System Modeling [4.2], engineers anyway
don’t usually write down their models by hand in a form that the numerical
integration software could use directly. They employ a modeling language,
such as Dymola [4.3], from which, by means of compilation, a simulation
program is generated.

There is no good reason why the analytical Jacobian equations could not
be generated automatically in this process, i.e., the Jacobian can be gener-
ated once and for all at compile time by means of symbolic differentiation.
Indeed, Dymola [4.3] already offers such a feature. Symbolic differentiation
is very useful also for other purposes that we shall talk about in due course
[4.1].

We are fully convinced that mixed symbolic/numerical algorithms are
the way of the future. Many problems can be tackled either numerically
or symbolically. However in some cases, the numerical solution is more
efficient, whereas in others, the symbolic approach is clearly superior. By
merging these two approaches into one integrated software environment, we
can preserve the best of both worlds. In continuous system modeling and
simulation, models specified by the user in a form most convenient to him
or her are symbolically preconditioned for optimal use by the subsequent
numerical algorithms, such as the numerical integration software.

Even in this chapter, we have already made use of symbolic algorithms
without explicitly mentioning it. We explained in Eqs.(4.60) and (4.61),
how the coefficients of high–order stiffly–stable integration algorithms can
be found. Yet, if this is done numerically in MATLAB, e.g. using the state-
ment:

coef = sum(inv(M)); (4.90)

150 Chapter 4. Multi–step Integration Methods

the resulting coefficient vector will be generated in a real–valued format,
rather than as rational expressions. Numerical mathematicians prefer to
be provided with rational expressions for these coefficients, so that the
mantissa of the machine on which the integration algorithm is to be imple-
mented can be fully exploited without leading to additional and unneces-
sary roundoff errors.

We could have tried to obtain rational expressions making use of the fact
that both the determinant and the adjugate of an integer–valued matrix
are integer–valued, i.e.:

Mdet = round(det(M));
Madj = round(Mdet ∗ inv(M));

coef num = sum(Madj); (4.91)

In this way, the numerators of the coefficients, coef num, can be com-
puted as an integer–valued vector, whereas the common denominator is
the equally integer–valued determinant. We could then use any one among
a number of well-known algorithms to determine the common dividers be-
tween the numerators and denominators of each coefficient.

This approach works well for BDF algorithms of orders three or four,
but fails, when dealing with 8th– or 9th–order algorithms. The reason is
that the determinant of M grows so rapidly with the size of M that the
mantissa of a 32–bit machine is exhausted quickly, in spite of the fact that
MATLAB computes everything in double precision.

For this reason, we generated the coefficient vectors of e.g. Eqs.(4.81) by
means of the MATLAB statement:

coef = sum(inv(sym(M))); (4.92)

i.e., making use of MATLAB’s symbolic toolbox. The symbolic toolbox rep-
resents integers as character strings, and is thereby not limited by the length
of the mantissa. The sym–operator converts the numeric integer–valued
matrix M into a symbolic representation. The inv– and sum–functions
are overloaded MATLAB functions that make use of different algorithms
depending on the type declaration of their operand.

Using similar techniques, Gander and Gruntz [4.4] recently corrected a
number of errors in well-known and frequently used numerical algorithms
that had gone unnoticed for several decades.

4.12 Step–size and Order Control

We have seen in the previous chapter that the appropriate order of an RK
algorithm is determined by the accuracy requirements. Therefore, since the

4.12 Step–size and Order Control 151

relative accuracy requirements usually are the same throughout the entire
simulation run, order control makes little sense.

Let us ascertain whether the same is true in the case of the multi–step
algorithms. To this end, we shall simulate our fifth–order linear test problem
of Eq.(H4.8a) across 10 seconds, using zero input and applying an initial
value of 1.0 to all five state variables. For different global relative error
requirements, we find the largest step sizes that keep the numerical error
just below the required error bounds, and plot the number of function
evaluations needed to simulate the system across 10 seconds as a function
of the required accuracy. The process is repeated for AB2, AB3, and AB4.
The same quantity for RK4 is plotted on the same graph for comparison.
The results of this analysis are shown on Fig.4.12.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

1000

2000

3000

4000

AB2

AB3

AB4
RK4

Cost vs. Accuracy in Adams-Bashforth Methods

Global Relative Error

#
Fu

nc
ti

on
E

va
lu

at
io

ns

FIGURE 4.12. Cost versus accuracy for different ABi algorithms.

The results are a little deceiving, since only the number of function
evaluations (one per step for all ABi algorithms) is plotted, not taking
into account the higher cost associated with data management within the
higher–order ABi algorithms.

If we decide that we are willing to spend about 500 function evaluations
on this simulation, we can get a global relative accuracy of about 10% with
AB2, we can get about 1% global accuracy with AB3, and we can get about
0.1% accuracy with AB4. Thus, just as in the case of the RKi algorithms,
the accuracy requirements determine the minimum order of the algorithm
that is economical to employ. Since the order of the algorithm is dictated
by the (constant) accuracy requirements specified by the user, order control
doesn’t make too much sense.

As a little caveat: AB4 is about 25% cheaper than RK4 in this exam-
ple. Notice that this is a linear time–invariant non–stiff problem, i.e., a
problem where the ABi algorithms perform at their best. Although RK4
takes four function evaluations per step, whereas AB4 takes only one func-
tion evaluation per step, we never gain a factor of four in efficiency, since
the asymptotic regions of the RKi algorithms are considerably larger than
those of the ABi algorithms, forcing us to use a smaller step size in the

152 Chapter 4. Multi–step Integration Methods

latter case. The situation gets worse with higher orders of approximation
accuracy due to the detrimental influence of spurious eigenvalues.

Why is order control fashionable in multi–step algorithms? The answer
is simple: because order control is cheap. Remember how multi–step algo-
rithms work. At all times, we keep a record of back storage values of states
and/or state derivatives. When we proceed from time tk to time tk+1, we
simply throw the oldest values (the rear end of the tail) away, shift all the
vectors by one into the past, and add the newest state information to the
front end of the queue. If we decide to increase the order by one, we simply
don’t throw away anything. On the other hand, if the decide to decrease
the order by one, we simply throw away the two oldest values. Thus, order
control is trivial.

Step–size control is not cheap. If we change the step size at any time, we
are faced with non–equidistantly spaced storage values, and although we
could redesign our multi–step methods to work with non–equidistant spac-
ing also (this has been done on some occasions), it is usually too expensive
to do so. There are better ways to do step–size control, as we shall see.

Since step–size control is expensive and order control is cheap, why not
use order control instead? If we are currently computing too accurately and
wish to increase the step size, why can’t we drop the order instead and keep
using the same step size? The answer is that order control is very coarse.
Dropping the order by one usually reduces the accuracy by about a factor
of 10. This can be easily seen on Fig.4.12. Thus, we must be computing
much too accurately, before dropping the order is justified. Moreover, we
don’t even save that much by doing so. After all, the number of function
evaluations remains the same. The fact that everybody does order control,
doesn’t mean, it’s the smart thing to do (!)

How then can we do step–size control efficiently? The trick is actually
quite simple. Let us reconsider the Newton–Gregory backward polynomials.
We start out with:

x(t) = xk + s∇xk +
(

s2

2
+

s

2

)
∇2xk +

(
s3

6
+

s2

2
+

s

3

)
∇3xk + . . . (4.93)

Differentiation with respect to time yields:

ẋ(t) =
1
h

[
∇xk +

(
s +

1
2

)
∇2xk +

(
s2

2
+ s +

1
3

)
∇3xk + . . .

]
(4.94)

The second derivative becomes:

ẍ(t) =
1
h2

[∇2xk + (s + 1)∇3xk + . . .
]

(4.95)

etc.

4.12 Step–size and Order Control 153

Truncating Eqs.(4.93)–(4.95) after the cubic term, expanding the ∇–
operators, and evaluating for t = tk (s = 0.0), we obtain:

⎛
⎜⎜⎝

xk

h · ẋk
h2

2 · ẍk
h3

6 · x(iii)
k

⎞
⎟⎟⎠ =

1
6
·

⎛
⎜⎜⎝

6 0 0 0
11 −18 9 − 2
6 −15 12 − 3
1 − 3 3 − 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

xk

xk−1

xk−2

xk−3

⎞
⎟⎟⎠ (4.96)

The vector to the left of the equal sign is called the Nordsieck vector ,
here written of third order. Using this trick, it has become possible to
translate state information stored at different points in time by means
of a simple multiplication with a constant matrix into state– and state
derivative information stored at one time point only. The transformation
was written here for a single state variable. The vector case works in exactly
the same fashion, but the notation is less convenient.

This discovery allows us to solve the step–size control problem. If we
wish to change the step size at time tk, we simply multiply the vector
containing the past state values with the transformation matrix, thereby
transforming the state history vector to an equivalent Nordsieck vector. In
this new form, the step size can be modified easily, e.g. by multiplying the
Nordsieck vector from the left with the diagonal matrix:

H =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 hnew

hold
0 0

0 0
(

hnew
hold

)2

0

0 0 0
(

hnew
hold

)3

⎞
⎟⎟⎟⎟⎟⎠ (4.97)

We now have the Nordsieck vector expressed in the modified time step,
hnew. We then multiply this modified Nordsieck vector from the left with
the inverse transformation matrix. This operation results in a modified
state history vector, where the “stored” x values represent the solution at
the modified “sampling points.”

This is today the preferred method for step–size control in multi–step
integration algorithms. Step–size control is still fairly expensive. In the
case of implicit algorithms, we need to also evaluate a new Hessian after
modifying the step size using the above matrix multiplications. Since we are
already in a “spending mood,” we might just as well use the opportunity
to get a new Jacobian also.

For this reason, the Gustafsson algorithm [4.8] is not practical for use in
multi–step integration. We don’t want to change the step size after every
step. If we need to reduce the step size, we shall reduce it at once to at least
one half of its former value to prevent the danger of having to reduce the
step size immediately again. We don’t want to increase the step size either

154 Chapter 4. Multi–step Integration Methods

until we are fairly certain that we can at least double it without violating
the accuracy constraints. How do we know that? The next section will tell.

4.13 The Startup Problem

One problem we have not discussed yet is how the integration process is
started in the first place. Usually, the initial state vector is given at time t0,
but no back values are available. How can we compute estimates for these
values such that the multi–step formulae become applicable?

Traditionally, applied mathematicians have chosen the easy route: ap-
plying order control. They employ a first–order method during the first
integration step. This provides them with a second data point at time
t1 = t + h. Since, by now, they have two data points, they can raise the
order by one, and perform the second integration step using a second–order
formula, etc. After a suitable number of steps, the algorithm has acquired
the desired state history vector in order to make an nth–order multi–step
method applicable.

This method “works,” in the sense that it can be programmed into an
algorithm. However, it is not acceptable on any other grounds. The prob-
lem is accuracy. In order to satisfy our accuracy requirements, we must use
a very small step size during the first low–order steps. Even after we have
built up the order, we should not immediately increase the step size by use
of the Nordsieck transformation, since some of the back values currently in
the storage area of the algorithm are low–order accurate. In the transfor-
mation, we may pick up bad numerical errors. It is better to wait for at
least another n steps, before we even dream of changing the step size to a
more decent value. This is utterly wasteful.

Bill Gear has shown another way [4.6]. We can use Runge–Kutta al-
gorithms for startup purposes. In this way, also the early steps are of the
correct order, and a more decent step size can be used from the beginning.

Let us explain our own version of this general idea. If we decide that
we want to employ an ith–order algorithm, we start out performing (i− 1)
steps of RKi using a fixed–step algorithm. The step size doesn’t matter too
much as long as it is chosen sufficiently small to ensure that the accuracy
requirements are met. For example, we can use step–size control during the
first step to determine the right step size, and then disable the step–size
control algorithm.

By now, we have i equidistantly–spaced storage values of the state vector,
and we are able to start using the multi–step algorithm. However, what step
size should we use? In order to determine the answer to this question, let
us look once more at Fig.4.12. This time, we plotted the same curves as
before using a double–logarithmic scale.

We notice that the logarithm of the step size is, for all practical purposes,

4.13 The Startup Problem 155

linear in the logarithm of the accuracy. Thus, we can perform one step of
the multi–step technique using the step size h1 from the RK starter, and
obtain an error estimate ε1. We then reduce the step size to h2 = h1/2,
and repeat the step. We obtain a new error estimate ε2.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

AB2
AB3

AB4 RK4

Cost vs. Accuracy in Adams-Bashforth Methods

Global Relative Error

#
Fu

nc
ti

on
E

va
lu

at
io

ns

FIGURE 4.13. Cost versus accuracy for different ABi algorithms.

We now place a linear curve through the two points, and interpolate
(extrapolate) with the desired accuracy εdes to obtain a good value for the
true step size to be used by the multi–step algorithm:

(
ln(h1)
ln(h2)

)
=
(

ln(ε1) 1
ln(ε2) 1

)
·
(

a1

a2

)
(4.98a)

ln(hdes) = a1 · ln(εdes) + a2 (4.98b)
hnew = 0.8 · hdes (4.98c)

Eq.(4.98a) solves a linear set of two equations for the unknown parameters
a1 and a2, Eq.(4.98b) solves the interpolation (extrapolation) problem, and
Eq.(4.98c) computes the new step size using a safety margin of 20%.

Runge–Kutta starters work very well in the case of non–stiff problems,
i.e., as start–up algorithms for Adams–Bashforth or Adams–Bashforth–
Moulton algorithms. They are more problematic in the case of the Back-
ward Difference Formulae. The reason for this observation is simple: The
RK start–up algorithm may need to use exceedingly small steps because of
the stiffness of the problem to be solved. Once we switch over to the BDF
algorithm, we may thus wish to increase the step size dramatically. The
Nordsieck approach allows us to do so, but in the process, the sampling
points get extended over a wide range, which corresponds to heavy extrap-
olation, a process that is invariably associated with sources of inaccuracy.
We may thus prefer to limit the allowed step size enlargement to maybe a
factor of 10, then perform n steps of BDF with that intermediate step size
to gain a new accurate history vector, before increasing the step size once
more by a factor of 10, and repeat this process, until the appropriate step

156 Chapter 4. Multi–step Integration Methods

size has been reached.
In step–size control, we can use the same algorithm. We don’t want

to change the step size unless it needs to be changed by a large value.
Therefore, if we have decided that a step–size change is truly in order, we
can afford to calculate one additional test step with half the former step
size (or double the former step size) in order to obtain a decent estimate
of where the step size ought to be.

A yet better approach might have been to use a number of BI4/50.45 steps
during startup to avoid both the numerical stability problems haunting the
RK starters and the numerical accuracy problems associated with the low–
order BDF starters.

4.14 The Readout Problem

The last problem to be discussed in this chapter is the readout problem. If
we simulate a system, we want to obtain results, i.e., we wish to obtain the
values of one or several output variables at pre–specified points in time,
the so–called communication points .

Often, the communication points are equidistantly spaced. In this case,
the distance between neighboring communication points is referred to as
the communication interval .

In single–step integration, we simply reduce the step size when approach-
ing the next communication point in order to hit the communication point
accurately. In multi–step integration, this approach is too expensive. We
cannot afford to modify the step size for no other purpose than to deliver
some output values.

The solution is simple. We integrate past the communication point using
the actual step size. We then interpolate back to calculate an estimation
of the state vector at the communication point. In multi–step integration,
interpolation with the same order of approximation accuracy that the cur-
rently employed integration method uses is cheap. All we need to do is to
convert the state history vector at the end of the integration step to the
Nordsieck form, then correct the step size such that the end of the “pre-
vious step” coincides with the communication point, then record the new
“immediate past value” as the readout value.

After the results have been recorded, the algorithm returns to the end
of the integration step, and proceeds as if no interruption had taken place.

4.15 Summary

20 years ago, the chase for new integration algorithms was still on. In
numerical integration workshops around the globe, new integration meth-

4.15 Summary 157

ods were presented by the dozen. Hardly any of them survived the test
of time. The reason for this surprising fact is simple. To come up with a
new algorithm is the easy part. To incorporate that algorithm in a robust
general–purpose production code is an entirely different matter.

Most engineering users of simulation software use the numerical integra-
tion software as a black box. They don’t have the foggiest idea of how the
code works, and frankly, they couldn’t care less. All they are interested in
is that the code reliably and efficiently generates accurate estimates of the
output variables at the communication points.

In a mature production code of a multi–step integration algorithm, the
actual algorithm occupies certainly less than 5% of the code. All the rest is
boiler plate: code for initializing the coefficient matrices; code for starting
up the integration algorithm, e.g., using an RK starter; code for update,
maintenance, and disposal of the state history information; code for inter-
polating the results at communication points; code for step–size and (alas!)
order control; and finally, code for handling of discontinuities — a topic to
be discussed in a separate chapter of this book.

Software engineers may be inclined to believe that the answer to this
problem is software modularization. Let us structure the software in such
a way that e.g. the step–size control is handled by one routine, interpola-
tion is handled by another, etc., in such a fashion that these routines can
be modularly plugged together. Unfortunately, even this doesn’t work. A
step–size control algorithm that is efficient for an RK algorithm, such as
the Gustafsson method, could theoretically also be used for a multi–step
algorithm, but it would be terribly inefficient.

What has happened is a certain standardization of the interfaces of nu-
merical integration software (the parameter calling sequences), such that a
user can fairly easily replace one entire code by another to check which one
works better. In this context, it is important to mention the efforts of Alan
Hindmarsh whose various LSODE codes are clearly among the survivors.

More could certainly be done. Today’s multi–step codes are unneces-
sarily unreadable. What we would need is an efficient MATLAB compiler
that would allow us to develop new production codes in MATLAB, making
them easily readable, and once they are fully debugged, generate auto-
matically efficient C–code for use as stand–alone programs. Availability of
such a software design tool would make the life of applied mathematicians
much easier. Although a C–compiler for MATLAB has been developed,
the generated code is unfortunately anything but efficient, since it makes
use of the generic data management tools of MATLAB. Consequently, C–
compiled MATLAB code doesn’t execute much faster than the interpreted
MATLAB code itself.

You, the reader, may have noticed that we are somewhat critical vis–à–
vis the multi–step integration methods. Runge–Kutta methods are, in our
opinion, considerably more robust, and it is easier to design production
codes for them. Multi–step techniques are fashionable because the algo-

158 Chapter 4. Multi–step Integration Methods

rithms themselves are so much easier to design, but the price to be paid is
dear. Mature multi–step codes are very difficult to design, and even with
the best of all such codes, it still happens that it breaks down in the face of
a nasty nonlinear simulation problem, and if it does, it may be very difficult
for even knowledgeable users to determine what precisely it was that the
algorithm didn’t like, and which parameter to fiddle around with in order
to get around the problem.

Single–step codes are much simpler to develop and maintain, and they
offer a smaller number of tuning parameters that the user might need to
worry about. They are considerably more robust. Whereas non–stiff RK
codes are available and are being widely used, stiff implicit RK production
codes are slow in coming. BDF codes are still far more frequently used in
practice than IRK codes. However, this is true not because of the superiority
of these algorithms, but due to the wider distribution of good production
codes.

4.16 References

[4.1] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation in Object–Oriented Continuous–System Modeling. IEEE
Control Systems, 13(2):28–38, 1993.

[4.2] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[4.3] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[4.4] Walter Gander and Dominik Gruntz. Derivation of Numerical Meth-
ods Using Computer Algebra. SIAM Review, 41(3):577–593, 1999.

[4.5] C. William Gear. Numerical Initial Value Problems in Ordinary Dif-
ferential Equations. Series in Automatic Computation. Prentice–Hall,
Englewood Cliffs, N.J., 1971. 253p.

[4.6] C. William Gear. Runge–Kutta Starters for Multistep Methods.
ACM Trans. Math. Software, 6(3):263–279, 1980.

[4.7] Curtis F. Gerald and Patrick O. Wheatley. Applied Numerical Anal-
ysis. Addison–Wesley, Reading, Mass., 6th edition, 1999. 768p.

[4.8] Kjell Gustafsson. Control of Error and Convergence in ODE Solvers.
PhD thesis, Dept. of Automatic Control, Lund Institute of Technology,
Lund, Sweden, 1992.

4.17 Homework Problems 159

[4.9] Klaus Hermann. Solution of Stiff Systems Described by Ordinary Dif-
ferential Equations Using Regression Backward Difference Formulae.
Master’s thesis, Dept. of Electrical & Computer Engineering, Univer-
sity of Arizona, Tucson, Ariz., 1995.

[4.10] John D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley, New York, 1991. 304p.

[4.11] William E. Milne. Numerical Solution of Differential Equations.
John Wiley, New York, 1953. 275p.

[4.12] Cleve Moler and Charles van Loan. Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix. SIAM Review, 20(4):801–836, 1978.

4.17 Homework Problems

[H4.1] The Differentiation Operator

Rewrite Eq.(4.20) and Eq.(4.21) in terms of the ∇–operator. Develop also
a formula for D3.

[H4.2] Nyström–Milne Predictor–Corrector Techniques

Follow the reasoning of the Adams–Bashforth–Moulton predictor–corrector
techniques, and develop similar pairs of algorithms using a Nyström pre-
dictor stage followed by a Milne corrector stage.

Plot the stability domains for NyMi3 and NyMi4. What do you con-
clude?

[H4.3] New Methods

Using the Gregory–Newton backward polynomial approach, design a set of
algorithms of the type:

xk+1 = xk−2 +
h

αi
·
⎡
⎣ i∑

j=1

βij xk−j+1

⎤
⎦ (H4.3a)

Plot their stability domains. Compare them with those of the Adams–
Bashforth techniques and those of the Nyström techniques. What do you
conclude?

[H4.4] Milne Integration

Usually, the term “Milne integration algorithm,” when used in the litera-
ture, denotes a specific predictor–corrector technique, namely:

160 Chapter 4. Multi–step Integration Methods

predictor: ẋk = f(xk, tk)
xP

k+1 = xk−3 + h
3 (8ẋk − 4ẋk−1 + 8ẋk−2)

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk−1 + h
3 (ẋP

k+1 + 4ẋk + ẋk−1)

The corrector is clearly Simpson’s rule. However, the predictor is something
new that we haven’t seen yet.

Derive the order of approximation accuracy of the predictor. To this end,
use the Newton–Gregory backward polynomial in order to derive a set of
formulae with a distance of four steps apart between their two state values.

Plot the stability domain of the predictor–corrector method, and com-
pare it with that of NyMi4. What do you conclude? Why did William E.
Milne [4.11] propose to use this particular predictor?

[H4.5] Damping Plots of Adams–Bashforth Techniques

Find the damping plots of AB2, AB3, and AB4 for σd in the range [-1.0,0.0].
Compare them with the corresponding damping plots of RK2, RK3, and
RK4. What do you conclude about the size of the asymptotic regions of
these algorithms?

[H4.6] Damping Plots of Adams–Moulton Techniques

Find the damping plots of AM2, AM3, and AM4 for σd in the range
[−1.0, 0.0]. Compare them with those of AB2, AB3, and AB4. What can
you say about the comparative sizes of the asymptotic regions of these
algorithms?

[H4.7] Damping Plots of Backward Difference Formulae

Find the damping plots of BDF2, BDF3, and BDF4 for σd logarithmically
spaced between 10−1 and 106, and plot them on a logarithmic scale like
in Fig.4.7. What do you conclude about the damping properties of these
algorithms at large values of σd? Do all these methods share the desirable
properties of BDF6, or was this a happy accident?

[H4.8] Cost Versus Accuracy

Compute the cost–versus–accuracy plots of AB4, ABM4, and AM4 for the
linear non–stiff test problem:

ẋ =

⎛
⎜⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 − 9613
250 − 5060 −12079 − 8586 − 4826

− 750 15101 36086 25637 14420
250 − 4963 −11896 − 8438 − 4756

⎞
⎟⎟⎟⎟⎠ ·x+

⎛
⎜⎜⎜⎜⎝

5
2
1

−3
1

⎞
⎟⎟⎟⎟⎠ ·u

(H4.8a)

4.17 Homework Problems 161

with zero input and with the initial condition x0 = ones(5, 1), and plot
them together on one graph. ABM4 consumes always two function eval-
uations per step. In the case of AM4, the situation is more involved, but
for simplicity, we want to assume that AM4 needs, on the average, four
function evaluations per step.

Although we plot the number of steps versus the accuracy, it is more
efficient to vary the number of steps and check what accuracy we obtain
in each case. We suggest that you select a set of values of steps in the
range [200, 4000], e.g. nbrstp = [200, 500, 1000, 2000, 4000]. You then need
to compute the step sizes. In the case of ABi, they would be h = 10/nbrstp,
since we want to integrate across 10 seconds of simulated time using nbrstp
steps in total. In the case of AMi, we would use the formula h = 40/nbrstp.

Since the test problem is linear, you can simulate the system using the F–
matrices. In the case of the AMi algorithms, you can use matrix inversion
rather than Newton iteration (we indirectly accounted for the iteration by
allowing four function evaluations per step).

Since these methods are not self–starting, you need to start out with
(i−1) steps of RKi using the same step sizes. Of course, the RKi steps are
also simulated using their respective F–matrices.

As a gauge, we need the analytical solution of the test problem. Since
the input is constant between sampling points (in fact, it is zero), we can
find the exact solution by converting the differential equations into a set of
equivalent difference equations using MATLAB’s c2d–function. This gen-
erates the analytical F–matrix. Theoretically:

F = exp(A · h) (H4.8b)

but doesn’t use MATLAB’s expm–function. For sufficiently large step sizes,
you’ll get an overflow error. It would be asked a little too much to explain
here why this happens. If you are interested to know more about this
numerical problem, we refer you to Cleve Moler’s excellently written paper
on this subject [4.12].

The local relative error is computed using the formula:

εlocal(tk) =
‖xanal(tk) − xsimul(tk)‖
max(‖xanal(tk)‖, eps)

(H4.8c)

where eps is MATLAB’s machine constant.
The global relative error is computed using the formula:

εglobal = max
k

(εlocal(tk)) (H4.8d)

What do you conclude about the relative efficiency of these three algorithms
to solve the test problem?

162 Chapter 4. Multi–step Integration Methods

[H4.9] Cost Versus Accuracy

We wish to repeat the same analysis as before, but this time for the stiff
linear test problem:

ẋ =

⎛
⎝ 0 1 0

0 0 1
−10001 −10201 − 201

⎞
⎠ · x +

⎛
⎝0

0
1

⎞
⎠ · u (H4.9a)

We wish to compute the step response of this system across ten seconds of
simulated time.

This time, we are going to use BDF2, BDF3, and BDF4, in order to
compare their relative efficiency at solving this stiff test problem. As in the
case of the previous homework, we are going to simulate the system using
the F–matrices. As with the AMi algorithms, we use matrix inversion,
and simply assume that each step consumes, on the average, four function
evaluations.

As a reference, also compute the cost–versus–accuracy plot of the BI4/50.45

algorithm using RKF4/5 for its semi–steps. For reasons of fairness, we shall
assume that the implicit semi–step uses four iterations. Together with the
single explicit semi–step, one entire step of BI4/50.45 consumes five semi–
steps with six function evaluations each, thus: h = 300/nbrstp.

Which technique is more efficient, BDF4 or BI4/5, to solve this stiff test
problem?

[H4.10] The Nordsieck Form

Equation (4.96) showed the transformation matrix that converts the state
history vector into an equivalent Nordsieck vector. Since, at the time of
conversion, we also have the current state derivative information available,
it is more common to drop the oldest state information in the state history
vector, and replace it by the current state derivative information. Conse-
quently, we are looking for a transformation matrix T of the form:

⎛
⎜⎜⎝

xk

h · ẋk
h2

2 · ẍk
h3

6 · x(iii)
k

⎞
⎟⎟⎠ = T ·

⎛
⎜⎜⎝

xk

h · ẋk

xk−1

xk−2

⎞
⎟⎟⎠ (H4.10a)

The matrix T can easily be found by manipulating the individual equations
of Eq.(4.96).

Find corresponding T–matrices of dimensions 3 × 3 and 5 × 5.

[H4.11] Backward Difference Formulae

We wish to simulate the stiff test problem of Eq.(H4.9a) once more using
BDF4. However this time around, we no longer want to make use of the
knowledge that the system is linear.

4.18 Projects 163

Implement BDF4 with Newton iteration in MATLAB. Use three steps of
RK4 for startup. Use the outlined procedure for step–size control. We wish
to record the values of the three state variables once every second. Solve
the readout problem using the algorithm outlined in this chapter.

4.18 Projects

[P4.1] Stiffly–Stable Methods

Extend one of the widely used variable–order, variable–step size stiff system
solvers to include methods of orders seven, eight, and nine, as developed in
this chapter.

Compare the efficiency of the so modified code with that of the original
code when solving a stiff system with high accuracy requirements.

[P4.2] Stiffly–Stable Methods

Study the effect of the start–up algorithm on a stiff system solver by com-
paring an order buildup approach with a single–step start–up approach.

Compare RK starters with BI starters.

[P4.3] Stiffly–Stable Methods

Study the importance of a small error coefficient vs. a large asymptotic
region on the efficiency of a stiff system solver.

Compare different BDF algorithms of the same order using the same
start–up and step–size control strategies against each other. The codes are
supposed to differ only in the formulae being used. Choose some formulae
with small error coefficients, and compare them with formulae with large
asymptotic regions.

Draw cost vs. accuracy plots to compare their relative economy when
solving identical stiff systems.

4.19 Research

[R4.1] Regression Backward Difference Algorithms

In the development of the stiffly–stable algorithms, we always made use of
n + 1 terms to define an nth–order algorithm. It may be beneficial to allow
more terms in the algorithm without increasing its order.

For example, we could allow a 3rd–order accurate BDF algorithm to
make use of the term xk−3 as well. In that case, Eq.(4.60) needs to be
modified as follows:

164 Chapter 4. Multi–step Integration Methods

⎛
⎜⎜⎜⎜⎝

h · fk+1

xk

xk−1

xk−2

xk−3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1 2 3
1 0 0 0
1 − 1 1 − 1
1 − 2 4 − 8
1 − 3 9 −27

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎠ (R4.1a)

The M–matrix in this case is no longer square. The above equation can thus
only be solved for the unknown parameter vector in a least square sense.
We thus call these algorithms Regression Backward Difference Formulae
[4.9].

We can multiply the equation:

z = M · a (R4.1b)

from the left with M′:

M′ · z = (M′ · M) · a (R4.1c)

where M′ · M is a square matrix of full rank. Hence, we can multiply the
equation with its inverse:

a = (M′ · M)−1M′ · z (R4.1d)

where (M′·M)−1M′ is the Penrose–Moore pseudoinverse of the rectangular
matrix M. It solves the over–determined linear system in a least square
sense.

Extend the search for high–order stiffly–stable methods by allowing extra
terms in the algorithm. The hope is that the added flexibility may enable us
to either reduce the error coefficient or (even better!) enlarge the asymptotic
region.

