Richardson Extrapolation

There are many approximation procedures in which one first picks a step size h and then generates an approximation $A(h)$ to some desired quantity A. Often the order of the error generated by the procedure is known. In other words

$$
\begin{equation*}
A=A(h)+K h^{k}+O\left(h^{k+1}\right) \tag{1}
\end{equation*}
$$

with k being some known constant, K being some other (probably unknown) constant and $O\left(h^{k+1}\right)$ designating any function that is bounded by a constant times h^{k+1} for h sufficiently small. For example, A might be the value $y\left(t_{f}\right)$ at some final time t_{f} for the solution to an initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$. Then $A(h)$ might be the approximation to $y\left(t_{f}\right)$ produced by Euler's method with step size h. In this case $k=1$. If the improved Euler's method is used $k=2$. If Runge-Kutta is used $k=4$.

If we were to drop the, hopefully tiny, term $O\left(h^{k+1}\right)$ from equation (1), we would have one linear equation in the two unknowns A, K. We can get a second such equation just by using a different step size. Then the two equations may be solved, yielding approximate values of A and K. This approximate value of A constitutes a new improved approximation, $B(h)$, for the exact A. We do this now, taking $h / 2$ for the step size:

$$
\begin{equation*}
A=A(h / 2)+K(h / 2)^{k}+O\left(h^{k+1}\right) \tag{2}
\end{equation*}
$$

and then $2^{k} \cdot(2)-(1)$ gives:

$$
\begin{aligned}
\left(2^{k}-1\right) A & =2^{k} A(h / 2)-A(h)+O\left(h^{k+1}\right) \\
\Rightarrow A & =\frac{2^{k} A(h / 2)-A(h)}{2^{k}-1}+O\left(h^{k+1}\right)
\end{aligned}
$$

Hence if we define

$$
\begin{equation*}
B(h)=\frac{2^{k} A(h / 2)-A(h)}{2^{k}-1} \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
A=B(h)+O\left(h^{k+1}\right) \tag{4}
\end{equation*}
$$

and we have generated an approximation whose error is of order $k+1$, one better than $A(h)$'s. Similarly, by subtracting equation (2) from equation (1), we can find K.

$$
\begin{aligned}
0 & =A(h)-A(h / 2)+K h^{k}\left(1-\frac{1}{2^{k}}\right)+O\left(h^{k+1}\right) \\
\Rightarrow K & =\frac{A(h / 2)-A(h)}{h^{k}\left(1-\frac{1}{2^{k}}\right)}+O\left(h^{k+1}\right)
\end{aligned}
$$

Once we know K we can estimate the error in $A(h / 2)$ by

$$
\begin{aligned}
E(h / 2) & =A-A(h / 2) \\
& =K(h / 2)^{k}+O\left(h^{k+1}\right) \\
& =\frac{A(h / 2)-A(h)}{2^{k}-1}+O\left(h^{k+1}\right)
\end{aligned}
$$

If this error is unacceptably large, we can use

$$
E(h) \cong K h^{k}
$$

to determine a step size h that will give an acceptable error. This is the basis for a number of algorithms that incorporate automatic step size control.

Note that $\frac{A(h / 2)-A(h)}{2^{k}-1}=B(h)-A(h / 2)$. One cannot get a still better guess for A by combining $B(h)$ and $E(h / 2)$.

Example

$A=y(1)=64.897803$ where $y(t)$ obeys $y(0)=1, y^{\prime}=1-t+4 y$.
$A(h)=$ approximate value for $y(1)$ given by improved Euler with step size h.
$B(h)=\frac{2^{k} A(h / 2)-A(h)}{2^{k}-1}$ with $k=2$.

l h$\quad A(h)$	$\%$	$\#$	$B(h)$	$\%$	$\#$	
.1	59.938	7.6	20	64.587	.48	60
.05	63.424	2.3	40	64.856	.065	120
.025	64.498	.62	80	64.8924	.0083	240

The "\%" column gives the percentage error and the "\#" column gives the number of evaluations of $f(t, y)$ used.

