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Second Derivative Systems

Preview

In this chapter, we shall look at integration algorithms designed to deal
with system descriptions containing second–order derivatives in time. Such
system descriptions occur naturally in the mathematical modeling of me-
chanical systems, as well as in the mathematical modeling of distributed
parameter systems leading to hyperbolic partial differential equations.

In this chapter, we shall concentrate on mechanical systems. The discus-
sion of partial differential equations is postponed to the next chapter.

Whereas it is always possible to convert second derivative systems to
state–space form, integration algorithms that deal with the second deriva-
tives directly may, in some cases, offer a numerical advantage.

5.1 Introduction

Let us start the discussion by modeling a human body riding in a car.
Some people with weak muscles in their neck region suffer from a so–called
cervical syndrome [5.8]. When riding in a car for extended periods of time,
they suffer awful headache attacks, because their head vibrates (oscillates)
with the vibrations of the car on the road, since their head is not attached
stiffly enough to the shoulders.

Since the passengers in a car are seated, their legs can be eliminated from
the model, as they won’t affect the motion of the neck at all. The body can
be modeled in a first approximation as a mechanical system. A very simple
mechanical model of a sitting human body is depicted in Fig.5.1.

The model is decomposed into four masses that can move separately
from each other, representing the head, the upper torso, the two arms, and
the lower body. Due to linearity, the two arms can be treated as a single
mass. The connections between the four masses are modeled as damped
springs. The bumping of the road is modeled by a time–dependent force
attached to the lower body. To be determined is the distance between head
and shoulders as a function of the driving force.

Only vertical motions are to be considered. Hence each mass represents
a single mechanical degree of freedom. The overall model is obtained by
applying Newton’s law to each of the four masses separately:

M1 · ẍ1 = k1 · (x2 − x1) + B1 · (ẋ2 − ẋ1) (5.1)
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FIGURE 5.1. Mechanical model of a sitting human body.

M2 · ẍ2 = k2 · (x3 − x2) + B2 · (ẋ3 − ẋ2) + k3 · (x4 − x2)
+B3 · (ẋ4 − ẋ2) − k1 · (x2 − x1) − B1 · (ẋ2 − ẋ1) (5.2)

M3 · ẍ3 = −k2 · (x3 − x2) − B2 · (ẋ3 − ẋ2) (5.3)
M4 · ẍ4 = F − k3 · (x4 − x2) − B3 · (ẋ4 − ẋ2) (5.4)

Let:

x =

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ (5.5)

be the partial state vector consisting of the four mass positions. Using the
partial state vector, the model can be written in matrix/vector form as
follows:

M · ẍ + C · ẋ + K · x = f (5.6)

where:

M =

⎛
⎜⎜⎝

M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

⎞
⎟⎟⎠ (5.7)
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is the mass matrix,

C =

⎛
⎜⎜⎝

B1 −B1 0 0
−B1 (B1 + B2 + B3) 0 0

0 −B2 B2 0
0 −B3 0 B3

⎞
⎟⎟⎠ (5.8)

is the damping matrix,

K =

⎛
⎜⎜⎝

k1 −k1 0 0
−k1 (k1 + k2 + k3) 0 0
0 −k2 k2 0
0 −k3 0 k3

⎞
⎟⎟⎠ (5.9)

is the stiffness matrix, and

f =

⎛
⎜⎜⎝

0
0
0
F

⎞
⎟⎟⎠ (5.10)

is the vector of (generalized) forces.
The mass matrix turned out to be a diagonal matrix in this example,

but this is only true, because no rotational motions were considered in the
given example. Generally, this will not be the case.

Assuming that the mass matrix is non–singular, i.e., there are as many
mechanical degrees of freedom in the system as were formulated into second–
order differential equations, i.e., there are no structural singularities in the
model [5.3], the model can be solved for the highest derivatives:

ẍ = A2 · x + B · ẋ + u (5.11)

where:

A =
√
−M−1 · K (5.12)

B = −M−1 · C (5.13)
u = M−1 · f (5.14)

or, more generally, in a nonlinear case:

ẍ = f(x, ẋ,u, t) (5.15)

Of special interest is the case of the conservative, i.e., friction–less system
with the second–derivative form:

ẍ = A2 · x + u (5.16)

or, more generally:
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ẍ = f(x,u, t) (5.17)

and especially, we may want to look at the homogeneous, conservative,
linear system with the second–derivative model:

ẍ = A2 · x (5.18)

5.2 Conversion of Second–derivative Models to
State–space Form

It is always possible to convert a second–derivative model to state–space
form. To this end, we introduce the velocity vector, v:

ẋ = v (5.19)
v̇ = ẍ = A2 · x + B · v + u (5.20)

We introduce the state vector:

ξ =
(
x
v

)
(5.21)

which leads us to the state–space form:

ξ̇ =
(
Z(n) I(n)

A2 B

)
· ξ +

(
0(n)

u

)
(5.22)

where Z(n) is a zero matrix of dimensions n× n, I(n) is an identity matrix
of dimensions n × n, and 0(n) is a zero vector of length n.

After the conversion, the state–space model can be simulated using any
of the integration algorithms introduced in the previous chapters of this
book.

Unfortunately, the resulting state vector is of length 2 · n, which makes
simulation methods (integration algorithms) that can deal with the second–
derivative model directly potentially interesting.

We might conclude at this point in time that direct methods should be
of particular interest for the simulation of conservative systems, as those
systems do not require computing the velocity vector at all, i.e., half of the
state variables can simply be thrown away.

5.3 Velocity–free Models

We shall define a velocity–free model as one that satisfies, in the linear
case, the differential vector equation:
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ẍ = A2 · x + u (5.23)

and, in the nonlinear case, the differential vector equation:

ẍ = f(x,u, t) (5.24)

Notice that every conservative system leads to a velocity–free second–
derivative model. Yet, not every velocity–free second–derivative model is
conservative. This can be recognized easily.

Given a linear, time–invariant, homogeneous state–space model of the
form:

ẋ = A · x (5.25)

Depending on the eigenvalues of A, the system is either damped or un-
damped, stable or unstable. We can differentiate the state–space model,
leading to:

ẍ = A · ẋ = A2 · x (5.26)

Thus, any linear, time–invariant, homogeneous state–space model can also
be written in the form of a velocity–free second–derivative model, irrespec-
tive of where its eigenvalues are located. Yet, a conservative linear system
has its eigenvalues spread up and down along the imaginary axis of the
complex plane.

How can the special structure of a velocity–free second–derivative model
be exploited by a simulation algorithm?

Let us start by developing the solution vector at time (t+h) into a Taylor
series around time t:

xk+1 = xk + h · ẋk +
h2

2
· ẍk +

h3

6
· xk

(iii) +
h4

24
· xk

(iv) + . . . (5.27)

We shall also need to develop the solution vector at time (t − h) into a
Taylor series around time t:

xk−1 = xk − h · ẋk +
h2

2
· ẍk − h3

6
· xk

(iii) +
h4

24
· xk

(iv) ∓ . . . (5.28)

Adding these two equations together, we obtain:

xk+1 + xk−1 = 2 · xk + h2 · ẍk +
h4

12
· xk

(iv) + . . . (5.29)

thus:

xk+1 = 2 · xk − xk−1 + h2 · ẍk + o(h4) (5.30)
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We just found a 3rd–order accurate explicit linear multi–step method
that makes use of the second derivative directly. In some references, the
method is referred to as Godunov’s method [5.2], in spite of the fact that
Sergei Konstantinovic Godunov, a famous Russian applied mathematician
of the middle of the 20th century, was much more interested in conservation
laws, i.e., in partial differential equations of the hyperbolic type, where he
used this technique to approximate spatial derivatives.

The second derivative can be plugged in from the homogeneous linear
second–derivative model of Eq.(5.18):

xk+1 ≈ 2 · xk − xk−1 + (A · h)2 · xk (5.31)

We find the F–matrix of the algorithm in the usual fashion. Let

ξk =
(
xk−1

xk

)
(5.32)

Then:

ξk+1 ≈ F · ξk (5.33)

where:

F =
(

Z(n) I(n)

−I(n)
[
2 · I(n) + (A · h)2

]) (5.34)

Consequently, we should be able to plot the stability domain of this algo-
rithm as a function of the eigenvalues of A ·h, exactly as we did in the case
of the algorithms presented in the previous two chapters. We shall attempt
to do so in due course.

5.4 Linear Velocity Models

We shall next look at the case of a possibly nonlinear second derivative
model with a linear velocity term, i.e., a model of the type:

ẍ + B · ẋ = f(x,u, t) (5.35)

We shall demonstrate that this problem can be reduced to the case of
the velocity–free model.

To this end, we apply the variable transformation:

ξ = exp
(

B · t
2

)
· x (5.36)

Therefore:
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x = exp
(−B · t

2

)
· ξ (5.37)

ẋ = −B
2

· exp
(−B · t

2

)
· ξ + exp

(−B · t
2

)
· ξ̇ (5.38)

ẍ =
B2

4
· exp

(−B · t
2

)
· ξ − B · exp

(−B · t
2

)
· ξ̇

+ exp
(−B · t

2

)
· ξ̈ (5.39)

We introduce the abbreviation:

E = exp
(−B · t

2

)
(5.40)

Thus:

x = E · ξ (5.41)

ẋ = −B
2

· E · ξ + E · ξ̇ (5.42)

ẍ =
B2

4
· E · ξ − B · E · ξ̇ + E · ξ̈ (5.43)

Plugging these expressions into the original second–derivative model, we
obtain:

ξ̈ = E−1 · B2

4
· E · ξ + E−1 · f(E · ξ,u, t) (5.44)

which has taken on the form of a velocity–free second–derivative model.

5.5 Nonlinear Velocity Models

If the second–derivative model assumes the general form:

ẍ = f(x, ẋ,u, t) (5.45)

the velocity vector ẋ needs to be computed as well. However, since we
have access to the second derivative, we can compute the velocity vector
using any one of the integration algorithms proposed in the previous two
chapters.

It seems reasonable to employ an explicit linear multi–step algorithm.
Furthermore, since the derivative vector always gets multiplied by the step
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size, h, it suffices to use a second–order accurate formula. A reasonable
choice might be AB2:

ẋk+1 = ẋk +
h

2
· (3 · ẍk − ẍk−1) (5.46)

For the computation of the stability domain, we are dealing with the
following set of three equations:

xk+1 = 2 · xk − xk−1 + h2 · v̇k (5.47)

vk+1 = vk +
h

2
· (3 · v̇k − v̇k−1) (5.48)

v̇k = A2 · xk + B · vk (5.49)

Plugging the linear second–derivative model of Eq.(5.49) into the two
integrator equations, Eq.(5.47) and Eq.(5.48), we obtain:

xk+1 = 2 · xk − xk−1 + (A · h)2 · xk + (B · h) · (h · vk) (5.50)

(h · vk+1) = (h · vk) +
3
2
· (A · h)2 · xk +

3
2
· (B · h) · (h · vk)

−1
2
· (A · h)2 · xk−1 − 1

2
· (B · h) · (h · vk−1) (5.51)

which can be rewritten in a matrix/vector form as follows:⎛
⎜⎜⎝

xk

h · vk

xk+1

h · vk+1

⎞
⎟⎟⎠ = F ·

⎛
⎜⎜⎝

xk−1

h · vk−1

xk

h · vk

⎞
⎟⎟⎠ (5.52)

where:

F =

⎛
⎜⎜⎜⎜⎝

Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) I(n)

−I(n) Z(n)
[
2 · I(n) + (A · h)2

]
B · h

− 1
2 · (A · h)2 − 1

2 · (B · h) 3
2 · (A · h)2

[
I(n) + 3

2 · (B · h)
]

⎞
⎟⎟⎟⎟⎠ (5.53)

5.6 Stability and Damping of Godunov Scheme

As with all other integration techniques, we shall now introduce a classi-
fication code for the Godunov scheme. Since the algorithm is explicit and
third–order accurate, we shall call this scheme GE3. We shall call the en-
hanced scheme, that also computes the velocity vector, GE3/AB2.
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FIGURE 5.2. Linear damping plot of GE3 algorithm.

Before we attempt drawing a stability domain of GE3, we shall draw the
linear damping plot. It is shown in Fig. 5.2.

How very disappointing! The scheme is unstable in the left half plane.
The result should not surprise us too much. Since the F–matrix of Eq.(5.34)
is an even function in A · h, the damping properties must be symmetric to
the imaginary axis. Thus there cannot exist an asymptotic region around
the origin, as we would expect of any well–behaved integration algorithm.

To gain a better understanding of the damping properties of the algo-
rithm, let us plot the damping order star.
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FIGURE 5.3. Damping order star of GE3 algorithm.

Interesting is the line segment stretching from −2j to +2j along the
imaginary axis. Evidently, there is zero damping along this line segment,
which is exactly, what it should be. To verify the results, let us plot the
linear damping properties once more, but this time along the imaginary
rather than the real axis.
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FIGURE 5.4. Linear damping properties of GE3 along imaginary axis.

The GE3 algorithm is only useful for strictly conservative systems. In
order to obtain marginally stable results, the largest absolute eigenvalue
multiplied by the step size must be smaller than or equal to 2:

|λ|max · h ≤ 2 (5.54)

Let us now plot the linear frequency properties of GE3 along the imagi-
nary axis.
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FIGURE 5.5. Linear frequency plot of GE3 algorithm.

The algorithm produces results that are decently accurate, if

|λ|max · h ≤ 1 (5.55)

Let us now discuss the stability and damping properties of the GE3/AB2
algorithm, which is characterized by the F–matrix of Eq.(5.53).

When plotting the stability domain, the elements of the B–matrix cannot
be chosen independently of those of the A–matrix. They must be chosen
such that the overall system has its eigenvalues located on the unit circle.
The procedure is explained in detail in Hw.[H5.3].

Since this is a third–order accurate linear explicit multi–step method
similar in scope to AB3, we decided to plot the stability domain of AB3 on
top of the stability domain of GE3/AB2.

GE3/AB2 performs similar to AB3 for systems with eigenvalues located
in the vicinity of the negative real axis, but it outperforms AB3 when
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FIGURE 5.6. Stability domain of GE3/AB2 algorithm.

employed to simulating systems with their eigenvalues located close to the
imaginary axis.

5.7 Explicit and Implicit Godunov Algorithms of
Different Orders

Classes of both explicit and implicit integration algorithms of different or-
ders of approximation accuracy for second–derivative systems can be de-
rived using Newton–Gregory polynomials.

To this end, we shall develop x(t) into a Newton–Gregory backward
polynomial around tk+1. We then compute the second derivative of the
Newton–Gregory polynomial. Evaluating this second derivative polynomial
for s = −1, we obtain the class of explicit Godunov schemes. Evaluating
the second derivative polynomial for s = 0, we obtain the class of implicit
Godunov methods.

We shall denote the explicit Godunov scheme of order n as GEn, and the
implicit Godunov algorithm of the same order as GIn. The enhanced algo-
rithms, that also compute the velocity vector, are denoted as GEn/ABn−1

and GIn/BDFn−1, respectively.
Since the approach is very similar to those presented in Chapter 4 for

the derivation of the AB, AM, and BDF algorithms, we shall refrain from
repeating this derivation here once more. After all, some problems need to
remain to be dealt with in the homework section.

The resulting algorithms are summarized below:
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GE3 : xk+1 = 2 · xk − xk−1 + h2 · ẍk (5.56)

GE4 : xk+1 =
20
11

· xk − 6
11

· xk−1 − 4
11

· xk−2 +
1
11

· xk−3

+
12
11

· h2 · ẍk (5.57)

GE5 : xk+1 =
3
2
· xk +

2
5
· xk−1 − 7

5
· xk−2 +

3
5
· xk−3

− 1
10

· xk−4 +
6
5
· h2 · ẍk (5.58)

GI2 : xk+1 = 2 · xk − xk−1 + h2 · ẍk+1 (5.59)

GI3 : xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

1
2
· h2 · ẍk+1 (5.60)

GI4 : xk+1 =
104
35

· xk − 114
35

· xk−1 +
56
35

· xk−2 − 11
35

· xk−3

+
12
35

· h2 · ẍk+1 (5.61)

GI5 : xk+1 =
154
45

· xk − 214
45

· xk−1 +
52
15

· xk−2 − 61
45

· xk−3

+
2
9
· xk−4 +

12
45

· h2 · ẍk+1 (5.62)

The algorithms can be summarized using the following α– and β–matrices:

αGE =

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
12
11
6
5

⎞
⎟⎟⎟⎟⎟⎠ ; βGE =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 −1 0 0 0
2 −1 0 0 0
20
11 − 6

11 − 4
11

1
11 0

3
2

2
5 − 7

5
3
5 − 1

10

⎞
⎟⎟⎟⎟⎟⎠ (5.63)

αGI =

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
2
12
35
12
45

⎞
⎟⎟⎟⎟⎟⎠ ; βGI =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 −1 0 0 0
5
2 −2 1

2 0 0
104
35 − 114

35
56
35 − 11

35 0
154
45 − 214

45
52
15 − 61

45
2
9

⎞
⎟⎟⎟⎟⎟⎠ (5.64)

Unfortunately, all of these methods have F–matrices that are even func-
tions in A · h. Thus, none of these methods can be expected to offer an
asymptotic region for eigenvalues located along the real axis. In fact, all of
the above techniques are unstable everywhere in the vicinity of the origin,
with the exception of the imaginary axis itself, where they exhibit marginal
stability, as they should.
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Let us plot the damping properties of these algorithms up and down
along the imaginary axis. The damping properties of GE4 and GE5 are
shown in Fig. 5.7.
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FIGURE 5.7. Damping properties of GE4 and GE5 along the imaginary axis.

Both of these algorithms may be used. Unfortunately, all of the explicit
Godunov schemes, when used as stand–alone algorithms, are only applica-
ble to the simulation of linear conservation laws. Engineers will likely shrug
them off, because there aren’t many real–life engineering applications that
call for the simulation of linear conservation laws.

Yet, these algorithms may be perfectly suitable as part of blending algo-
rithms.

Let us now discuss the implicit Godunov schemes. Their damping prop-
erties along the imaginary axis are shown in Fig. 5.8.
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FIGURE 5.8. Damping properties of GI2 . . . GI5 along the imaginary axis.

All of these algorithms could be used as well for the simulation of linear
conservation laws, but there is no good reason, why we would ever want
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to do so. These algorithms have no advantages over their explicit brethren.
They are only less efficient.

Furthermore, there is something else wrong with these algorithms. To
understand, what that is, let us look at the damping order star of GI5.

−8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

neg

neg

pos

pos

negx x

Damping Order Star of GI5

Re{λ · h}

I
m
{λ

·h
}

FIGURE 5.9. Damping order star of GI5 algorithm.

The locus of correct damping approximates the imaginary axis, which
is nice. However, all of the algorithms of the GI class have a pole pair
symmetric to the imaginary axis. Thus, all of these algorithms have a pole
in the left half plane, which is something we should shun away from.

Let us now discuss the enhanced algorithms, i.e., the ones that also com-
pute the velocity vector. We begin with GE4/AB3, and compare this algo-
rithm with AB4.

Figure 5.10 compares the stability domains of the two algorithms.
Just as in the case of GE3/AB2, also GE4/AB3 will perform similarly

to AB4 in the case of systems with their eigenvalues located close to the
negative real axis, but the algorithm will outperform AB4 by leaps and
bounds when employed to simulating systems with their dominant eigen-
values located near the imaginary axis.

The GE5/AB4 algorithm is unfortunately unstable. Even GE5/ABM4
turns out to be unstable.

It makes sense to try enhancing the implicit Godunov schemes by com-
puting the velocity vector using a BDF formula of one order below that of
the Godunov scheme itself.

For example, the GI3/BDF2 algorithm may be written as:
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FIGURE 5.10. Stability domain of GE4/AB3.

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (5.65)

h · ẋk+1 =
4 · h
3

· ẋk − h

3
· ẋk−1 +

2 · h2

3
· ẍk+1 (5.66)

Unfortunately, it didn’t work. Some of the resulting algorithms are indeed
A–stable. They have nice unstable regions in the right half complex λ · h
plane, but unfortunately, the damping is exactly equal to zero everywhere
else. None of these algorithms produces an asymptotic region everywhere
around the origin.

5.8 The Newmark Algorithm

An integration algorithm for the direct numerical solution of second deriva-
tive systems that has seen quite a bit of publicity in the mechanical engi-
neering literature is the integration algorithm by Newmark [5.7]. Although
the algorithm had originally been proposed for the solution of problems in
structural dynamics, such as the simulation of earthquakes, it can be used
for the simulation of other mechanical systems as well [5.1, 5.5].

The method can be described as follows:

xk+1 = xk + h · ẋk +
h2

2
· [(1 − ϑ1) · ẍk + ϑ1 · ẍk+1] (5.67)

h · ẋk+1 = h · ẋk + h2 · [(1 − ϑ2) · ẍk + ϑ2 · ẍk+1] (5.68)
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The method is clearly second–order accurate, as the solution for xk+1

approximates the Taylor–Series directly up to the quadratic term, whereas
the solution for ẋk+1 approximates the Taylor–Series up to the linear term.
Since the velocity vector gets always multiplied by the step size, h, the
overall method must be second–order accurate.

It is a ϑ–method with two fudge parameters, ϑ1 and ϑ2. For ϑ1 = ϑ2 = 0,
the method is explicit; for all other combinations of ϑ1 and ϑ2, the method
is implicit.

The Newmark algorithm is different from the implicit Godunov tech-
niques. The Godunov algorithms made it a point, not to make use of the
velocity vector in the computation of the position vector. This makes sense
in the special case of velocity–free second–derivative systems, but doesn’t
make much sense otherwise, i.e., the enhanced Godunov methods, that also
compute the velocity vector, added an unnecessary constraint on the de-
sign of the algorithm that we paid for bitterly, since we were fighting even
functions that prevented us from getting asymptotic regions around the
origin.

Let us plot the stability domains of the Newmark algorithm for ϑ1 =
ϑ2 = {0.0, 0.25, 0.5, 0.75, 1.0}.
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FIGURE 5.11. Stability domains of Newmark algorithm as a function of ϑ1 and
ϑ2.

These are interesting looking and quite unusual stability domains. The
algorithms are symmetric to ϑ1 = ϑ2 = 0.5. For ϑ1 = ϑ2 = 0, the algorithm
exhibits a stable region in the left half plane that looks like an ascending
half moon. The stable region is limited by Re{λ · h} ≥ −1.0. As ϑ1 and
ϑ2 increase their values, the half moon grows in size, and the stable region



5.8 The Newmark Algorithm 181

extends further to the left. For ϑ1 = ϑ2 = 0.25, the region is limited by
Re{λ · h} ≥ −2.0. As ϑ1 and ϑ2 approach values of 0.5, the entire left half
plane is covered by the stable region. For ϑ1 = ϑ2 = 0.5, the resulting
algorithm is F–stable. At ϑ1 = ϑ2 = 0.5, the stable region wraps around
infinity. For ϑ1 = ϑ2 = 0.75, the entire left half plane is stable, but also the
region limited by Re{λ · h} ≥ 2.0.

¿From a practical perspective, the algorithms with ϑ1 = ϑ2 ∈ (0, 0.5)
are probably not of much interest. ϑ1 = ϑ2 = 0 could be interesting, as
this is an explicit algorithm. Also the algorithms with ϑ1 = ϑ2 ≥ 0.5 are of
interest, since they are all A–stable.

Let us look at some damping plots. Figure 5.12 shows the linear and
logarithmic damping plots of the F–stable Newmark algorithm for ϑ1 =
ϑ2 = 0.5.
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FIGURE 5.12. Damping plot of Newmark algorithm with ϑ1 = ϑ2 = 0.5.

As was to be expected, the damping is zero everywhere at infinity, and
in fact, the damping assumes very small values in large portions of the left
half plane, which could potentially become a problem when dealing with
stiff systems.

Let us check, whether the Newmark algorithms with larger ϑ–values fare
any better. Figure 5.13 shows the damping plots of the A–stable Newmark
algorithm for ϑ1 = ϑ2 = 0.75.

It did not help. The damping still approaches zero at infinity. We should
have been able to predict this result from the stability domain alone. Since
the border of stability reaches all the way to infinity at some place, the
numerical scheme must exhibit marginal stability at infinity, irrespective
of how infinity is being approached.

Furthermore, the algorithm with ϑ1 = ϑ2 = 0.75 exhibits a much smaller
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FIGURE 5.13. Damping plot of Newmark algorithm with ϑ1 = ϑ2 = 0.75.

asymptotic region. Whereas Fig.5.12 showed an asymptotic region of ap-
proximately 0.7, Fig.5.13 shows an asymptotic region of approximately 0.2.
This result is disappointing.

We shall refrain from plotting more damping plots. The damping plots
for ϑ1 = ϑ2 = 1.0 don’t look any more promising. Hence the Newmark
family of algorithms is better suited for the simulation of systems exhibiting
oscillatory behavior, such as earthquakes or elastic systems, than for the
simulation of stiff problems.

5.9 Summary

In this chapter, we have looked at new classes of simulation algorithms
that can deal with second derivative systems directly, i.e., without first
converting them to state–space form.

Our original goal had been to design algorithms for velocity–free prob-
lems that would avoid the seemingly unnecessary computation of the ve-
locity vector altogether. To this end, we developed two families of algo-
rithms, the explicit and implicit Godunov schemes, using our old friends,
the Newton–Gregory polynomials.

Unfortunately, this approach was unsuccessful. None of the resulting al-
gorithms possess any asymptotic regions around their origins, as the F–
matrices associated with these algorithms are even functions of A ·h. Con-
sequently, these algorithms, when used in a stand–alone mode, can only be
employed for the simulation of linear conservation laws, a result that is not
overly exciting.
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We then enhanced these algorithms to make them suitable for the simula-
tion of systems with damping, and found two explicit algorithms, GE3/AB2
and GE4/AB3, that can be considered serious contenders of AB3 and AB4
for the simulation of mechanical systems with strong oscillatory behavior.
This is certainly a nice, albeit still not a truly exciting, result.

We then analyzed an algorithm that has seen quite a bit of publicity in
the mechanical engineering literature: the algorithm by Newmark, an algo-
rithm that is still being used quite frequently for the simulation of mechani-
cal systems exhibiting oscillatory behavior. Unfortunately, the algorithm is
only second–order accurate, which makes it unsuitable for general purpose
simulation, as most engineering applications call for third and fourth–order
accurate integration algorithms, in order to be simulated efficiently.

The Newmark family of algorithms can be, and have often been, used in
real–time applications, because most real–time applications call for small
step sizes to track external input signals, and therefore, are often simulated
using low–order integration algorithms. Since real–time applications cannot
deal with implicit algorithms very well, we should probably use the linearly–
implicit variant of the Newmark algorithm in those cases. We shall deal
intensively and extensively with real–time simulation in Chapter 10 of this
book.

. . . And here comes the most exciting aspect of this chapter. Nathan New-
mark, in 1959, accomplished for second derivative systems, what Leonhard
Euler accomplished for first derivative systems (i.e., state–space models)
in 1768 [5.4], and yet, researchers still write articles about this algorithm
today, and the algorithm is still being employed frequently in engineering
applications.

In the previous two chapters, we had to work very hard to make a mark.
The field of numerical ODE solvers for state–space models is a very mature
research topic, and consequently, it is difficult to come up with something
new that no–one else has thought about before.

In contrast, the field of numerical ODE solvers for second derivative
systems is still in its infancy, largely ignored by the community of applied
mathematicians so far, and is therefore a fruitful research area for young
and aspiring researchers of numerical methods.
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5.12 Homework Problems

[H5.1] Explicit Godunov Algorithms

We wish to generate the class of GE algorithms introduced in this chapter.
These linear multi–step algorithms compute xk+1 as a function of previous
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values of x and of ẍk.
Develop x(t) into a Newton–Gregory backward polynomial around the

time instant tk+1. Compute the second derivative:

ẍ(t) =
1
h2

· f(s) (H5.1a)

Evaluate this expression for s = −1. Truncating this expression after
the quadratic ∇2 term, you obtain a second–order accurate formula for ẍk,
which can be solved for xk+1. Truncating after the cubic ∇3 term, you
obtain a third–order accurate formula, etc.

There is no first–order accurate GE scheme. From (H5.1a), one can rec-
ognize by inspection that the second–order accurate GE2 scheme is already
third–order accurate. Explain.

[H5.2] Implicit Godunov Algorithms

We wish to generate the class of GI algorithms introduced in this chapter.
These linear multi–step algorithms compute xk+1 as a function of previous
values of x and of ẍk+1.

Develop x(t) into a Newton–Gregory backward polynomial around the
time instant tk+1. Compute the second derivative:

ẍ(t) =
1
h2

· f(s) (H5.2a)

Evaluate this expression for s = 0. Truncating this expression after the
quadratic ∇2 term, you obtain a second–order accurate formula for ẍk+1,
which can be solved for xk+1. Truncating after the cubic ∇3 term, you
obtain a third–order accurate formula, etc.

[H5.3] Stability Domain of GE4/AB3

The method introduced in earlier chapters for drawing stability domains
was geared towards linear time–invariant homogeneous multi–variable state–
space models:

ẋ = A · x (H5.3a)

We generated real–valued A–matrices ∈ R
2×2 with their eigenvalues lo-

cated on the unit circle, at an angle α away from the negative real axis.
We then computed the F–matrix corresponding to that A–matrix for the
given algorithm, and found the largest value of the step size h, for which
all eigenvalues of F remained inside the unit circle. This gave us one point
on the stability domain. We repeated this procedure for all suitable values
of the angle α.

The algorithm needs to be modified for dealing with second derivative
systems described by the linear time–invariant homogeneous multi–variable
second–derivative model:
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ẍ = A2 · x + B · ẋ (H5.3b)

We need to find real–valued A– and B–matrices such that the model of
(H5.3b) has its eigenvalues located on the unit circle.

This can be accomplished using the scalar model:

ẍ = a2 · x + b · ẋ (H5.3c)

where:

a =
√

a21 (H5.3d)
b = a22 (H5.3e)

of the formerly used A–matrix.
Write the GE4/AB3 algorithm as follows:

xk+1 =
20
11

· xk − 6
11

· xk−1 − 4
11

· xk−2 +
1
11

· xk−3

+
12 · h2

11
· ẍk (H5.3f)

h · ẋk+1 = h · ẋk +
23 · h2

12
· ẍk − 4 · h2

3
· ẍk−1

+
5 · h2

12
· ẍk−2 (H5.3g)

ẍ = a2 · x + b · ẋ (H5.3h)

Substitute Eq.(H5.3h) into Eq.(H5.3f) and Eq.(H5.3g), and rewrite the re-
sulting equations in a state–space form:

ξk+1 = F · ξk (H5.3i)

whereby the state vector ξ is chosen as:

ξk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk−3

h · ẋk−3

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(H5.3j)

The F–matrix turns out to be a function of (a · h)2 and of b · h.
The remainder of the algorithm remains the same as before. Draw the

stability domain of GE4/AB3 using this approach.



5.12 Homework Problems 187

[H5.4] Stability Domain of GI3/BDF2

We want to draw the stability domain of GI3/BDF2. However, we shall use
a different approach from that advocated in Hw.[H5.3], an approach that
is a bit slower in execution, but more general.

We start by writing the algorithm as follows:

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (H5.4a)

h · ẋk+1 =
4 · h
3

· ẋk − h

3
· ẋk−1 +

2 · h2

3
· ẍk+1 (H5.4b)

ẍ = a2 · x + b · ẋ (H5.4c)

We substitute Eq.(H5.4c) into Eq.(H5.4a) and Eq.(H5.4b), and rewrite the
resulting equations in a state–space form:

ξk+1 = F · ξk (H5.4d)

whereby the state vector ξ is chosen as:

ξk =

⎛
⎜⎜⎜⎜⎜⎜⎝

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk

⎞
⎟⎟⎟⎟⎟⎟⎠

(H5.4e)

The F–matrix turns out to be a function of (a · h)2 and of b · h.
We choose a and b such that the two eigenvalues of the second–order

differential equation are located in the position:

λ1,2 = σ ± j · ω (H5.4f)

We perform a double loop over σ and ω to cover an entire area of the
complex plane with eigenvalue locations.

For each eigenvalue location, we compute the corresponding values of α
and h, compute the corresponding F–matrix, and determine the discrete
damping value using the equation:

damp = − log(max(abs(eig(F)))) (H5.4g)

The damping value can be interpreted as a real-valued function of the
complex–valued argument σ + j · ω.

Use MATLAB’s contour plot to draw the locus of all points of zero
damping. This will be the stability domain of the method.

Interpret the results that you get.
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[H5.5] Cervical Syndrome

Given the model of a sitting human body presented in Fig. 5.1. We exert
this model by a sinusoidal force of 1.5 Hz. Simulate this model during
10 seconds, once using the GE4/AB3 algorithm, and once using the AB4
algorithm. Choose a fixed step size of h = 0.1 seconds.

Determine, which of the two algorithms is faster, i.e., requires a smaller
number of floating point operations.

Assume that MATLAB’s solution using the ODE45 algorithm of variable
step size with a relative tolerance of 0.0001 is accurate, and compare the two
solutions of your own simulation algorithms against MATLAB’s solution.
Determine, which of the algorithms produced more accurate results.

5.13 Projects

[P5.1] Houbolt’s Integration Algorithm

John Houbolt proposed already in 1950 a second–derivative integration
algorithm [5.6] that is very similar to the GI3/BDF2 method introduced
in this chapter. Houbolt’s algorithm can be written as follows:

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (P5.1a)

h · ẋk+1 =
11
6

· xk+1 − 3 · xk +
3
2
· xk−1 − 1

3
· xk−2 (P5.1b)

The second derivative formula of Houbolt’s algorithm can immediately be
identified as GI3. The formula used for the velocity vector is BDF3; how-
ever, the formula was used differently from the way, it had been employed
by us in the description of the GI3/BDF2 algorithm. Clearly, the Houbolt
algorithm is third–order accurate.

Although it would have sufficed to use BDF2 for the velocity vector,
nothing would have been gained computationally by choosing the reduced–
order algorithm.

We can transform the Houbolt algorithm to the form that we meanwhile
got used to by substituting Eq.(P5.1a) into Eq.(P5.1b). The so rewritten
Houbolt algorithm assumes the form:

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (P5.1c)

h · ẋk+1 =
19
12

· xk − 13
6

· xk−1 +
7
12

· xk−2

+
11 · h2

12
· ẍk+1 (P5.1d)
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Find the stability domain and damping plot of Houbolt’s algorithm, and
discuss the properties of this algorithm in the same way, as Nemark’s al-
gorithm was discussed in this chapter.

Repeat the analysis, replacing the BDF3 formula by the BDF2 formula.
Analyze whether stable GI4/BDF3 and/or GI4/BDF4 algorithms can be

constructed in the same fashion.

[P5.2] Wilson’s Integration Algorithm

In 1968, Wilson proposed yet another second–derivative integration algo-
rithm [5.9] that is quite similar to Newmark’s method. A clean derivation
of Wilson’s algorithm can be found in Bathe [5.1].

The algorithm can be converted easily to the form that we embraced in
this chapter:

xk+1 = xk + h · ẋk +
h2

6
· ẍk+1 +

h2

3
· ẍk (P5.2a)

h · ẋk+1 = h · ẋk +
h2

2
· ẍk+1 +

h2

2
· ẍk (P5.2b)

Clearly, Eq.(P5.2a) is second–order accurate in xk, whereas Eq.(P5.2b)
is first–order accurate in ẋk. Hence the overall algorithm is second–order
accurate.

Find the stability domain and damping plot of Wilson’s algorithm, and
discuss the properties of this algorithm in the same way, as Nemark’s al-
gorithm was discussed in this chapter.

Compare Wilson’s and Newmark’s algorithms with each other. Which of
them would you use when and why?

5.14 Research

[R5.1] Second–derivative Runge–Kutta Algorithms

When designing explicit Runge–Kutta algorithms, we started out with a
partial step of Euler, used the result obtained by that stage as a predictor,
and added another stage as a corrector, in which we blended the solutions
of the two stages. We continued in the same way to more and more stages,
trying to approximate the Taylor–series expansion to increasingly higher
orders. Contrary to the multi–step methods, we were able to determine also
the nonlinear order of approximation accuracy in the case of the Runge–
Kutta algorithms.

It must be possible to generalize the Runge–Kutta algorithms to second–
derivative form. To this end, we postulate a first partial step using the
algorithm:
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xP1(t + α1 · h) = xk + α1 · h · ẋk +
(α1 · h)2

2
· ẍk (R5.1a)

We then proceed to building corrector stages in the same fashion, as we
did in the case of the regular RK algorithms.

Whereas we left the first derivative alone in the case of the RK algo-
rithms, and only expanded second and higher–order derivatives into Taylor
series, we now must leave the first and second derivatives alone, and only
develop third and higher–order derivatives into Taylor series.

We shall use a regular RK algorithm of one order lower than the second–
derivative algorithm to compute the velocity vector. We use the freedom
in the design of such algorithms to ensure that the individual stages of
the second–derivative algorithm for computing the position vector and the
first–derivative algorithm for computing the velocity vector are evaluated
at the same instants of simulated time, i.e.:

αi(2nd derivative algorithm) = αi(1st derivative algorithm) (R5.1b)

Clearly, there don’t exist first–order accurate generalized RK algorithms,
and the second–order accurate generalized explicit RK algorithm, GERK2,
can be written as follows:

xk+1 = xk + h · ẋk +
h2

2
· ẍk (R5.1c)

h · ẋk+1 = h · ẋk + h2 · ẍk (R5.1d)

which is identical to the Newmark algorithm with ϑ1 = ϑ2 = 0.0.
It should be possible to develop second–derivative (generalized) explicit

Runge–Kutta algorithms of any order, and we would expect that these
algorithms should outperform their regular RK cousins when dealing with
nonlinear mechanical systems that exhibit highly oscillatory behavior.




