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Partial Differential Equations

Preview

In this chapter, we shall deal with method–of–lines solutions to models
that are described by individual partial differential equations, by sets of
coupled partial differential equations, or possibly by sets of mixed partial
and ordinary differential equations.

Emphasis will be placed on the process of converting partial differential
equations to equivalent sets of ordinary differential equations, and particu-
lar attention will be devoted to the problem of converting boundary condi-
tions. To this end, we shall again consult our –meanwhile well–understood–
Newton–Gregory polynomials.

We shall then spend some time analyzing the particular difficulties that
await us when numerically solving the sets of resulting differential equations
in the cases of parabolic, hyperbolic, and elliptic partial differential equa-
tions. It turns out that each class of partial differential equations exhibits
its own particular and peculiar types of difficulties.

6.1 Introduction

Partial differential equation (PDE) modeling and simulation are certainly
among the more difficult topics to deal with. PDE modeling is still in its
infancy. You hardly ever encounter models of coupled PDEs that contain
more than three or four PDEs at a time. This situation is comparable with
ordinary differential equation (ODE) modeling some 30 years ago. At that
time, researchers were content to analyze simple ODE models consisting of
three or four coupled ODEs. No special software tools were needed to help
the modeler organize his or her models. The modeling process was utterly
trivial. What was difficult was the process of converting these ODEs to a
form such that a numerical differential equation solver could tackle them,
and then the process of simulation itself.

This way of looking at simulation still prevails in large portions of the
simulation literature. However, reality of ODE modeling has changed dras-
tically over the years. Today, continuous system modelers frequently deal
with models containing hundreds or even thousands of coupled differential
and algebraic equations, and the process of first deriving and then main-
taining these ODE models has become the truly difficult part.

This was the focus point of the companion book to this text Continuous
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System Modeling [6.5]. In that book, PDEs weren’t mentioned with even
one word. The reason for this is obvious. No special software tools or model-
ing methodologies are needed yet to derive or maintain PDE models, since
PDE models are still very simple. You don’t encounter models containing
hundreds or even only tens of PDEs. It just isn’t done. If you end up with
three or four coupled PDEs, this is a lot. So, from a modeling perspective,
PDE modeling is still a fairly trivial undertaking.

On the other hand, the numerical solution of PDE models is by no means
trivial. Whereas we have learnt meanwhile pretty well how to numerically
handle large classes of ODE models, the numerical solution of PDE models
still presents a challenge.

Many different approaches to simulating PDE models have been de-
scribed in the literature, partly purely numerical, such as the finite ele-
ment methods used mostly to tackle elliptic PDE problems, and partly
semi–analytical, such as the method–of–characteristics approach to solving
hyperbolic systems of equations. It is not the aim of this chapter at all to
duplicate or compete with that literature.

Among all the techniques that are known for tackling PDE models, only
one specific technique shall be dealt with in this book, namely the method–
of–lines (MOL) approach to numerically solving PDE models. The MOL
methodology converts PDEs into (large) sets of (in some way equivalent)
ODEs that are then solved by standard ODE solvers. Since this book deals
explicitly and extensively with ODE solvers, the MOL approach to PDE
solving fits well within the overall framework of this book methodologically.
This is the only reason why this text focuses on MOL solutions. It is not
our intention to convey the impression that MOL solutions are, in each
and every case, the most suitable way of dealing with PDE problems. PDE
problems are notoriously difficult to tackle, and the MOL approach is only
one, among many, techniques that can provide a partial answer to these
challenges.

6.2 The Method of Lines

The Method of Lines (MOL) is a technique that enables us to convert par-
tial differential equations (PDEs) into sets of ordinary differential equations
(ODEs) that, in some sense, are equivalent to the former PDEs.

The basic idea behind the MOL methodology is straightforward. Let us
look at the simple heat equation or diffusion equation in a single space
variable:

∂u

∂t
= σ · ∂2u

∂x2
(6.1)

Rather than looking at the solution u(x, t) everywhere in the two–dimensional
space spanned by the spatial variable x and the temporal variable t, we can
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discretize the spatial variable, and look at the solutions ui(t) where the in-
dex i denotes a particular point xi in space. To this end, we replace the
second–order partial derivative of u with respect to x by a finite difference,
such as:

∂2u

∂x2

∣∣∣∣
x=xi

≈ ui+1 − 2ui + ui−1

δx2
(6.2)

where δx is the (here equidistantly chosen) distance between two neigh-
boring discretization points in space, i.e., the so–called grid width of the
discretization.

Plugging Eq.(6.2) into Eq.(6.1), we find:

dui

dt
≈ σ · ui+1 − 2ui + ui−1

δx2
(6.3)

and we have already converted the former PDE in u into a set of ODEs in
ui.

The principal idea behind the MOL methodology is thus utterly trivial.
However, the devil is in the detail.

It is reasonable to use the same order of approximation accuracy for
the discretization in space as for the discretization in time achieved by the
numerical integration algorithm. Thus, if we plan to integrate the set of
ODEs with a fourth–order method, we should better find a discretization
formula for ∂2u/∂x2 that is also fourth–order accurate.

This can be accomplished by use of our old friends, the Newton–Gregory
polynomials. A fourth–order polynomial needs to be fitted through five
points. Since we prefer central differences over biased differences, we fit the
polynomial through the five points xi−2, xi−1, xi, xi+1, and xi+2. Using
Newton–Gregory backward polynomials, we will have to write the polyno-
mial around the point that is located most to the right, in our case, the
point xi+2. Thus, we write:

u(x) = ui+2 + s∇ui+2 +
(

s2

2
+

s

2

)
∇2ui+2 +

(
s3

6
+

s2

2
+

s

3

)
∇3ui+2 + . . .

(6.4)
Notice that we write the approximation polynomial as u(x) rather than as
u(t), since we want to discretize along the spatial axis.

Consequently, the second derivative can be written as:

∂2u

∂x2
=

1
δx2

[
∇2ui+2 + (s + 1)∇3ui+2 +

(
s2

2
+

3s

2
+

11
12

)
∇4ui+2 + . . .

]
(6.5)

Eq.(6.5) needs to be evaluated at x = xi, corresponding to s = −2. Trun-
cating after the quartic term and expanding the ∇–operators, we find:
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∂2u

∂x2

∣∣∣∣
x=xi

≈ 1
12δx2

(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2) (6.6)

which is the fourth–order central difference approximation to the second
partial derivative of u(x, t) with respect to x evaluated at x = xi.

We could have obtained the same result using the Newton–Gregory for-
ward polynomial written around the point xi−2, evaluating it for s = +2.

Had we decided that we wish to integrate with a second–order algo-
rithm, we would have developed the Newton–Gregory backward polyno-
mial around the point xi+1, truncating Eq.(6.5) after the quadratic term,
and evaluating for s = −1. This would have led to:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1
δx2

(ui+1 − 2ui + ui−1) (6.7)

which is the second–order central difference formula for ∂2u/∂x2, the one
that had been used in Eq.(6.2).

The third–order case is again a little different. For geometric reasons, it
is obviously impossible to fit a central difference approximation of an odd
order around xi using only xi and its nearest three neighbors. Thus, we
can choose between a biased formula using the points xi−2 up to xi+1, i.e.,
develop the Newton–Gregory backward polynomial around the point xi+1

and evaluate it for s = −1, and another biased formula using the points
xi−1 up to xi+2, i.e., develop the Newton–Gregory backward polynomial
around the point xi+2 and evaluate it for s = −2.

It turns out that both cases lead to exactly the same formula, namely
Eq.(6.7). Just by accident, a lot of terms drop out, and Eq.(6.7) turns out
to be third–order accurate.

Looking more deeply into the matter, we find that the “lucky accident”
is no accident at all, but has to do with the symmetry conditions. Every
central difference approximation is one order more accurate than the num-
ber of points fitted by it would make us believe. Consequently, Eq.(6.6) is
in fact fifth–order accurate.

The next difficulty arises as we approach the spatial domain boundary.
Let us assume the heat equation applies to the temperature distribution
along a rod of length � = 1 m. Let us assume we cut the rod into segments of
a length of δ� = 10 cm. Thus, we get 10 segments. If the left end of the rod
corresponds to index i = 1, the right end corresponds to index i = 11. Let
us further assume that we wish to integrate using a fourth–order algorithm.
Thus, we shall apply Eq.(6.6) to the points x3 up to x9. However, for the
remaining points, we need biased formulae, since we cannot use points
outside the range where the solution u(x, t) is defined.

In order to find a biased formula for x2, we shall have to write the
Newton–Gregory backward polynomial around the point u5 and evaluate
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for s = −3, or alternatively, we can write a Newton–Gregory forward poly-
nomial around the point u1 and evaluate for s = +1. In order to find a bi-
ased formula for x1, we shall have to write the Newton–Gregory backward
polynomial around the point u5 and evaluate for s = −4, or alternatively,
we can write a Newton–Gregory forward polynomial around the point u1

and evaluate for s = 0. Similarly for the points x10 and x11.
Using the above example, we obtain the following biased approximation

formulae:

∂2u

∂x2

∣∣∣∣
x=x1

=
1

12δx2
(11u5 − 56u4 + 114u3 − 104u2 + 35u1) (6.8a)

∂2u

∂x2

∣∣∣∣
x=x2

=
1

12δx2
(−u5 + 4u4 + 6u3 − 20u2 + 11u1) (6.8b)

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(11u11 − 20u10 + 6u9 + 4u8 − u7) (6.8c)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(35u11 − 104u10 + 114u9 − 56u8 + 11u7) (6.8d)

In the MOL methodology, all derivatives w.r.t. spatial variables are dis-
cretized using either central or biased difference approximations, whereas
derivatives w.r.t. the temporal variable are left unchanged. In this way,
PDEs are converted into sets of ODEs that can, at least in theory, be
solved just like any other ODE models by means of standard ODE solvers.

Next, we need to discuss what is to be done with the boundary con-
ditions. Every PDE has beside from initial conditions in time boundary
conditions in space. For example, the heat equation may have the two
boundary conditions:

u(x = 0.0, t) = 100.0 (6.9a)
∂u

∂x
(x = 1.0, t) = 0.0 (6.9b)

The boundary condition of Eq.(6.9a) is called boundary value condition.
This is the simplest case. All we need to do is to eliminate the differential
equation for u1(t), and replace it by an algebraic equation, in our case:

u1 = 100.0 (6.10)

The boundary condition of Eq.(6.9b) is also a special case. It is called a
boundary symmetry condition. It is handled in the following way. Imagine
that there is a mirror at x = 1.0. This mirror maps the solution u(x, t)
into the range x ∈ [1.0, 2.0], such that u(2.0 − x, t) = u(x, t). Obviously,
the boundary condition at x = 2.0 is the same as that at x = 0.0. There
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is then no need at all to specify any boundary condition at x = 1.0, since,
through symmetry, the desired boundary symmetry condition will be sat-
isfied. Knowing this, we can replace Eqs.(6.8c–d) by:

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(−u12 + 16u11 − 30u10 + 16u9 − u8) (6.11a)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(−u13 + 16u12 − 30u11 + 16u10 − u9) (6.11b)

i.e., by central difference approximations. However, since (due to symmetry)
u12 = u10 and u13 = u9, we can rewrite Eqs.(6.11a–b) as:

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(16u11 − 31u10 + 16u9 − u8) (6.12a)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(−30u11 + 32u10 − 2u9) (6.12b)

and having done this, we can happily forget our virtual mirror again. We
don’t need to bother to actually compute a solution for the range x ∈
[1.0, 2.0], since we already know the solution . . . it is the mirror image of
the solution in the range x ∈ [0.0, 1.0].

A third type of special boundary conditions is the so–called temporal
boundary condition of the type:

∂u

∂t
(x = 0.0, t) = f(t) (6.13)

In this case, the boundary condition of the PDE is itself described through
an ODE. This case is also easy. We simply replace the ODE for u1 by the
boundary ODE:

u̇1 = f(t) (6.14)

The more general boundary condition of the type:

g (u(x = 1.0, t)) + h

(
∂u

∂x
(x = 1.0, t)

)
= f(t) (6.15)

where f , g, and h are arbitrary functions, is more tricky. For example, we
may have to deal with a boundary condition of the type:

∂u

∂x
(x = 1.0, t) = −k · (u(x = 1.0, t) − uamb(t)) (6.16)

where uamb(t) is the ambient temperature. How would we handle such
a general boundary condition? The answer is simple. We again replace all
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spatial derivatives by appropriate Newton–Gregory polynomials, e.g. in the
above case:

∂u

∂x

∣∣∣∣
x=x11

=
1

12δx
(25u11 − 48u10 + 36u9 − 16u8 + 3u7) (6.17)

is the fourth–order biased difference approximation polynomial. Plugging
Eq.(6.17) into Eq.(6.16), and solving for u11, we find:

u11 =
12k · δx · uamb + 48u10 − 36u9 + 16u8 − 3u7

12k · δx + 25
(6.18)

By this process, the general boundary condition has been transformed into
a boundary value condition, and the ODE defining u11 can be dropped.

Often we are faced with nonlinear boundary conditions , such as the ra-
diation condition:

∂u

∂x
(x = 1.0, t) = −k · (u(x = 1.0, t)4 − uamb(t)4

)
(6.19)

which leads to:

F(u11) =12k · δx · u4
11 + 25u11 − 12k · δx · u4

amb − 48u10 + 36u9

− 16u8 + 3u7 = 0.0 (6.20)

i.e., an implicit boundary value condition that can be solved by Newton
iteration. Convergence should be fast since we can always use the value of
u11(tk − h) as the starting value of the iteration.

Finally, let us consider diffusion of heat through a wall. Assume that
the wall has two layers consisting of two different materials, one of 1 m
thickness, the other of 10 cm thickness. In that case, the diffusion coefficient,
σ, assumes a different value in the two materials. We can formulate this
problem as follows:

∂u

∂t
= σu · ∂2u

∂x2
(6.21a)

∂v

∂t
= σv · ∂2v

∂x2
(6.21b)

where the PDE for u(x, t) is valid in the region x ∈ [0.0, 1.0], and the PDE
for v(x, t) is valid in the region x ∈ [1.0, 1.1], with boundary conditions at
the boundary between the two layers:

∂u

∂x
(x = 1.0, t) = −ku · (u(x = 1.0, t) − v(x = 1.0, t)) (6.22a)

∂v

∂x
(x = 1.0, t) = −kv · (v(x = 1.0, t) − u(x = 1.0, t)) (6.22b)
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which leads to the following two equations:

(12ku · δxu + 25)u11 − 12ku · δxu · v1 = 48u10 − 36u9 + 16u8 − 3u7

(6.23a)

−12kv · δxv · u11 + (12kv · δxv + 3)v1 = 16v2 − 36v3 + 48u4 − 25v5

(6.23b)

Eqs.(6.23a–b) constitute a linear algebraic loop in the unknown variables
u11 and v1 that can be solved either symbolically or numerically.

6.3 Parabolic PDEs

Some very simple types of PDEs are so common that they were given
special names. Let us consider the following PDE in two variables x and y:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d (6.24)

which is characteristic of many field problems in physics. x and y can be
either spatial or temporal variables, and a, b, c, and d can be arbitrary
functions of x, y, u, ∂u/∂x, and ∂u/∂y. Such a PDE is called quasi–linear ,
since it is linear in the highest derivatives.

Depending on the numerical relationship between a, b, and c, Eq.(6.24) is
classified as either being parabolic, hyperbolic, or elliptic. The classification
is as follows:

b2 − 4ac > 0 =⇒ PDE is hyperbolic (6.25a)

b2 − 4ac = 0 =⇒ PDE is parabolic (6.25b)

b2 − 4ac < 0 =⇒ PDE is elliptic (6.25c)

This classification makes sense, since the numerical methods most suitable
for these three types of PDEs are vastly different. In this section, we shall
deal with PDEs of the parabolic type exclusively.

Parabolic PDEs are very common. For example, all thermal field prob-
lems are of that nature. The simplest example of a parabolic PDE is the
one–dimensional heat diffusion problem of Eq.(6.1). A complete example
of such a problem is specified once more below.
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∂u

∂t
=

1
10π2

· ∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞) (6.26a)

u(x, t = 0) = cos(π · x) (6.26b)
u(x = 0, t) = exp(−t/10) (6.26c)
∂u

∂x
(x = 1, t) = 0 (6.26d)

Equation (6.26a) is the one–dimensional heat equation, Eq.(6.26b) consti-
tutes its single initial condition, and Eqs.(6.26c–d) describe its two bound-
ary conditions.

Let us discretize this problem using the MOL approach. We split the spa-
tial axis into n segments of length δx = 1/n. We shall apply the third–order
accurate central difference formula of Eq.(6.7) for the approximation of the
spatial derivatives. We furthermore use the symmetry boundary condition
approach at the right end of the interval. This leads to the following set of
ODEs:

u1 = exp(−t/10) (6.27a)

u̇2 =
n2

10π2
· (u3 − 2u2 + u1) (6.27b)

u̇3 =
n2

10π2
· (u4 − 2u3 + u2) (6.27c)

etc.

u̇n =
n2

10π2
· (un+1 − 2un + un−1) (6.27d)

u̇n+1 =
n2

5π2
· (−un+1 + un) (6.27e)

with initial conditions:

u2(0) = cos
(π

n

)
(6.28a)

u3(0) = cos
(

2π

n

)
(6.28b)

u4(0) = cos
(

3π

n

)
(6.28c)

etc.

un(0) = cos
(

(n − 1)π
n

)
(6.28d)

un+1(0) = cos (π) (6.28e)
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This is a linear, time–invariant, inhomogeneous, nth–order, single–input
system of the type:

ẋ = A · x + b · u (6.29)

where:

A =
n2

10π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.30)

A is a band–structured matrix of dimensions n × n. Let us calculate its
eigenvalues. They are tabulated in Table 6.1.

n = 3 n = 4 n = 5 n = 6 n = 7
-0.0244 -0.0247 -0.0248 -0.0249 -0.0249
-0.1824 -0.2002 -0.2088 -0.2137 -0.2166
-0.3403 -0.4483 -0.5066 -0.5407 -0.5621

-0.6238 -0.9884 -0.9183 -0.9929
-0.8044 -1.2454 -1.4238

-1.4342 -1.7693
-1.9610

TABLE 6.1. Eigenvalue distribution for diffusion model.

All eigenvalues are strictly negative and real. This is characteristic of all
thermal field problems and all parabolic PDEs converted to sets of ODEs
by the MOL technique.

We notice at once that, whereas the damping properties of the system
(determined by the location of the dominant pole) don’t change signifi-
cantly with the number of segments, the stiffness ratio, i.e., the ratio be-
tween the absolute largest real part and the absolute smallest real part
of any eigenvalue depends heavily on the number of segments. Figure 6.1
shows the square root of the stiffness ratio plotted over the number of
segments chosen.

It turns out that, for all practical purposes, the stiffness ratio grows
quadratically with the number of segments chosen in the spatial discretiza-
tion process. The more accurate we wish to solve the diffusion equation, the
stiffer the corresponding ODE problem will become. Since diffusion prob-
lems are usually quite smooth, the BDF algorithms are optimally suited to
simulate the resulting set of ODEs.
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FIGURE 6.1. Dependence of stiffness ratio on discretization.

We chose a PDE problem, the analytical solution of which is known. It
happens to be:

uc(x, t) = exp(−t/10) · cos(π · x) (6.31)

Hence we can compare the analytical solution of the original PDE prob-
lem with the equally analytical solution of the discretized ODE problem
after applying the MOL discretization.

The analytical solution of the discretized ODE problem is a little harder
to come by. We can create a system description of the continuous–time
problem:

ẋ = A · x + b · u (6.32a)
y = C · x + d · u (6.32b)

where C is an identity matrix of suitable dimensions, and d is a zero vector
using MATLAB’s control system toolbox:

Sc = ss(A,b,C,d) (6.33)

This continuous–time system can then be converted to an equivalent discrete–
time system:

xk+1 = F · xk + g · uk (6.34a)
yk = H · xk + i · uk (6.34b)

using the statement:

Sd = c2d(Sc, h) (6.35)

from which the F–matrix and g–vector of the discrete state equations can
be extracted using the statement:
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[F,g] = ssdata(Sd) (6.36)

The discrete–time system can now be “simulated” by means of iteration of
the discrete state equations. The solution of the discrete difference equation
(ΔE) system is identical with that of the continuous ODE problem at the
sampling points k ·h, where h is the step size (sampling rate) of the discrete
problem, except for the discretization of the input function. The discrete
system assumes that the input function u(t) is kept constant in between
sampling points.

Consequently, the step size, h, must be chosen small enough for the effect
of the discretization of the input function to be negligible.

Let us look at the results of the experiment. The top left graph of Fig.6.2
shows the solution of the PDE problem, uc, as a function of space and
time, whereas the top right graph shows the solution of the discretized
ODE problem, ud, simulated using the approach discussed above. The two
graphs look identical by visual inspection. The bottom left graph of Fig.6.2
displays the difference between the two functions, i.e.:

err = uc − ud (6.37)

and the bottom right graph of Fig.6.2 presents the maximum error, ermax,
as a function of the number of segments used in the discretization. The
maximum error was computed using the MATLAB statement:

ermax = max(max(abs(err))); (6.38)

The step size, h, was chosen small enough so that a further reduction of h
would not visibly change the bottom right graph of Fig.6.2 any longer. In
the given example, a step size of h = 0.001 had to be chosen to accomplish
this goal.

We have just come across a new type of error. The consistency error
describes the difference between the original PDE problem that we wish to
solve, and the discretized ODE problem that we are actually solving.

Evidently, the consistency error cannot be overcome by either step–size
or order control of the underlying ODE solver. Even the best ODE solver
can only approximate the analytical solution, ud, of the discretized ODE
problem, but never the true analytical solution, uc, of the original PDE
problem.

Is the consistency error a modeling error or a simulation error? The an-
swer to this question depends on the point of view. If we use a modeling
environment that allows us to describe the PDE problem directly, we are
inclined to call this a simulation error. However, it is an error that is in-
curred during the symbolic formulae manipulations that accompany the
compilation of the model, rather than at run time. On the other hand, if
we use a lower–level modeling environment that forces us to convert the
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FIGURE 6.2. Solution of the 1D heat diffusion problem.

PDE manually into a set of ODEs, we would be more inclined to call this
a modeling error.

Can the consistency error be overcome by choosing a more accurate
scheme for the computation of the spacial derivatives? Let us use a 5th–
order accurate central difference scheme together with an equally 5th–order
accurate biased difference scheme for the discretization points near the two
boundaries, hence:

u1 = exp(−t/10) (6.39a)

u̇2 =
n2

120π2
· (u6 − 6u5 + 14u4 − 4u3 − 15u2 + 10u1) (6.39b)

u̇3 =
n2

120π2
· (−u5 + 16u4 − 30u3 + 16u2 − u1) (6.39c)

u̇4 =
n2

120π2
· (−u6 + 16u5 − 30u4 + 16u3 − u2) (6.39d)

etc.nonumber (6.39e)

u̇n−1 =
n2

120π2
· (−un+1 + 16un − 30un−1 + 16un−2 − un−3) (6.39f)

u̇n =
n2

120π2
· (16un+1 − 31un + 16un−1 − un−2) (6.39g)
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u̇n+1 =
n2

60π2
· (−15un+1 + 16un − un−1) (6.39h)

The bulk of the equations are formulated using 5th–order accurate cen-
tral differences. Equation (6.39b) is specified using the 5th–order accurate
biased difference formula, whereas Eqs.(6.39g) and (6.39h) are derived by
making use of the symmetry boundary condition.

Hence the resulting A–matrix takes the form:

A =
n2

120π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 − 4 14 − 6 1 . . . 0 0 0 0
16 −30 16 − 1 0 . . . 0 0 0 0
− 1 16 −30 16 − 1 . . . 0 0 0 0

0 − 1 16 −30 16 . . . 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 . . . 16 −30 16 − 1
0 0 0 0 0 . . . − 1 16 −31 16
0 0 0 0 0 . . . 0 − 2 32 −30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.40)

The A–matrix is again band–structured. However, the bandwidth is now
wider. Its eigenvalues are tabulated in Table 6.2.

n = 5 n = 6 n = 7 n = 8 n = 9
-0.0250 -0.0250 -0.0250 -0.0250 -0.0250
-0.2288 -0.2262 -0.2253 -0.2251 -0.2250
-0.5910 -0.6414 -0.6355 -0.6302 -0.6273
-0.7654 -0.9332 -1.1584 -1.2335 -1.2368
-1.2606 -1.3529 -1.4116 -1.6471 -1.9150

-1.8671 -2.0761 -2.1507 -2.2614
-2.5770 -2.9084 -3.0571

-3.3925 -3.8460
-4.3147

TABLE 6.2. Eigenvalue distribution for diffusion model.

The eigenvalue distribution has changed very little. In particular, all
of them are still negative and real. Using this discretization scheme, the
smallest number of segments is now five.

Figure 6.3 shows the square root of the stiffness ratio plotted as a function
of the number of segments chosen. The corresponding stiffness ratio plot
for the previously used A–matrix is presented also for comparison.

For the same number of segments, the stiffness ratio of the 5th–order
scheme is slightly higher than that of the 3rd–order scheme. As the correct
solution of the PDE problem corresponds to a discretization with infinitely
many segments, i.e., an ODE problem with infinite stiffness, we may expect
that the solution produced by the 5th–order scheme is indeed more accurate
than that of the 3rd–order scheme.

Let us now perform the same experiment as before, this time using the
5th–order scheme. Figure 6.4 shows the consistency error as a function of
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FIGURE 6.3. Dependence of stiffness ratio on discretization.

the number of segments used in the discretization scheme. The results of
using the 3rd–order accurate discretization scheme and those using the 5th–
order accurate discretization scheme are superposed on the same graph.
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FIGURE 6.4. Consistency error of the 1D heat diffusion problem.

The improvement achieved by the more accurate discretization scheme
is quite dramatic. Yet, the “simulation” of the discretized problem is much
more expensive in this case. We had to choose a smaller step size of h =
0.0001 before the consistency error would no longer decrease by further
reducing the step size.
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This observation is not overly surprising. Since the stiffness ratio for
the same number of segments has grown, yet the slowest eigenvalues have
not moved, the fastest eigenvalues are now much further to the left in the
complex λ–plane. Hence we need to choose a smaller step size, h, in order
to operate within the accuracy region of the complex λ · h–plane of the
numerical simulation scheme.

This, unfortunately, is the biggest crux in the numerical solution of
parabolic PDE problems. If we double the number of segments, the num-
ber of ODEs to be simulated doubles as well. However, since the stiffness
ratio grows quadratically in the number of segments, the step size needs
to decrease inverse quadratically in order to keep the accuracy the same in
the complex λ · h–plane. Hence doubling the number of segments forces us
to quadruple the number of time steps. Hence the simulation effort grows
cubically in the number of segments.

Let us try another approach. You certainly remember the Richardson
extrapolation technique that we talked about in Chapter 3 of this text. Let
us ascertain whether Richardson extrapolation may provide us with better
answers to our approximation problem.

We can find four different third–order accurate approximations of ∂2u/∂x2:

∂2u

∂x2

∣∣∣∣
P1

x=xi

(δx2) =
ui+1 − ui + ui−1

δx2
(6.41a)

∂2u

∂x2

∣∣∣∣
P2

x=xi

(4δx2) =
ui+2 − ui + ui−2

4δx2
(6.41b)

∂2u

∂x2

∣∣∣∣
P3

x=xi

(9δx2) =
ui+3 − ui + ui−3

9δx2
(6.41c)

∂2u

∂x2

∣∣∣∣
P4

x=xi

(16δx2) =
ui+4 − ui + ui−4

16δx2
(6.41d)

These approximations differ only in the grid width δx used to obtain them.
We can write:

∂2u

∂x2
(η) =

∂2u

∂x2
+ e1 · η + e2 · η2

2!
+ e3 · η3

3!
+ . . . (6.42)

where ∂2u/∂x2 is the true (yet unknown) value of the second spatial deriva-
tive of u, whereas ∂2u(η)/∂x2 is the numerical value that we find when we
approximate the second spatial derivative using a grid width of η. Obvi-
ously, this value contains an error. Equation (6.42) is a Taylor–Series in
η around the (unknown) correct value. The ei variables are errors of the
approximation.

We truncate the Taylor Series after the cubic term, and write Eq.(6.42)
down for the same values of the grid width that had been used in Eqs.(6.41a–
d). We find:
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∂2u

∂x2

P1

(δx2) ≈ ∂2u

∂x2
+ e1 · δx2 +

e2

2!
· δx4 +

e3

3!
· δx6

∂2u

∂x2

P2

(4δx2) ≈ ∂2u

∂x2
+ e1 · (4δx2) +

e2

2!
· (4δx2)2 +

e3

3!
· (4δx2)3

∂2u

∂x2

P3

(9δx2) ≈ ∂2u

∂x2
+ e1 · (9δx2) +

e2

2!
· (9δx2)2 +

e3

3!
· (9δx2)3

∂2u

∂x2

P4

(16δx2) ≈ ∂2u

∂x2
+ e1 · (16δx2) +

e2

2!
· (16δx2)2 +

e3

3!
· (16δx2)3

(6.43)

or in a matrix notation:

⎛
⎜⎜⎜⎜⎝

∂2u
∂x2

P1

∂2u
∂x2

P2

∂2u
∂x2

P3

∂2u
∂x2

P4

⎞
⎟⎟⎟⎟⎠ ≈

⎛
⎜⎜⎝

(δx2)0 (δx2)1 (δx2)2 (δx2)3

(4δx2)0 (4δx2)1 (4δx2)2 (4δx2)3

(9δx2)0 (9δx2)1 (9δx2)2 (9δx2)3

(16δx2)0 (16δx2)1 (16δx2)2 (16δx2)3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

∂2u
∂x2

e1

e2/2
e3/6

⎞
⎟⎟⎠
(6.44)

By inverting the Van–der–Monde matrix, we can solve for the unknown
∂2u/∂x2 and the three error variables. Since we aren’t interested in the
errors, we only look at the first row of the inverted Van–der–Monde matrix.
It turns out that the values in this row don’t depend at all on the grid width
δx. We find:

∂2u

∂x2
≈ ( 56

35 − 28
35

8
35 − 1

35

) ·
⎛
⎜⎜⎜⎜⎝

∂2u
∂x2

P1

∂2u
∂x2

P2

∂2u
∂x2

P3

∂2u
∂x2

P4

⎞
⎟⎟⎟⎟⎠ (6.45)

We can plug Eqs.(6.41) into Eq.(6.45), and find:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1
5040δx2

(−9ui+4 + 128ui+3 − 1008ui+2 + 8064ui+1

− 14350ui + 8064ui−1 − 1008ui−2 + 128ui−3 − 9ui−4) (6.46)

which is exactly the central difference formula of order 9. Once again,
the Richardson extrapolation has raised the approximation accuracy to the
highest possible order.

Let us now look at a slightly different problem:
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∂u

∂t
= 4

∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞) (6.47a)

u(x, t = 0) = 20 sin
(π

2
x
)

+ 300 (6.47b)

u(x = 0, t) = 20 sin
( π

12
t
)

+ 300 (6.47c)

∂u

∂x
(x = 1, t) = 0 (6.47d)

We again solve a one–dimensional heat equation, but with a different time
constant, and different initial and boundary conditions.

This time around, we don’t know the analytical solution, hence we cannot
compute the consistency error explicitly. What do we do? Similarly to the
step–size control algorithms discussed in the previous chapters, we need an
estimator of the spatial discretization error.

All numerical algorithms should have a second algorithm built in to them
that reasons about the sanity of the first algorithm and starts screaming if
it thinks that something is going awry. Without such a sanity check, numer-
ical algorithms are never safe. It is precisely the availability of such alarm
systems that constitutes one of the major distinctions between production
codes and experimental codes.

We propose to compute all spatial derivatives twice, once with the grid
size δx, and once with the grid size 2δx using central differences.

∂2u

∂x2

∣∣∣∣
P1

x=xi

(δx2) =
ui+1 − ui + ui−1

δx2
(6.48a)

∂2u

∂x2

∣∣∣∣
P2

x=xi

(4δx2) =
ui+2 − ui + ui−2

4δx2
(6.48b)

(6.48c)

The two approximations form two separate partial derivative vectors, uP1
xx

and uP2
xx . Using these approximations, we can formulate a spatial error

estimate:

εrel =
|uP1

xx − uP2
xx |

max(|uP1
xx |, |uP2

xx |, δ)
(6.49)

where δ is a fudge factor, e.g., δ = 10−10.
If the estimated spatial discretization error is too big, we must either

choose a more narrow grid, or alternatively, we must increase the approxi-
mation order of the spatial derivatives.

Is it wasteful to compute the entire vector of spatial derivatives twice?
This question must clearly be answered in the negative. The two predictors
can be used in a Richardson corrector step:
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uC
xx =

4
3
· uP1

xx − 1
3
· uP2

xx (6.50)

This is equivalent to having raised the approximation order of the spatial
derivatives from three to five. However, by writing the 5th–order accurate
spatial derivative formula in this way, we get an error estimator essentially
for free.

Since the problem is stiff, a BDF formula may be appropriate for its
integration. As we wish to obtain a global accuracy of 1%, we decided to
simulate the system using BDF3. We chose nseg = 50 in order to receive
sufficiently many output points in space, and simulated across 10 seconds
in time. The simulation results are shown in Fig.6.5.
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FIGURE 6.5. Solution of heat diffusion problem.

Figure 6.6 shows a slice through the solution at x = 1.0.
Unfortunately, the solution exhibits a fast transient precisely during the

start–up period. The problem isn’t truly stiff until the fast transients have
died out. Initially, the solution is heavily controlled by accuracy require-
ments beside from the numerical stability constraints.

Assuming a fixed step size to be used throughout the solution, we re-
peated the simulation thrice, once using order buildup, i.e., a BDF starter,
once using an RK3 starter, and once using an IEX3 starter. Figure 6.7
shows the step size required to achieve a desired level of accuracy using
these three start–up algorithms.
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FIGURE 6.6. Solution of heat diffusion problem.
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FIGURE 6.7. Accuracy vs. cost for different start–up algorithms.

Overall, the accuracy of the simulation seems to be quite a bit better
than the 3rd–order algorithm would have made us believe. In addition,
the effect of the start–up algorithm on the simulation accuracy is quite
dramatic. For small step sizes, the RK3 starter seems to work much better
than the BDF starter. However, at h = 0.005, the numerical stability is lost,
and the overall accuracy of the simulation degrades rapidly, in spite of the
fact that the RK3 algorithm is only being used during the first two steps
of the simulation. Of course, an RK starter implemented in a production
code would be expected to proceed with a smaller step size than during the
remainder of the simulation, but we did not want to make use of any type of
step–size control in this experiment, as this would make an interpretation
of the obtained results much more difficult.

The IEX3 starter, implemented using BDF1 steps internally, performs
similarly to the RK3 starter for small step sizes, but without being plagued
by the numerical stability problems of the RK3 starter for larger step sizes.

We also tried a BI4/50.45 starter. It didn’t work well at all in this ap-
plication. The reason is the following. The backward RK semi–step is nu-
merically highly unstable. It is only stabilized by the Newton iteration. In
the given application, we ran into roundoff error problems. The unstable
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semi–step produced numbers so big that the Newton iteration could not
stabilize them any longer due to roundoff.

Parabolic PDE problems discretized using the MOL approach always
turn into very stiff ODE systems. The more accurate we wish to simulate,
the stiffer the problem becomes. Yet, decent stiff system solvers, such as
DASSL [6.1], are usually quite capable of dealing with such problems
effectively and efficiently.

6.4 Hyperbolic PDEs

Let us now analyze the second class of PDE problems, the hyperbolic PDEs.
The simplest specimen of this class of problems is the wave equation or
linear conservation law :

∂2u

∂t2
= c2 · ∂2u

∂x2
(6.51)

We can easily transform this second–order PDE in time into two first order
PDEs in time:

∂u

∂t
= v (6.52a)

∂v

∂t
= c2 · ∂2u

∂x2
(6.52b)

At this point, we can replace the spatial derivatives again by finite difference
approximations, and we seem to be in business.

Equations (6.53a–e) constitute a complete specification of such a model.

∂2u

∂t2
=

∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞) (6.53a)

u(x, t = 0) = sin
(π

2
x
)

(6.53b)

∂u

∂t
(x, t = 0) = 0.0 (6.53c)

u(x = 0, t) = 0.0 (6.53d)
∂u

∂x
(x = 1, t) = 0.0 (6.53e)

Equation (6.53a) is the one–dimensional wave equation, Eqs.(6.53b–c) con-
stitute its two initial conditions, and Eqs.(6.53d–e) describe its two bound-
ary conditions.

Let us simulate this problem using the MOL approach. We decide to split
the spatial axis into n segments of width δx = 1/n. If we work with the
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central difference formula of Eq.(6.7), and using the symmetry boundary
condition approach at the right end of the interval, we obtain the following
set of ODEs:

u1 = 0.0 (6.54a)
u̇2 = v2 (6.54b)
etc.
u̇n+1 = vn+1 (6.54c)
v1 = 0.0 (6.54d)

v̇2 = n2 (u3 − 2u2 + u1) (6.54e)

v̇3 = n2 (u4 − 2u3 + u2) (6.54f)
etc.

v̇n = n2 (un+1 − 2un + un−1) (6.54g)

v̇n+1 = 2n2 (un − un+1) (6.54h)

with the initial conditions:

u2(0) = sin
( π

2n

)
(6.55a)

u3(0) = sin
(π

n

)
(6.55b)

u4(0) = sin
(

3π

2n

)
(6.55c)

etc.

un(0) = sin
(

(n − 1)π
2n

)
(6.55d)

un+1(0) = sin
(π

2

)
(6.55e)

v2(0) = 0.0 (6.55f)
etc.
vn+1(0) = 0.0 (6.55g)

This is a linear, time–invariant, inhomogeneous, (2n)th–order, single–input
system of the type specified in Eq.(6.29), where:

A =
(

0(n) I(n)

A21 0(n)

)
(6.56)

with:
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A21 = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.57)

A is a band–structured matrix of dimensions 2n× 2n with two separate
non–zero bands. Let us calculate its eigenvalues. They are tabulated in
Table 6.3.

n = 3 n = 4 n = 5 n = 6
±1.5529j ±1.5607j ±1.5643j ±1.5663j
±4.2426j ±4.4446j ±4.5399j ±4.5922j
±5.7956j ±6.6518j ±7.0711j ±7.3051j

±7.8463j ±8.9101j ±9.5202j
±9.8769j ±11.0866j

±11.8973j

TABLE 6.3. Eigenvalue distribution of linear conservation law.

All eigenvalues are strictly imaginary. All hyperbolic PDEs converted to
sets of ODEs using the MOL technique show complex eigenvalues. Many of
them have their eigenvalues spread up and down fairly close to the imagi-
nary axis. The linear conservation law has all its eigenvalues exactly on the
imaginary axis.

Figure 6.8 shows the frequency ratio, i.e., the ratio between the absolute
largest and the absolute smallest imaginary parts of any eigenvalues plotted
over the number of segments used in the discretization.
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FIGURE 6.8. Frequency ratio of the 1D linear conservation law.

Evidently, the frequency ratio of the 1D linear conservation law grows
linearly with the number of segments used in the discretization.
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The numerical challenges are quite different from those in the parabolic
case. The conservation law does not lead to a stiff set of ODEs. No “fast
transients” appear that die out after some time, and consequently, the
step size in the numerical integration must be kept small to account for
all the eigenvalues of the discretized problem. The more narrow the grid
width is chosen, the smaller the time steps will have to be in order to keep
all eigenvalues within the asymptotic region of the numerical integration
algorithm. Luckily, the spreading of the eigenvalues grows only linearly
with the number of segments chosen.

We have seen that PDEs pose a new kind of challenge. In the case of
ODE solutions, we only worried about stability and accuracy. In the case
of PDE solution, we must concern ourselves with stability , accuracy , and
consistency .

Definition: “A discretization scheme is called consistent if the
analytical solution of the discretized problem smoothly approaches
the analytical solution of the original continuous problem as the
grid width is being reduced to smaller and smaller values.”

The consistency error is thus the deviation of the analytical solution of the
discretized problem from the analytical solution of the continuous problem,
whereas the accuracy error is the deviation of the numerical solution of the
discretized problem from the analytical solution of the discretized problem.1

The example of Eqs.(6.53a–e) is so simple that an analytical solution of
the continuous (field) problem can be given. It is:

u(x, t) =
1
2

sin
(π

2
(x − t)

)
+

1
2

sin
(π

2
(x + t)

)
(6.58)

Since the discretized problem is linear with constant input, we can use the
method described in Hw.[H4.8] to derive its analytical solution. Thus, we
can go after the consistency error directly.

Figure 6.9 shows in its top left graph the analytical solution of the orig-
inal PDE problem, in its top right graph the analytical solution of the
discretized ODE problem. The two solutions look identical when compared
by the naked eye. The bottom left curve shows the difference between the
top two curves.

Since the input function is zero, the solution of the discretized ODE prob-
lem is independent of the chosen step size, h, in time. The discretization in

1Traditionally, the numerical PDE literature talks about the three facets: stability,
consistency, and convergence. It is then customary to prove that any two of the three
imply the third one, i.e., it is sufficient to look at any selection of two of the three [6.13].
However, that way of reasoning is more conducive to fully discretized (finite difference
or finite element) schemes, where the step size in time, h, is locked in a fixed relationship
with the grid width in space, δx. Consequently, h and δx approach zero simultaneously.
In the context of the MOL methodology, our approach may be more appealing.
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FIGURE 6.9. Analytical solutions of the 1D wave equation.

time serves here only for the purpose of generating sufficiently many output
points. Hence the curve shown in the bottom left graph is the true consis-
tency error. The only potential sources of numerical pollution could be due
to roundoff and accumulation, but these are insignificant in magnitude in
comparison with the analytical consistency error.

The bottom right graph shows the consistency error plotted against the
number of segments chosen for the spatial discretization. The consistency
error is here much larger than in the previous parabolic PDE examples. If
we wish to obtain simulation results with a numerical accuracy of 1%, the
consistency error itself ought to be at least one order of magnitude smaller.
This means we should choose at least 40 segments for this simulation.

Just like in the case of the parabolic PDE problems, let us discuss what
happens when we choose a higher–order discretization in space. Let us try
first with 5th–order central differences.

Figure 6.10 shows the frequency ratio plotted against the number of
segments chosen in the spatial discretization scheme. The frequency ratio
of the 3rd–order scheme is plotted on the same graph for comparison.

The frequency ratio of the more accurate 5th–order scheme is consistently
higher than that of the less accurate 3rd–order scheme for the same num-
ber of segments. Since the true PDE solution, corresponding to the solution
with infinitely many infinitely dense discretization lines, has a frequency
ratio that is infinitely large, we suspect that choosing a higher–order dis-
cretization scheme may indeed help with the reduction of the consistency



216 Chapter 6. Partial Differential Equations

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

5th−order

scheme

3rd−order

scheme

Frequency Ratio of 1D Linear Conservation Law

Number of Segments

Fr
eq

ue
nc

y
R

at
io

FIGURE 6.10. Frequency ratio of the 1D wave equation.

error.
Figure 6.11 shows the consistency error plotted over the number of seg-

ments used in the discretization. The improvement is quite dramatic. The
consistency error has been reduced by at least two orders of magnitude.
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FIGURE 6.11. Consistency error of the 1D wave equation.

In a true simulation experiment, the 5th–order spatial discretization
scheme should be implemented using the Richardson predictor–corrector
technique presented earlier in this chapter.

Let us compute the cost–versus–accuracy plot for the above problem,
comparing the various third–order algorithms to each other that we mean-
while know. We shall use 50 segments for the spatial discretization together
with 5th–order central differences, in order to keep the consistency error
sufficiently small, so that it won’t affect the simulation results.

We computed the global accuracy of seven algorithms for simulating the
discretized wave equation across 10 seconds of simulated time using a fixed
step size of h, namely: RK3, IEX3, BI3, AB3, ABM3, AM3, and BDF3. We
chose the step sizes: h = 0.1, h = 0.05, h = 0.02, h = 0.01, h = 0.005, h =
0.002, and h = 0.001 corresponding to 100, 200, 500, 1000, 2000, 5000, and
10000 steps, respectively. The results are tabulated in Table 6.4.
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h RK3 IEX3 BI3
0.1 unstable 0.6782e-4 0.4947e-6
0.05 unstable 0.8668e-5 0.2895e-7
0.02 unstable 0.5611e-6 0.1324e-8
0.01 0.7034e-7 0.7029e-7 0.2070e-8
0.005 0.8954e-8 0.8791e-8 0.2116e-8
0.002 0.2219e-8 0.2145e-8 0.2120e-8
0.001 0.2127e-8 0.2119e-8 0.2120e-8

h AB3 ABM3 AM3 BDF3
0.1 unstable unstable unstable garbage
0.05 unstable unstable unstable garbage
0.02 unstable unstable unstable garbage
0.01 unstable 0.6996e-7 unstable garbage
0.005 0.7906e-7 0.8772e-8 0.8783e-8 0.9469e-2
0.002 0.5427e-8 0.2156e-8 0.2149e-8 0.1742e-6
0.001 0.2239e-8 0.2120e-8 0.2120e-8 0.4363e-7

TABLE 6.4. Comparison of accuracy of integration algorithms.

Using a step size of h = 0.001, all seven integration algorithms simulate
the problem successfully. In fact, all of them with the exception of BDF3
are down to the level of the consistency error.

As the step size becomes smaller, the higher–order terms in the Taylor–
series expansion become less and less important. For sufficiently small step
sizes, all integration algorithms behave either like forward or backward
Euler.

BDF3 performs a little poorer than the other algorithms, because its
error coefficient is considerably larger than those of its competitors. BDF
algorithms perform generally somewhat poor in terms of accuracy in com-
parison with their peers of equal order. The BDF algorithms had been
known before they were made popular by Bill Gear in the early seventies
[6.9]. However, they were considered “garbage algorithms” due to their poor
accuracy properties.

It turns out that the problem is kind of “stiff,” although it does not meet
most of John Lambert’s definitions of stiffness [6.11]. The problem is “stiff”
in the sense that all the algorithms with stability domains looping into the
left–half plane are unable to produce solutions with the desired accuracy
of 1.0%, since they are numerically unstable when a step size is used that
would produce the desired accuracy otherwise. BDF3 doesn’t suffer the
same fate, but it eventually succumbs to error accumulation problems. As
the step sizes grow too big, the computations become so inaccurate that
the simulation error exceeds the simulation output in magnitude. Hence
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BDF3 starts accumulating numerical garbage.
Only IEX3 and BI3 are capable of solving the problem successfully for

large step sizes. Between the two, BI3 seems to work a little better, which
is no big surprise. Being an F–stable algorithm, BI3 is earmarked for these
types of applications.

Figure 6.12 presents the same results graphically in a cost vs. accuracy
plot.
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FIGURE 6.12. Cost vs. accuracy of the 1D wave equation.

These results are somewhat deceiving, since they do not take into account
the effort spent in computing inverse Hessians. This decision was taken on
purpose, since the number of function evaluations is the only objective
measure available that depends on the algorithm alone, rather than on
implementational details of the production code, as different codes vary a
lot in how often and how accurately they compute inverse Hessians.

Of course, since the given problem is linear and since we don’t vary
the step size ever, it would suffice to compute one inverse Hessian at the
beginning of the simulation. Yet, this fact is peculiar to the specific problem
at hand. For nonlinear problems, the explicit algorithms, i.e., RK3, AB3,
and ABM3, may be at least as attractive as BI3.

We would still argue in favor of the BI algorithms for these types of
applications, not because of their superior cost–per–accuracy properties,
but because of their better robustness characteristics. Using BI3, we can
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obtain a decent answer using any step size that we may try without having
the algorithm blow up on us, and we get a meaningful accuracy in each
and every case.

We could have included also GE3 in the comparison of this section.
Since the problem to be solved is a linear conservation law, the stand–
alone versions of the explicit Godunov schemes would have been excellently
suited for the task at hand. However, we decided against doing so, because
the comparison would have been quite unfair. All of the techniques com-
pared against each other in this section are general–purpose numerical ODE
solvers, whereas the stand–alone versions of the GE algorithms are limited
to dealing with linear conservation laws only.

6.5 Shock Waves

Let us now study a more involved hyperbolic PDE problem. A thin tube of
length 1 m is initially pressurized at pB = 1.1 atm. The tube is located at
sea level, i.e., the surrounding atmosphere has a pressure of p0 = 1.0 atm =
760.0 Torr = 1.0132 · 105 N m−2. The current temperature is T = 300.0 K.
At time zero, the tube is opened at one of its two ends. We wish to determine
the pressure at various places inside the tube as functions of time.1

As the tube is opened, air rushes out of the tube, and a rarefaction wave
enters the pipe. Had the initial pressure inside the pipe been smaller than
the outside pressure, air would have rushed in, and a compression wave
would have formed.

The problem can be mathematically described by a set of first–order
hyperbolic PDEs:

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x
(6.59a)

∂v

∂t
= −v · ∂v

∂x
− a

ρ
(6.59b)

∂p

∂t
= −v · a − γ · p · ∂v

∂x
(6.59c)

a =
∂p

∂x
+

∂q

∂x
+ f (6.59d)

q =

{
β · δx2 · ρ · ( ∂v

∂x

)2
; ∂v

∂x < 0.0
0.0 ; ∂v

∂x ≥ 0.0
(6.59e)

f =
α · ρ · v · |v|

δx
(6.59f)

1The problem can be found in a slightly modified form in the FORSIM–VI manual
[6.4]. It is being reused here with the explicit permission by the author.
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where ρ(x, t) denotes the gas density inside the tube at position x and time
t, v(x, t) denotes the gas velocity , and p(x, t) denotes the gas pressure.
The quantity a was pulled out into a separate algebraic equation, since the
same quantity is used in two places within the model. The two quantities
computed in Eqs.(6.59e–f) are artificial, as their dependence on δx shows.
Clearly, δx is not a physical quantity, but is introduced only in the process
of converting the (small) set of PDEs into a (large) set of ODEs. q denotes
the pseudo viscous pressure, and f denotes the frictional resistance. They
were introduced by Richtmyer and Morton [6.14] in order to smoothen
out numerical problems with the solution. We shall discuss this issue in
due course. γ is the ratio of specific heat constants, a non–dimensional
constant with a value of γ = cp/cv = 1.4. α and β are non–dimensional
numerical fudge factors. We shall initially assign the following values to
them: α = β = 0.1. The “ideal” (i.e., undamped) problem has α = β = 0.0.

Introduction of the two dissipative terms is not a bad idea, since the
“ideal” solution does not represent a physical phenomenon in any true
sense. Phenomena without any sort of dissipation belong allegedly in the
world that we may enter after we die. They certainly don’t form any part
of this universe.

The initial conditions are:

ρ(x, t = 0.0) = ρB (6.60a)
v(x, t = 0.0) = 0.0 (6.60b)
p(x, t = 0.0) = pB (6.60c)

where ρB is determined by the equation of state for ideal gases (cf. Chap-
ter 9 of the companion book Continuous System Modeling [6.5]):

ρB =
pB · Mair

R · T (6.61)

where T = 300.0 is the absolute temperature (measured in Kelvin), R =
8.314 J K−1 mole−1 is the gas constant, and Mair = 28.96 g mole−1 is the
average molar mass of air.1 The boundary conditions are:

v(x = 0.0, t) = 0.0 (6.62a)
ρ(x = 1.0, t) = ρ0 (6.62b){

v(x = 1.0, t) = −
√

2(p0−p(x=1.0,t)
ρ(x=1.0,t) ; v(x = 1.0, t) < 0.0

p(x = 1.0, t) = p0 ; v(x = 1.0, t) ≥ 0.0
(6.62c)

1Air consists roughly to 78% of nitrogen (N2) with a molar mass of 28 g mole−1, to
21% of oxygen (O2) with a molar mass of 32 g mole−1, and to 1% of argon (Ar) with a
molar mass of 40 g mole−1.
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As proposed in [6.4], we converted all spatial derivatives by means of
second–order accurate central differences using the formula:

∂u

∂x

∣∣∣∣
x=xi

≈ 1
2δx

· (ui+1 − ui−1) (6.63)

except near the boundaries, where we used second–order accurate biased
formulae:

∂u

∂x
(x = x1, t) ≈ 1

2δx
·(−u3 + 4u2 − 3u1) (6.64a)

∂u

∂x
(x = xn+1, t) ≈ 1

2δx
·(3un+1 − 4un + un−1) (6.64b)

where u can stand for either ρ, v, p, or q.
In order to keep the consistency error small, we chose 50 segments for

each of the three PDEs. We created a MATLAB function:

ux = partial(u, δx, bc, bctype) (6.65)

which implements the above set of formulae with correction terms in the
case of a symmetry boundary condition. The variable bc indicates whether
the boundary condition is applied at the left end, bc = −1, or at the right
end, bc = +1. The variable bctype specifies the type of boundary condition.
bctype = 0 indicates a symmetry boundary condition. bctype = 1 denotes
a function value condition.

In the case of a symmetry boundary condition, the central formulae are
used all the way to the boundary while folding the values that are outside
the domain back into the domain, as explained earlier.

The correction formulae are:

∂u

∂x
(x = x1, t) ≈ 0.0 (6.66)

for a symmetry boundary condition at the left end, and:

∂u

∂x
(x = xn+1, t) ≈ 0.0 (6.67)

for a symmetry boundary condition at the right end.
The state–space model itself has been encoded in another MATLAB

function:

function [xdot] = st eq(x, t)
%
% State − space model of shock − tube problem
%
n = round(length(x)/3);
n1 = n + 1;
δx = 1/n;
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%
% Constants
%

R = 8.314;
%
% Physical parameters

%

Temp = 300;
Mair = 0.02896;
p0 = 1.0132e5;
ρ0 = p0 ∗ Mair/(R ∗ Temp);

γ = 1.4;
%
% Fudge factors
%
global α β
%
% Unpack individual state vectors from total state vector
%
ρ = [ x(1 : n) ; ρ0 ];
v = [ 0 ; x(n1 : 2 ∗ n) ];
p = x(n1 + n : n1 + 2 ∗ n);
%
% Calculate nonlinear boundary condition
%
if v(n1) < 0,

v(n1) = −sqrt(max([2 ∗ (p0 − p(n1))/ρ(n1), 0]));
else

p(n1) = p0;
end
%

% Calculate spatial derivatives
%
ρx = partial(ρ, δx, +1, +1);
vx = partial(v, δx,−1, +1);
px = partial(p, δx, +1, +1);
%
% Calculate algebraic quantities
%
f = α ∗ (ρ . ∗ v . ∗ abs(v))/δx;
q = zeros(n1, 1);
for i = 1 : n1,

if vx(i) < 0,
q(i) = β ∗ (δx2) ∗ ρ(i) ∗ (vx(i)2);

end,
end
qx = partial(q, δx,−1, +1);
a = px + qx + f ;
%
% Calculate temporal derivatives
%
ρt = −(v . ∗ ρx) − (ρ . ∗ vx);
vt = −(v . ∗ vx) − (a ./ ρ);
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pt = −(v . ∗ a) − γ ∗ (p . ∗ vx);
%
% Pack individual state derivatives into total state derivative vector
%
xdot = [ ρt(1 : n) ; vt(2 : n1) ; pt ];

return

The resulting set of 151 nonlinear ODEs was simulated across 0.01 sec
using the RKF4/5 algorithm, as we learnt that RK algorithms are expected
to perform decently when faced with nonlinear hyperbolic PDE problems
converted to sets of ODEs by the MOL approach.

This time around, we used all the bells and whistles and included step–
size control in time. The results of this simulation are shown in Fig.6.13.
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FIGURE 6.13. Shock tube simulation.

The first three graphs depict ρ(x, t), v(x, t), and p(x, t). The solutions
look like the water falls of the Iguazu looked at from the Argentinean side
of the river. The bottom left parts of all three functions look dangerously
irregular in shape. Are the simulation results inaccurate?

The bottom right curve shows the air pressure as a function of time. The
solid curve depicts the pressure 20 cm away from the closed end, the dashed
line shows the pressure 40 cm away, the dot–dashed line 60 cm away, and
the dotted line 80 cm away.

As the end of tube opens, the point closest to the opening experiences the
rarefaction wave first. The points further into the tube experience the wave
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later. From Fig.6.13, it can be concluded that the wave travels through the
tube with a constant wave–front velocity of roughly 35 cm per 0.001 sec,
or 350.0 m sec−1. This is the correct value of the velocity of sound at sea
level and at a temperature of T = 300 K. Thus, our simulation seems to
be working fine. (There is nothing more healthy in simulation of physical
systems than a little reality check once in a while!)

As the rarefaction wave reaches the closed end of the tube, the inertia
of the flowing air creates a vacuum. The air flows further, but cannot be
replaced by more air from the left. Consequently, the air pressure now sinks
below that of the outside air.

As the vacuum reaches the open end of the tube, a new wave is created,
this time a compression wave, that races back into the tube.

We ended the simulation at t = 0.01 sec, since shortly thereafter, the
Runge–Kutta algorithm would finally give up on us, and die with an error
message.

How accurate are these simulation results? To answer this question, we
repeated the simulation with 100 segments. The simulated air pressure at
the center of the tube, x = 50 cm, is shown in Fig.6.14. For comparison, the
results of the 50–segment simulation are superposed on the same graph. As
the model itself depends explicitly on the grid width, we set α = β = 0.0
for this experiment. In this way, the explicit (artificial) dependence of the
model on the grid width is eliminated.
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FIGURE 6.14. Consistency error for shock tube simulation.

The simulation results are visibly different. Moreover, the differences
seem to grow over time. Is this a consistency error, or simply the result of
an inaccurate simulation?

To answer this question, we repeated the same experiment, this time us-
ing a different integration algorithm. The F–stable Backinterpolation tech-
nique is supposed to work at least as well as the RK algorithm.

The simulation results are indistinguishable by naked eye. Whereas the
largest relative distance between the air pressure with 50 and 100 segments:
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err =
max(max(abs(p100 − p50)))

max([‖p100‖, ‖p50‖]) (6.68)

is err = 7.5726e − 4, the largest relative distance between the air pressure
with 50 segments comparing the two different integration algorithms is
err = 1.2374e − 7, and with 100 segments, it is err = 6.3448e − 7.

Hence the simulation error is smaller than the consistency error by three
orders of magnitude. Evidently, we are not faced with a simulation problem
at all, but rather with a modeling problem. The simulation is as accurate
as can be expected.

The BI4 algorithm is considerably less efficient than the RKF4/5 algo-
rithm in simulating this problem. Its inefficiency is not caused by the step
size. In fact, the step–size controlled BI4 algorithm can make use of step
sizes that are quite a bit larger than those used by RKF4/5. The ineffi-
ciency is caused by the computation of the Jacobians and of the inverse
Hessians.

Since the problem is nonlinear, the Jacobians need to be numerically
estimated, using an algorithm such as:

function [J ] = jacobian(x, t)
%
% Jacobian of shock − tube problem
%
n = length(x);
J = zeros(n, n);
xdref = st eq(x, t);
for i = 1 : n,

xnew = x;
if abs(x(i)) < 1.0e − 6,

xnew(i) = 0.05;
else

xnew(i) = 1.05 ∗ x(i);
end,
xdnew = st eq(x, t);
J(:, i) = (xdnew − xdref )/(xnew(i) − x(i));

end
return

Thus, every single Jacobian, which is being computed once per inte-
gration step, requires 152 additional function evaluations in the case of a
50–segment simulation, and 302 additional function evaluations in the case
of a 100–segment simulation. No wonder that production codes of implicit
ODE solvers are frugal in the frequency of Jacobian evaluations.

The Hessian is of the same size as the Jacobian:

H = I(n) + J · h̄ +
1
2!

· (J · h̄)2 +
1
3!

· (J · h̄)3 +
1
4!

· (J · h̄)4 (6.69)

where h̄ = −h/2 is the step size of the right half–step of the BI4 algorithm.
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The Hessian is used in a Gauss elimination step once per iteration step:

while err2 > 0.1 ∗ tol,

[xright4, xright5] = rkf45 step(xnew, tnew,−h/2);
nfct = nfct + 6;
xnew = xnew − H\(xright4 − xleft4);
err2 = norm(xright4 − xleft4, ′inf′)/max([norm(xleft4),norm(xright4), tol]);

end

The computational burden of these algorithms is atrocious. We shall have
to do something about the size of these matrices. This problem shall be
tackled in the next chapter of this book.

What can we do to reduce the consistency error? From our previous
observation, we know the answer to this question. If we increase the ap-
proximation order of the spatial derivatives by two, the consistency error
is expected to decrease by two orders of magnitude.

We modified the partial function to use fourth–order accurate central
differences instead of the previously used second–order accurate central
differences. To this end, the following formulae were now coded into the
partial function:

∂u

∂x

∣∣∣∣
x=xi

≈ 1
12δx

· (−ui+2 + 8ui+1 − 8ui−1 + ui−2) (6.70)

except near the boundaries, where we used fourth–order accurate biased
formulae:

∂u

∂x
(x = x1, t) ≈ 1

12δx
·(−3u5 + 16u4 − 36u3 + 48u2 − 25u1) (6.71a)

∂u

∂x
(x = x2, t) ≈ 1

12δx
·(u5 − 6u4 + 18u3 − 10u2 − 3u1) (6.71b)

∂u

∂x
(x = xn, t) ≈ 1

12δx
·(3un+1 + 10un − 18un−1 + 6un−2 − un−3)

(6.71c)
∂u

∂x
(x = xn+1, t) ≈ 1

12δx
·(25un+1 − 48 ∗ un + 36un−1 − 16un−2

+ 3un−3) (6.71d)

In the case of a symmetry boundary condition, the central formulae are
used all the way to the boundary while folding the values that are outside
the domain back into the domain, as explained earlier.

The correction formulae are:
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∂u

∂x
(x = x1, t) ≈ 0.0 (6.72a)

∂u

∂x
(x = x2, t) ≈ 1

12δx
· (−u4 + 8u3 + u2 − 8u1) (6.72b)

(6.72c)

for a symmetry boundary condition at the left end, and:

∂u

∂x
(x = xn, t) ≈ 1

12δx
· (8un+1 − un − 8un−1 + un−2) (6.73a)

∂u

∂x
(x = xn+1, t) ≈ 0.0 (6.73b)

for a symmetry boundary condition at the right end.
We then simulated the system using RKF4/5. Unfortunately, the ex-

periment failed miserably. The integration step size had to be reduced by
three orders of magnitude to values around h = 10−8, in order to obtain a
numerically stable solution, and the results are still incorrect.

What happened? In the previous experiment, the global relative simu-
lation error had been around err = 10−7, which is small in comparison
with the consistency error, but is still quite large, taking into account that
MATLAB computes everything in double precision. With step sizes in the
order of h = 10−5, we had already sacrificed roughly nine digits to shiftout.

In the new experiment with step sizes smaller by three orders of magni-
tude, we lose at least another three digits to shiftout, i.e., the simulation
error is now of the same order of magnitude as the former consistency error.
Hence we have not gained anything.

In reality, the problem is even worse. With step sizes that small, the
higher order terms of the Taylor–series expansion become irrelevant, and
RKF4/5 behaves just like forward Euler. Consequently, also the stability
domain of the method shrinks to that of forward Euler, which is totally
useless with eigenvalues of the Jacobian spreading up and down along the
imaginary axis of the complex λ · h–plane.

How did BI4 fare in this endeavor? Unfortunately, its destiny is not much
better than that of RKF4/5. Remember that BI4 consists of two semi–steps
of RKF4/5. With larger step sizes, the left forward RKF4/5 semi–step
produces highly unstable xleft4 values, which the right backward RKF4/5
semi–step needs to stabilize in its Newton iteration.

Unfortunately, it cannot do so, because in the statement:

xnew = xnew − H\(xright4 − xleft4); (6.74)

we subtract a potentially very large number, xleft4, from another equally
large number, xright4, which again leads to an extreme case of roundoff.
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With smaller step sizes, the BI4 algorithm degenerates to a forward Euler
semi–step followed by a backward Euler semi–step, i.e., to an inefficient
implementation of the trapezoidal rule. This is clearly superior to forward
Euler alone, since also BI2 is still F–stable, but unfortunately, the semi–
steps themselves still suffer from the shiftout problems of the RKF4/5
algorithm, i.e., the simulation error is still of the same order of magnitude
as the former consistency error.

Why did all simulation attempts fail after a little more than 0.01 seconds
of simulated time? In flow simulations (and in real flow phenomena), it can
happen that the top of the wave travels faster than the bottom of the
wave. When this happens, the wave will eventually topple over, and at this
moment, the wave front becomes infinitely steep. The flow is no longer
laminar , it has now become turbulent .

This is what happens in our shock–tube problem as subsequent versions
of rarefaction and compression waves chase after each other back and forth
through the tube at ever shorter time intervals. No wonder that the bottom
of the three–dimensional plots of the shock–tube simulation look like the
bottom of a water fall.

The MOL approach doesn’t work for simulating turbulent flows. There
exist other simulation techniques (such as the vortex methods [6.12]) that
work well for very high Reynolds numbers (above 100 or 1000), and that
don’t work at all for laminar flows. Reynolds numbers between 1.0 (transi-
tion from laminar to turbulent flow) and 100, is where the real research in
numerical solution of hyperbolic PDE problems is to be found. Until this
day, we don’t have any decent simulation methods that can deal appropri-
ately with turbulent flows at low Reynolds numbers.

6.6 Upwind Discretization

In the previous section, we have recognized that hyperbolic PDEs, when
converted to sets of ODEs using the MOL approach, lead to systems that
share into some of the properties associated with stiff systems, although
they do not meet most of the definitions of stiff systems. Yet, the step size
had to be often reduced in order to obtain stable solutions when using
explicit integration algorithms. In the case of the shock–tube example, the
step size reduction was detrimental in that it led to a bad shiftout problem,
before the consistency error could be reduced to an insignificantly small
value.

How can we stabilize the RK algorithms when dealing with hyperbolic
PDEs? One successful idea that was first proposed by Carver and Hinds is
to bias the spatial discretization formulae of moving waves in the direction
of the provenance of the wave [6.3].

Many wave propagation problems can be formulated in the following
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way:

∂u

∂t
+ v · ∂u

∂x
= 0.0 (6.75)

The velocity v determines the direction of flow of the wave. If v > 0, the
wave moves from left to right. If v < 0, it moves from right to left.

The upwind discretization scheme can thus be implemented e.g. as fol-
lows:

∂u

∂x
(x = xi, t) ≈

⎧⎨
⎩

(3ui − 4ui−1 + ui−2)/(2δx) , v � 0
(ui+1 − ui−1)/(2δx) , v ≈ 0

(−ui+2 + 4ui+1 − 3ui)/(2δx) , v � 0
(6.76)

if second–order accurate spatial differences are to be used.
Looking once more at the shock–tube problem with α = β = 0.0 :

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x
(6.77a)

∂v

∂t
= −v · ∂v

∂x
− 1

ρ
· ∂p

∂x
(6.77b)

∂p

∂t
= −v · ∂p

∂x
− γ · p · ∂v

∂x
(6.77c)

we notice that all three of these PDEs look like Eq.(6.75), each with a
correction term.

We thus encoded the fourth–order accurate upwind formulae in the func-
tion:

ux = upwindv(u, δx, bc, bctype, fdirv) (6.78)

where fdirv is a vector of flow directions, and replaced each occurrence of
partial in the state equations by upwindv, setting the argument fdirv as
the velocity vector, v.

Unfortunately, it didn’t work. The shock–tube model discretized using
any fourth–order accurate spatial discretization scheme seems to be unsta-
ble beyond redemption.

Upwind discretization schemes have become quite fashionable in recent
years and come in many different variations. They can be quite effective
at times. We still like the original scheme [6.3] best for its simplicity. Yet,
there doesn’t seem to exist a clean recipe for when and how to use upwind
discretization. Sometimes, it helps to only discretize one of several PDEs
using an upwind scheme, while discretizing the remaining PDEs using a
central difference scheme. What works best can often only be determined
by trial and error.
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6.7 Grid–width Control

How can we make the solution more accurate without paying too much for
it? We already know that it is generally a bad idea to reduce the consistency
error by decreasing the grid width. It is much more effective to increase the
approximation order of the spatial discretization scheme, whenever possi-
ble. Yet, the shock–tube problem has demonstrated that this approach may
not always work.

A more narrow grid may be needed in order to accurately compute a
wave front. It seems intuitively evident that a more narrow grid width
should be used where the absolute spatial gradient is large, thus:

δxi(t) ∝
∣∣∣∣∂u

∂x
(x = xi, t)

∣∣∣∣
−1

(6.79)

When applied to hyperbolic PDEs, Eq.(6.79) unfortunately suggests use of
an adaptively moving grid , since the narrowly spaced regions of the grid
should follow the wave fronts through space and time.

As we mentioned earlier, näıvely implemented grid–width control is prob-
lematic, to say the least. However when implemented carefully, grid–width
control can provide an answer to containing the consistency error with-
out leading to either numerical stability problems or at least unacceptably
expensive simulation runs. Mack Hyman published some very interesting
results on this topic [6.10]. The general gist of his algorithms is the fol-
lowing. We basically operate on a fixed grid as before. However, we want
to make sure that:

δxi(t) ·
∣∣∣∣∂u

∂x
(x = xi, t)

∣∣∣∣ ≤ kmax (6.80)

at all times. If the absolute spatial gradient grows at some point in space
and time, we must reduce the local grid size in order to keep Eq.(6.80)
satisfied. We do this by inserting a new auxiliary grid point in the middle
between two existing points. We should do this before the consistency error
grows too large. It thus makes sense to look at the quantity:

1
h

(∣∣∣∣∂u

∂x
(x = xi, t = tk)

∣∣∣∣−
∣∣∣∣∂u

∂x
(x = xi, t = tk−1)

∣∣∣∣
)

≈ d

dt

(∣∣∣∣∂u

∂x
(x = xi, t)

∣∣∣∣
)

(6.81)
If Eq.(6.80) is in danger of not being satisfied any longer and if the temporal
gradient of the absolute spatial gradient is positive, we insert a new grid
point. On the other hand, if Eq.(6.80) shows a sufficiently small value and
if furthermore the temporal gradient is negative, neighboring auxiliary grid
points can be thrown out again.

The new grid point solutions are computed using spatial interpolation.
These solutions are then used as initial conditions for the subsequent inte-
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gration of the newly activated differential equations over time. When a grid
point is thrown out again, so is the differential equation that accompanies
it.

The entire process is completely transparent to the user. Only those
solution points are reported for which a solution had been requested. The
actually used basic grid width (determined using true grid–width control at
time zero) and the auxiliary grid points that are introduced and removed
during the simulation run are internal to the algorithm, and the casual user
doesn’t need to be made aware of their existence. This corresponds to the
concept of communication points and a communication interval discussed
in Chapter 4 of this book.

6.8 PDEs in Multiple Space Dimensions

In principle, the MOL methodology can be extended without modification
to the case of PDEs in multiple space dimensions. For example, the two–
dimensional heat flow problem:

∂u

∂t
= σ

(
∂2u

∂x2
+

∂2u

∂y2

)
(6.82)

discretized using third–order accurate finite difference formulae for both
the discretization in the x– and in the y–directions leads to the following
ODE at point x = xi and y = yj :

dui,j

dt
≈ σ

(
ui+1,j − 2ui,j + ui−1,j

δx2
+

ui,j+1 − 2ui,j + ui,j−1

δy2

)
(6.83)

but the problems are formidable. The first, and most frightening, problem
is concerned with the sheer numbers of resulting ODEs. Everything that we
wrote about the consistency error still applies. Except for toy problems, we
shall certainly need in the order of 50 segments in each space direction, in
order to obtain sufficiently smooth output curves. In two space dimensions,
this leads to 50×50 = 2500 ODEs. In the case of three space dimensions, we
obtain 50×50×50 = 125, 000 ODEs. Let us assume the differential equation
is linear, and we decided to write it in matrix form. The A–matrix of the
three-dimensional problem consists of 125, 000×125, 000 = 15, 625, 000, 000
elements. If you are interested in solving such problems, you better get
yourself a fast computer and powerful sparse matrix solvers. This is the
kind of problems for which supercomputers were invented.

The second problem has to do with the distribution of the non–zero
elements in the A–matrix. Until now, it always happened that the A–
matrix of a single linear PDE converted by use of finite differences was
band–structured with a narrow band width. There exist special matrix
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routines for very efficient handling of band–structured matrices. Unfortu-
nately, the same technique no longer applies to two– and three–dimensional
PDEs. Figure 6.15 shows the distribution of non–zero elements in the two–
dimensional and three–dimensional heat equations converted to ODEs by
means of third–order accurate finite differences using 10 segments in each
space dimension. The differential equations were numbered from left to
right, from top to bottom, and from front to back, i.e., starting with the
last of the three indices. We assumed function value boundary conditions
along all edges of the solution cube.

2D Heat Equation 3D Heat Equation

Columns of AColumns of A

R
ow

s
of

A

R
ow

s
of

A

FIGURE 6.15. Distribution of non–zero elements in 2D and 3D heat equations.

Whereas the band width was five in the one–dimensional case, it is 4n+1
in the two–dimensional case, and 4n2 + 1 in the three–dimensional case.
Of course, the precise structure of the A–matrix is application dependent.
Unfortunately, this means that, when efficiency becomes truly an issue, we
may no longer be able to apply the highly efficient algorithms for han-
dling band–structured matrices. General sparse matrix techniques will still
work, but they are considerably less efficient than the band–structured al-
gorithms.

Special algorithms have been designed for renumbering a set of linear
equations in such a manner as to minimize the band width of the resulting
A–matrix. For example the red–black algorithm often works well. These
algorithms have been described in [6.15].

Unfortunately, we are not at the end of our misery yet. The next problem
is illustrated in Fig.6.16.

Figure 6.16 shows a PDE that is defined on an irregularly shaped domain.
Until now, we were always able to make the boundary condition coincide
with one of the grid points. As Fig.6.16 shows, this may no longer be true
in the multidimensional case.

Let us assume that four neighboring values on grid points in x–direction
for y = yj are u1,j , u2,j , u3,j , and u4,j . Let us assume further that the
boundary value is known at x = x1.35 located between x1 and x2.

If we know the four solution values u1,j , u2,j , u3,j , and u4,j , we can use
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FIGURE 6.16. Irregular domain boundaries.

the Nordsieck vector approach presented in Chapter 4 to compute u1.35,j .
u1.35,j can be expressed as a weighted sum of u1,j , u2,j , u3,j , and u4,j . In
reality, however, we know u1.35,j (boundary value), and u2,j , u3,j , and u4,j

(through numerical integration). What is unknown is u1,j . Thus, we need
to solve the previously determined equation for the unknown u1,j instead
for the known u1.35,j .

To summarize this section: PDEs in one space dimension were still lots
of fun. PDEs in multiple space dimensions are painful, to say the least.
A large number of applied mathematicians devote their entire academic
careers to nothing but solving these types of challenging numerical PDE
problems. The purpose of the utterly brief description presented in this
section is certainly not to add these specialists to the force of unemployed
people, since you, by now, are able to solve all these problems on your
own. The purpose of this section is to show you that there are still plenty
of very challenging research topics around, and to possibly and hopefully
wake your appetite for delving more deeply into one or the other of those
areas.

6.9 Elliptic PDEs and Invariant Embedding

Equations (6.24) and (6.25) specified what elliptic PDEs are. However, this
way of looking at the nature of PDEs is synthetic. People usually don’t
solve PDEs just for fun. They solve PDEs because they represent physi-
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cal problems that they are interested in. Physically meaningful parabolic
PDEs represent predominantly heat diffusion or chemical reaction prob-
lems, and physically meaningful hyperbolic PDEs describe field problems
in either hydrodynamics, electromagnetism, optics, general relativity the-
ory, etc. Elliptic PDEs, on the other hand, are used to model stress and
strain problems in mechanical structural analysis.

The simplest elliptic PDE is the Laplace equation, e.g. in two space
dimensions:

∂2u

∂x2
+

∂2u

∂y2
= 0.0 (6.84)

Let us assume the Laplace equation is defined in a circular domain of radius
r = 1.0 around the origin. Since the domain is circular, it is much more
appropriate to formulate the problem using polar coordinates .

x = r · cos ϕ (6.85a)
y = r · sin ϕ (6.85b)

or:

r =
√

x2 + y2 (6.86a)

ϕ = arctan
(y

x

)
(6.86b)

We can express u(x, y) as ũ(r(x, y), ϕ(x, y)). Thus,

∂u

∂x
=

∂ũ

∂r
· ∂r

∂x
+

∂ũ

∂ϕ
· ∂ϕ

∂x
(6.87)

or, in short–hand notation:

ux = ũr · rx + ũϕ · ϕx (6.88)

Using the chain rule and the multiplication rule, we find:

uxx + uyy =
(
r2
x + r2

y

)
ũrr + 2 (rxϕx + ryϕy) ũrϕ +

(
ϕ2

x + ϕ2
y

)
ũϕϕ

+ (rxx + ryy) ũr + (ϕxx + ϕyy) ũϕ (6.89)

or finally:

∂2ũ

∂r2
+

1
r
· ∂ũ

∂r
+

1
r2

· ∂2ũ

∂ϕ2
= 0.0 (6.90)

The boundary condition could be something like:
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∂ũ

∂r
= f(ϕ, t) (6.91)

Notice that there is no need for any initial condition, since the PDE doesn’t
depend on time at all (except possibly through the boundary condition as
in the above example). No numerical integration across time will take place
at all. We are thus in trouble with our MOL methodology.

In some cases, we might still be able to apply the MOL approach by
either differentiating along r and integrating along ϕ, or alternatively, by
differentiating along ϕ and integrating along r. In both cases, however, we
would be lacking one initial condition, and would instead have one final
condition too many. This is therefore not an initial value problem, but
rather a boundary value problem. We haven’t discussed yet how those can
be solved.

Does this mean that we have to give up for the time being, or is there a
chance that we may turn this problem into one of our known initial value
problems after all?

Let us simplify Eq.(6.91) a bit by assuming that the boundary condition
does not depend on time. In this case, the problem is totally static in nature,
i.e., the solution is not time–dependent at all. The solution consists simply
of a set of u–values at the grid points.

We can now embed this problem within another problem as follows:

∂ũ

∂t
=

∂2ũ

∂r2
+

1
r
· ∂ũ

∂r
+

1
r2

· ∂2ũ

∂ϕ2
(6.92)

with the boundary condition:

∂ũ

∂r
= f(ϕ) (6.93)

and with arbitrary initial conditions.
This is now clearly a parabolic initial value problem, which we already

know how to solve. Since the PDE is analytically stable, and since the
boundary condition is not a function of time, the solution will eventually
settle into a steady state. However, once the steady state has been reached,
the solution no longer changes with time, thus:

∂ũ

∂t
= 0.0 (6.94)

Therefore we conclude that the steady–state solution of the parabolic PDE
is identical with the solution of the original elliptic PDE. This method of
solving elliptic PDEs is called invariant embedding .1 Of course, the price
that we have to pay for this comfort is formidable. We were able to convert

1A majority of the references spell “imbedding” with an “i” rather than with an “e,”
probably because the inventor of the method didn’t have a dictionary handy when he
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a boundary value problem into an initial value problem at the expense of
increasing the number of dimensions by one.

6.10 Finite Element Approximations

Those of you who read the companion book Continuous System Modeling
[6.5] know our reservations against writing down mathematical formulae
deprived of their physical meaning. Mathematics is no end in itself. Math-
ematics is simply the language of physics. Voltages and currents in an elec-
tronic circuit don’t change their values as functions of time, because they
observe some differential equations. They change their values in order to
bring the system to a state of minimal energy. A differential equation is
not the cause that makes physics tick, it is only one way of describing,
in mathematical terms and after the fact, what happens in the process of
energy exchange taking place in the physical system.

You may remember also that there are two ways of looking at energy
conservation laws:

1. We can look at the energy itself. In the most general case, we write
down a Hamiltonian or possibly a Hamiltonian field of the system
(at least if the system is conservative), and from there, we can then
derive a set of differential equations if we so choose.

2. Rather than looking at the stored energy itself, we can look at incre-
mental energies, i.e., at power flows . This leads directly to the bond
graph approach to modeling that was advocated in Chapters 7–9 of
the companion book.

We strongly advocated the latter approach since power flow is a local prop-
erty of the system, whereas energy is a global property of the system. Thus,
power flow considerations lend themselves directly to an object–oriented
approach to modeling.

In distributed parameter system simulation, the situation is a little differ-
ent. As explained earlier, the PDE models that we are dealing with today
are still structurally so simple that object orientation is of little concern.
Also, especially if we are solving a boundary value problem anyway, as in
the case of the elliptic PDEs, we need to solve a global optimization prob-
lem over the entire definition domain of the PDE, thus, the advantages of
a local model description are gone.

Looking at the solution of the previously discussed Laplace equation,
we know that the solution will minimize the amount of energy stored in

wrote his first paper about the method . . . but we cannot bring ourselves to follow the
trend — it looks so ugly (!)
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the system. Consequently, we can write an energy function parameterized
in the (unknown) solution values, and solve a minimization problem over
the set of unknown parameters. This leads to a set of algebraic equations,
possibly nonlinear, in the unknown solution vector.

Approaches that follow this line of reasoning are called finite element
methods. They come in many shades and colors. The technique was origi-
nally developed by civil engineers trying to determine the static stress in
bridges and other building structures. However, the method has a much
broader range of possible applications. For all practical purposes, it can be
viewed as an alternative to the finite difference approaches. Thus, it can
conceptually also be used for other than elliptic PDEs.

The two approaches have their own particular advantages and disadvan-
tages. Finite elements usually are less infected by problems with consistency
errors than finite difference methods. Consequently, we can get by with a
larger (and irregular) mesh, and thus, with a smaller number of equations.
On the other hand, finite difference approximations always lead to sparse
matrices. Finite element approximations do not share this property. As a
consequence, although the number of equations is smaller in the finite el-
ement case, we may not be able to use sparse matrix techniques, and it
is therefore not evident that the smaller system size truly leads to a more
economical algorithm. Also, a finite difference formulation is usually easier
to derive and harder to solve than a finite element formulation. However, it
is easier to incorporate irregular and even non–convex domain boundaries
into a finite element description.

Meanwhile, finite element methods have also been extended to the solu-
tion of non–stationary problems by means of a Galerkin formulation [6.17].
Thus, finite elements have suddenly become a contender to finite differences
even in the context of the MOL methodology. However, more research in
this area is still needed.

6.11 Summary

In this chapter, we have first and primarily discussed the numerical solution
of PDEs in one space dimension. The method–of–lines approach lets us
reduce such PDEs to large ODE systems that we can solve using regular
ODE software.

Parabolic PDEs lead to sets of (artificially) stiff ODEs that can be treated
appropriately using stiff system solvers such as the BDF algorithms. Since
all of today’s continuous–system modeling and simulation environments,
such as Dymola [6.7, 6.8], offer stiff system solvers as part of their simu-
lation run–time library, it became clear that they are perfectly capable of
dealing with parabolic PDEs in one space dimension. The most cumber-
some part in the conversion process was the derivation of the coefficients for
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the spatial finite difference approximations using Newton–Gregory polyno-
mials, but this process can be easily automated.

Hyperbolic PDEs lead to large sets of marginally stable ODEs that can
best be solved by F–stable integration algorithms, such as the backinter-
polation techniques. However, explicit algorithms, such as AB3 or RKF4/5
may sometimes work just as well, as they avoid the need of computing ex-
pensive Jacobians and inverse Hessians. Hyperbolic PDEs are numerically
more demanding than their parabolic cousins due to the occurrence of trav-
eling shock waves. Adaptive moving mesh algorithms can provide a solution
to this problem, but then call for special–purpose software, since these al-
gorithms are non–trivial in their implementation. It would be too much
of a burden to ask the user to implement such algorithms manually. Yet,
powerful modeling environments can make also this process transparent to
the modeler.

Elliptic PDEs in one space dimension are no PDEs at all. They are one
class of boundary value ODEs, and we shall discuss later in this book how
these can be tackled in general. However, one method was already provided
here, namely the method of invariant embedding, a method that converts
the boundary value ODE into a parabolic PDE in one space dimension,
with which we can then proceed as elaborated above.

Multidimensional PDEs were discussed next. Although they can, in prin-
ciple, be treated in exactly the same manner as their one–dimensional
counterparts, the numerical problems are formidable, and efficiency con-
siderations become here an issue of utmost importance.

Does there exist general–purpose PDE software? We had already men-
tioned the FORSIM–VI software [6.4]. FORSIM–VI is just a Fortran pro-
gram. No preprocessor is involved at all. The user simply provides a Fortran
subroutine describing his or her model. This makes FORSIM inappropriate
for use in more complex ODE situations, since not even an equation sorter
is offered, lest an object–oriented modeling facility. What makes FORSIM
different from any other (simple–minded) ODE simulation system is that
FORSIM provides built–in subroutines for converting spatial derivatives
into finite difference approximations. These routines know how to compute
the necessary coefficients, and consequently, the user doesn’t need to worry
about Newton–Gregory polynomials. FORSIM works with both equidis-
tantly and non–equidistantly spaced grids. FORSIM also offers built–in
routines for converting general and even nonlinear boundary conditions
into boundary value conditions. Thus, FORSIM helps the user tremen-
dously with the encoding of his or her PDEs. Routines are available for
converting PDEs in one to three space dimensions, however, the two– and
three–dimensional routines are not general since they work only on rect-
angular domains. FORSIM is strictly MOL–oriented. Spatial derivatives
are discretized by means of finite difference approximations, whereas tem-
poral derivatives are kept in the program for numerical integration across
time. FORSIM offers a Gear (BDF) algorithm for the solution of parabolic
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problems, and an RKF4/5 algorithm for hyperbolic ones.
A fairly similar software system is DSS/2 [6.16]. The two systems,

FORSIM–VI and DSS/2 are in fact so similar that a further discussion
of DSS/2 can be skipped.

Other systems, such as PDEL [6.2], went another route. For the benefit
of a more finely tuned numerical solution, they sacrificed generality for
efficiency. These software systems allow the user to choose between a set
of standard frequently occurring PDEs, and then employ different types of
(not necessarily MOL) algorithms to solve the problem.

It may be noticed that all of these systems are fairly old. In the early sev-
enties, it was hoped that PDE problems could be solved by general–purpose
PDE software just as ODE problems are solved by general–purpose ODE
software. This turned out to be an illusion. The ODE situation is much
simpler. All we need to do is to provide a tool that allows to choose be-
tween a set of different numerical integration algorithms, and we are in
business. Moreover, it often doesn’t matter too much what algorithm we
choose. One algorithm may be 30% faster or 20% slower than another, but
who cares. Modern PCs have become so powerful that they can effectively
and efficiently deal with the simulation of a large majority of lumped pa-
rameter models. In contrast, there exist many different techniques to solve
PDE problems. Even if we limit our discussion to MOL–solutions, we must
choose:

1. a numerical integration algorithm for integration across time,

2. a grid for discretization in space,

3. a numerical discretization scheme for differentiation across space,

4. an algorithm to translate boundary conditions specified at an arbi-
trary point in space to boundary conditions specified at the nearest
grid point

5. an algorithm for converting general boundary conditions to boundary
value conditions,

and this is only one among many approaches for numerically solving PDEs.
Furthermore, the sensitivity of the solution to the selection of just the right
combination of algorithms is much greater in the PDE case than in the ODE
case. Selecting one method may mean that we have to wait for 50 hours
until we obtain a (hopefully correct) answer, whereas the same problem
may be solved by the best possible combination of algorithms in just a few
seconds.

For these reasons, general–purpose PDE software hasn’t lived up to its
promise. The “casual” user of PDE software cannot be protected from hav-
ing to understand the intricacies of the underlying numerical algorithms,
and the numerical solution to all but toy PDE problems is so expensive
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that it is well worth spending some time on understanding what is going
on before starting to crunch numbers. Getting coefficients out of Newton–
Gregory polynomials may be but the least of our problems.

The situation is somewhat different in the case of elliptic PDEs. Elliptic
PDEs are the simplest and most benign of all PDE problems. An extensive
effort was undertaken by John Rice and his colleagues with large amounts
of funding through the national agencies to solve that problem once and for
all. They designed the ELLPACK software [6.15]. ELLPACK started out
as a collection of useful algorithms to solve general–purpose elliptic PDEs
in two and three space dimensions.

It turned out that the situation became soon too messy. Casual users
no longer could learn to use these algorithms without help from the pro-
fessional. To remedy the situation, a simple language was designed, and a
compiler was written that would translate programs written in that lan-
guage into a Fortran program that would then invoke the previously dis-
cussed algorithms that now form part of the run–time library. Thus, by
this time, we are in the same situation as with the continuous–system sim-
ulation languages.

It turned out that it didn’t work. The approach was too simple–minded.
As a new algorithm became available, new keywords had to be added to
the language in order to make this new algorithm accessible, and conse-
quently, the compiler had to be updated frequently. This became too much
of a hassle to the software designers. So they decided to parameterize the
compiler. The compiler was generated out of a data template file that de-
scribed both syntax and semantics of the ELLPACK language by means
of a compiler–compiler . So, from now on, new features needed only to be
incorporated into the data template file, and a new compiler for the so
modified language could be generated at once.

Well, you may already have guessed . . . it didn’t work. The researchers
found the manual generation of the data template file much too cumber-
some after all. That problem was taken care of easily. The precise details
of the data template file were generated by a data template compiler out
of a more abstract description of the data template file. Of course, also
the data template compiler wasn’t hand–coded. Why should it? Instead,
the data template compiler was generated out of an abstract description
of its duties by the same compiler–compiler that also generates the ELL-
PACK language compiler. This allows us to also update the data template
compiler easily and readily.

At this point in time, only one question remains: Who wrote the compiler–
compiler? We assume most of you read the story of Münchhausen who
pulls himself out of the swamp by pulling on his own hair . . . the compiler–
compiler wrote itself. A first (bootstrap) version of the compiler–compiler
was hand–coded. This version was already able to read a language descrip-
tion in terms of its syntax and semantics. Well, the first language descrip-
tion it got to read was its own. So, by running the bootstrap compiler–
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compiler through a description of itself, a second and much cleaner version
of the compiler–compiler was obtained that could subsequently be used
to generate new versions of the ELLPACK language compiler, the data
template compiler, and –why not– itself.

Was it worth it? As an intellectual stimulus, most certainly. As an ex-
perimental toolbox for solving new kinds of elliptic PDEs, probably. As a
general–purpose production tool for solving specific PDE problems posed
in industry, not likely. We acquired the tool some years ago when we held
a contract from the microelectronic industry to design a device simulator
that could predict the breakdown behavior of bipolar power transistors (ef-
fectively, of any kind of reverse–biased p–n junction). The results that we
obtained using ELLPACK were documented in [6.18]. ELLPACK allowed
us to fairly quickly and easily go through a number of different algorithms
and gain a feeling for which combination of algorithms might work decently
well. However, the simulations obtained in this manner were painfully slow.
A simple p–n junction milled for an hour or two on a VAX 11/780. More
complex devices could not be handled at all within reasonable time lim-
its. Therefore, we then designed our own special–purpose device simulator,
ASEPS [6.19]. This program was able to simulate simple p–n junctions
in a few seconds of CPU time on the same machine. ASEPS then enabled
us to also study more complex device structures such as special geomet-
ric configurations of device termination structures for radiation–hardened
power MOSFETs [6.6]. These simulation runs took a few minutes each,
and optimization studies could be performed in batch mode over night.

Good special–purpose finite element software for structural analysis, such
as NASTRAN, has been around for some time. This software doesn’t at-
tempt to solve general–purpose elliptic PDEs. Only one type of problem
is solved, but the program is very flexible with respect to the specification
of the domain on which the problem is to be solved and with respect to
the selection of grid points (finite element programs aren’t limited to using
rectangular grids). Special–purpose numerical PDE solvers exist also for
several other classes of applications, such as fluid dynamics.

It is disappointing to a generalist that the general–purpose approach to
numerical PDE solution didn’t work out. Unfortunately, we don’t see any
cure yet. Consequently, special–purpose solutions for specific PDE problems
will be around for years to come.
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6.14 Homework Problems

[H6.1] Heat Diffusion in the Soil

Agricultural engineers are interested in knowing the temperature distribu-
tion in the soil as a function of the surface air temperature. As shown in
Fig.H6.1a, we want to assume that we have a soil layer of 50 cm. Under-
neath the soil, there is a layer that acts as an ideal heat insulator.

x

FIGURE H6.1a. Soil topology.

The heat flow problem can be written as:

∂u

∂t
=

λ

ρ · c · ∂2u

∂x2
(H6.1a)

where λ = 0.004 cal cm−1 sec−1 K−1 is the specific thermal conductance
of soil, ρ = 1.335 g cm−3 is the density of soil, and c = 0.2 cal g−1 K−1 is
the specific thermal capacitance of soil.

The surface air temperature has been recorded as a function of time. It
is tabulated in Table H6.1a.

We want to assume that the surface soil temperature is identical with
the surface air temperature at all times. We want to furthermore assume
that the initial soil temperature is equal to the initial surface temperature
everywhere.

Specify this problem using hours as units of time, and centimeters as
units of space. Discretize the problem using third–order accurate finite
differences everywhere. Simulate the resulting linear ODE system using
MATLAB. Plot on one graph the soil temperature at the surface and at
the insulator as functions of time. Generate also a three–dimensional plot
showing the temperature distribution in the soil as a function of time and
space.
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t [hours] u oC
0 6
6 16

12 28
18 21
24 18
36 34
48 18
60 25
66 15
72 4

TABLE H6.1a. Surface air temperature.

[H6.2] Electrically Heated Rod

We start out with a simple parabolic partial differential equation describing
the temperature distribution in an electrically heated copper rod. This
phenomenon can be modeled by the following equation:

∂T

∂t
= σ

(
∂2T

∂r2
+

1
r
· ∂T

∂r
+

Pelectr

λ · V
)

(H6.2a)

The first two terms represent the standard diffusion equation in polar co-
ordinates as described previously in Eq.(6.92), and the constant term de-
scribes the electrically generated heat. It can be derived from Fig.8.13 of
the companion book on Continuous System Modeling [6.5].

σ =
λ

ρ · c (H6.2b)

is the diffusion coefficient, where λ = 401.0 J m−1 sec−1 K−1 is the specific
thermal conductance of copper, ρ = 8960.0 kg m−3 is its density, and
c = 386.0 J kg−1 K−1 is the specific thermal capacitance.

Pelectr = u · i (H6.2c)

is the dissipated electrical power, and

V = π · R2 · � (H6.2d)

is the volume of the rod with the length � = 1 m and the radius R =
0.01 m. The rod is originally in an equilibrium state at room temperature
Troom = 298.0 K.
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The boundary conditions are:

∂T

∂r

∣∣∣∣
r=0.0

= 0.0 (H6.2e)

∂T

∂r

∣∣∣∣
r=R

= −k1

(
T (R)4 − T 4

room

)− k2 (T (R) − Troom) (H6.2f)

where the quartic term models the heat radiation, whereas the linear term
models convective heat flow away from the rod.

We want to simulate this system using the MOL approach with 20 spa-
tial segments (in radial direction), and using second–order accurate finite
difference approximations for the first–order spatial derivatives, and third–
order accurate finite differences for the second–order spatial derivatives.
We are going to treat the boundary condition at the center as a general
boundary condition rather than as a symmetry boundary condition in order
to circumvent the difficulties with computing the term (∂T/∂r)/r, which
evaluates to 0/0 at r = 0.0.

For internal segments, we obtain thus differential equations of the type:

dTi

dt
≈ σ

(
Ti+1 − 2Ti + Ti−1

δr2
+

1
r
· Ti+1 − Ti−1

2δr
+

Pelectr

λ · V
)

(H6.2g)

which are straightforward to implement. For the left–most segment, we
have the condition:

∂T

∂r

∣∣∣∣
r=0.0

= 0.0 ≈ 1
2δr

(−T3 + 4T2 − 3T1) (H6.2h)

and therefore:

T1 ≈ 4
3
T2 − 1

3
T3 (H6.2i)

Consequently, we don’t need to solve a differential equation at r = 0.0, and
thereby, we skip the 0/0 division.

At the right–most segment, we obtain:

∂T

∂r

∣∣∣∣
r=R

= −k1

(
T 4

21 − T 4
room

)−k2 (T21 − Troom) ≈ 1
2δr

(−3T21 + 4T20 − T19)

(H6.2j)
Thus, we obtain a nonlinear equation in the unknown T21:

F(T21) = k1

(
T 4

21 − T 4
room

)
+ k2 (T21 − Troom) − 1

2δr
(−3T21 + 4T20 − T19)

≈ 0.0 (H6.2k)
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which can be solved by Newton iteration:

T 0
21(t) = T21(t − h) (H6.2l)

T 1
21(t) = T 0

21(t) −
F(T 0

21)
H(T 0

21)
(H6.2m)

T 2
21(t) = T 1

21(t) −
F(T 1

21)
H(T 1

21)
(H6.2n)

until convergence

where:
H(T21) =

∂F
∂T21

= 4k1T
3
21 + k2 − 3

2δr
(H6.2o)

[H6.3] Wave Equation

The wave equation has been written as:

∂2u

∂t2
= c2 · ∂2u

∂x2
(H6.3a)

Let us rewrite u(x, t) as ũ(v, w), where:

v = t + x (H6.3b)
w = t − x (H6.3c)

What happens?

[H6.4] Shock Tube Simulation

We wish to analyze the influence of α and β on the accuracy of the sim-
ulation. Repeat the same 50 segment simulation with different values for
α and β. What do you conclude about the relative influence of α and β
in comparison with the consistency error. Assuming a small value of α,
which is the largest value of β acceptable before the relative error exceeds
1%. Similarly, assuming a small value of β, which is the largest value of α
acceptable before the relative error exceeds 1%.

Use one half the maximum values of α and β found above, and simulate
across a longer period of time. Can you reach steady–state? Interpret the
results.

[H6.5] River Bed Simulation

Hydrologists are interested in determining the movement of river beds with
time. The dynamics of this system can be described through the PDE:

∂v

∂t
+ v · ∂v

∂x
+ g · ∂h

∂x
+ g · ∂z

∂x
= w(v) (H6.5a)
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where v(x, t) is the absolute value of the flow velocity of the water, h(x, t)
is the water depth, and z(x, t) is the altitude of the river bed relative to an
arbitrary constant level. g = 9.81 m sec−2 is the gravitational constant.

w(v) is the friction of water at the river bed:

w(v) = − g · v2

s2
k · h4/3

(H6.5b)

where sk = 32.0 m3/4 sec−1 is the Strickler constant.
The continuity equation for the water can be written as:

∂h

∂t
+ v · ∂h

∂x
+ h · ∂v

∂x
= 0.0 (H6.5c)

and the continuity equation for the river bed can be expressed as:

∂z

∂t
+

df(v)
dv

· ∂v

∂x
= 0.0 (H6.5d)

where f(v) is the transport equation of Meyer–Peter simplified by means
of regression analysis:

f(v) = f0 + c1(v − v0)c2 (H6.5e)

where c1 = 1.272 · 10−4 m, and c2 = 3.5.
We want to study the Rhine river above Basel over a distance of 6.3 km.

We want to simulate this system across 20 days of simulated time. The
initial conditions are tabulated in Table H6.5a.

x [m] v [m/s] h [m] z [m]
0.0 2.3630 3.039 59.82

630.0 2.3360 3.073 59.06
1260.0 2.2570 3.181 58.29
1890.0 1.6480 4.357 56.75
2520.0 1.1330 6.337 54.74
3150.0 1.1190 6.416 54.60
3780.0 1.1030 6.509 54.45
4410.0 1.0620 7.001 53.91
5040.0 0.8412 8.536 52.36
5670.0 0.7515 9.554 51.33
6300.0 0.8131 8.830 52.02

TABLE H6.5a. Initial data for river bed simulation.

We need three boundary conditions. We want to assume that the amount
of water q = h · v entering the simulated river stretch is constant. For
simplicity, we shall assume both h and v constant. At the lower end, there
is a weir. Therefore, we can assume that the sum of z and h is constant
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at the lower end of the simulated stretch of river. Since the water moves
much faster than the river bed, it doesn’t make too much sense to apply
boundary conditions to the river bed.

This system is pretty awful. The time constants of the water are measured
in seconds, whereas those of the ground are measured in days. We are
interested in the slow time constant, yet it is the fast time constant that
dictates the integration step size. We can think of the first two PDEs as
a nonlinear function generator for the third PDE. Let us therefore modify
Eq.(H6.5d) as follows:

∂z

∂t
+ β · df(v)

dv
· ∂v

∂x
= 0.0 (H6.5f)

The larger we choose the tuning parameter, the faster will the river bed
move. Select a value somewhere around β = 100 or even β = 1000. Later,
we must analyze the damage that we did to the PDE system by introducing
this tuning parameter. Maybe, we can extrapolate to the correct system
behavior at β = 1.0.

The third boundary condition is analytically correct, but numerically
not very effective since it is specified at the wrong end of the system. Since
water always flows downhill, a boundary condition at the bottom is about
as effective as commanding my dog to solve this homework problem. Let
us therefore introduce yet another boundary condition at the top end:

∂z

∂x
= constant (H6.5g)

However, since we cannot specify a derivative boundary condition for a
first–order equation, we reformulate Eq.(H6.5g) as:

z1 = z2 + constant (H6.5h)

Plot the river bed altitude z(x) measured at the end of every five day period
superposed onto one graph.

Rerun the simulation for different values of β. Is it possible to extrapolate
what the solution would look like for β = 1.0?

[H6.6] Boundary Value Conversion

A PDE in one space dimension is specified in the range [0.0,1.0] with δx =
0.1. Unfortunately, one of the boundary values if given as: u(x = 0.98, t) =
f(t).

We want to translate this boundary value to an equivalent boundary
value at u(x = 1.0, t). Use the Nordsieck vector approach to come up
with a third–order accurate equation for u(x = 1.0, t) as a function of
u(x = 0.98, t), u(x = 0.9, t), u(x = 0.8, t), and u(x = 0.7, t).

[H6.7] Coordinate Transformation

Verify that Eq.(6.92) is indeed correct.
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[H6.8] Coordinate Transformation

We wish to solve the Laplace equation for diffusion along the surface of a
globe, assuming that no diffusion takes place in radial direction. To this
end, we start out with the three–dimensional Laplace equation:(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = 0.0 (H6.8a)

We want to rewrite this Laplace equation as a function of three different
coordinates:

u(x, y, z) = ũ(ρ, ξ, η) (H6.8b)

where ρ is the radius of the globe, ξ is the longitude, and η is the latitude.
We obtain a modified Laplace equation in these coordinates. We then spec-
ify that:

∂2ũ

∂ρ2
=

∂ũ

∂ρ
= 0.0 (H6.8c)

It is easy to make mistakes in such transformations. We therefore want to
check whether the result is at least potentially correct. To this end, we let
ρ → ∞. Obviously, this must give us the original Laplace equation back,
now expressed in ξ and η instead of x and y.

[H6.9] Poiseuille Flow Through a Pipe

The following equations describe the stationary flow of an incompressible
fluid through a pipe:

dv̂

dρ
=

−√
2Γ

(τM + 1)2
· ρ · τ2 (H6.9a)

d

dρ

(
ρ

T
· dτ

dρ

)
=

−Γ
(τM + 1)3

· ρ3 · τ2 (H6.9b)

where:

ρ =
r

R
(H6.9c)

τ =
T (r)
TW

(H6.9d)

are two normalized coordinates. r is the distance from the center of the
pipe, and R is the radius of the pipe. T (r) is the temperature of the fluid
at a distance r from the center, and TW is the temperature of the pipe wall.
TW is assumed constant. v̂ = k1 ∗ v is the normalized flow velocity, where
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k1 is a constant that depends on the viscosity, the thermal conductivity,
and the average temperature of the fluid.

The boundary conditions are:

dv̂

dρ
(ρ = 0.0) = 0.0 (H6.9e)

dτ

dρ
(ρ = 0.0) = 0.0 (H6.9f)

v̂(ρ = 1.0) = 0.0 (H6.9g)
τ(ρ = 1.0) = 1.0 (H6.9h)

Thus, this is a boundary value problem. We could integrate this problem
across ρ in the range ρ = [0.0, 1.0] with unknown initial conditions v̂(ρ =
0.0) = v̂M and τ(ρ = 0.0) = τM .

However, in the light of what we learnt in this chapter, we shall try
another approach. We embed this boundary value problem into a parabolic
PDE, which we solve with arbitrary initial conditions until we reach steady–
state.

Notice that the equations contain two yet unknown parameters. Γ is a
constant that depends on the fluid. Let us assume that Γ = 10.0. τM is the
value of the normalized temperature at the center of the pipe. We simply
introduce the momentary value of that temperature into the equation, and
modify that value as the simulation proceeds.

6.15 Projects

[P6.1] Grid–Width Control

Implement a moving grid algorithm for the shock tube problem using the
ideas that were outlined in this chapter.

6.16 Research

[R6.1] Grid–Width Control

Generalize the idea of a moving grid algorithm to hyperbolic PDEs in two
space dimensions.

Develop a general theory for assessment of the consistency error, and
derive a grid–width control algorithm that contains the consistency error
in a reliable and systematic fashion.




