
7

Differential Algebraic
Equations

Preview

In this chapter, we shall analyze simulation problems that don’t present
themselves initially in an explicit state–space form. For many physical sys-
tems, it is quite easy to formulate a model where the state derivatives show
up implicitly and possibly even in a nonlinear fashion anywhere within the
equations. We call system descriptions that consist of a mixture of implic-
itly formulated algebraic and differential equations Differential Algebraic
Equations (DAEs). Since these cases constitute a substantial and impor-
tant portion of the models encountered in science and engineering, they
deserve our attention. In this chapter, we shall discuss the question, how
sets of DAEs can be converted symbolically in an automated fashion to
equivalent sets of ODEs.

7.1 Introduction

In the companion book Continuous System Modeling [7.5], we have demon-
strated that object–oriented modeling of physical systems invariably leads
to implicit DAE descriptions. Some of these can be converted to ODE de-
scriptions quite easily by simple sorting algorithms, whereas others contain
big algebraic loops or even structural singularities.

We shall now revisit these issues and present a set of symbolic formulae
manipulation algorithms that allow us to convert implicit DAE descriptions
to equivalent explicit ODE descriptions.

Let us once again begin with a simple electrical RLC circuit. Its schematic
is shown in Fig.7.1.

As there are five circuit elements defining two variables each, namely the
voltage across and the current through that element, we need 10 equations
to describe the model, e.g. the five element equations, defining the rela-
tion between voltage across and current through the element, plus three
mesh equations in the mesh voltages, plus two node equations in the node
currents. A possible set of equations is:

u0 = f(t) (7.1a)
u1 = R1 · i1 (7.1b)



254 Chapter 7. Differential Algebraic Equations

U
0
=

1
0

R=20

C
=

1
.0

e
-6

L
=

0
.0

0
1
5

Ground
R

=
1

0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 7.1. Schematic of electrical RLC circuit.

u2 = R2 · i2 (7.1c)

uL = L · diL
dt

(7.1d)

iC = C · duC

dt
(7.1e)

u0 = u1 + uC (7.1f)
uL = u1 + u2 (7.1g)
uC = u2 (7.1h)
i0 = i1 + iL (7.1i)
i1 = i2 + iC (7.1j)

As we wish to generate a state–space model, we define the outputs of the
integrators, uC and iL, as our state variables. These can thus be considered
known variables, for which no equations need to be found. In contrast, the
inputs of the integrators, duC/dt and diL/dt, are unknowns, for which
equations must be found. These are the state equations of the state–space
description.

The structure of these equations can be captured in the so–called struc-
ture incidence matrix. The structure incidence matrix lists the equations
in any order as rows, and the unknowns in any order as columns. If the ith

equation contains the jth variable, the element < i, j > of the structure
incidence matrix assumes a value of 1, otherwise it is set to 0. The structure
incidence matrix for the above set of equations could e.g. be written as:



7.1 Introduction 255

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 i0 u1 i1 u2 i2 uL
diL
dt

duC
dt iC

Eq.(7.1a) 1 0 0 0 0 0 0 0 0 0
Eq.(7.1b) 0 0 1 1 0 0 0 0 0 0
Eq.(7.1c) 0 0 0 0 1 1 0 0 0 0
Eq.(7.1d) 0 0 0 0 0 0 1 1 0 0
Eq.(7.1e) 0 0 0 0 0 0 0 0 1 1
Eq.(7.1f) 1 0 1 0 0 0 0 0 0 0
Eq.(7.1g) 0 0 1 0 1 0 1 0 0 0
Eq.(7.1h) 0 0 0 0 1 0 0 0 0 0
Eq.(7.1i) 0 1 0 1 0 0 0 0 0 0
Eq.(7.1j) 0 0 0 1 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.2)

Initially, all of these equations are acausal, meaning that the equal sign
has to be interpreted in the sense of an equality, rather than in the sense
of an assignment. For example, the above set of equations contains two
equations that list u0 to the left of the equal sign. Evidently, only one of
those can be used to solve for u0.

Two simple rules can be formulated that help us decide, which variables
to solve for from which of the equations:

1. If an equation contains only a single unknown, i.e., one variable for
which no solving equation has been found yet, we need to use that
equation to solve for this variable. For example, Eq.(7.1a) contains
only one unknown, u0, hence that equation must be used to solve for
u0, and consequently, Eq.(7.1a) has now become a causal equation,
and u0 can henceforth be considered a known variable in all remaining
equations.

2. If an unknown only appears in a single equation, that equation must
be used to solve for it. For example, i0 only appears in Eq.(7.1i).
Hence we must use Eq.(7.1i) to solve for i0.

These rules can be easily visualized in the structure incidence matrix. If
a row contains a single element with a value of 1, that equation needs to
be solved for the corresponding variable, and both the row and the column
can be eliminated from the structure incidence matrix. If a column contains
a single element with a value of 1, that variable must be solved for using
the corresponding equation. Once again, both the column and the row can
be eliminated from the structure incidence matrix. The algorithm proceeds
iteratively, until no more rows and columns can be eliminated from the
structure incidence matrix.



256 Chapter 7. Differential Algebraic Equations

7.2 Causalization of Equations

Although the algorithm based on the structure incidence matrix will work,
another algorithm has become more popular in recent years that is based
on graph theory. It is an algorithm proposed first by Tarjan1 [7.21]. Rather
than capturing the structure of the set of DAEs in the form of a structure
incidence matrix, it captures the same information in a graphical data
structure, called the structure digraph.

The structure digraph depicts on the left hand side the equations as a
column of nodes. On the right hand side, the unknowns are displayed also
as a column of nodes. Since the number of equations must always equal the
number of unknowns, the two column vectors are of equal length. A straight
line connects an equation with an unknown, if that unknown appears in
the equation.

The structure digraph of the above set of equations could be drawn e.g.
as shown in Fig.7.2.

Eq.(7.1a)

Eq.(7.1b)

Eq.(7.1c)

Eq.(7.1d)

Eq.(7.1e)

Eq.(7.1f)

Eq.(7.1g)

Eq.(7.1h)

Eq.(7.1i)

Eq.(7.1j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

FIGURE 7.2. Structure digraph of electrical circuit.

We now implement our two rules for selecting which variable is to be
solved for from which equation using the structure digraph.

When we select a variable to be solved for using a given equation, we
color the connection between the equation and the variable in “red.” Since
this book is printed in black and white, we shall simulate the coloring by
dashing it.

When we declare that a previously unknown variable is now known, be-
cause we already found an equation to solve for it, or because the equation,

1The algorithm presented in this section is not exactly the one originally proposed
by Tarjan, but rather a somewhat modified algorithm, applied furthermore in a dif-
ferent context. Tarjan, in his original article, did not concern himself at all with the
causalization of equations, but rather with detecting loops in a directed graph.



7.2 Causalization of Equations 257

in which it occurs, is being used to solve for another variable, we color
that connection in “blue.” In this book, we shall simulate the coloring by
dotting it.

A causal equation is an equation that has exactly one red (dashed) line
attached to it. Acausal equations are equations that have only black (solid)
and blue (dotted) lines attached to them. Known variables are variables
that have exactly one red (dashed) line ending in them. An unknown vari-
able has only black (solid) and blue (dotted) lines attached to it. No equa-
tion or variable has ever more than one red (dashed) line connecting to
it.

We are now ready to implement our two rules.

1. For all acausal equations, if an equation has only one black (solid) line
attached to it, color that line red (dash it), follow it to the variable it
points at, and color all other connections ending in that variable in
blue (dot the connections). Renumber the equation using the lowest
free number starting from 1.

2. For all unknown variables, if a variable has only one black (solid)
line attached to it, color that line red (dash it), follow it back to the
equation it points at, and color all other connections emanating from
that equation in blue (dot the connections). Renumber the equation
using the highest free number starting from n, where n is the number
of equations.

Figure 7.3 shows the structure digraph of the electrical circuit after one
iteration through these two rules.

Eq.(7.1a)

Eq.(7.1b)

Eq.(7.1c)

Eq.(7.1d)

Eq.(7.1e)

Eq.(7.1f)

Eq.(7.1g)

Eq.(7.1h)

Eq.(7.1i)

Eq.(7.1j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

Eq. #1

Eq. #2

Eq. #10

Eq. #9

Eq. #8

FIGURE 7.3. Structure digraph of electrical circuit after partial coloring.



258 Chapter 7. Differential Algebraic Equations

In the first iteration, five of the 10 equations were made causal, two using
rule #1, and three using rule #2. However, the algorithm doesn’t end here,
since these rules can be applied recursively.

Figure 7.4 shows the structure digraph of the electrical circuit after all
equations have been made causal.

Eq.(7.1a)

Eq.(7.1b)

Eq.(7.1c)

Eq.(7.1d)

Eq.(7.1e)

Eq.(7.1f)

Eq.(7.1g)

Eq.(7.1h)

Eq.(7.1i)

Eq.(7.1j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

Eq. #1

Eq. #2

Eq. #10

Eq. #9

Eq. #8

Eq. #3

Eq. #4

Eq. #7

Eq. #6

Eq. #5

FIGURE 7.4. Structure digraph of electrical circuit after complete coloring.

We were able to complete the causalization of the equations. We can now
read out the 10 equations in their causal form.

u0 = f(t) (7.3a)
u2 = uC (7.3b)
i2 = u2/R2 (7.3c)
u1 = u0 − uC (7.3d)
i1 = u1/R1 (7.3e)
iC = i1 − i2 (7.3f)
uL = u1 + u2 (7.3g)

duC

dt
= iC/C (7.3h)

diL
dt

= uL/L (7.3i)

i0 = i1 + iL (7.3j)

By now, the equal signs have become true assignments. In addition, no
variable is being used, before it has been computed. Consequently, the
equations have not only been sorted horizontally, i.e., made causal. They
have also been sorted vertically, i.e., the equations have been sorted into
an executable sequence.



7.3 Algebraic Loops 259

Let us write down the structure incidence matrix of the horizontally and
vertically sorted set of equations.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u2 i2 u1 i1 iC uL
duC

dt

diL
dt i0

Eq.(7.3a) 1 0 0 0 0 0 0 0 0 0
Eq.(7.3b) 0 1 0 0 0 0 0 0 0 0
Eq.(7.3c) 0 1 1 0 0 0 0 0 0 0
Eq.(7.3d) 1 0 0 1 0 0 0 0 0 0
Eq.(7.3e) 0 0 0 1 1 0 0 0 0 0
Eq.(7.3f) 0 0 1 0 1 1 0 0 0 0
Eq.(7.3g) 0 1 0 1 0 0 1 0 0 0
Eq.(7.3h) 0 0 0 0 0 1 0 1 0 0
Eq.(7.3i) 0 0 0 0 0 0 1 0 1 0
Eq.(7.3j) 0 0 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.4)

The structure incidence matrix of the sorted set of equations is now
in lower–triangular form. Hence sorting the equations both horizontally
and vertically is identical to finding permutation matrices that reduce the
structure incidence matrix to lower–triangular form.

There exist algorithms to find these permutation matrices directly. This
would be yet another approach to sorting the equations.

Variants of the Tarjan algorithm have become the most popular among
all the available sorting algorithms for their efficiency, as their computa-
tional effort grows linearly with the size of the DAE system1. This is the
best performance that can be expected of any algorithm.

A variant of the causalization algorithm, called output set assignment,
can be found in a paper by Pantelides [7.20], who presented the algorithm
once again in a somewhat different context. The Pantelides variant of the
causalization algorithm has become the most popular of these algorithms,
as it has the advantage that it can be implemented using a very compact
and elegant recursive procedure.

7.3 Algebraic Loops

The previous section may leave the impression with you, the reader, that
all DAE systems can be sorted as easily as the example system, by means of
which the causalization algorithm has been demonstrated. Nothing could
be farther from the truth.

Let us now look at a slightly modified circuit. Its schematic is shown in
Fig.7.5. The capacitor has been replaced by a third resistor.

1It was shown in [7.6] that the computational complexity of the Tarjan algorithm
grows in the worst case with o(n ·m), where n is the number of equations, and m is the
number of non–zero elements in the structure incidence matrix.



260 Chapter 7. Differential Algebraic Equations

U
0
=

1
0

R=20

L
=

0
.0

0
1
5

Ground
R

=
1

0
0

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL

FIGURE 7.5. Schematic of modified electrical RLC circuit.

The resulting equations are almost the same as before. Only the element
equation for the capacitor was replaced by a third element equation for a
resistor.

u0 = f(t) (7.5a)
u1 = R1 · i1 (7.5b)
u2 = R2 · i2 (7.5c)
u3 = R3 · i3 (7.5d)

uL = L · diL
dt

(7.5e)

u0 = u1 + u3 (7.5f)
uL = u1 + u2 (7.5g)
u3 = u2 (7.5h)
i0 = i1 + iL (7.5i)
i1 = i2 + i3 (7.5j)

The structure digraph for this new set of equations is presented in Fig.7.6.
Let us now apply the Tarjan algorithm to this structure digraph. Fig-

ure 7.7 shows the partially causalized structure digraph.
Unfortunately, the Tarjan algorithm stalls at this point. Every one of

the remaining acausal equations and every one of the remaining unknowns
has at least two black (solid) lines attached to it. Consequently, the DAE
system cannot be sorted entirely.

Let us read out the partially sorted equations. We shall only list on the



7.3 Algebraic Loops 261

Eq.(7.5a)

Eq.(7.5b)

Eq.(7.5c)

Eq.(7.5d)

Eq.(7.5e)

Eq.(7.5f)

Eq.(7.5g)

Eq.(7.5h)

Eq.(7.5i)

Eq.(7.5j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

u3

i3

FIGURE 7.6. Structure digraph of modified electrical circuit.

Eq.(7.5a)

Eq.(7.5b)

Eq.(7.5c)

Eq.(7.5d)

Eq.(7.5e)

Eq.(7.5f)

Eq.(7.5g)

Eq.(7.5h)

Eq.(7.5i)

Eq.(7.5j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

u3

i3

Eq. #1

Eq. #10

Eq. #9

Eq. #8

FIGURE 7.7. Structure digraph of partially causalized modified electrical circuit.

right side of the equal sign those variables that have already been computed.

u0 = f(t) (7.6a)
u1 − R1 · i1 = 0 (7.6b)
u2 − R2 · i2 = 0 (7.6c)
u3 − R3 · i3 = 0 (7.6d)

u1 + u3 = u0 (7.6e)
u2 − u3 = 0 (7.6f)

i1 − i2 − i3 = 0 (7.6g)



262 Chapter 7. Differential Algebraic Equations

uL = u1 + u2 (7.6h)
diL
dt

= uL/L (7.6i)

i0 = i1 + iL (7.6j)

The six remaining acausal equations form an algebraic loop. They need to
be solved together. The structure incidence matrix of the partially causal-
ized equation system takes the form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 i1 u2 i2 u3 i3 uL
diL
dt

i0

Eq.(7.6a) 1 | 0 0 0 0 0 0 0 0 0
− + − − − − − − .

Eq.(7.6b) 0 | 1 1 0 0 0 0 | 0 0 0
Eq.(7.6c) 0 | 0 0 1 1 0 0 | 0 0 0
Eq.(7.6d) 0 | 0 0 0 0 1 1 | 0 0 0
Eq.(7.6e) 1 | 1 0 0 0 1 0 | 0 0 0
Eq.(7.6f) 0 | 0 0 1 0 1 0 | 0 0 0
Eq.(7.6g) 0 | 0 1 0 1 0 1 | 0 0 0

. − − − − − − + − .
Eq.(7.6h) 0 1 0 1 0 0 0 | 1 | 0 0

. − + − .
Eq.(7.6i) 0 0 0 0 1 0 0 1 | 1 | 0

. − + −
Eq.(7.6j) 0 0 1 0 0 0 0 0 0 | 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.7)

Although the causalization algorithm has been unable to convert the
structure incidence matrix to a true lower–triangular form, it was at least
able to reduce it to a Block–Lower–Triangular (BLT) form. Furthermore,
the algorithm generates diagonal blocks of minimal sizes.

How can we deal with the algebraic loop? Since the model is linear, we
can write the loop equations in a matrix–vector form, and solve for the six
unknowns by a Gaussian elimination in six equations and six unknowns.⎛

⎜⎜⎜⎜⎜⎜⎝

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

i1
u2

i2
u3

i3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
u0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8)

Had the model been nonlinear in the loop equations, we would have had
to use a Newton iteration.

Are algebraic loops a rarity in physical system modeling? Unfortunately,
DAE systems containing algebraic loops are much more common than those
that can be sorted completely by the Tarjan algorithm. Furthermore, the
algebraic loops can be of frightening dimensions. For example when model-
ing mechanical Multi–Body Systems (MBS) [7.16, 7.18] containing closed
kinematic loops, there immediately result highly nonlinear algebraic loops
in hundreds if not thousands of unknowns and equations.



7.4 The Tearing Algorithm 263

7.4 The Tearing Algorithm

We have now been haunted by large algebraic equation systems long enough.
It is time that we do something about them.

Let us look once again at the system of six algebraic equations in six
unknowns that we had met in the last section.

u1 − R1 · i1 = 0 (7.9a)
u2 − R2 · i2 = 0 (7.9b)
u3 − R3 · i3 = 0 (7.9c)

u1 + u3 = u0 (7.9d)
u2 − u3 = 0 (7.9e)

i1 − i2 − i3 = 0 (7.9f)

Its structure digraph is shown in Fig.7.8

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

FIGURE 7.8. Structure digraph of algebraic equation system.

Clearly, every equation contains at least two unknowns, and every un-
known appears in at least two equations. Yet, if only we could e.g. solve
Eg.(7.9f) for the unknown i3, as shown in Fig.7.9, then the entire set of
equations could be made causal, as shown in Fig.7.10.

Now that the equation system has been causalized, we can write down
the causal equations:

i3 = i1 − i2 (7.10a)
u3 = R3 · i3 (7.10b)
u1 = u0 − u3 (7.10c)
i1 = u1/R1 (7.10d)
u2 = u3 (7.10e)
i2 = u2/R2 (7.10f)



264 Chapter 7. Differential Algebraic Equations

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3Eq. #1

FIGURE 7.9. Structure digraph of partially causalized algebraic equation system.

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3Eq. #1

Eq. #2

Eq. #3

Eq. #4

Eq. #5

Eq. #6

FIGURE 7.10. Structure digraph of completely causalized algebraic equation sys-
tem.

Of course, it is all only a pipe dream, because in reality, we do not know
either i1 or i2, and therefore, we cannot compute i3. Or is it not?

Let us substitute the equations into each other, starting with Eq.(7.10a).

i3 = i1 − i2 (7.11a)

=
1

R1
· u1 − 1

R2
· u2 (7.11b)

=
1

R1
· u0 − 1

R1
· u3 − 1

R2
· u3 (7.11c)

=
1

R1
· u0 − R1 + R2

R1 · R2
· u3 (7.11d)

=
1

R1
· u0 − R3 · (R1 + R2)

R1 · R2
· i3 (7.11e)

and thus: [
1 +

R3 · (R1 + R2)
R1 · R2

]
· i3 =

1
R1

· u0 (7.12)

or:

R1 · R2 + R1 · R3 + R2 · R3

R2
· i3 = u0 (7.13)



7.4 The Tearing Algorithm 265

Since the equation is linear in i3, we can solve it explicitly for the unknown,
and obtain:

i3 =
R2

R1 · R2 + R1 · R3 + R2 · R3
· u0 (7.14)

Now, we can plug this equation back into the causalized equation system,
replacing Eq.(7.10a) by it, and obtain the perfectly causal set of equations:

i3 =
R2

R1 · R2 + R1 · R3 + R2 · R3
· u0 (7.15a)

u3 = R3 · i3 (7.15b)
u1 = u0 − u3 (7.15c)
i1 = u1/R1 (7.15d)
u2 = u3 (7.15e)
i2 = u2/R2 (7.15f)

Evidently, it hadn’t been a pipe dream after all.
After substituting the equations into each other in the proposed form,

we end up with one equation in one unknown, instead of six equations in
six unknowns. This is clearly much more economical.

Had the equations been nonlinear in the variable i3, everything would
have worked exactly the same way, except for the very last step, where we
would have to involve a Newton iteration to solve for i3, rather than solving
for i3 explicitly.

Substituting equations into each other may actually be a bad idea. The
substituted equations may grow in size, and the same expressions may
appear in them multiple times. It may be a better idea to iterate over the
entire set of equations, but treat only i3 as an iteration variable in the
Newton iteration algorithm.

Given the set of equations:

u3 = R3 · i3 (7.16a)
u1 = u0 − u3 (7.16b)
i1 = u1/R1 (7.16c)
u2 = u3 (7.16d)
i2 = u2/R2 (7.16e)

i3new
= i1 − i2 (7.16f)

where i3 is an initial guess, and i3new
is an improved version of that same

variable, we can set up the following zero function:

F = i3new
− i3 = 0.0 (7.17)



266 Chapter 7. Differential Algebraic Equations

Since F is a scalar, also the Hessian is a scalar:

H =
∂F
∂i3

(7.18)

A convenient way to compute the Hessian H is by means of algebraic dif-
ferentiation [7.11].

du3 = R3 (7.19a)
du1 = −du3 (7.19b)
di1 = du1/R1 (7.19c)
du2 = du3 (7.19d)
di2 = du2/R2 (7.19e)

di3new
= di1 − di2 (7.19f)

H = di3new
− 1 (7.19g)

We can then compute the next version of i3 as:

i3 = i3 −H\F (7.20)

If the set of equations is linear, the Newton iteration converges in a single
step. Hence it will not be terribly inefficient to employ Newton iteration
even in the linear case.

The algorithm that we just described is a so–called tearing algorithm,
as the set of equations is torn apart by making an assumption about one
variable or possibly several variables to be known. The variables that are
assumed known, such as i3 in the given example, are called tearing variables,
whereas the equations, from which the tearing variables are to be computed,
such as Eq.(7.9f) in the given example, are called the residual equations.

Equation tearing is not exactly a new concept. The idea had originally
been introduced by Gabriel Kron [7.12]. By now, many variations of dif-
ferent tearing algorithms have been reported in the literature. Some of
the techniques are generally applicable, whereas others exploit particular
matrix structures as they occur in special types of physical systems. Tear-
ing has become most popular in chemical process engineering applications
[7.13].

A version of tearing similar to the one described in this chapter has
been implemented in Dymola [7.7] to accompany the Tarjan algorithm
in the efficient solution of algebraic equation systems resulting from the
automated symbolic conversion of DAE systems to ODE form [7.4].

How did we know to choose i3 as tearing variable and Eq.(7.9f) as residual
equation? What would have happened if we had chosen i1 as the tearing
variable and Eq.(7.9a) as the residual equation? The initial situation is
depicted in Fig.7.11.



7.4 The Tearing Algorithm 267

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

Eg. #1

FIGURE 7.11. Structure digraph of partially causalized algebraic equation sys-
tem.

We apply the Tarjan algorithm to the structure digraph. Unfortunately,
the algorithm stalls once again after only one more step, as shown in
Fig.7.12.

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

Eg. #1

Eg. #6

FIGURE 7.12. Structure digraph of partially causalized algebraic equation sys-
tem.

We have been able to causalize only two of the six equations. Once again,
we are faced with an algebraic loop in four equations and four unknowns,
and therefore have to choose a second tearing variable and a second residual
equation.

Let us proceed with the example to demonstrate, how the tearing algo-
rithm can deal with multiple residual equations in multiple tearing vari-
ables. Let us select u2 as the second tearing variable, and Eq.(7.9b) as the
second residual equation. Now, we can complete the causalization of the
equations. The completely colored structure digraph is shown in Fig.7.13.

We can read out the causal equations from the structure digraph of
Fig.7.13.

i1 = u1/R1 (7.21a)
u2 = R2 · i2 (7.21b)
u3 = u2 (7.21c)
i3 = u3/R3 (7.21d)
i2 = i1 − i3 (7.21e)



268 Chapter 7. Differential Algebraic Equations

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

Eg. #1

Eg. #6

Eg. #2

Eg. #3

Eg. #4

Eg. #5

FIGURE 7.13. Structure digraph of completely causalized algebraic equation sys-
tem.

u1 = u0 − u3 (7.21f)

Using the substitution technique, we can come up with two linearly in-
dependent equations in the two unknowns i1 and u2, i.e., in the two tearing
variables. We begin with the first residual equation.

i1 = u1/R1 (7.22a)

=
1

R1
· u0 − 1

R1
· u3 (7.22b)

=
1

R1
· u0 − 1

R1
· u2 (7.22c)

Hence:

R1 · i1 + u2 = u0 (7.23)

We proceed with the second residual equation.

u2 = R2 · i2 (7.24a)
= R2 · i1 − R2 · i3 (7.24b)

= R2 · i1 − R2

R3
· u3 (7.24c)

= R2 · i1 − R2

R3
· u2 (7.24d)

(7.24e)

Thus: [
1 +

R2

R3

]
· u2 = R2 · i1 (7.25)

or:

R2 · R3 · i1 − (R2 + R3) · u2 = 0 (7.26)



7.4 The Tearing Algorithm 269

We can write Eq.(7.23) and Eq.(7.26) in a matrix–vector form:(
R1 1

R2 · R3 −(R2 + R3)

)
·
(

i1
u2

)
=
(

u0

0

)
(7.27)

which can be solved for the two unknowns i1 and u2. Instead of solving
six linear equations in six unknowns, we have pushed the zeros out of the
matrix, and ended up with two equations in two unknowns. In this sense,
tearing can be considered a symbolic sparse matrix technique.

If we use Newton iteration instead of equation substitution, we need
to place the residual equations at the end of each set, rather than at the
beginning. The set of equations now takes the form:

u3 = u2 (7.28a)
i3 = u3/R3 (7.28b)
i2 = i1 − i3 (7.28c)

u2new
= R2 · i2 (7.28d)

u1 = u0 − u3 (7.28e)
i1new

= u1/R1 (7.28f)

We can formulate the following set of zero functions:

F =
(

f1

f2

)
=
(

i1new
− i1

u2new
− u2

)
=
(

0
0

)
(7.29)

Hence the Hessian is a matrix of size 2 × 2:

H =
(

h11 h12

h21 h22

)
=
(

∂f1/∂i1 ∂f1/∂u2

∂f2/∂i1 ∂f2/∂u2

)
(7.30)

Using algebraic differentiation, we get:

d1u3 = 0 (7.31a)
d1i3 = d1u3/R3 (7.31b)
d1i2 = 1 − d1i3 (7.31c)

d1u2new
= R2 · d1i2 (7.31d)

d1u1 = −d1u3 (7.31e)
d1i1new

= d1u1/R1 (7.31f)
d2u3 = 1 (7.31g)
d2i3 = d2u3/R3 (7.31h)
d2i2 = −d2i3 (7.31i)

d2u2new
= R2 · d2i2 (7.31j)



270 Chapter 7. Differential Algebraic Equations

d2u1 = −d2u3 (7.31k)
d2i1new

= d2u1/R1 (7.31l)
h11 = d1i1new

− 1 (7.31m)
h12 = d2i1new

(7.31n)
h21 = d1u2new

(7.31o)
h22 = d2u2new

− 1 (7.31p)

where the prefix d1 stands for the partial derivative with respect to i1, and
d2 stands for the partial derivative with respect to u2. Since i1 and u2 are
mutually independent, the partial derivative of i1 with respect to u2 is zero,
and vice–versa.

For each additional tearing variable, the causal model equations are re-
peated once in the computation of the Hessian. Hence given a system of n
algebraic equations in k < n tearing variables, we require n·k+k2 equations
to explicitly compute the Hessian in symbolic form.

We have seen by now that the selection of tearing variables and residual
equations is not arbitrary. Our first choice led to a single residual equation
in a single tearing variable, whereas our second choice led to two residual
equations in two tearing variables.

How can we determine the minimum number of tearing variables re-
quired? Unfortunately, this is a hard problem. It can be shown that this
problem is np–complete, i.e., the computational effort grows exponentially
in the number of equations forming the algebraic loop. Consequently, find-
ing the minimal number of tearing variables is not practical.

Yet, it is possible to design a heuristic procedure that always results in a
small number of tearing variables. It often results in the minimal number,
but this cannot be guaranteed. The advantage of this heuristic procedure is
that its computational effort grows quadratically rather than exponentially
in the size of the algebraic system for most applications. The heuristic
procedure is described in the sequel.

1. Using the structure digraph, determine the equations with the largest
number of black (solid) lines attached to them.

2. For every one of these equations, follow its black (solid) lines, and
determine those variables with the largest number of black (solid)
lines attached to them.

3. For every one of these variables, determine how many additional equa-
tions can be made causal if that variable is assumed to be known.

4. Choose one of those variables as the next tearing variable that allows
the largest number of additional equations to be made causal.

Looking at the structure digraph of Fig.7.7, we see that only Eq.(7.5j)
has three black (solid) lines attached to it. All other acausal equations have



7.5 The Relaxation Algorithm 271

only two black solid lines attached to them. Consequently, Eq.(7.5j) will be
chosen as the first residual equation.

Following each of the three black (solid) lines to the right side, we notice
that each of the variables, i1, i2, and i3 has exactly two black (solid) lines
attached to it. Consequently, we need to check for each one of them, what
happens if it were chosen as the first tearing variable.

It turns out that each of these three variables could have been chosen as
the first tearing variable, since all of them lead to a complete causalization
of the equation system.

We shall see in the next chapter that the simple heuristic algorithm
described in this section sometimes maneuvers itself into a corner. The
heuristic algorithm implemented in Dymola has been refined in several
respects. On the one hand, it never gets stuck. The algorithm may become
slow at times, but it will always find a legal tearing structure. On the other
hand, the tearing algorithm implemented in Dymola guarantees that the
selection of tearing variables never leads to a division by zero at run time.
This is a rather tricky demand, because parameter values can change after
compilation.

The complete tearing algorithm, as implemented in Dymola, has not been
published. It is a company secret, designed to give Dynasim a competitive
edge over its competitors.

7.5 The Relaxation Algorithm

There is yet another symbolic algorithm for the solution of algebraic sys-
tems of equations to be discussed, which is called the relaxation algorithm
[7.17].

Contrary to the tearing algorithm, which is a general algorithm that can
be applied to all algebraic equation structures, the relaxation algorithm is
limited to the solution of linear algebraic equation systems only.

Yet, linear algebraic systems assume a special role within the set of alge-
braic equation systems, and deserve special attention. One reason for this
claim is the following. Within each Newton iteration of a nonlinear alge-
braic equation system, there is always a linear algebraic equation system
to be solved. When we write the Newton iteration as:

xnew = xold −H\F (7.32)

we are effectively saying that:

xnew = xold − dx (7.33)

where dx is the solution of the linear algebraic equation system:

H · dx = F (7.34)



272 Chapter 7. Differential Algebraic Equations

Hence indeed, there is to be solved a linear algebraic equation system within
each Newton iteration of the original nonlinear algebraic equation system.

Relaxation is a symbolic implementation of the Gaussian elimination al-
gorithm without pivoting. Let us demonstrate how the relaxation algorithm
works by means of the same example of a linear algebraic equation system
in six equations and six unknowns that we had used in the previous section
of this book.

We start out with the linear algebraic equation system in matrix–vector
form, as presented in Eq.(7.8).⎛

⎜⎜⎜⎜⎜⎜⎝

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

i1
u2

i2
u3

i3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
u0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.35)

However, we wish to minimize the number of non–zero elements above the
diagonal. To this end, we causalize the equations in the same way that we
used in the tearing algorithm, but write the residual equation as the last
equation in the set.

u3 = R3 · i3 (7.36a)
u1 = u0 − u3 (7.36b)

i1 =
u1

R1
(7.36c)

u2 = u3 (7.36d)

i2 =
u2

R2
(7.36e)

i3 = i1 − i2 (7.36f)

We now move all the unknowns to the left side of the equal sign and all the
knows to the right side. At the same time, we eliminate the denominators.

u3 − R3 · i3 = 0 (7.37a)
u1 + u3 = u0 (7.37b)

R1 · i1 − u1 = 0 (7.37c)
u2 − u3 = 0 (7.37d)

R2 · i2 − u2 = 0 (7.37e)
i3 − i1 + i2 = 0 (7.37f)

We now rewrite these equations in a matrix–vector form, whereby we num-
ber the equations in the same order as above and list the variables in the
same order as in the causal equations:



7.5 The Relaxation Algorithm 273

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −R3

1 1 0 0 0 0
0 −1 R1 0 0 0
−1 0 0 1 0 0
0 0 0 −1 R2 0
0 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u3

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
u0

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.38)

There is now only a single non–zero element above the diagonal, and none
of the diagonal elements are zero.

We can now apply Gaussian elimination without pivoting to this set of
equations. Remember how Gaussian elimination works:

A
(n+1)
ij = A

(n)
ij − A

(n)
ik · A(n)

kk

−1 · A(n)
kj (7.39a)

b
(n+1)
i = b

(n)
i − A

(n)
ik · A(n)

kk

−1 · b(n)
k (7.39b)

We can apply this algorithm symbolically. After each step, we eliminate
the first row and the first column, i.e., the pivot row and the pivot col-
umn. Rather than substituting expressions into the matrix, we introduce
auxiliary variables where needed.

Since we constantly eliminate rows and columns, the index k in the above
equations is always 1. Thus, in the n plus first iteration of the algorithm,
the element in row i − 1 and column j − 1 of the matrix is equal to the
element in the row i and column j of the nth iteration minus the product of
the element at the very left end of the matrix (in row i) times the element
at the very top end of the matrix (in column j) divided by the element in
the top left corner.

For this reason, if an element in the top row is zero, the elements under-
neath it don’t change at all during the iteration. Similarly, if an element in
the leftmost column is zero, the elements to the right of it don’t change.

Therefore, the only elements in the above equation system that change
during the first iteration are the elements in the positions < 2, 6 > and
< 4, 6 >. Let us call the new elements c1 and c2. Thus, the second version
of the equation system takes the form:⎛

⎜⎜⎜⎜⎝
1 0 0 0 c1

−1 R1 0 0 0
0 0 1 0 c2

0 0 −1 R2 0
0 −1 0 1 1

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

u0

0
0
0
0

⎞
⎟⎟⎟⎟⎠ (7.40)

where c1 = R3, and c2 = −R3.
The only elements that can change in the next iteration are the element

in the position < 2, 5 > of the matrix, as well as the element in the position
< 2 > of the vector. Let us call those c3 and c4, respectively.



274 Chapter 7. Differential Algebraic Equations

Thus, the third version of the equation system takes the form:

⎛
⎜⎜⎝

R1 0 0 c3

0 1 0 c2

0 −1 R2 0
−1 0 1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

i1
u2

i2
i3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c4

0
0
0

⎞
⎟⎟⎠ (7.41)

where c3 = c1, and c4 = u0.
In the next iteration, the only elements that can change are in the posi-

tion < 4, 4 > of the matrix, and in the position < 4 > of the vector. Let us
call these c5, and c6, respectively.

The fourth version of the equation system takes the form:

⎛
⎝ 1 0 c2

−1 R2 0
0 1 c5

⎞
⎠ ·
⎛
⎝u2

i2
i3

⎞
⎠ =

⎛
⎝ 0

0
c6

⎞
⎠ (7.42)

where c5 = 1 + c3/R1, and c6 = c4/R1.
In the next iteration, the only element that can change is in the position

< 2, 3 > of the matrix. Let us call the new element c7.
The fifth version of the equation system takes the form:

(
R2 c7

1 c5

)
·
(

i2
i3

)
=
(

0
c6

)
(7.43)

where c7 = c2.
In the final iteration, the only element that can change is in the position

< 2, 2 > of the matrix. Let us call the new element c8.
The sixth and last version of the equation system takes the form:

(
c8

) · (i3) =
(
c6

)
(7.44)

where c8 = c5 − c7/R2.
This equation system can be solved at once for the unknown i3:

i3 =
c6

c8
(7.45)

¿From the previous set of equations, we can subsequently compute:

i2 = −c7 · i3
R2

(7.46)

and so forth.
Thus, the overall equation system can be replaced by the following set

of symbolic scalar equations:



7.5 The Relaxation Algorithm 275

c1 = R3 (7.47a)
c2 = −R3 (7.47b)
c3 = c1 (7.47c)
c4 = u0 (7.47d)

c5 = 1 +
c3

R1
(7.47e)

c6 =
c4

R1
(7.47f)

c7 = c2 (7.47g)

c8 = c5 − c7

R2
(7.47h)

i3 =
c6

c8
(7.47i)

i2 = −c7 · i3
R2

(7.47j)

u2 = −c2 · i3 (7.47k)

i1 =
c4 − c3 · i3

R1
(7.47l)

u1 = u0 − c1 · i3 (7.47m)
u3 = R3 · i3 (7.47n)

Of course, we can also combine the relaxation approach with tearing.
Once an expression for the tearing variable i3 has been found, the remaining
variables can be computed from the original set of equations instead of using
those from the back–substitution:

c1 = R3 (7.48a)
c2 = −R3 (7.48b)
c3 = c1 (7.48c)
c4 = u0 (7.48d)

c5 = 1 +
c3

R1
(7.48e)

c6 =
c4

R1
(7.48f)

c7 = c2 (7.48g)

c8 = c5 − c7

R2
(7.48h)

i3 =
c6

c8
(7.48i)

u3 = R3 · i3 (7.48j)



276 Chapter 7. Differential Algebraic Equations

u1 = u0 − u3 (7.48k)

i1 =
u1

R1
(7.48l)

u2 = u3 (7.48m)

i2 =
u2

R2
(7.48n)

What would have happened if we had started out with the second set of
causal equations, i.e., the one derived involving two tearing variables. The
causal equations present themselves as follows:

u3 = u2 (7.49a)

i3 =
u3

R3
(7.49b)

i2 = i1 − i3 (7.49c)
u2 = R2 · i2 (7.49d)
u1 = u0 − u3 (7.49e)

i1 =
u1

R1
(7.49f)

Moving all unknowns to the left side of the equal sign, we obtain:

u3 − u2 = 0 (7.50a)
R3 · i3 − u3 = 0 (7.50b)
i2 − i1 + i3 = 0 (7.50c)
u2 − R2 · i2 = 0 (7.50d)

u1 + u3 = u0 (7.50e)
R1 · i1 − u1 = 0 (7.50f)

This set of equations can be written in a matrix–vector form as follows:⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
−1 R3 0 0 0 0
0 1 1 0 0 −1
0 0 −R2 1 0 0
1 0 0 0 1 0
0 0 0 0 −1 R1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u3

i3
i2
u2

u1

i1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
u0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.51)

Just as in the previous case, all the diagonal elements of the matrix
are non–zero, allowing a Gaussian elimination without pivoting to be per-
formed. However this time around, there are two non–zero elements above
the diagonal, one involving the tearing variable u2, the other involving the
tearing variable i1.



7.6 Structural Singularities 277

Finding a minimal set of non–zero elements above the diagonal of the
matrix is thus identical to finding a minimal set of tearing variables. Hence
also this problem is np–complete.

The same heuristic procedure that was proposed for tackling the problem
of finding a small (though not necessarily the minimal) set of tearing vari-
ables can also be used to find a small (though not necessarily the smallest)
set of non–zero elements above the diagonal of the linear equation matrix
for the relaxation algorithm.

Why were we interested in minimizing the number of non–zero elements
above the diagonal? Remember that we only need to introduce new auxil-
iary variables ci in the symbolic Gaussian elimination, if both the elements
in the top row and the elements in the leftmost column are non–zero. If
an element in the top row is zero, then all the elements beneath it don’t
change in the next version of the system equations, i.e., in the next step
of the Gaussian elimination algorithm. Thus by minimizing the number of
non–zero elements above the diagonal, we also minimize the number of new
auxiliary variables that need to be introduced, and for which expressions
have to be evaluated.

Hence also the symbolic Gaussian elimination algorithm exploits the
number and positions of the zero elements in the linear equation system,
and therefore can be interpreted as a symbolic sparse matrix technique.

7.6 Structural Singularities

Let us now look at yet another circuit problem. This time, we shall exchange
the capacitor and the inductor, as shown in Fig.7.14.

The set of differential and algebraic equations thus presents itself as:

u0 = f(t) (7.52a)
u1 = R1 · i1 (7.52b)
u2 = R2 · i2 (7.52c)

uL = L · diL
dt

(7.52d)

iC = C · duC

dt
(7.52e)

u0 = u1 + uL (7.52f)
uC = u1 + u2 (7.52g)
uL = u2 (7.52h)
i0 = i1 + iC (7.52i)
i1 = i2 + iL (7.52j)

with the structure digraph as shown in Fig.7.15.



278 Chapter 7. Differential Algebraic Equations

U
0
=

1
0

R=20

Ground
R

=
1
0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 7.14. Schematic of once more modified electrical RLC circuit.

Eq.(7.52a)

Eq.(7.52b)

Eq.(7.52c)

Eq.(7.52d)

Eq.(7.52e)

Eq.(7.52f)

Eq.(7.52g)

Eq.(7.52h)

Eq.(7.52i)

Eq.(7.52j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

FIGURE 7.15. Structure digraph of once more modified electrical circuit.

Let us start to color the digraph. Figure 7.16 shows the partially colored
digraph after the first iteration.

We notice that we are in trouble. The variable ic has two blue (dotted)
lines attached to it, and nothing else. Consequently, we no longer have an
equation to compute the value of ic.

Let us try another approach. We can introduce the node potentials, vi,
as additional variables, write down for each branch the relationship be-



7.6 Structural Singularities 279

Eq.(7.52a)

Eq.(7.52b)

Eq.(7.52c)

Eq.(7.52d)

Eq.(7.52e)

Eq.(7.52f)

Eq.(7.52g)

Eq.(7.52h)

Eq.(7.52i)

Eq.(7.52j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

Eq. #1

Eq. #10

Eq. #9

Eq. #8

FIGURE 7.16. Structure digraph of partially causalized electrical circuit.

tween the branch voltage and the two neighboring node potentials, and
eliminate the mesh equations instead. Figure 7.17 shows the schematic of
the electrical circuit with node potentials.

U
0
=

1
0

R=20

Ground

R
=

1
0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

v0

v1

v2

FIGURE 7.17. Schematic of electrical RLC circuit with node potentials.

The new set of equations can be written as follows:

u0 = f(t) (7.53a)
u0 = v1 − v0 (7.53b)
u1 = R1 · i1 (7.53c)
u1 = v1 − v2 (7.53d)



280 Chapter 7. Differential Algebraic Equations

u2 = R2 · i2 (7.53e)
u2 = v2 − v0 (7.53f)

uL = L · diL
dt

(7.53g)

uL = v2 − v0 (7.53h)

iC = C · duC

dt
(7.53i)

uC = v1 − v0 (7.53j)
v0 = 0 (7.53k)
i0 = i1 + iC (7.53l)
i1 = i2 + iL (7.53m)

This time, we ended up with 13 equations in 13 unknowns. Its structure
digraph is shown in Fig.7.18.

Eq.(7.53a)

Eq.(7.53b)

Eq.(7.53c)

Eq.(7.53d)

Eq.(7.53e)

Eq.(7.53f)

Eq.(7.53g)

Eq.(7.53h)

Eq.(7.53i)

Eq.(7.53j)

Eq.(7.53k)

Eq.(7.53l)

Eq.(7.53m)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

v1

v2

v0

FIGURE 7.18. Structure digraph of electrical circuit with node potentials.

Figure 7.19 shows the partially colored digraph.
We again got stuck after two iterations. However, it seems that we made

the problem worse rather than better. Just like last time, we again are left
without an equation to compute iC , but this time, we are also left with an
equation, Eq.(7.53j), which has no unknowns left in it, although it has not



7.7 Structural Singularity Elimination 281

Eq.(7.53a)

Eq.(7.53b)

Eq.(7.53c)

Eq.(7.53d)

Eq.(7.53e)

Eq.(7.53f)

Eq.(7.53g)

Eq.(7.53h)

Eq.(7.53i)

Eq.(7.53j)

Eq.(7.53k)

Eq.(7.53l)

Eq.(7.53m)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

v1

v2

v0

Eq. #1

Eq. #2

Eq. #13

Eq. #12

Eq. #11

Eq. #3

Eq. #10

FIGURE 7.19. Partially colored structure digraph of electrical circuit with node
potentials.

yet been made causal. We won’t be able to use it for anything. Such an
equation is called a constraint equation.

What has happened in this circuit? The capacitor has been placed in
parallel with a voltage source. Consequently, the voltage across the capaci-
tor cannot be chosen as an independent state variable. There is no freedom
in choosing its initial condition.

7.7 Structural Singularity Elimination

Before we deal with the above circuit, let us choose a much simpler circuit
that exhibits the same problems. Figure 7.20 shows the schematic of an
electrical circuit with two capacitors in parallel.

Since the two capacitive voltages, u1 and u2, are the same, they don’t
qualify as independent state variables, as we cannot choose initial condi-
tions for them independently. Hence we expect problems that are similar
to those observed in the previous circuit.

The equations describing this circuit can be written as:

u0 = f(t) (7.54a)
uR = R · i0 (7.54b)

i1 = C1 · du1

dt
(7.54c)

i2 = C2 · du2

dt
(7.54d)



282 Chapter 7. Differential Algebraic Equations

U
0

=
1

0

+

-

R

C1 C2
U0

i0

u1

i1

u2

i2
uR

FIGURE 7.20. Schematic of electrical circuit with two capacitors in parallel.

u0 = uR + u1 (7.54e)
u2 = u1 (7.54f)
i0 = i1 + i2 (7.54g)

If we choose u1 and u2 as state variables, then both u1 and u2 are considered
known variables, and Eq.(7.54f) has no unknown left. Thus, it must be
considered a constraint equation.

There are several different ways, how this problem can be solved [7.4].
We can turn the causality around on one of the capacitive equations, solving
e.g. for the variable i2, instead of du2/dt. Consequently, the solver has to
solve for du2/dt instead of u2, thus the integrator has been turned into a
differentiator.

In the model equations, u2 must be considered an unknown, whereas
du2/dt is considered a known variable. The equations can now easily be
brought into causal form:

u0 = f(t) (7.55a)

i2 = C2 · du2

dt
(7.55b)

u2 = u1 (7.55c)
uR = u0 − u1 (7.55d)

i0 =
1
R

· uR (7.55e)

i1 = i0 − i2 (7.55f)
du1

dt
=

1
C1

· i1 (7.55g)

with the block diagram as shown in Fig.7.21.



7.7 Structural Singularity Elimination 283

d
dt

1
R

1
C1

C21

+

+
-

-

∫

U0 i0

u1

du1
dt i1

u2
du2
dt i2

uR

FIGURE 7.21. Block diagram of electrical circuit with parallel capacitors.

The solver generates u1 out of du1/dt by numerical integration, whereas
it generates du2/dt out of u2 by numerical differentiation.

Numerical differentiation is a bad idea, at least if explicit formulae are
being used. Using implicit formulae, numerical integration and differenti-
ation are essentially the same, but as we already know, implicit formulae
call for an iteration at every step.

Costas Pantelides [7.20] had a better idea. How about modifying the
equation system such that the constraint equation disappears? In the above
example, if:

u2 = u1 (7.56)

at all times, then obviously, it must also be true that:

du2

dt
=

du1

dt
(7.57)

at all times. Thus, we can symbolically differentiate the constraint equation,
and replace the constraint equation by its derivative. The new set of acausal
equations takes the form:

u0 = f(t) (7.58a)
uR = R · i0 (7.58b)

i1 = C1 · du1

dt
(7.58c)

i2 = C2 · du2

dt
(7.58d)

u0 = uR + u1 (7.58e)
du2

dt
=

du1

dt
(7.58f)

i0 = i1 + i2 (7.58g)

with the partially colored structure digraph as shown in Fig.7.22.



284 Chapter 7. Differential Algebraic Equations

Eq.(7.58a)

Eq.(7.58b)

Eq.(7.58c)

Eq.(7.58d)

Eq.(7.58e)

Eq.(7.58f)

Eq.(7.58g)

u0

i0

uR

i1

i2

du2/dt

du1/dt

Eq. #1

Eq. #3

Eq. #2

FIGURE 7.22. Partially colored structure digraph of electrical circuit with par-
allel capacitors after differentiation of the constraint equation.

The constraint equation has indeed disappeared. After partial causal-
ization of the equations, we are now faced with an algebraic loop in four
equations and four unknowns, a situation that we already know how to
deal with.

Miraculously, we seem to have gotten rid of the constraint between the
two capacitors. After the symbolic differentiation of the constraint equa-
tion, we seem to again have two integrators that we can integrate separately
and independently.

Evidently, this cannot be true. The constraint on the capacitive voltages
has not disappeared. It has only been hidden. It is true that we can now
numerically integrate du1/dt into u1, and du2/dt into u2. However, we
still must satisfy the original constraint equation when choosing the initial
conditions for the two integrators.

The second integrator does not represent a true state variable. In fact, it
is wasteful. We don’t need two integrators, since the system has only one
degree of freedom, i.e., one energy storage.

Let us thus modify the Pantelides algorithm once more. Instead of re-
placing the constraint equation by its derivative, we add the differentiated
constraint equation as an additional equation to the set.

Hence we now have eight equations in seven unknowns. We have one
equation too many, and consequently, we need to throw away one of them.
We shall throw away one of the integrators, for example, the one that
integrates du2/dt into u2.

We symbolize this by renaming the variable du2/dt as du2. du2 is no
longer a state derivative. It is simply an algebraic variable with a funny
name. Hence both u2 and du2 are now unknowns, and we are thus faced
with eight equations in eight unknowns. These are:

u0 = f(t) (7.59a)
uR = R · i0 (7.59b)

i1 = C1 · du1

dt
(7.59c)



7.7 Structural Singularity Elimination 285

i2 = C2 · du2 (7.59d)
u0 = uR + u1 (7.59e)
u2 = u1 (7.59f)

du2 =
du1

dt
(7.59g)

i0 = i1 + i2 (7.59h)

with the partially colored structure digraph as shown in Fig.7.23.

Eq.(7.59a)

Eq.(7.59b)

Eq.(7.59c)

Eq.(7.59d)

Eq.(7.59e)

Eq.(7.59f)

Eq.(7.59g)

Eq.(7.59h)

u0

i0

uR

i1

u2

du2

du1/dt

i2

Eq. #1

Eq. #4

Eq. #3

Eq. #2

FIGURE 7.23. Partially colored structure digraph of electrical circuit with par-
allel capacitors after differentiation of the constraint equation.

Once again, we end up with an algebraic loop in four equations and four
unknowns.

In the mathematical literature, structurally singular systems are called
higher–index problems, or more precisely, structurally singular physical sys-
tems lead to mathematical descriptions that present themselves in the form
of higher–index DAEs [7.1, 7.2, 7.19].

The perturbation index is a measure of the constraints among equations
[7.10]. An index–0 DAE contains neither algebraic loops nor structural
singularities. An index–1 DAE contains algebraic loops, but no structural
singularities. A DAE with a perturbation index > 1, a so–called higher–
index DAE, contains structural singularities1.

The algorithm by Pantelides is a symbolic index reduction algorithm2.
It reduces the perturbation index by one. Hence it may be necessary to

1A number of different definitions of structure indices are provided in the mathe-
matical literature. A paper by Campbell and Gear [7.3] offers a good survey of this
somewhat exotic issue. The different definitions all agree on the index of a linear DAE
system, but sometimes disagree in the case of nonlinear DAE systems.

2The original paper by Pantelides did not concern itself with index reduction at
all. It described an algorithm that could find, in a procedural fashion, a complete and
consistent set of initial conditions for a DAE system. It was shown later in [7.4, 7.15]
that the Pantelides algorithm can also be used as a symbolic index reduction algorithm.



286 Chapter 7. Differential Algebraic Equations

apply the Pantelides algorithm more than once. For example, a mechanical
system with constraints among positions or angles, such as a motor with a
load, whereby the motor and the load are described separately by differen-
tial equations, leads to an index–3 DAE system. By applying the Pantelides
algorithm once, the constraint gets reduced to a constraint between veloc-
ities or angular velocities, which are still state variables. By applying the
Pantelides algorithm a second time, the constraint gets reduced to a con-
straint between accelerations or angular accelerations, which are no longer
outputs of integrators, and therefore, are no longer state variables.

It is thus not surprising that, after applying the Pantelides algorithm,
we ended up with an algebraic loop. This is usually the case.

Let us now return to the more complex circuit. We shall start with the
version that contains a constraint equation, i.e., the version making use of
the node potentials. The partially causalized set of equations can be written
as follows:

u0 = f(t) (7.60a)
v0 = 0 (7.60b)
v1 = u0 − v0 (7.60c)

u1 − R1 · i1 = 0 (7.60d)
u1 + v2 = v1 (7.60e)

u2 − R2 · i2 = 0 (7.60f)
v2 − u2 = v0 (7.60g)

0 = uC − v1 + v0 (7.60h)
i1 − i2 = iL (7.60i)

uL = v2 − v0 (7.60j)
duC

dt
=

1
C

· iC (7.60k)

diL
dt

=
1
L

· uL (7.60l)

i0 = i1 + iC (7.60m)

The unknowns are written on the left side of the equal sign, thus equations
with only one variable to the left of the equal sign are causal equations,
those with more than one variable to the left of the equal sign are acausal
equations, and those with zero variables to the left of the equal sign are
constraint equations.

We differentiate the constraint equation, add it to the DAE system, and
let go of an integrator associated with the constraint.

u0 = f(t) (7.61a)



7.7 Structural Singularity Elimination 287

v0 = 0 (7.61b)
v1 = u0 − v0 (7.61c)

u1 − R1 · i1 = 0 (7.61d)
u1 + v2 = v1 (7.61e)

u2 − R2 · i2 = 0 (7.61f)
v2 − u2 = v0 (7.61g)

0 = uC − v1 + v0 (7.61h)
0 = duC − dv1 + dv0 (7.61i)

i1 − i2 = iL (7.61j)
uL = v2 − v0 (7.61k)

duC =
1
C

· iC (7.61l)

diL
dt

=
1
L

· uL (7.61m)

i0 = i1 + iC (7.61n)

In the process of differentiation, we introduced two new pseudo–derivatives1,
dv1 and dv0, for which we are lacking equations.

We now differentiate the causal equations that define v1 and v0, and add
those to the set as well.

u0 = f(t) (7.62a)
v0 = 0 (7.62b)

dv0 = 0 (7.62c)
v1 = u0 − v0 (7.62d)

dv1 = du0 − dv0 (7.62e)
u1 − R1 · i1 = 0 (7.62f)

u1 + v2 = v1 (7.62g)
u2 − R2 · i2 = 0 (7.62h)

v2 − u2 = v0 (7.62i)
0 = uC − v1 + v0 (7.62j)
0 = duC − dv1 + dv0 (7.62k)

i1 − i2 = iL (7.62l)
uL = v2 − v0 (7.62m)

duC =
1
C

· iC (7.62n)

1The pseudo–derivatives are sometimes also called dummy–derivatives in the litera-
ture [7.15].



288 Chapter 7. Differential Algebraic Equations

diL
dt

=
1
L

· uL (7.62o)

i0 = i1 + iC (7.62p)

We again introduced one additional pseudo–derivative, du0. Thus, the final
set of equations can be written as:

u0 = f(t) (7.63a)

du0 =
df(t)
dt

(7.63b)

v0 = 0 (7.63c)
dv0 = 0 (7.63d)
v1 = u0 − v0 (7.63e)

dv1 = du0 − dv0 (7.63f)
u1 − R1 · i1 = 0 (7.63g)

u1 + v2 = v1 (7.63h)
u2 − R2 · i2 = 0 (7.63i)

v2 − u2 = v0 (7.63j)
0 = uC − v1 + v0 (7.63k)
0 = duC − dv1 + dv0 (7.63l)

i1 − i2 = iL (7.63m)
uL = v2 − v0 (7.63n)

duC =
1
C

· iC (7.63o)

diL
dt

=
1
L

· uL (7.63p)

i0 = i1 + iC (7.63q)

If f(t) is a known function of time, we can symbolically compute its deriva-
tive. On the other hand, if f(t) stands for an input signal in a real–time
simulation with hardware in the loop, we have a problem. In that case,
we may need an additional sensor somewhere in the system that measures
df(t)/dt, and add this signal as an additional real–time input to the simu-
lation.

By now, we have 17 equations in 17 unknowns. The partially colored
structure digraph is shown in Fig.7.24.

It worked. The Pantelides algorithm was able to reduce the DAE system
to index–1. We ended up with an algebraic loop in five equations and
five unknowns that can be tackled using any one among the techniques
described in the previous sections of this chapter.

Let us now return to the original description of the circuit without node
potentials. In that formulation, no constraint equation was visible. We only



7.7 Structural Singularity Elimination 289

Eq.(7.63a)

Eq.(7.63b)

Eq.(7.63c)

Eq.(7.63d)

Eq.(7.63e)

Eq.(7.63f)

Eq.(7.63g)

Eq.(7.63h)

Eq.(7.63i)

Eq.(7.63j)

Eq.(7.63k)

Eq.(7.63l)

Eq.(7.63m)

Eq.(7.63n)

Eq.(7.63o)

Eq.(7.63p)

Eq.(7.63q)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC

iC

v1

v2

v0

du0

dv0

dv1

uC

Eq. #1

Eq. #2

Eq. #3

Eq. #4

Eq. #17

Eq. #16

Eq. #15

Eq. #5

Eq. #6

Eq. #14

Eq. #13

Eq. #7

FIGURE 7.24. Partially colored structure digraph of electrical RLC circuit with
node potentials after differentiation of the constraint equation.

knew that we had run into difficulties, because we recognized that we were
left without an equation to compute the value of the variable ic.

Let us write down the equations in their partially causalized form.

u0 = f(t) (7.64a)
u1 − R1 · i1 = 0 (7.64b)
u2 − R2 · i2 = 0 (7.64c)

u1 + uL = u0 (7.64d)
u1 + u2 = uC (7.64e)
uL − u2 = 0 (7.64f)
i1 − i2 = iL (7.64g)

duC

dt
=

1
C

· iC (7.64h)

diL
dt

=
1
L

· uL (7.64i)

i0 = i1 + iC (7.64j)

We are left with six acausal equations in only five unknowns, since ic doesn’t
show up anywhere in them. Thus, there still exists a constraint equation.
However, it is hidden inside an algebraic system.

Let us draw the structure digraph of the algebraic system, and let us
choose a residual equation and a tearing variable. The structure digraph is



290 Chapter 7. Differential Algebraic Equations

shown in Fig.7.25.

Eq.(7.64b)

Eq.(7.64c)

Eq.(7.64d)

Eq.(7.64e)

Eq.(7.64f)

Eq.(7.64g)

u1

i1

u2

i2

uL

iC

Residual Eq. Tearing Var. 

FIGURE 7.25. Structure digraph of algebraic subsystem of electrical RLC circuit
without node potentials after a tearing variable has been selected.

We now complete the causalization of the algebraic equation system. The
completely colored structure digraph is shown in Fig.7.26.

Eq.(7.64b)

Eq.(7.64c)

Eq.(7.64d)

Eq.(7.64e)

Eq.(7.64f)

Eq.(7.64g)

u1

i1

u2

i2

uL

iC

Residual Eq. Tearing Var. 

Eq. #1

Eq. #2

Eq. #3

Eq. #4

Constraint Eq.

FIGURE 7.26. Completely colored structure digraph of algebraic subsystem of
electrical RLC circuit without node potentials.

The constraint equation, Eq.(7.64f) has become clearly visible. We can
now write down the equation system in its completely causalized form:

u0 = f(t) (7.65a)
uL = u0 − u1 (7.65b)
u2 = uC − u1 (7.65c)

i2 =
1

R2
· u2 (7.65d)

i1 = i2 + iL (7.65e)
0 = uL − u2 (7.65f)

u1 = R1 · i1 (7.65g)
duC

dt
=

1
C

· iC (7.65h)

diL
dt

=
1
L

· uL (7.65i)

i0 = i1 + iC (7.65j)

We now apply the Pantelides algorithm. We start by differentiating the
constraint equation, adding it to the equation system.



7.7 Structural Singularity Elimination 291

u0 = f(t) (7.66a)
uL = u0 − u1 (7.66b)
u2 = uC − u1 (7.66c)

i2 =
1

R2
· u2 (7.66d)

i1 = i2 + iL (7.66e)
0 = uL − u2 (7.66f)
0 = duL − du2 (7.66g)

u1 = R1 · i1 (7.66h)
duC

dt
=

1
C

· iC (7.66i)

diL
dt

=
1
L

· uL (7.66j)

i0 = i1 + iC (7.66k)

We introduced two new pseudo–derivatives, duL and du2. Hence we differ-
entiate the equations defining uL and u2.

u0 = f(t) (7.67a)
uL = u0 − u1 (7.67b)

duL = du0 − du1 (7.67c)
u2 = uC − u1 (7.67d)

du2 = duC − du1 (7.67e)

i2 =
1

R2
· u2 (7.67f)

i1 = i2 + iL (7.67g)
0 = uL − u2 (7.67h)
0 = duL − du2 (7.67i)

u1 = R1 · i1 (7.67j)
duC

dt
=

1
C

· iC (7.67k)

diL
dt

=
1
L

· uL (7.67l)

i0 = i1 + iC (7.67m)

We introduced three new pseudo–derivatives, du0, du1, and duC . We dif-
ferentiate the equations defining u0 and u1, and we throw the integrator
away that defines uC .



292 Chapter 7. Differential Algebraic Equations

u0 = f(t) (7.68a)

du0 =
df(t)
dt

(7.68b)

uL = u0 − u1 (7.68c)
duL = du0 − du1 (7.68d)

u2 = uC − u1 (7.68e)
du2 = duC − du1 (7.68f)

i2 =
1

R2
· u2 (7.68g)

i1 = i2 + iL (7.68h)
0 = uL − u2 (7.68i)
0 = duL − du2 (7.68j)

u1 = R1 · i1 (7.68k)
du1 = R1 · di1 (7.68l)

duC =
1
C

· iC (7.68m)

diL
dt

=
1
L

· uL (7.68n)

i0 = i1 + iC (7.68o)

We introduced another pseudo–derivative, di1. Thus, we need to differen-
tiate the equation defining i1 as well.

u0 = f(t) (7.69a)

du0 =
df(t)
dt

(7.69b)

uL = u0 − u1 (7.69c)
duL = du0 − du1 (7.69d)

u2 = uC − u1 (7.69e)
du2 = duC − du1 (7.69f)

i2 =
1

R2
· u2 (7.69g)

i1 = i2 + iL (7.69h)

di1 = di2 +
diL
dt

(7.69i)

0 = uL − u2 (7.69j)
0 = duL − du2 (7.69k)



7.7 Structural Singularity Elimination 293

u1 = R1 · i1 (7.69l)
du1 = R1 · di1 (7.69m)

duC =
1
C

· iC (7.69n)

diL
dt

=
1
L

· uL (7.69o)

i0 = i1 + iC (7.69p)

We now introduced yet a new pseudo–derivative, di2, and also a true deriva-
tive, diL/dt.

As the constraint equation was hidden in one solid algebraic loop, we
had to differentiate every single equation of that loop. We ended up with
the following set of 17 equations in 17 unknowns:

u0 = f(t) (7.70a)

du0 =
df(t)
dt

(7.70b)

uL = u0 − u1 (7.70c)
duL = du0 − du1 (7.70d)

u2 = uC − u1 (7.70e)
du2 = duC − du1 (7.70f)

i2 =
1

R2
· u2 (7.70g)

di2 =
1

R2
· du2 (7.70h)

i1 = i2 + iL (7.70i)

di1 = di2 +
diL
dt

(7.70j)

0 = uL − u2 (7.70k)
0 = duL − du2 (7.70l)

u1 = R1 · i1 (7.70m)
du1 = R1 · di1 (7.70n)

duC =
1
C

· iC (7.70o)

diL
dt

=
1
L

· uL (7.70p)

i0 = i1 + iC (7.70q)

Let us start from scratch with the causalization of this DAE system.
Figure 7.27 shows the partially colored structure digraph of this set of
equations.



294 Chapter 7. Differential Algebraic Equations

Eq.(7.70a)

Eq.(7.70b)

Eq.(7.70c)

Eq.(7.70d)

Eq.(7.70e)

Eq.(7.70f)

Eq.(7.70g)

Eq.(7.70h)

Eq.(7.70i)

Eq.(7.70j)

Eq.(7.70k)

Eq.(7.70l)

Eq.(7.70m)

Eq.(7.70n)

Eq.(7.70o)

Eq.(7.70p)

Eq.(7.70q)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC

iC

du0

uC

du1

du2

duL

di1

di2

Eq. #1

Eq. #2

Eq. #17

Eq. #16

Eq. #15

Eq. #14

FIGURE 7.27. Partially colored structure digraph of electrical RLC circuit with-
out node potentials.

It worked. The constraint equation has indeed disappeared. Instead we
are now facing an algebraic loop in 11 equations and 11 unknowns.

Let us analyze this algebraic loop further, as this analysis will unveil
yet another difficulty. The partially causalized equations can be written as
follows:

u0 = f(t) (7.71a)

du0 =
df(t)
dt

(7.71b)

uL + u1 = u0 (7.71c)
duL + du1 = du0 (7.71d)

u2 − R2 · i2 = 0 (7.71e)
du2 − R2 · di2 = 0 (7.71f)

i1 − i2 = iL (7.71g)

di1 − di2 − diL
dt

= 0 (7.71h)

uL − u2 = 0 (7.71i)
duL − du2 = 0 (7.71j)



7.7 Structural Singularity Elimination 295

u1 − R1 · i1 = 0 (7.71k)
du1 − R1 · di1 = 0 (7.71l)

uL − l · diL
dt

= 0 (7.71m)

duC = du2 + du1 (7.71n)
iC = C · duC (7.71o)
uC = u2 + u1 (7.71p)
i0 = i1 + iC (7.71q)

Figure 7.28 shows the structure digraph of the algebraic subsystem after
selecting a tearing variable and a residual equation.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.

FIGURE 7.28. Structure digraph of algebraic subsystem of electrical RLC circuit
after choosing a tearing variable and a residual equation.

We proceed with the usual graph–coloring algorithm. The partially col-
ored structure digraph is shown in Fig.7.29.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.Eq. #1

Eq. #10

Eq. #9

Eq. #2

Eq. #3

Eq. #4

Eq. #8

Eq. #7

Eq. #5

FIGURE 7.29. Partially colored structure digraph of algebraic subsystem of elec-
trical RLC circuit.

We seem to again have ended up with a structural singularity. Equa-



296 Chapter 7. Differential Algebraic Equations

tion (7.71g) is a constraint equation, whereas we are lacking an equation
to compute the variable duL.

Yet, this is a very different problem from the one discussed before. This
constraint was caused by a poor selection of a tearing variable. Had we
chosen a different tearing variable or a different residual equation, this
problem would not have occurred. For this reason, we cannot simplify the
heuristic procedure further. It is insufficient to look at the number of black
(solid) lines attached to equations and the number of black (solid) lines
attached to variables when selecting the residual equation and the tearing
variable. For each proposed selection, we must pursue the consequences of
that selection all the way to the end and be prepared to backtrack if we
end up with a conflict.

Let us select a different tearing variable. The new selection is shown in
Fig.7.30.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.

FIGURE 7.30. Structure digraph of algebraic subsystem of electrical RLC circuit
after choosing a tearing variable and a residual equation.

The partially colored structure digraph is shown in Fig.7.31.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.

Eq. #1

Eq. #10

Eq. #9

Eq. #2

Eq. #8

FIGURE 7.31. Partially colored structure digraph of algebraic subsystem of elec-
trical RLC circuit.



7.8 The Solvability Issue 297

We were able to causalize six of the eleven equations. We thus need to
select a second residual equation and a second tearing variable, in order to
complete the causalization of the algebraic equation system.

Dymola implements the Pantelides algorithm essentially in the form ex-
plained in this section. However as almost always, the devil is in the detail.
For didactic reasons, we explained the algorithm by starting out with an
individual constraint equation, which we differentiated and added to the
set of equations. We then chose a pseudo–derivative, in order to ensure that
we once again had the same number of unknowns as equations. We then
checked, whether additional equations needed to be differentiated as well,
since new pseudo–derivatives had been introduced in the process. Yet, this
procedure already got us into trouble in one of the examples. For this rea-
son, Dymola first determines all equations that need to be differentiated,
and chooses the dummy derivative only in the very end.

Furthermore, a fixed choice of a pseudo–derivative may occasionally lead
to a division by zero at run time. In fact, it can happen that no fixed
choice of a pseudo–derivative avoids divisions by zero. In those cases, Dy-
mola makes the choice of the state variables dynamic, switching from one
selection to another during the course of the simulation run [7.14].

7.8 The Solvability Issue

The DAE literature talks about yet another issue, namely that of solvability
[7.1]. Take for example the following DAE:

x − ẋ2 = 0.0 (7.72)

Converting Eq.(7.72) to ODE form, we obtain:

ẋ = ±√
x (7.73)

Evidently, this ODE has only a real–valued solution as long as the initial
value of x is positive. This constraint existed even in the DAE case. How-
ever, in the DAE formulation, the situation has become worse. The DAE
formulation does not give us any hint, which of the two roots we should
select. If we choose the positive root, ẋ will also be positive, and x will
keep growing. However, if we choose the negative root, ẋ is negative, and x
will decrease. Both solutions satisfy the DAE, and if the only information
we have is the DAE, we can’t tell which solution is for real. Even worse, it
could happen that we should choose the positive root during some period of
time, and the negative root during another. Thus, at any moment in time,
we obtain a potential bifurcation in the solution depending on whether we
choose the positive or the negative root.

To us, solvability is a non–issue. It is the typical worry of a mathe-
matician who puts the mathematical formulation first, and then tries to



298 Chapter 7. Differential Algebraic Equations

interpret the ramifications of that formulation. Remember what we wrote
earlier: mathematics is simply the language of physics. The reason why we
are interested in differential equations and solving them is that we wish to
gain a better understanding of physical phenomena in this universe. Con-
sequently, the origin of our interest is always physics, not mathematics.
Physics does not provide us with unsolvable riddles. Saying that a DAE
is unsolvable is equivalent to saying that the phenomenon described by it
is “defying causality” in the sense that the outcome of an experiment is
non–deterministic, which in turn is almost equivalent to saying that the
phenomenon is non–physical. True, chaos is for real [7.5]. We can observe
chaotic phenomena in physics every day. However, chaotic phenomena are
not described through unsolvable differential equations. Chaos only means
that the solution in time is undecidable without infinite precision. However,
the differential equation that produces a chaotic solution is perfectly deter-
ministic [7.5]. Thus, philosophizing about the implications of solvability or
non–solvability of DAEs is like discussing how many angels can dance on
the tip of a needle. Or is it not?

Let us look at a simple pendulum as shown on Fig.7.32.

x

y

�ϕ

F

m · g
FIGURE 7.32. Mechanical pendulum.

The equations of motion for this pendulum can be described easily in
DAE form:



7.8 The Solvability Issue 299

m · dvx

dt
= −F · x

�
(7.74a)

m · dvy

dt
= m · g − F · y

�
(7.74b)

dx

dt
= vx (7.74c)

dy

dt
= vy (7.74d)

x2 + y2 = �2 (7.74e)

These are five equations in the five unknowns dvx/dt, dvy/dt, dx/dt, dy/dt,
and F . The four natural state variables: vx, vy, x, and y are assumed known.

We notice at once that Eq.(7.74e) is a constraint equation, since it doesn’t
contain any of the unknowns. We apply the Pantelides algorithm, and ob-
tain the following set of six equations in six unknowns:

m · dvx

dt
= −F · x

�
(7.75a)

m · dvy

dt
= m · g − F · y

�
(7.75b)

dx = vx (7.75c)
dy

dt
= vy (7.75d)

x2 + y2 = �2 (7.75e)

2 · x · dx + 2 · y · dy

dt
= 0 (7.75f)

We decided to let go of the integrator for x, thus the six unknowns are
dvx/dt, dvy/dt, dx, dy/dt, F , and x.

Eq.(7.75e) is no longer a constraint equation, as it can be solved for the
new unknown x. Eq.(7.75f) can be solved for the unknown dx, but this
leaves Eq.(7.75c) as a new constraint equation.

Evidently, the original problem was an index–3 problem, and the Pan-
telides algorithm needs to be applied a second time. We obtain the following
set of nine equations in nine unknowns:

m · dvx = −F · x
�

(7.76a)

m · dvy

dt
= m · g − F · y

�
(7.76b)

dx = vx (7.76c)
d2x = dvx (7.76d)



300 Chapter 7. Differential Algebraic Equations

dy

dt
= vy (7.76e)

d2y =
dvy

dt
(7.76f)

x2 + y2 = �2 (7.76g)

x · dx + y · dy

dt
= 0 (7.76h)

dx2 + x · d2x +
(

dy

dt

)2

+ y · d2y = 0 (7.76i)

In the differentiation of Eq.(7.76c), a new variable, d2x, was introduced.
Thus, the equation defining dx, i.e., Eq.(7.76h), had to be differentiated as
well. In that differentiation, again one more new variable, d2y, was intro-
duced. Hence the equation defining dy/dt, i.e., Eq.(7.76e), had to be differ-
entiated also. Finally, another integrator had to be eliminated, namely the
one defining the variable vx. The nine unknowns of this equation system
are dvx, x, F , dvy/dt, dx, vx, d2x, dy/dt, and d2y.

This set of equations represents an index–1 DAE problem that can be
causalized using the tearing method. Figure 7.33 shows the partially causal-
ized structure digraph of this DAE system.

Eq.(7.76a)

Eq.(7.76b)

Eq.(7.76c)

Eq.(7.76d)

Eq.(7.76e)

Eq.(7.76f)

Eq.(7.76g)

Eq.(7.76h)

Eq.(7.76i)

dvx

dvy/dt

dx

d2x

dy/dt

vx

F

x

d2y

Eq. #1

Eq. #2

Eq. #9

Eq. #3

FIGURE 7.33. Partially causalized structure digraph of mechanical pendulum.

An algebraic loop in five equations and five unknowns remains. Fig-
ure 7.34 shows the completely causalized structure digraph after a residual
equation and a tearing variable have been chosen. Since we have a choice,
we decided to select a tearing variable that appears linearly in the residual
equation.

We can read out the causal equations from the completely causalized
structure digraph of Fig.7.34. They are:



7.8 The Solvability Issue 301

Eq.(7.76a)

Eq.(7.76b)

Eq.(7.76c)

Eq.(7.76d)

Eq.(7.76e)

Eq.(7.76f)

Eq.(7.76g)

Eq.(7.76h)

Eq.(7.76i)

dvx

dvy/dt

dx

d2x

dy/dt

vx

F

x

d2y

Eq. #1

Eq. #2

Eq. #9

Eq. #3

Residual Eq.

Tearing Var.

Eq. #4

Eq. #7

Eq. #5

Eq. #6

FIGURE 7.34. Completely causalized structure digraph of mechanical pendulum.

dy

dt
= vy (7.77a)

x = ±
√

�2 − y2 (7.77b)

dx = −y

x
· dy

dt
(7.77c)

dvx = d2x (7.77d)

F = −m · � · dvx

x
(7.77e)

dvy

dt
= g − F · y

m · � (7.77f)

d2y =
dvy

dt
(7.77g)

d2x = −
dx2 +

(
dy
dt

)2

+ y · d2y

x
(7.77h)

vx = dx (7.77i)

We are facing a new problem. We seem to have come across a solvability
issue. At any point in time, there are two solutions to Eq.(7.77b), one of
which is positive, whereas the other is negative. Yet, the physics behind
the pendulum motion doesn’t exhibit any ambiguity at all. The pendulum
knows exactly, how to swing. It knows that we have to choose the positive
root, whenever the pendulum is to the right of the joint, whereas we must
choose the negative root otherwise.

Applying the Pantelides algorithm actually made the problem worse.
The original index–3 DAE model at least knew that the position of the
pendulum cannot jump, since x is the output of an integrator. The reduced
index–1 DAE system no longer contains that information.

Evidently, the issue that we are facing here is not related to the physics
of the pendulum, but only to the mathematical description thereof, i.e., to



302 Chapter 7. Differential Algebraic Equations

the DAE system describing the pendulum motion. Evidently, the simulation
model, i.e., the index–1 DAE system, and to a lesser extent even the original
index–3 DAE system, offers only an incomplete description of the physical
reality.

Physics doesn’t know anything about Newton’s law. The physical reality
of this universe of ours was created long before Mr. Newton was born. What
physics cares about are the conservation principles: conservation of mass,
conservation of energy, and conservation of momentum. Newton’s law is
one way of indirectly satisfying the conservation of energy principle. Yet
for the problem at hand, we also need to conserve the momentum. The
DAE system, as specified, does not capture, either directly or indirectly,
the need for conserving the momentum.

For the example at hand, the problem can be solved easily by selecting
a different set of state variables. Since the pendulum has one mechanical
degree of freedom, we need two state variables. It turns out that ϕ and ϕ̇
are a considerably smarter choice of a set of state variables than y and ẏ.

Unfortunately, the original model does not even contain ϕ as a variable.
We need to add a description of the relationship between the variables
currently captured and ϕ to the model. The easiest may be to replace the
original constraint equation, Eq.(7.74e), by a set of two different equations:

m · dvx

dt
= −F · x

�
(7.78a)

m · dvy

dt
= m · g − F · y

�
(7.78b)

dx

dt
= vx (7.78c)

dy

dt
= vy (7.78d)

x = � · sin(ϕ) (7.78e)
y = � · cos(ϕ) (7.78f)

These are six equations in the six unknowns dvx/dt, dvy/dt, dx/dt, dy/dt,
F , and ϕ.

Since x and y are initially known variables, we can solve Eq.(7.78e) for ϕ,
which then makes Eq.(7.78f) a constraint equation. Left to its own devices,
the Pantelides algorithm will differentiate the constraint equation, while
letting go of the integrator for y. In the process of differentiation, a new
algebraic variable, dϕ, is created, and therefore, Eq.(7.78e) needs to be
differentiated as well:

m · dvx

dt
= −F · x

�
(7.79a)

m · dvy

dt
= m · g − F · y

�
(7.79b)



7.8 The Solvability Issue 303

dx

dt
= vx (7.79c)

dy = vy (7.79d)
x = � · sin(ϕ) (7.79e)

dx

dt
= � · cos(ϕ) · dϕ (7.79f)

y = � · cos(ϕ) (7.79g)
dy = −� · sin(ϕ) · dϕ (7.79h)

The Pantelides algorithm has no reason to select ϕ as a state variable on
its own. It needs help. In Dymola [7.9], we can offer a choice of preferred
state variables to the Pantelides algorithm. If we tell the algorithm that we
wish to keep ϕ as a state variable, a true state derivative, dϕ/dt, will be
generated in the process of differentiation in place of the algebraic variable,
dϕ. The result of the operation will be:

m · dvx

dt
= −F · x

�
(7.80a)

m · dvy

dt
= m · g − F · y

�
(7.80b)

dx

dt
= vx (7.80c)

dy = vy (7.80d)
x = � · sin(ϕ) (7.80e)
y = � · cos(ϕ) (7.80f)

dy = −� · sin(ϕ) · dϕ

dt
(7.80g)

These are now seven equations in the seven unknowns dvx/dt, dvy/dt,
dx/dt, dy, F , y, and dϕ/dt. Since the integrator for y was eliminated,
y is now an additional unknown. dϕ/dt was added as another unknown,
but ϕ is no longer an unknown, since it is now the output of an integrator.

Since ϕ is now a known variable, Eq.(7.80e) has become a new constraint
equation that needs to be differentiated. The result of this operation is:

m · dvx

dt
= −F · x

�
(7.81a)

m · dvy

dt
= m · g − F · y

�
(7.81b)

dx = vx (7.81c)
dy = vy (7.81d)
x = � · sin(ϕ) (7.81e)



304 Chapter 7. Differential Algebraic Equations

dx = � · cos(ϕ) · dϕ

dt
(7.81f)

y = � · cos(ϕ) (7.81g)

dy = −� · sin(ϕ) · dϕ

dt
(7.81h)

We now have eight equations in the eight unknowns dvx/dt, dvy/dt, dx, dy,
F , x, y, and dϕ/dt. A second integrator, the one defining variable x was
thrown out in the process.

Since vx and vy are still known variables, Eqs.(7.81c–d) need to be solved
for dx and dy, respectively. We can then solve Eq.(7.81f) for dϕ/dt, and
consequently, Eq.(7.81h) has become a new constraint equation that needs
to be differentiated. Since we told the Pantelides algorithm that we wish
to preserve dϕ/dt as a state variable, a true state derivative, d2ϕ/dt2 is
generated in the process of differentiation. The result of the operation is:

m · dvx

dt
= −F · x

�
(7.82a)

m · dvy = m · g − F · y
�

(7.82b)

dx = vx (7.82c)
dy = vy (7.82d)

d2y = dvy (7.82e)
x = � · sin(ϕ) (7.82f)

dx = � · cos(ϕ) · dϕ

dt
(7.82g)

y = � · cos(ϕ) (7.82h)

dy = −� · sin(ϕ) · dϕ

dt
(7.82i)

d2y = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.82j)

By now, we have 10 equations in the 10 unknowns dvx/dt, dvy, dx, dy, F , x,
y, vy, d2ϕ/dt2, and d2y. While differentiating the constraint equation, a new
algebraic variable, d2y, was introduced. Hence the equation defining dy,
Eq.(7.82d) had to be differentiated as well. This pointed to the integrator
to be thrown out. It is the integrator defining vy. Hence variable vy has now
also become an unknown. d2ϕ/dt2 was added as another unknown replacing
the former unknown dϕ/dt, which has now become a known variable, since
it is the output of an integrator.

Since dϕ/dt is now a known variable, yet another constraint equation
was introduced. It is Eq.(7.82g). This equation needs to be differentiated
as well. The result of the operation is:



7.8 The Solvability Issue 305

m · dvx = −F · x
�

(7.83a)

m · dvy = m · g − F · y
�

(7.83b)

dx = vx (7.83c)
d2x = dvx (7.83d)
dy = vy (7.83e)

d2y = dvy (7.83f)
x = � · sin(ϕ) (7.83g)

dx = � · cos(ϕ) · dϕ

dt
(7.83h)

d2x = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

(7.83i)

y = � · cos(ϕ) (7.83j)

dy = −� · sin(ϕ) · dϕ

dt
(7.83k)

d2y = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.83l)

This is the final set of 12 equations in the 12 unknowns dvx, dvy, dx, dy,
F , x, y, vx, vy, d2ϕ/dt2, d2x, and d2y. It constitutes an implicit index–1
DAE system.

Dymola [7.9] performs one more level of symbolic preprocessing. If it
finds a trivial equation of the type a = b, it throws it out, keeps only one
of the variables in the model, and replaces all occurrences of the other by
the former. This operation results in:

m · dvx = −F · x
�

(7.84a)

m · dvy = m · g − F · y
�

(7.84b)

x = � · sin(ϕ) (7.84c)

vx = � · cos(ϕ) · dϕ

dt
(7.84d)

dvx = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

(7.84e)

y = � · cos(ϕ) (7.84f)

vy = −� · sin(ϕ) · dϕ

dt
(7.84g)



306 Chapter 7. Differential Algebraic Equations

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.84h)

Hence we end up with a set of eight equations in the eight unknowns dvx,
dvy, F , x, y, vx, vy, and d2ϕ/dt2.

Figure 7.35 shows the partially causalized structure diagram of this sys-
tem.

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Eq.(7.84a)

Eq.(7.84b)

Eq.(7.84c)

Eq.(7.84d)

Eq.(7.84e)

Eq.(7.84f)

Eq.(7.84g)

Eq.(7.84h)

Eq. #2

Eq. #4

Eq. #1

Eq. #3

FIGURE 7.35. Partially causalized structure digraph of mechanical pendulum.

An algebraic loop in four equations and four unknowns remains. Fig-
ure 7.36 shows the completely causalized structure digraph after a suitable
residual equation and tearing variable have been chosen.

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Eq.(7.84a)

Eq.(7.84b)

Eq.(7.84c)

Eq.(7.84d)

Eq.(7.84e)

Eq.(7.84f)

Eq.(7.84g)

Eq.(7.84h)

Eq. #2

Eq. #4

Eq. #1

Eq. #3

Residual Eq. Tearing Var.

Eq. #5

Eq. #7

Eq. #6

FIGURE 7.36. Completely causalized structure digraph of mechanical pendulum.

The causal equations can be read out of the structure digraph of Fig.7.36.
They are:

x = � · sin(ϕ) (7.85a)

vx = � · cos(ϕ) · dϕ

dt
(7.85b)

y = � · cos(ϕ) (7.85c)



7.8 The Solvability Issue 307

vy = −� · sin(ϕ) · dϕ

dt
(7.85d)

d2ϕ

dt2
=

dvx

� · cos(ϕ)
+

sin(ϕ)
cos(ϕ)

·
(

dϕ

dt

)2

(7.85e)

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.85f)

F =
m · g · �

y
− m · � · dvy

y
(7.85g)

dvx = −F · x
m · � (7.85h)

With this choice of the set of state variables, all of the equations are linear in
the variables they are being solved for. Consequently, there is no ambiguity,
and the solvability problem has disappeared. This model can be simulated
without difficulties for all values of ϕ and ϕ̇. Clearly, the solvability issue
was not related to the physics of the pendulum motion at all. It was purely a
mathematical artifact caused by an unfortunate selection of state variables.

Of course, it would have been a yet better idea to formulate Newton’s law
directly in rotational coordinates. In that case, the resulting model would
have been of index 1 or lower right from the beginning, and we would not
have had to invoke the Pantelides algorithm at all.

Does this approach resolve all solvability issues in modeling mechanical
systems? Unfortunately, this question must be answered in the negative. For
multibody systems without closed kinematic loops, i.e., for tree–structured
robots, it is always possible to avoid all solvability issues by choosing the
relative positions and velocities of the joints as state variables. However, the
same does no longer hold true for multibody systems with closed kinematic
loops. The kinematic loops lead to large and highly nonlinear algebraic
loops that must be solved by tearing. It is not always possible to choose
the residual equations and tearing variables of these loops such that all
loop equations are linear in the variables that they need to be solved for.

In fact, there exist fairly simple mechanical devices with closed kinematic
loops, for which it can be shown that there does not exist a minimal set of
state variables, in which all solvability issues can be avoided. One way how
such problems have been dealt with in the past is by selecting redundant
state variables together with some switching mechanisms that decide when
to use which variables during the simulation.

This is precisely, what Dymola now does on its own. Whenever there
is a potential problem with a fixed selection of state variables, Dymola
postpones the decision until run time [7.14]. For the same reason, newer
versions of Dymola will be perfectly capable of simulating the pendulum
problem in its original formulation without any help from the user. Dymola
recognizes the potential solvability issue, postpones the selection of states,
and toggles between x and y at run time as needed.



308 Chapter 7. Differential Algebraic Equations

We shall deal with switching models in Chapter 9 of this book. In Chap-
ter 8, we shall look at these problems from yet another angle.

7.9 Summary

In this chapter, we have presented a number of interlinked algorithms that
can be used to convert even higher–index DAE systems to ODE form.

The most central among these algorithms is the algorithm by Tarjan,
an algorithm based on graph theory to partially sort a DAE system both
horizontally and vertically. The algorithm also finds minimal subsets of al-
gebraically coupled equation systems that need to be solved simultaneously.
Although the algorithm is based on graph theory, it can be easily imple-
mented algebraically using linked lists. The algorithm furthermore discovers
constraint equations, i.e., can be used to detect higher–index problems.

If a higher–index problem has been detected, the algorithm by Pantelides
can be employed to reduce the perturbation index, until all structural sin-
gularities have been resolved.

A heuristic procedure has been presented that allows to find suitable
tearing variables for the algebraically coupled subsystems.

The algorithms presented in this chapter are similar to those that have
been implemented in the model compiler of Dymola [7.8, 7.9], an object–
oriented physical system modeling and simulation environment.

The algorithms are highly computationally efficient and well tested. Dy-
mola is capable of converting DAE systems consisting of tens of thousands
of equations to ODE form within seconds on a modern PC, while applying
these algorithms.

7.10 References

[7.1] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[7.2] Pawel Bujakiewicz. Maximum Weighted Matching for High Index Dif-
ferential Algebraic Equations. PhD thesis, Delft Institute of Technol-
ogy, The Netherlands, 1995.

[7.3] Stephen L. Campbell and C. William Gear. The Index of General
Nonlinear DAEs. Numerische Mathematik, 72:173–196, 1995.

[7.4] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–oriented Continuous System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.



7.10 References 309

[7.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[7.6] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods
for Sparse Matrices. Oxford University Press, Oxford, United King-
dom, 1986. 341p.

[7.7] Hilding Elmqvist and Martin Otter. Methods for Tearing Systems
of Equations in Object–oriented Modeling. In Proceedings European
Simulation Multiconference, pages 326–332, Barcelona, Spain, 1994.

[7.8] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[7.9] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual. DynaSim AB, Research Park Ideon, Lund, Sweden, 2004.

[7.10] Ernst Hairer, Christian Lubich, and Michel Roche. The Numerical
Solution of Differential–Algebraic Systems by Runge–Kutta Methods.
Springer–Verlag, Berlin, Germany, 1989. 139p.

[7.11] Johann Joss. Algorithmisches Differenzieren. PhD thesis, Diss ETH
5757, Swiss Federal Institute of Technology, Zürich, Switzerland, 1976.
69p.

[7.12] Gabriel Kron. Diakoptics: The Piecewise Solution of Large–Scale
Systems. Macdonald Publishing, London, United Kingdom, 1963.
166p.

[7.13] Richard S. H. Mah. Chemical Process Structures and Informa-
tion Flows. Butterworth Publishing, London, United Kingdom, 1990.
500p.

[7.14] Sven Erik Mattsson, Hans Olsson, and Hilding Elmqvist. Dynamic
Selection of States in Dymola. In Proceedings Modelica Workshop,
pages 61–67, Lund, Sweden, 2000.

[7.15] Sven Erik Mattsson and Gustaf Söderlind. Index Reduction in
Differential–Algebraic Equations Using Dummy Derivatives. SIAM
Journal on Scientific Computing, 14(3):677–692, 1993.

[7.16] Martin Otter, Hilding Elmqvist, and François E. Cellier. Modeling
of Multibody Systems with the Object–Oriented Modeling Language
Dymola. J. Nonlinear Dynamics, 9(1):91–112, 1996.



310 Chapter 7. Differential Algebraic Equations

[7.17] Martin Otter, Hilding Elmqvist, and François E. Cellier. ‘Relax-
ing’ – A Symbolic Sparse Matrix Method Exploiting the Model Struc-
ture in Generating Efficient Simulation Code. In Proceedings Sympo-
sium on Modeling, Analysis, and Simulation, CESA’96, IMACS Multi-
Conference on Computational Engineering in Systems Applications,
volume 1, pages 1–12, Lille, France, 1996.

[7.18] Martin Otter and Clemens Schlegel. Symbolic generation of efficient
simulation codes for robots. In Proceedings Second European Simula-
tion Multi–Conference, pages 119–122, Nice, France, 1988.

[7.19] Martin Otter. Objektorientierte Modellierung mechatronischer Sys-
teme am Beispiel geregelter Roboter. PhD thesis, Dept. of Mech. Engr.,
Ruhr–University Bochum, Germany, 1994.

[7.20] Constantinos Pantelides. The Consistent Initialization of of
Differential–Algebraic Systems. SIAM Journal of Scientific and Sta-
tistical Computing, 9(2):213–231, 1988.

[7.21] Robert Tarjan. Depth–first search and linear graph algorithms.
SIAM Journal of Computation, 1(2):146–160, 1972.

7.11 Homework Problems

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting

Given the electrical circuit shown in Fig.H7.1a.

R=100

R1

C
=

1
e

-6

C

R=100

R2

R
=

2
0

R
3

L=0.01

L

u
0

=
1

0

i4 = 4·u3

u1

i1 i2

u2

u3

i3iC u4

i4

iL

uL

u0

i0

i4

FIGURE H7.1a. Electrical circuit.

The circuit contains a constant voltage source, u0, and a dependent cur-
rent source, i4, that depends on the voltage across the capacitor, C, and



7.11 Homework Problems 311

the resistor, R3.
Write down the element equations for the seven circuit elements. Since

the voltage u3 is common to two circuit elements, these equations contain
13 rather than 14 unknowns. Add the voltage equations for the three meshes
and the current equations for three of the four nodes. One current equation
is redundant. Usually, the current equation for the ground node is therefore
omitted.

In this way, you end up with 13 equations in the 13 unknowns. Draw the
structure digraph of the DAE system, and apply the Tarjan algorithm to
sort the equations both horizontally and vertically. Write down the causal
equations, i.e., the resulting ODE system.

Simulate the ODE system across 50 μsec using RKF4/5 with zero initial
conditions on both the capacitor and the inductor.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H7.2] Horizontal and Vertical Sorting, Newton Iteration

Given the following model in three nonlinear equations and three un-
knowns:

F1(x1, x3) = 0.0 (H7.2a)
F2(x2) = 0.0 (H7.2b)

F3(x1, x2) = 0.0 (H7.2c)

Write down the structure incidence matrix, S, of this nonlinear model.
Draw the structure digraph, and sort the equations both horizontally

and vertically using the Tarjan algorithm.
Write down the causal equations and their structure incidence matrix,

Ŝ, which should now be in lower–triangular form.
Find two permutation matrices, P and Q, such that:

Ŝ = P · S · Q (H7.2d)

A permutation matrix is a matrix, in which every row and column con-
tains exactly one element with a value of 1, whereas all other elements have
values of 0.

As the structure incidence matrix, Ŝ, is in lower–triangular form, we can
set the simulation up by specifying three Newton iterations in one variable
each, rather than one Newton iteration in three variables. This is much
more economical.

Set up the Newton iterations by introducing symbolic functions denoting
the Hessians.

[H7.3] Hydraulic System, Algebraic Differentiation

Given the hydraulic system shown in Fig.H7.3a.



312 Chapter 7. Differential Algebraic Equations

p2

p0

q1

q2

q3

Water
Reservoir

Environment
Pressure

Consumer
#2

Consumer
#1

Sluice

p1

FIGURE H7.3a. Hydraulic system.

A water reservoir generates a pressure of p2. A sluice reduces the pressure
to p1, which is the water pressure that the consumers see. p0 is the pressure
of the environment, i.e., the air pressure.

The sluice and the consumers can be represented by nonlinear turbu-
lent resistance elements. The turbulent hydraulic resistance characteristic
is shown in Fig.H7.3b.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

Hydraulic turbulent resistance

Δp

q

FIGURE H7.3b. Turbulent hydraulic resistance.

It shows the relationship between the pressure drop, Δp, and the flow
rate, q. Mathematically, the relationship can be described by the formula:

q = k · sign(Δp) ·
√

|Δp| (H7.3a)

or if the inverse computational causality is required:

Δp =
1
k
· sign(q) · q2 (H7.3b)



7.11 Homework Problems 313

Write down the nonlinear equations describing this system. You need six
equations in the six unknowns p0, p1, p2, q1, q2, and q3.

Draw the structure digraph and isolate the nonlinear algebraic loop.
You’ll find an algebraic loop in four equations and four unknowns.

We shall first solve this equation system directly, i.e., without tearing. Set
up a vector zero function, F(x) of length four, where the vector x stands
for the four unknowns of the algebraic equation system. Find a symbolic
expression for the Hessian, H(x), which is a matrix of dimensions 4 × 4.
Write down the linear equation system that needs to be solved once per
iteration step of the Newton iteration.

We now repeat the problem, this time with a tearing approach. Choose
an appropriate tearing variable and residual equation, and causalize the
equation system. Set up an appropriate scalar zero function in the tearing
variable, and set up the Newton iteration such that it iterates over all
equations, yet only uses the tearing variable as an iteration variable. Find
a symbolic expression for the Hessian, which is now also a scalar. Use
algebraic differentiation to compute the Hessian. Since the Newton iteration
is scalar, you can come up with a closed–form symbolic expression for the
next iteration of the tearing variable.

[H7.4] Linear System, Newton Iteration

Given the linear equation system:

A · x = b (H7.4a)

A is assumed to be a nonsingular square matrix.
We wish to solve for the unknown vector x by Newton iteration. Set up

the Newton iteration using symbolic expressions for the Jacobian and the
Hessian. Prove that the Newton iteration indeed converges to the correct
solution within a single step for arbitrary initial conditions.

[H7.5] Electrical Circuit, Tearing

Given the electrical circuit shown in Fig.H7.5a.
We wish to find a symbolic expression for the current i3 as a function of

the input voltage u0 and the five resistance values.
Write down all the equations governing this circuit. Draw the structure

digraph. You end up with an algebraic equation system in 10 equations
and 10 unknowns. Use the heuristic procedure presented in this chapter to
find appropriate tearing variables. You’ll need two of them.

Use the substitution technique to come up with two symbolic expressions
in the two tearing variables. These can be solved symbolically by matrix
inversion. If one of the tearing variables was the current i3, you are done.
Otherwise, find a symbolic expression for i3 in function of the two tearing
variables, and substitute the previously found expressions once more into
that new expression.



314 Chapter 7. Differential Algebraic Equations

U0

R
=

1

R
1

R
=

1

R
2

R=1

R3

R
4

R
=

1

R
5

U0 = f(t)

u1

u5u4

u3

u2

i1 i2

i3

i4 i5

+

-

FIGURE H7.5a. Electrical resistance circuit.

[H7.6] Electrical Circuit, Relaxation

We wish to solve Problem [H7.5] once more, but this time using the relax-
ation algorithm.

Using the tearing structure found in Problem [H7.5], write the 10 equa-
tions in 10 unknowns in a matrix–vector form, such that you obtain only
two non–zero elements above the diagonal of the matrix.

Apply symbolic Gaussian elimination without pivoting to this system to
come up with a sequence of expressions to compute the tearing variables.
At the end, use substitution to reduce this sequence of symbolic expressions
to two expressions for the two tearing variables.

[H7.7] Electrical Circuit, Structural Singularity

Given the circuit shown in Fig.H7.7a containing three sinusoidal current
sources.

Write down the complete set of equations describing this circuit. Draw
the structure digraph and begin causalizing the equations. Determine a
constraint equation.

Apply the Pantelides algorithm to reduce the perturbation index to 1.
Then apply the tearing algorithm with substitution to bring the perturba-
tion index down to 0.

Write down the structure incidence matrices of the index–1 DAE and
the index–0 ODE systems, and show that they are in BLT form, and in LT
form, respectively.



7.11 Homework Problems 315

u3

I3

C

R

iL2

I1

I2

u2

I2

I3

iR

uR

uC

iC
u1

I1

iL1

L
2 uL2

L
1 uL1

FIGURE H7.7a. Electrical structurally singular circuit.

[H7.8] Chemical Reactions, Pantelides Algorithm

The following set of DAEs:

dC

dt
= K1(C0 − C) − R (H7.8a)

dT

dt
= K1(T0 − T ) + K2R − K3(T − TC) (H7.8b)

0 = R − K3 exp
(−K4

T

)
C (H7.8c)

0 = C − u (H7.8d)

describes a chemical isomerization reaction. C is the reactant concentra-
tion, T is the reactant temperature, and R is the reactant rate per unit
volume. C0 is the feed reactant concentration, and T0 is the feed reactant
temperature. u is the desired concentration, and TC is the control temper-
ature that we need to produce u. We want to turn the problem around
(inverse model control) and determine the necessary control temperature
TC as a function of the desired concentration u. Thus, u will be an input
to our model, and TC is the output. The problem formulation was taken
right out of [7.1].

Draw the structure digraph. You shall notice at once that one of the
equations, Eq.(H7.8d), has no connections to it. Thus, it is a constraint
equation that needs to be differentiated, while an integrator associated
with the constraint equation needs to be thrown out.

We now have five equations in five unknowns. Draw the enhanced struc-
ture digraph, and start causalizing the equations. You shall notice that a
second constraint equation appears. Hence the original DAE system had
been an index–3 DAE system. Differentiate that constraint equation as



316 Chapter 7. Differential Algebraic Equations

well, and throw out the second integrator. In the process, new pseudo–
derivatives are introduced that call for additional differentiations.

This time around, you end up with eight equations in eight unknowns.
Draw the once more enhanced structure digraph, and causalize the equa-
tions. This is an example, in which (by accident) the Pantelides algorithm
reduces the perturbation index in one step from 2 to 0, i.e., the final set of
equations does not contain an algebraic loop.

Draw a block diagram that shows how the output TC can be computed
from the three inputs u, du/dt, and d2u/dt2.

7.12 Projects

[P7.1] Heuristic Procedures for Finding Tearing Variables

Study alternate strategies for finding small sets of tearing variables and
residual equations. As the size of a DAE system generated by an object–
oriented physical system modeling tool, such as Dymola [7.8, 7.9], can be
very large, often containing thousands if not tens of thousands of equations,
the computational efficiency of the heuristic procedure is very important.

[P7.2] Computation of Inverse Hessian

In Chapter 6, we have discussed approaches to numerically approximate the
Hessian matrix. In this chapter, we have looked at an alternate approach
making use of algebraic differentiation.

Study under what conditions it is more economical to approximate the
Hessian numerically, and when a symbolic computation using algebraic
differentiation should be used.

[P7.3] Solution of Linear Equation Systems

We have presented two different approaches to dealing with the solution
of linear equation systems. On the one hand, we have presented a tearing
approach, on the other, we have looked at a relaxation technique. Both tech-
niques can be interpreted as symbolic sparse matrix algorithms. They have
furthermore much in common. It was shown that the problem of finding
small sets of tearing variables is identical to that of finding a small number
of non–zero elements above the diagonal of the matrix in the relaxation
approach.

Although we have shown by means of a few examples that the remaining
linear systems in the tearing variables can be solved by substitution, this
technique is not recommendable, as it invariably leads to an explosion in
the size of the formulae. An alternate technique was also presented. It may
make more sense to iterate over the entire set of equations, while using a
Newton iteration on the tearing variables only.



7.13 Research 317

In the case of linear systems, this requires an iteration rather than a
closed–form solution, but the iteration may be acceptable as it converges
in a single step if the Jacobian and Hessian are computed exactly, e.g. by
means of algebraic differentiation.

The relaxation approach, on the other hand, leads to a closed–form so-
lution of the linear equation system without requiring substitution. Hence
this approach may be preferable at times.

Study under which conditions Newton iteration of a linear system is more
economical, and when a relaxation approach may be cheaper.

7.13 Research

[R7.1] Pantelides and Small Equation Systems

In the modeling of multi–body systems (MBS), extensive research has fo-
cused on the generation of small sets of simulation equations. If the state
variables are chosen carelessly in modeling a tree–structured robot, the
number of simulation equations grows with the fourth power of the num-
ber of degrees of freedom (i.e., the number of articulations) of the robot.
Yet, it is possible to choose the state variables such that the number of
simulation equations grows only linearly in the number of articulations.
Algorithms that behave in this fashion are called order–n algorithms in the
literature [7.18, 7.19].

For this reason, the MBS library of Dymola [7.8, 7.9], which was de-
veloped by Martin Otter, does not make use of the Pantelides algorithm
to resolve structural singularities. Instead, the model equations are formu-
lated such that the structural singularities are resolved manually already
at the time of the model formulation.

This places a heavy burden on the modeler. It would be better if the
Pantelides algorithm could be made smart enough so that it would select
the integrators to be thrown out such that an equation system is generated
that is as small as possible.

Furthermore, the approach described by Otter only works in the case of
tree–structured robots. If the MBS contains kinematic loops, the approach
needs to be modified.

Study ways to automate the generation of efficient simulation code when
using the Pantelides algorithm for index reduction.

[R7.2] Symbolic Model Compilation and Run–Time Errors

One of the biggest drawbacks of heavy symbolic preprocessing of the model
equations in the generation of efficiently executable simulation code lies in
the problem of tracing back run–time exceptions to original model equa-
tions.

When compiling a Dymola [7.8, 7.9] object–oriented model of a physical



318 Chapter 7. Differential Algebraic Equations

system into explicit ODE form, it happens frequently that the user receives
an error message at the end of the model compilation of the type: “There
are 3724 equations in 3725 unknowns.” Of course, such a model cannot be
simulated.

Unfortunately, it may be quite difficult to trace the error message back
to the original model. Usually, a connection has been omitted somewhere.
Yet, the simulation code no longer contains the information, where the
error might be located.

When the equations are made causal, the compiler will tell the user,
which is the variable, for which no equation was left over. However, that
information may be quite arbitrary.

Similarly, when the simulation dies with a division by zero, it may no
longer be easy for the user to recognize, which equation was responsible for
the problem, as the error message will point at the simulation code, not at
the original model equations. By that time, the equations may have changed
their appearance so drastically that they have become unrecognizable.

Furthermore, many of the equations in the final model were not even
explicitly present among the original model equations. They were auto-
matically generated from the topological connections among submodels.

Study how the algorithms presented in this chapter can be enhanced
so that they preserve as much information as possible about the original
model equations for the purpose of presenting the user with error messages
in terms that he or she can relate to.




