
Not Knowing Your Random Number
Generator Could Be Costly:

Random Generators - 
Why Are They Important

“Random numbers are too important to
be left to chance.”

R. R. Coveyou

Introduction
Have you played a video game lately?

Purchased something on the web? Trained a
Neural Network? Used a Genetic Algorithm
for optimization? Run software from
Microsoft? Applied textures to a
photograph? Played the stock market? If the
answer is “yes” to any of these questions,
Random Number Generator (RNG) have
affected your life.

Can you trust your Random Number
Generator? Can you test its performance?
Does its performance really matter? In
addition to some RNG related horror
stories, this article presents guidelines for
performing basic random number
evaluations. It also provides numerous
useful links and resources.

My interest in random numbers was
re-kindled recently while determining
whether a particular neural network
prediction was better than chance or any of
several other prediction algorithms. I was
using a Monte-Carlo simulation in
Microsoft Visual Basic (tied into Microsoft
Excel). To ensure that the code was working
correctly, I selected several outcomes for
which I could compute the probability of
occurrences and associated variance. With
1,000,000 trials, I expected three hits, yet I
did not receive one. Even after repeating the
experiment several more times, I never

obtained the expected outcome, which was
highly improbable. 

Out of frustration, I modified the
output of the Visual Basic random number
generator by shuffling the numbers using a
Bays-Durham Shuffle (a method for
shuffling the order of the output of a random
number generator as shown in figure 1). This
reduced the correlation between successively
generated numbers that interacted with my
code, and I started approaching the expected
number of hits (0-5 hits per run of
1,000,000,000 trials). Later testing verified
that the Visual Basic RNG fails several
common tests for random
numbers. However, as
discussed later, when the
Visual Basic RNG is used
in conjunction with a Bays-
Durham shuffle, it passes
more of the tests. This
experience led me to start
collecting RNGs, and
methods for testing them. I
am currently developing a
software package that
provides access to over 250
commonly used RNGs,
and 13,000 lesser-known
RNGs and variants. This
software will be available
shortly at
www.extremeet.com.

Strange Encounters of
the Random Kind

In one of my first neural network
programs, a back-propagation algorithm to
solve the exclusive-or problem, I employed
the rand() function supplied with the
Microsoft “C” compiler (circa 1986). It was
also used to randomly select one of four
training vectors (index = rand() & 3). I
observed that the time to convergence was
highly dependent on the initial random
number seed. Working with larger networks
and data sets, I noticed some training
vectors were almost never selected, and that
convergence became highly dependent on
the initial random seed. Stanford students
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once held competitions to see who could
pick the random number seed that enabled
their network to converge with the fewest
iterations. The initial randomization of a
neural network, and the random method
employed for selecting training vectors has a
major impact on convergence.

As I became interested in Genetic
Algorithms (circa 1991), I became
sophisticated enough to use Knuth’s Lagged
Fibonacci RNG as found in Press’s
“Numerical Recipes in C: The Art of Scientific
Computing” 1, page 283.  In one financial
application, the results were substantially
worse when the chromosome dimension
(the length of the longest lag in the Knuth
generator) was 55. My Genetic Algorithm
(GA) was sensitive to some regularity of the
RNG output structure. Picking a bad seed
(usually even) could cause cycling in the
RNG. I discovered a number of individuals
with similar experiences. It turns out that
the nature (algorithm and approach) of a
RNG has a major impact on the
performance of the Genetic Algorithm with
which it is used.

Why Are Random Numbers
Important?

RNGs are used in training neural
networks, genetic algorithms, secure
communications, online gambling, option
pricing, stochastic optimization, image
processing, video games and a host of other
applications. One article indicated that
Microsoft employs random numbers to
generate test vectors for its software. George
Marsaglia’s (See: Important people) early
work in random numbers focused on the
gaming industry. Monte-Carlo simulation,
based on random numbers, identifies
opportunities in the options markets and
develops hedging portfolios. Random
numbers are an integral part of secure
communication contributing one-time pad
encryption keys, padding, and the like.

What is a Good Random Number
Generator?

An RNG, or more precisely a Pseudo-
Random Number Generator (PRNG) is an
algorithm that generates number sequences
that are indistinguishable from truly
random sources such as the number of
atoms that decay each second in a block of
radium. This has several interesting
implications. First, it means that
occasionally, unlikely event combinations
will occur. Second, there is no discernable
structure in the sequence.

The best RNG for a particular
application is one that produces the best
quality results where quality is “in the eye of

the beholder.” For crypto-graphic purposes,
quality may be measured by the
computational energy required to deduce
the next or prior key, if that is even possible.
For simulation studies, it may be how well
all or a portion of the distribution of
outcomes match what is expected, or the
degree of coverage of the space (fractal
dimension). For stochastic optimization,
using a genetic algorithm, it may be the
degree to which the processes stochastically-
based elements enables searching the entire
space. There are some basic minimal
qualities to watch for. An article planned for
the July issue of Advanced Technology For
Developers (www.advancedtechnologyfor
developers.com) will discuss, in greater detail,

each test described below, including source
code for performing the tests.

Another alternative to the tests
described below is the Die Hard test suite by
George Marsaglia accessible at: http://stat.fsu.
edu/~geo.

Basic Statistical Tests: To even be
considered, RNGs must pass these tests,
which most easily do. The basic tests are
stated in terms of real values in the range
[0..1). For any RNG that produces integers,
this transformation is: r = u / (1+max).
Where u is the integer value, max the
maximum value the generator takes, and r is
the real uniformly distributed random
number over the range 0 to 1. These limits,
based on testing a block of 3,000,000,000
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Some Terms Commonly and abbreviations commonly (miss-)used:
AWC   Add With Carry Lagged Fibonacci (or GFSR) generator combines terms by addition, including the prior carry.
Bays-Durham Shuffle   Method of post-processing the output of a RNG described by Knuth in “Numerical Recipes in C: The Art of 

Scientific Computing” 1 page 34.
CICG   Combined Inverse Congruential Generator.
CLCG   Combined Linear Congruential Generator. Combination of two or more LCGs.
Die Hard   Well-known and often referenced battery of tests for Random Number sequences developed by George Marsaglia.
DpRand   Double precision RNG by Nick Maclaren that combines a lagged Fibonacci generator similar to Knuth’s with a Linear 

Congruential Generator.
ELCG   Extended Linear Congruential Generator. Also known as a Recursive Generator.
Entropy   Measure of a system’s “randomness” often used when analyzing crypto-graphic quality generators.
FSR   Feedback Shift Register generator. Also called a Tausworthe generator or Linear Feedback Shift Register (LFSR) generator.
GFSR   Generalized version of the Feedback Shift Register, which includes Fibonacci generators.
ICG   Inverse Congruential Generator.
KISS   Combined hybrid generator developed by George Marsaglia.
LCG   Linear Congruential Generator.
Luxury   Sub-sampling method developed by Martin Luscher for improving structural problems with Marsaglia and Zaman’s 

Subtract With Borrow lagged Fibonacci (GFSR) generator.
Mersenne Twister   Form of TGFSR developed by Matsumoto. Also known as mt19937 where the cycle length is 219937.
MGFSR   Multiple Generalized Feedback Shift Register generator.
Modulus   From a branch of mathematics known as “Finite Field Theory”, many theoretical papers draw their conclusions from 

here. When computations are done “modulo the modulus”, this is equivalent to taking the remainder after dividing by the 
modulus.

Mother   The “Mother-of-All” RNGs developed by George Marsaglia. At the time of its introduction, it had one of the longest 
period cycles of any generator proposed to date.

MRG   Multiple Recursive Generator.
MWC   Multiply with Carry generator.
Portable   Generator ported to another machines produces exactly the same results. In the strictest sense, this includes the ability

to port to multiple parallel processor systems.
PRNG   Pseudo-Random Number Generator.
PTG   Primitive Trinomial Generator -- specialized sub-class of Generalized Feedback Shift Register generators.
RG   Recursive Generator -- A Linear Congruential Generator using multiple prior values as its state. Also called an Extended 

Linear Congruential Generator.
RNG   Random Number Generator. More correctly, Pseudo-Random Number Generator.
Seed   The starting value that initializes the state of a RNG consisting of a single number as in the case of LCGs, or more complex

combined generators such as KISS.
SMLCG   Shuffled Multiple Linear Congruential Generator.
SWB   Subtract with Borrow lagged Fibonacci (or GFSR) generator that combines terms by subtracting them, and the prior 

borrow.
Tausworthe Generator   Also called a Feedback or Linear Feedback Shift Register Generator.
TGFSR   Twisted Generalized Feedback Shift Register generator. A GFSR with a post transform that “twists” the outputs.
TMGFSR   Twisted Multiple Generalized Feedback Shift Register. Multiple GFSRs with the Matsumoto “twist” or tempering 

transform.
Ultra   Hybrid lagged Fibonacci / Linear Congruential Generator by George Marsaglia.
Uniform RNG   RNG that produces numbers that uniformly cover everything between the generators minimum and maximum 

with equal probability.
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Taxonomy of 
(Pseudo) Random
Number Generators

Linear Congruential Generator (LCG) – the
simplest and unfortunately most widely employed
RNG. LCGs are based on the relationship: Xt+1 = (A
* Xt + B) mod M. Substantial research has been done
to find good values for A, B, and M such that the
“cycle” length of the generator is (M-1). Sometimes,
the result are shifted right to eliminate a portion of
the low order bits. Example: Rand() function in
Excel, Microsoft Visual C and most FORTRAN, C,
C++, Java, Pascal compilers. A variant on the LCG
wraps the prior carry into the next iteration.

Combined Linear Congruential Generator
(CLCG) – combines two or more Linear
Congruential Generators, usually by subtraction
(exclusive OR is occasionally used). The modulus of
each is selected so that they are different. With
appropriate selection of A, B & M, the combined
period is the product (M1-1) ( M2-1) … An example
is L’Ecuyer’s CLCG4 [combines 4 LCGs] generator.

Shuffled Multiple LCG (SMLCG) – this
variant on the Combined Linear Congruential
Generator applies a Bays-Durham shuffle to one
generators output prior to combining it with another
generator. This tends to improve performance on
more stringent statistical tests, producing a more
random stream of results. Theoreticians shun this
form of generator because the shuffle is very hard to
analyze theoretically. Example: ran2 from [Press]
page 282.

Recursive or Extended Linear Congruential
Generators (RG or ELCG) – extend the recursion
relationship to several prior states. An ELCG or RG
is based on the relationship: Xt+1 = (A0 * Xt + A1 *
Xt-1 * A2 * Xt-2 + … + An * Xt-n + B) mod M.
Sometimes, as with Coveyou, the x’s are multiplied
together and there is only one coefficient. When
multiplied, the result may be right-shifted (as with
von Neumann’s middle-square) to eliminate low
order bits that tend to be less random. Examples of
this are Marsaglia’s Mother-of-all-RNG, Coveyou’s
Recursive Generator, Knuth’s Recursive Generator
([Knuth], p. 108).

Multiple Recursive Generators (MRG) –
combines two or more Recursive Generators by
subtraction. Example: Rutger’s MRGs.

Inverse Congruential Generators (ICG) –
One flaws of LCGs for simulation is they exhibit a
strong lattice structure. One approach for
overcoming this is to take the “inverse” mod M of
the current output. An Inverse Congruential
Generator is based on the relationship: Xt+1 = (A *
Inv[Xt] + B) mod M, where (Inv[z] * z) mod M = 1.
These tend to be computationally intensive, and do
not fair well in empirical tests. The pLab project
(Peter Hellekalek) has several examples of ICGs.

Combined Inverse Congruential Generators
(CICG) –improving cycle lengths and statistical
properties by combining multiple generators
together. One example is from Peter Hellekalek,
"Inversive Pseudorandom Number Generators:
Concepts, Results and Links" at http://random.mat.
sbg.ac.at/generators/wsc95/inversive/inversive.html.

Multiply with Carry (MWC) - Another class
of generators is the Multiply with Carry which uses
the recursion relationship: Xt+1 = (A * Xt + Ct) mod
M, Ct+1 = int( (A*Xt + Ct) / M ). With properly
chosen A and M, this generator has a period of A *
M. (The “Die Hard” package (Marsaglia) contains a
paper which describes the properties of this
generator.)

Feedback Shift Register (FSR or LFSR)
(Tausworthe) Generators – take a bit stream
(typically represented by a 32-bit or 64-bit unsigned
integer), treat it as a binary vector, and multiply it by
a matrix (modulo 2) specifically selected to maximize
the period. This transform, actually done through a

series of shifts, masks, and exclusive Or’s, is the basis
for several crypto-graphic algorithms.

Generalized Feedback Shift Register (GFSR)
– The FSR, often considered a linear recurrence on a
polynomial, can expand out to multiple words. To
work properly, it requires special initialization. From
an implementation standpoint, it looks similar to a
Fibonacci generator.

Twisted GFSR –  “twists” the generators
output by multiplying it by a matrix. The most
famous example is Matsumoto’s “twister” (recently
revised). (See Makoto Matsumoto under “People”.)

Multiple GFSR (MGFSR) – as with LCG’s,
multiple GFSRs or LFSRs can be combined to
produce longer periods and better statistical
properties. Example: taus88 by L’Ecuyer which
combines three Tausworthe (FSR) generators
together for a combined period of (231 - 1).(229 -
1).(228 - 1). Another example is L’Ecuyer’s lfsr113 and
lfsr258. (See Pierre L’Ecuyer under “People”.) An
interesting variant on this is Agner Fog’s Ran-Rot
generators. These perform a bit rotation on each
component prior to combining them together. (See
Agner Fog under “People”).

Twisted Multiple Generalized Feedback Shift
Registers (TMGFSR) – combines multiple GFSRs
or LFSRs and “twists” the output. An example of a
specially constructed LFSR with twisted output is
L’Ecuyer’s Poly96. (See Pierre L’Ecuyer under
“People”.)

Primitive Trinomial Generators (PTG) –
Feedback Shift Registers, in a more general context,
are Linear Congruential generators of polynomials
(where each bit is raised to a power modulo 2).
Richard Brent has evolved this into a real-valued
generator with excellent statistical and empirical
properties. (See Richard Brent under “People”.)

2-Tap and 4-Tap Fibonacci Generators (Fib)
– A special sub-class of GFSR generators that must
be properly initialized for proper operation. Knuth’s
original RNG (for example, see [Press], page 283) is
an example. Ziff ’s 4-tap generator (“Four-tap shift-
register-sequence random-number generators” by
Robert M. Ziff. Computers in Physics, Volume 12,
Number 4, July/August 1998, pp 385f.). There is an
implementation of this in the GNU Scientific
Library.

Sub-sampled Fibonacci Generators (Luxury)
– Fibonacci generators have flaws (regularities in
their outputs - lattice structure). Martin Luscher’s
theoretical analysis of one class of lagged Fibonacci
generators suggested by Marsaglia and Zaman,
showed that it was highly chaotic in nature, with a
strong lattice structure. With this insight, he
suggested a method to eliminate the structural flaw
by sampling the generator’s output in blocks

resulting in a modification to the Marsaglia and
Zaman generator called “RanLux”. It is quite popular
in Monte-Carlo simulations in physics. An
implementation by Loren P. Meissner is available at:
www.camk.edu.pl/~tomek/htmls.refs/ranlux.f90.html

Crypto, Hardware, and Entropy-based
Generators – Primarily targeted at establishing secure
communication, crypto generators use an encryption
algorithm (such as DES or TEA) to produce a stream
of random numbers, feeding back the output as the
next input. Hardware and Entropy-based generators
us the inherent randomness of external events – disk
interrupts, serial port interrupts, machine state at an
interrupt, etc. – to create an “entropy pool”. This
pool is stirred and used as the basis for creating a
random key (for one-time pad), pad-bytes, and so
on. The goal is to producing a number that cannot
be guessed or derived from looking at a sequence of
outputs. Intel has created a “RNG chip” that samples
noise on a chip component, transforms it, and
creates a random bit stream. Intel has indicated it
will integrate this into future chip-sets and mother
boards. Examples include: the Pseudo-DES
algorithm in [Press], page 300f, the TEA generator,
and the entropy-based RNG in the Linux Kernel.

Combined Hybrid Generators – Using
generators from two or more classes mitigates
structural flaws. George Marsaglia, one of the
pioneers of this empirical approach to improving the
RNGs properties developed Combo (linear
Congruential Generator with Coveyou’s Recursive
Multiplicative Generator), KISS (Linear
Congruential, Feedback Shift Register, Recursive
Generator), Super-Duper (Linear Congruential,
Feedback Shift Register), Ultra (Lagged Fibonacci
(GFSR), and Linear Congruential). Nick Maclaren’s
Dprand, combining a real-valued implementation of
Knuth with a Linear Congruential Generator,
improved the randomness of the low-order bits. (See
Allan Miller’s home page for an example of an
implementation in Fortran-90.) From a theoretical
perspective, Combined Hybrid Generators are
difficult to analyze. Their popularity stems from
empirical performance.

Shuffling – Method for breaking up serial
correlation. The most famous method was suggested
by Bays and Durham, known as the Bays-Durham
Shuffle. [Press], page 279f, shows examples of the
implementation, which is generally shunned by
theorists due to difficulty with its analysis. On a
practical side, it can improve the useful performance
of bad generators. In the case of very good
generators, it occasionally degrades the randomness
of the resulting sequence.



random numbers collected from over 500
generators, are:

Average of 0.5 +/- 0.0004
Skew of 0 +/- 0.001
Serial Correlation of < 10-7

If the generator cannot pass these tests,
it does not meet the most basic requirements
for random.

Specialized Statistical Tests: The
entropy and Hurst exponent are two
sophisticated tests that measure how the
RNG performs. Entropy measures the
degree to which the bits in the RNG, shifted
through an 8-bit window, are uniformly
distributed. Failing this test indicates that the
generator only covers a limited number of
bit-patterns. The Hurst exponent measures
the degree of persistence or anti-persistence
in trends. It is related to the relationship
from Brownian Motion where the distance
of a particle from its origin (d) as a function
of time (T) is: d is proportional to T1/2. A
Hurst exponent of 0.5 indicates a random
sequence; less than 0.5 is anti-persistent
(having a tendency to reverse); greater than
0.5 is persistent. A very good discussion of
the Hurst Exponent and how to calculate it
can be found in Peters “Fractal Market
Analysis”, pp 542.

Entropy > 7.99
Hurst 0.5 +/- 0.03

Basic Simulation-Based Tests: These
tests simulate a particular system, where the
outcome is known, and the deviation from
what is expected is measured. When testing
long cycle generators, it is possible for an
RNG to fail a test on part of the sequence
and pass it on another. For this reason,
failure is defined as a catastrophic failure,
where the likelihood of the outcome is so
small that it should virtually never occur.
Your RNG should pass five simulation-based
tests:

• Monte-Carlo estimate of PI,
• Simplified Poker Test, 
• 1 & 2-dimensional Collision Test, 
• 1-, 2-, and 3-dimensional Birthday Spacing test,

and
• Roulette Test. 

Several of these tests are described in
detail by Knuth in “The Art of Computer
Programming: Volume 2 – Seminumerical
Algorithms”, pp 613. The specific variants
used for the Collision Test and Birthday
Spacing tests come from Pierre L’Ecuyer,
“Software for Uniform Random Number
Generation: Distinguishing the Good from
the Bad”. (Visit the website: www.iro.
umontreal.ca/~lecuyer/papers.html and search
for: “wsc01rng.pdf” to obtain a copy of the
paper.)

Monte-Carlo estimate of PI: The area
of a circle is PI * r2. (PI =
3.14159265358979…) We can test the
effectiveness of a RNG by using it to
estimate PI. Take the last two numbers
generated in sequence (Xt, Xt-1), convert
them to real values between zero and one
(Rt, Rt-1), and count (Mc) whether the
point lies inside the unit circle. (i.e.: (Rt2 +
Rt-12) < 1). This is illustrated in figure 2.
Since we are only dealing with one quadrant,
the actual value of PI is 4 * Mc / T, where T
= the number of trials. This approximates PI
with most generators testing within +/- 0.01
of PI.

Simplified Poker Test: In this test, we
deal five cards from either a fixed or an
infinite deck. In each deal of five cards, we
look for four different poker hands: 4-of-a-
kind, 5-of-a-kind, and 4-aces. In the infinite
deck, the next five Random Numbers specify
the five cards. In the fixed 54-card deck, the
next 54 random numbers become the next
shuffle of the fixed deck. A block of 10,000
hands constitutes a run that repeats for 10
runs. After computing Chi-squared, the test
compares the distribution of the 10 runs
against the expected distribution. A p-value
is computed and the test fails if the p-value >
0.85.

Collision Test: Also called the Hash
Test, the basic concept is the construction of
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an enormous hash table (k = 224). The test
generates random numbers and computes
an index into this hash table. If the index
comes from a uniformly distributed random
number, we compute the expected
probability colliding with another prior
hash. We select a sample size (n = 216) much
smaller than the hash table size. The
expected number of collisions for uniformly
distributed random numbers is: L = n2 / (2
k). With too few collisions or too many
collisions, we know there is substantial
structure in the sequence we have selected
(figure 3). Per design, the tests performed
below each produce 128 collisions. A few
RNGs, such as the one included with Visual
Basic, fails because they have no collisions in
the 1-dimensional test, and a large number
of collisions in lower granularity in the 2-
dimensional test. Others, such as Excel, fail
the 2-dimensional test with too many
collisions at higher resolutions. RandU, the
original RNG in the IBM FORTRAN
library fails both tests spectacularly. Going
back to the story earlier in this article, the
Visual Basic RNG failure shows up in the
simulation test. Adding a Bays-Durham
shuffle to this RNG enables it to pass the 2-
dimensional collision test.

In the one-dimensional collision test, a
single random variable between [0..1) is
divided into 2d bins. This is equivalent to
using the high order d bits of the random
number as a bin number. Initially, with all
bins set to zero, the test generates much
smaller 2n random numbers with each
converted into a bin index. The test
determines the bin index for each number
generated, sets the bin to one, and it counts
the number of collisions. This particular test
is designed so that the expected number of
collisions is 128. Many hits indicate short-
cycles in the RNG, while far fewer hits
indicate a very strong lattice structure --

both are undesirable. The test is repeated for
d = 22, 24, 26, 28, 30 bits and the
corresponding 2n (n = d/2+4) samples. The
expected number of collisions for each test is
128 and each test repeats 5 times. By

Important People in Random
Numbers

Richard Brent – Professor of Computing
Science, Oxford University, is a leader in the search for
good RNGs based on primitive trinomials. The
resulting RNGs have both good theoretical as well as
empirical properties. Follow the link to “research
interests”, then “Random Numbers”. Papers describing
the theory and source code (GNU license) are
available. http://web.comlab.ox.ac.uk/oucl/people/
richard.brent.html.

Paul Coddington – A Senior Lecturer in the
Computer Science department at the University of
Adelaide. Paul’s focus is on parallel high-performance
computing, with an interest in simulation. He has
written numerous papers on parallel RNGs and testing
RNGs. www.cs.adelaide.edu.au/~paulc

Luc Devroye – A Professor at McGill University
in Montreal has written several papers, and collected
several resources on Random Numbers. Look at
“Random Number Generation” under “Research
Interests” at: http://cgm.cs.mcgill.ca/~luc. At the bottom
of the page, you will find links to several RNGs.

Agner Fog – The inventor and proponent of
chaotic RNGs with random cycle lengths (ranrot
generators). Go to: www.agner.org and follow the links
to “Random Numbers”. You will find source code and
papers on the theory behind these generators. One of
his key insights is monitoring the initial state of the
generator, and when a “cycle” occurs, reset the
generator. This creates a random cycle length.

Peter Hellekalek – An assistant Professor at the
Institute of Mathematics at the University of Salzburg.
As leader of the pLab project (A Server on the Theory
and Practice of Random Number Generation), he has
an excellent “news” page with the latest in news and
insights into Random Numbers. His home page is:
http://random.mat.sbg.ac.at/team/peter.html. Follow the
links to pLab for more information about different
types of RNGs and tests. The news page is:
http://crypto.mat.sbg.ac.at/news and it also includes links
to several other pages of interest.

Donald E. Knuth – The Renaissance man of
computer science, and author of the Art of Computer
Programming [Knuth] has developed a theoretically
founded RNG (significantly improved since the
original). Visit: www-cs-faculty.stanford.edu/~knuth,
and follow the links to “Downloadable Programs”. At
the bottom of that page are links to access the source
code for RanArray.

Pierre L'Ecuyer – A Professor at the University of
Montreal is one of the more prominent and prolific
researchers on Random Numbers. Visit his web page at:
www.iro.umontreal.ca/~lecuyer. Follow the “Software”
link. This has further links to a number of papers and
software for creating and testing RNGs. Professor
L’Ecuyer created a number of popular Linear
Congruential Generators, Generalized Feedback Shift
Register Generators, and special purpose generators for
parallel computation and simulation. If you only look
in one place, Pierre L’Ecuyer’s web site is the place to go.

Martin Luscher – A Researcher at
DESY/University in Hamburg. He wrote a seminal
report (DESY 93-133), entitled: “A Portable High-
Quality RNG for Lattice Field Theory Simulations”.
In this paper, he does an analysis of Marsaglia and
Zaman’s subtract with borrow fibonnaci generator, and
using insights from theoretical physics demonstrates its
firm grounding in chaos theory, and shows how the
structural bias can be removed by sampling. The result
of this is the “RanLux” generator. The idea of
eliminating a portion of a random number sequence
was originally proposed by Todd & Taussky in 1956.
Luscher gave this a firm theoretical footing. These
insights are also used by Knuth in his most recent
RNG. RanLux source code is available at:
www.camk.edu.pl/~tomek/htmls.refs/ranlux.f.html.

George Marsaglia – Recently retired from
Florida State University, he created a number of
“empirically-based” RNGs. He was a pioneer in
mixing different generators types together to create
composite generators with improved properties. He is
also the author of the “Die Hard” suite for testing
random numbers. His home page is:
http://stat.fsu.edu/~geo.

Makoto Matsumoto – A Professor at the
Department of Mathematics at Keio University,
invented the Mersenne Twister, a very popular RNG.
His home page (including links to the Mersenne
Twister home page) is:
www.math.keio.ac.jp/~matumoto/eindex.html.

Alan J. Miller - Honorary Research Fellow of
CSIRO Mathematical & Information Sciences. He
has translated several of the RNG algorithms into
FORTRAN. Search his home page for “random”:
http://members.ozemail.com.au/~milleraj.

Harald Niederreiter – A Professor at the
National University of Singapore, he is the primary
proponent of Multiple Recursive Matrix methods. His
home page is: http://www.math.nus.edu.sg/~nied.

computing Chi-square, we compare the
average number of collisions to the expected
number. A p-value > 0.99 indicates test
failure (generally catastrophic). Many of the
better RNGs generate p-values < 0.10.
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The two dimensional spacing test uses
the last two samples (non-overlapping) as x-
and y- coordinates into a 2-dimensional
cube, each axis divided into 2d bins. This test
is repeated for d = 11, 12, 13, 14, 15 bits
(from each of two consecutive samples for a
total of 22, 24, 26, 28, 30 bits) and the
corresponding 2n (n = d+4) samples. The
test computes a Chi-square statistic along
with a corresponding p-value. A p-value >
0.99 indicates test failure (generally
catastrophic). Many good RNGs produce p-
values < 0.10. It is important to remember,
particularly when dealing with RNGs with
long cycle lengths (much greater than 264),
even a good generator will occasionally fail.
Or, in the words of George Marsaglia, “p
happens!”. What we are looking for is
catastrophic failures where the results are off
the charts.

Birthday Spacings Test: We pick a year
with k-days, and some number of people
(n), and sort their birthdays into sequence.
After computing the number of days
between each birthday, and sorting these
into sequence, we look at the distribution of
spacings and use Chi-squared to compare
them to the expected distribution (Poisson).
An alternative test (the one used here) is to
select k very large and n much smaller so
that the number of expected collisions
between spacings is approximately 1 (or
two). This is illustrated in figure 4. An RNG
fails (catastrophically) if the number of
spacing collisions is much larger than
expected (p > 0.99).

As with the collision test, we do 1, 2
and 3-dimensional tests, and a 3-
dimensional test throwing away the high
order 10-bits (testing low order bits). The
expected number of collisions is Poisson
distributed with mean: L = N3 / (4 * K),
where N = the number of samples, and K =
the number of days in a year.

Roulette Test: This test specifically
affects the mechanism found in a Genetic
Algorithm’s roulette wheel parent selection.
The test assumes 10 genes with scores of 1,
1/(1+2), 1/(1+4), … , 1/(1+2*9)
respectively. Associated with each score, we
compute the probability of selecting any one
of the bins. After repeating this for 100,000
spins, we compare the distribution of the
outcomes to the expected distribution using
Chi-square. Good generators typically give
p-values of < 0.2 while a p-value of greater >
0.8 indicates a failure. 

Advanced Simulation-Based Tests:
George Marsaglia, now retired from Florida
state University, developed a much more
stringent series of simulation-based tests
known as the “Die Hard” tests (after the
battery). They became the standard by
which RNGs are tested and ranked. Anyone

with a new RNG must pass the Die
Hard tests. A copy of the source code
and executable for the Die Hard test
is available at: http://stat.fsu.edu/~geo.

Even the Die Hard tests are
dated and more stringent and
sophisticated tests targeted at specific
classes of applications, particularly in
the simulation area, are under
development. Pierre L’Ecuyer is
developing such a test suite.

Application Specific
Requirements: Applications may
have their own specific requirements.
For example, electronic slot machines
require that the RNG include a
strong “entropy” component that
prevents predicting what the next
outcome will be, and yet must
require very little memory on a processor
with minimal computational capabilities.
Someone pushing a button on the slot
machine, generates a random number.
Using a relatively simple RNG (like KISS),
and letting it run continuously,
accomplishes this. Crypto-graphic
applications, on the other hand, require the
ability to create a large number of streams,
each with a very long cycle time. Simulation
often requires that for any number of
samples, the RNG sequence is “space filling”
(high fractal dimension) in high dimensions.

Other application specific requirements
include memory (some RNGs require
megabytes of memory), execution time,
creating multiple streams (independent and
unique sequences determined by an initial
“seed” or state), cycle length of each stream,

creating the same sequence on any number
of independent parallel processes, the ability
to “leap” forward to a new starting point,
and portability across multiple hardware
platforms and compilers.

Test Results
In one trial, a collection of over 500

generators was tested, using basic and
specialized statistical tests and basic
simulation tests. This resulted in one third
(160) of the RNGs passing all tests. Again, it
is important to note that this was done on a
limited sample size (3,000,000,000), and
only done once. In order to validate these
results, the tests should be repeated multiple
times with longer streams.

The generators were then ranked
individually based on their performance in

Resources
“Random Number Generation”, Chapter 4 of the Handbook on Simulation, Jerry Banks Ed., Wiley,

1998, 93--137. (Introductory tutorial on RNGs). This handbook won the best book award for an engineering-
related handbook for 1998, by the Association of American Publishers. Look for “handsim.ps” on L’Ecuyer’s
publications page: www.iro.umontreal.ca/~lecuyer/papers.html. From my perspective, this is the single best
overview of the field in one place.

eXtreme Emerging Technologies has a random number package supporting 250 commonly used RNGs,
and over 13,000 variants. It also supplies a number of non-uniform distributions, and is callable from C, C++,
Visual Basic, and Excel (through a supplied Visual Basic interface). They are located at:
http://www.eXtremeET.com

The WWW Virtual Library: Random Numbers and Monte Carlo Methods at:
http://crypto.mat.sbg.ac.at/links contains links to several other pages including both theory and source code. This
is part of the pLab project led by Peter Hellekalek.

The Swarm User Guide: Resources for Random Number Generation provides links to code for several
different RNGs in appendix “C.4”: www.santafe.edu/projects/swarm/
swarmdocs/userbook/swarm.random.sgml.appendix.html

RNGs – Steve Park’s old web-page (William and Mary College) that includes several generators and code
for generating other distributions. www.cs.wm.edu/~va/software /park/park.html

The GNU Scientific Library contains a section that includes a number of RNGs structured to allow
their transparent use. See: http://sources.redhat.com/gsl. For a description of the capabilities associated with
Random Numbers, see: http://sources.redhat.com/gsl/ref/gsl-ref_17.html. Note that Linux itself has an interesting
“hardware” RNG built into the kernel, which uses hardware interrupts and internal CPU state information to
generate random numbers used for cryptographic purposes.

Glenn Rhoads' Home Page (PhD Student at Rutger’s University). Check out the link to “Snippets” that
takes you to a page with code snippets, including code for several RNGs. http://remus.rutgers.edu/~rhoads.

SourceBank has a fair collection of RNGs. See: www.devx.com/sourcebank/directorybrowse.asp?dir_id=876
Mathland has an interesting article and some great references that highlight the history of random

numbers. Visit Ivars Peterson Mathland at: www.maa.org/mathland/mathland_4_22.html.
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Figure 4



predicting PI, Hurst Exponent, 4-of-a-kind
p-value, 5-of-a-kind p-value, Aces p-value,
C1 p-value, C2 p-value, B1 p-value, B2 p-
value, B3 p-value, and Roulette Wheel p-
value. The top 20 generators in each
category were averaged and re-ranked. Since
they are based on a single test, these results
cannot be considered definitive. Moreover, a
generator that passes these tests still may not
be the right one for an application.

What is interesting about these results
is that the list contains two classic, well
tested, empirically developed, generators by
George Marsaglia (MotherXKissBDS and
Ultra32), two theoretically derived and
empirically validated generators by L’Ecuyer
(LEcuyerMUBDS and Taus88BDS), and a
theoretically derived and empirically
improved generator by Matsumoto
(TwisterBDS). Another interesting
observation is that 16 of the top 20
generators used a post Bays Durham
Shuffle.

A final observation and cautionary
note: All of the generators commonly
available and commonly used – IBM
Fortran (RandU), Borland Pascal, Microsoft
C, Excel, VB, Java – failed the tests! The list
below shows the top 20 generators ranked as
described above.

Summary
Pseudo-Random Number Generators

are an integral element of our everyday lives.
For those of us who work with Neural
Networks and Genetic Algorithms, they can
have a substantive impact on our systems
performance. A large number of high
quality Random Number Generators – over
160 out of 500+ passed all of the tests
described – are available. All of the
commonly available RNGs  – C, Visual
Basic, Excel, Pascal, Java – failed these tests.
A foolish builder builds a house on sand.
Test and verify the randomness of 
your random number generator. 

Casimir C. “Casey” Klimasauskas is President of
Klimasauskas Group, a consulting firm that provides
expert assistance and development in Neural Networks,
Genetic Algorithms, and related emerging technologies.
He can be reached at klim@stargate.net or visit his
website at www.klimasauskas.com.
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