
8

Differential Algebraic Equation
Solvers

Preview

In the previous chapter, we have discussed symbolic algorithms for convert-
ing implicit and even higher–index DAE systems to explicit ODE form. In
this chapter, we shall look at these very same problems once more from
a different angle. Rather than converting implicit DAEs to explicit ODE
form, we shall try to solve the DAE systems directly. Solvers that are ca-
pable of dealing with implicit DAE descriptions directly have been coined
differential algebraic equation solvers or DAE solvers. They are the focus
point of this chapter.

8.1 Introduction

Let us look once more at the homework problem [H6.2]. In that problem,
we simulated a parabolic PDE in one space dimension with a nonlinear
boundary condition due to radiation. Because of the nonlinear boundary
condition, we required one Newton iteration in a single unknown, T21, per
function evaluation. However, since the ODE problem after conversion of
the PDE problem using the MOL approach is stiff, we also must employ
an implicit integration algorithm, such as a BDF method. Consequently,
we require a second Newton iteration over many variables once every in-
tegration step. Finally, if the simulation is to be error–controlled, we may
need to reject some of the integration steps after the two Newton iterations
converged, in order to repeat the step with a reduced step size. The three
simulation loops are illustrated in Fig.8.1.

How accurately should we perform all these iterations? Clearly, if the
relative error requested for the numerical integration is to be met by the
outermost loop, then the internal loops must be computed at least as accu-
rately. On the other hand, if e.g. the iteration of the integration algorithm
is still far away from convergence, why should we perform the internal it-
eration within the individual function evaluation very accurately already?

Clearly, the different iterations and tolerances are closely interrelated. It
seems awkward that we should have to keep track of different iterations
and different error tolerances that are all part of one and the same process.
Maybe, we should take a step back and reconsider all these issues in the

320 Chapter 8. Differential Algebraic Equation Solvers

state
equations

x x·

Newton
iteration

model containing algebraic loops

Newton
iteration

numerical
integration
algorithm

fixed step/order simulation

step size
and order
control

error controlled simulation

e

h, order

FIGURE 8.1. The three simulation loops.

new light of their seeming complexity to ascertain whether this complexity
is truly necessary.

We may start by asking ourselves, whether algebraic loops, or any other
numerical processes that require iterations, do really exist in this physical
world of ours. Isn’t the physical world truly causal , i.e., isn’t it true that
each event has one or several causes, and that a strictly sequential ordering
is possible between causes and effects? Don’t iterations defy the principle
of strict causality?

Mutual causal dependencies do indeed exist in physics and are rather
common. The relationship between voltage and current in a resistor is non–
causal. It is not true that the potential difference at the two ends of the
resistor makes current flow, or that the current flowing through the resis-
tor causes a voltage drop. These are simply two different facets of one and
the same physical phenomenon. Yet “causal loops” do not truly exist in
the physical world. If we place two resistors in series, this will create an
algebraic loop in our model. Yet, physics doesn’t understand the concept

8.1 Introduction 321

of a loop. The idea of a loop implies a sequence of execution, i.e., a causes
b, which in turn causes c, which is responsible for a. Physics doesn’t under-
stand the concept of a “sequence of execution.” Physics is by its very nature
completely non–causal. All phenomena observed are byproducts of the big
balance equations that we call the conservation principles: conservation of
energy, conservation of mass, and conservation of momentum.

If “causal loops” show up in our models, they are artifactual. They are
byproducts of the way in which we are dealing with the equations. Our way
of thinking is strictly cause–effect oriented, and this is also how we have
built our digital computers. We try to turn everything into cause–effect
relationships. Sometimes, this is not possible. Causal loops, and the need
for iteration, are our way of expressing this problem. Clearly, there does
not exist a natural (physical) way of looking at causal loops.

Let us go back right to the foundations of continuous system simulation,
and ask ourselves where the so–called state–space description of a physical
system came from. It originated with the desire to separate the process
of modeling (in a simple–minded way of looking at things, the process of
generating a state–space model out of physical observations) from that of
simulation (the process of translating the state–space model into trajectory
behavior).

It all made sense. In the context of using explicit integration algorithms
(all integration algorithms that were used in the early days were explicit
algorithms), this separation comes quite naturally. The state–space model
computes ẋ(tk) out of x(tk), and the integration algorithm in turn computes
x(tk+1) out of x(tk) and ẋ(tk) — a meaningful and clean separation of
duties.

By the time implicit integration algorithms were introduced, this sepa-
ration was no longer as clean and crisp and beautiful. We suddenly had to
deal with a causal loop, since the state–space model and the integration
algorithm now operated on the same time instant, i.e., they had to co–
operate to find simultaneously x(tk+1) and ẋ(tk+1). However, tradition had
imprinted this separation so deeply into the brains of the simulation prac-
titioners of that epoch that no–one bothered to raise the question whether
this separation was still useful, or whether it might not even be detrimental
to our task.

Let us check what happens if we let go of the constraint that state–space
models have to be formulated such that they compute the state derivatives
explicitly. Instead, we are going to use the implicit model:

f(x, ẋ,u, t) = 0.0 (8.1)

Let us apply the BDF3 algorithm:

xk+1 =
6
11

h · ẋk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (8.2)

322 Chapter 8. Differential Algebraic Equation Solvers

to the model of Eq.(8.1). We can solve Eq.(8.2) for ẋk+1:

ẋk+1 =
1
h

[
11
6

· xk+1 − 3xk +
3
2
xk−1 − 1

3
xk−2

]
(8.3)

and plug Eq.(8.3) into Eq.(8.1). We obtain a nonlinear vector equation f
in the unknown parameter vector xk+1:

F(xk+1) = 0.0 (8.4)

which can be solved directly by Newton iteration.
In this new formulation, the distinction between iterating on the implicit

integration step and iterating on nonlinear function evaluations has van-
ished. It becomes quite evident that these were not two separate processes,
but only two different facets of one and the same process. It is this –very
fruitful– idea, which had first been proposed by Bill Gear in 1971 in a fre-
quently cited paper [8.13], that we shall pursue in this chapter in more
detail.

8.2 Multi–step Formulae

We have learnt that implicit integration algorithms are most useful for
dealing with stiff systems. Consequently, a DAE formulation in place of the
former ODE formulation will be particularly fruitful in the context of the
simulation of stiff systems, and it should contain a numerical formula that
has been designed for dealing with stiff systems, such as a BDF algorithm.

Since we ultimately want to solve for xk+1, we eliminate ẋk+1 from the
implicit state–space model of Eq.(8.1), and this means that the integration
formula will now have to be solved for fk+1 rather than for xk+1 as in the
ODE case. Thus, we are now looking at numerical differentiation formulae
rather than numerical integration formulae.

We have already seen what a DAE implementation of a BDF algorithm
could look like. In order to assess the validity of this approach, we should
ask ourselves what the stability and accuracy properties of such a BDF
implementation are.

Let us start with a discussion of stability properties. The linear version
of Eq.(8.1) can now be written as:

A · x + B · ẋ = 0.0 (8.5)

Thus, our standard linear test problem has now two matrices, A and B.
Plugging Eq.(8.2) into Eq.(8.5), we obtain:

A · xk+1 +
11B
6h

·
(
xk+1 − 18

11
xk +

9
11

xk−1 − 2
11

xk−2

)
= 0.0 (8.6)

8.2 Multi–step Formulae 323

or: (
−B − 6Ah

11

)
xk+1 = −18B

11
xk +

9B
11

xk−1 − 2B
11

xk−2 (8.7)

We already know that Newton iteration does not affect the stability domain
of a method. Thus, we can solve Eq.(8.7) for xk+1 by use of matrix inversion
without modifying the stability domain of the method. We find:

xk+1 =
(
−B − 6Ah

11

)−1

·
(
−18B

11
xk +

9B
11

xk−1 − 2B
11

xk−2

)
(8.8)

Let us first discuss the simplest case:

B = −I(n) (8.9)

In this case, Eq.(8.5) degenerates to the explicit linear test problem:

ẋ = A · x (8.10)

and Eq.(8.8) becomes:

xk+1 =
(
I(n) − 6Ah

11

)−1

·
(

18
11

xk − 9
11

xk−1 +
2
11

xk−2

)
(8.11)

which is identical to the equation that had been used in Chapter 4 to
determine the stability domain of BDF3. Consequently, at least in this
simple situation, the stability domain is not at all affected by the DAE
formulation.

Let us assume next that B is a non–singular matrix. In this case, Eq.(8.5)
can be rewritten as:

ẋ = −B−1 · A · x (8.12)

Will the inversion of B have an effect on the stability domain? We can
determine the stability domain of the method in the following way. We
choose the eigenvalues of −B−1 · A along the unit circle of the complex
plane, then apply the so found A– and B–matrices to the F–matrix:

F =

⎛
⎝ O(n) I(n) O(n)

O(n) O(n) I(n)

2
11

(
B + 6

11Ah
)−1

B − 9
11

(
B + 6

11Ah
)−1

B 18
11

(
B + 6

11Ah
)−1

B

⎞
⎠

(8.13)
and determine h such that the dominant eigenvalues of F are on the unit
circle. We arbitrarily chose several different non–singular B–matrices of
dimensions 2 × 2, and computed the corresponding A–matrices using:

A = −B ·
(

0 1
−1 2 cos(α)

)
(8.14)

324 Chapter 8. Differential Algebraic Equation Solvers

We then plugged these matrices into Eq.(8.13), and computed the stability
domains. It turned out that, in every single case, the stability domain
was exactly the same as in the ODE case. This is generally true. Non–
singular B–matrices do not influence the numerical stability properties of
the method in any way.

These are good news indeed. Notice that we just solved the algebraic loop
problem once and for all — at least in the context of stiff system simulation.
There is no longer any need to apply a Newton iteration to algebraic loops
that form part of the state–space model, and then apply a separate Newton
iteration around the first one for bringing the implicit integration scheme to
convergence. The two iterations have turned out to be two different facets
of one and the same process.

Let us now look at the case where B is singular. Let the rank of B be
r < n. We can then perform a singular value decomposition on the matrix
B, as indicated in Fig.8.2.

= · ·

B U V*

r
n

∑
FIGURE 8.2. Singular value decomposition.

where U and V are two unitary matrices (each row vector is orthogonal
to all other row vectors and of length 1.0, the same applies to all column
vectors), and Σ is a diagonal matrix. Since both U and V have full rank,
i.e.:

rank(U) = rank(V) = n (8.15)

the Σ–matrix has the same rank as B, thus:

rank(Σ) = rank(B) = r (8.16)

V∗ denotes the Hermitian transpose (the conjugate complex transpose) of
V. Since:

B = U · Σ · V∗ (8.17)

Eq.(8.5) becomes:
A · x + U · Σ · V∗ · ẋ = 0.0 (8.18)

Since the inverse of a unitary matrix is its Hermitian transpose, we can
rewrite Eq.(8.18) as:

U∗ · A · x + Σ · V∗ · ẋ = 0.0 (8.19)

8.2 Multi–step Formulae 325

Let us now perform a variable substitution:

z = V∗ · x (8.20)

Plugging Eq.(8.20) into Eq.(8.19), we obtain:

U∗ · A · V · z + Σ · ż = 0.0 (8.21)

or:
Ã · z + Σ · ż = 0.0 (8.22)

A graphical representation of Eq.(8.22) is shown in Fig.8.3.

r
n

=· ·+
Ã11 Ã12

Ã21 Ã22

z1

z2

ż1

ż2

σi

0

0
0

00 0

0

FIGURE 8.3. Linear test problem after variable substitution.

Eq.(8.22) can be decomposed into:

Ã11 · z1 + Ã12 · z2 + Σ11 · ż1 = 0.0 (8.23a)

Ã21 · z1 + Ã22 · z2 = 0.0 (8.23b)

If Ã22 is non–singular, we can solve Eq.(8.23b) for z2:

z2 = −Ã−1
22 · Ã21 · z1 (8.24)

and plugging Eq.(8.24) into Eq.(8.23a), we obtain:

ż1 = Σ11
−1 ·

(
Ã12 · Ã−1

22 · Ã21 − Ã11

)
· z1 (8.25)

In the new state vector, z, it becomes evident that only a subset of its
variables, namely the vector z1 of length r is described by means of dif-
ferential equations. The remaining variables appear only algebraically in
Eq.(8.22). This means that the system does, in reality, not contain n differ-
ent state variables or energy storages, but only r. Thus, in the terminology
introduced in the previous chapter: a singular B–matrix corresponds to a
structurally singular model, i.e., a higher–index model .

In the new state vector, z1, the situation is now the same as before,
when B was assumed non–singular. Hence the stability domain is indeed
not affected at all by the choice of the B–matrix.

326 Chapter 8. Differential Algebraic Equation Solvers

We need not worry about accuracy . Since the numerical differentiation
formula is nth–order accurate, and since we have full control over what
happens during the Newton iteration, the DAE solver using an nth–order
accurate BDF method must obviously as a whole be nth–order accurate.

Until this point, we have focused our interest on DAE formulations of
BDF algorithms. What happens if we decide to use other types of implicit
multi–step techniques, such as the Adams–Moulton family of methods? Let
us look at the case of AM3:

x(tk+1) ≈ x(tk) +
h

12
(5fk+1 + 8fk − fk−1) (8.26)

We can turn this formula around, and obtain:

ẋ(tk+1) = fk+1 ≈ 12
5h

(x(tk+1) − x(tk)) − 8
5
fk +

1
5
fk−1 (8.27)

Plugging Eq.(8.27) into Eq.(8.1), we obtain again a nonlinear vector func-
tion in the unknown vector xk+1, whereas the quantities xk, fk, and fk−1

can be treated as known.
The problems with Eq.(8.27) are that we have eliminated the state

derivatives from our system of equations, thus, we don’t really know what
values to use for fk and fk−1. One way to overcome this difficulty is to solve
two Newton iterations in sequence:

F1 (x(tk+1)) = f
(
x(tk+1),

12
5h

x(tk+1) − 12
5h

x(tk) − 8
5
w(tk)

+
1
5
w(tk−1),u(tk+1), tk+1

)
= 0.0 (8.28a)

F2 (w(tk+1)) = f (x(tk+1),w(tk+1),u(tk+1), tk+1) = 0.0 (8.28b)

Equation (8.28a) determines x(tk+1). In this iteration, u(tk+1), x(tk), w(tk),
and w(tk−1) are assumed known. Equation (8.28b) then evaluates w(tk+1).
During that iteration, x(tk+1) can be assumed known as well. Clearly, w
is just another name for ẋ.

The BDF case was special, since in the BDF formulae, the state derivative
vector shows up only once. In that case, the DAE formulation becomes
particularly simple and efficient to implement, and half of the variables
(the state derivatives) can be eliminated from the set of variables to be
computed. An integration formula that shares this property is called a
one–leg method . In general, linear one–leg methods can be written for the
ODE case of Eq.(2.1) as:

1
h

n∑
j=0

αjxk−j+1 = f

⎛
⎝ n∑

j=0

βjxk−j+1,

n∑
j=0

βjuk−j+1,

n∑
j=0

βjtk−j+1

⎞
⎠ (8.29)

8.2 Multi–step Formulae 327

The left–hand side of Eq.(8.29) represents the state derivative vector eval-
uated at the intermediate time

∑n
j=0 βjtk−j+1. Equation (8.29) is turned

into a numerical integration formula by solving the expression on the left–
hand side for xk+1 moving all other terms to the right–hand side.

Equation (8.29) naturally extends to the following DAE formulation:

F(xk+1) = f

⎛
⎝ n∑

j=0

βjxk−j+1,
1
h

n∑
j=0

αjxk−j+1,

n∑
j=0

βjuk−j+1,

n∑
j=0

βjtk−j+1

⎞
⎠

= 0.0 (8.30)

Let us now discuss the (linear) stability properties of AM3 in its DAE
formulation. To this end, we plug Eqs.(8.28a–b) into Eq.(8.5). We still
want to assume B to be non–singular. We obtain:

x(tk+1) ≈
(
B +

5
12

Ah

)−1

·
(
Bx(tk) +

2
3
Bhw(tk)

− 1
12

Bhw(tk−1)
)

(8.31a)

w(tk+1) ≈− B−1Ax(tk+1) (8.31b)

and by letting:

zk =

⎛
⎝ xk

wk−1

wk

⎞
⎠ (8.32)

we obtain the following F–matrix:

F =

⎛
⎝F11 F12 F13

O(n) O(n) I(n)

F31 F32 F33

⎞
⎠ (8.33)

where:

F11 =
(
B +

5
12

Ah

)−1

B (8.34a)

F12 = − 1
12

(
B +

5
12

Ah

)−1

Bh (8.34b)

F13 =
2
3

(
B +

5
12

Ah

)−1

Bh (8.34c)

F31 = −B−1A
(
B +

5
12

Ah

)−1

B (8.34d)

F32 =
1
12

B−1A
(
B +

5
12

Ah

)−1

Bh (8.34e)

F33 = −2
3
B−1A

(
B +

5
12

Ah

)−1

Bh (8.34f)

328 Chapter 8. Differential Algebraic Equation Solvers

We select B arbitrarily as a non–singular 2× 2 matrix, and compute A in
accordance with Eq.(4.37). We checked with different selections of B. The
results were always the same as shown in Fig.4.2. The (linear) stability
behavior of the method was not influenced by the DAE formulation. This
may at first look like a surprising result, since the F–matrix of Eq.(4.41)
used to compute the stability domain shown in Fig.4.2 is a 4 × 4 matrix,
whereas the new F–matrix of Eq.(8.33) is a 6 × 6 matrix. However, wk

is linear in xk, thus F is singular. All we did was to add two more spu-
rious eigenvalues at the origin. These eigenvalues will never influence the
stability behavior. Eigenvalues located at the origin of the discrete system
correspond to eigenvalues of the continuous system located at −∞. Such
eigenvalues are completely harmless.

We have discussed how linear implicit multi–step methods can be con-
verted from an ODE formulation to a DAE formulation by solving the
formulae for ẋk+1 instead of for xk+1. This leads to two separate Newton
iterations in n variables each, where n is the order of the system to be
simulated. In the case of the one–leg methods, such as the BDF formulae,
the DAE formulation becomes particularly simple, since the state deriva-
tive vector can be eliminated from the model, and one of the two Newton
iterations becomes unnecessary.

How about explicit multi–step formulae? Let us look at AB3:

x(tk+1) ≈ x(tk) +
h

12
(23fk − 16fk−1 + 5fk−2) (8.35)

Turning Eq.(8.35) around, we obtain:

ẋ(tk+1) ≈ 12
23h

(x(tk+2) − x(tk+1)) +
16
23

fk − 5
23

fk−1 (8.36)

Thus, explicit numerical integration formulae turn in the conversion to DAE
form into overimplicit numerical differentiation formulae. Using such a for-
mula will turn the entire simulation run into one giant iteration loop, which
is certainly not justifiable.

However, this brings up another idea. We could search for overimplicit
numerical integration schemes, which, until now, were quite useless, and
turn those around for use in a DAE solver.

The third–order accurate overimplicit Adams formula is:

x(tk+1) ≈ x(tk) +
h

12
(−f(tk+2) + 8f(tk+1) + 5f(tk)) (8.37)

Solving for the newest state derivative, we obtain:

ẋ(tk+1) ≈ 12
h

(x(tk−1) − x(tk)) + 8f(tk) + 5f(tk−1) (8.38)

which is a third–order accurate explicit numerical differentiation formula.

8.2 Multi–step Formulae 329

Similarly, we can find a third–order accurate overimplicit BDF formula:

x(tk+1) ≈ 57
26

x(tk) − 21
13

x(tk−1) +
11
26

x(tk−2) +
6h

26
f(tk+2) (8.39)

which leads to the explicit third–order accurate numerical differentiation
formula:

ẋ(tk+1) ≈ 1
6h

(26x(tk) − 57x(tk−1) + 42x(tk−2) − 11x(tk−3)) (8.40)

Unfortunately, both formulae are unstable in the vicinity of the origin when
plugged into the DAE. Explicit numerical differentiation is not a recom-
mended procedure because of its poor stability properties and should there-
fore be avoided. If numerical differentiation is a necessity in a simulation
model (e.g., if an input variable needs to be differentiated), we strongly
suggest the use of an implicit numerical differentiation formula together
with a DAE formulation for the overall simulation problem.

We have learnt that implicit multi–step formulae lend themselves splen-
didly for use in DAE solvers. To this end, they simply need to be turned
around and solved for the newest value of the state derivative vector instead
of the newest value of the state vector. Both AMi and BDFi formulae can
be used in DAE solvers. However, the BDF formulae are more attractive
since they, being one–legged formulae, allow to eliminate the state deriva-
tive vector from the simulation program altogether.

We remember that BDFi formulae are inefficient for use in non–stiff
ODEs due to their poor accuracy properties. This was documented in
Fig.6.12. The problem certainly hasn’t vanished by reformulating the model
in a DAE format. Thus, we might suspect that the AMi formulae will still
work better than the BDFi formulae also in non–stiff DAE simulation.
However, whether this is true or not will depend on the relative cost to be
paid for the second Newton iteration. Let us ponder this question.

We shall rerun the wave equation example of Eqs.(6.53a–e), this time in
DAE format, using once a BDF3 and once an AM3 algorithm. We computed
the global accuracy of the two algorithms using the same step sizes as in
Table 6.4. The results are tabulated in Table 8.1.

Figure 8.4 shows these results graphically.
Although the entries in Table 8.1 look exactly like the corresponding

entries in Table 6.4 (after all, these are the same methods applied to the
same problem), the graph of Fig.8.4 looks a little different from that of
Fig.6.12 due to the need for a second Newton iteration in the case of the
DAE formulation of AM3.

Of course in the given example, the Newton iterations converge in a
single step since the problem is linear and the Jacobian has been computed
accurately. Whereas the “economy” of the BDF3 algorithm in terms of the
number of function evaluations required does not change between the ODE
and DAE formulations, the AM3 algorithm has become more expensive

330 Chapter 8. Differential Algebraic Equation Solvers

h BDF3 AM3
0.1 garbage unstable

0.05 garbage unstable
0.02 garbage unstable
0.01 garbage unstable

0.005 0.9469e-2 0.8783e-8
0.002 0.1742e-6 0.2149e-8
0.001 0.4363e-7 0.2120e-8

TABLE 8.1. Comparison of accuracy of integration algorithms.

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
2

10
3

10
4

10
5

10
6

AM3 BDF3

1D Linear Conservation Law - Error

Simulation accuracy

#
fu

nc
ti

on
ev

al
ua

ti
on

s

FIGURE 8.4. Cost–versus–accuracy plot for the 1D wave equation.

to compute in the DAE formulation due to the need for a second Newton
iteration. The lesson to be learnt from this exercise: at least in the non–stiff
case, it may well be worthwhile to convert the model first to ODE format,
using the techniques described in the previous chapter of this book, before
simulating it.

One problem we haven’t discussed yet concerns the initial conditions. In
the ODE case, it was sufficient for the user to specify initial values for the
state vector x and for the input vector u, and the state derivative vector
could then be computed from the state–space model. In the DAE case, we
don’t have an explicit formula to compute the state derivative vector.

If we decide to use the BDF technique (or any other one–legged algo-
rithm), we can eliminate the state derivative vector from the model alto-
gether, and in this special case, we don’t have a problem . . . except during
the startup period. Of course, we can use order control during the startup
period, and then, we won’t need the state derivative vector ever. Let us
explain. The implicit differentiation formulae using the inverted BDF al-
gorithms are:

ẋ(tk+1) ≈ 1
h
x(tk+1) − 1

h
x(tk) (8.41a)

8.2 Multi–step Formulae 331

ẋ(tk+1) ≈ 3
2h

x(tk+1) − 2
h
x(tk) +

1
2h

x(tk−1) (8.41b)

ẋ(tk+1) ≈ 11
6h

x(tk+1) − 3
h
x(tk) +

3
2h

x(tk−1) − 1
3h

x(tk−2) (8.41c)

where Eq.(8.41a) is first–order accurate, Eq.(8.41b) is second–order accu-
rate, and Eq.(8.41c) is third–order accurate. If we wish to simulate the
DAE model using a third–order accurate formula, we can use Eq.(8.41a)
during the first step, then Eq.(8.41b) during the second, and from then on,
we can use Eq.(8.41c). Plugging Eqs.(8.41a–c) into Eq.(8.1), we obtain:

f
(
x1,

1
h
x1 − 1

h
x0,u1, t1

)
= 0.0 (8.42a)

f
(
x2,

3
2h

x2 − 2
h
x1 +

1
2h

x0,u2, t2

)
= 0.0 (8.42b)

f
(
x3,

11
6h

x3 − 3
h
x2 +

3
2h

x1 − 1
3h

x0,u3, t3

)
= 0.0 (8.42c)

f
(
x4,

11
6h

x4 − 3
h
x3 +

3
2h

x2 − 1
3h

x1,u4, t4

)
= 0.0 (8.42d)

etc.

In each step, we perform one Newton iteration in the unknown state vec-
tor at the current time. In this way, the state derivative vector has been
eliminated from the model once and for all.

Unfortunately using this approach, we are faced with the meanwhile
well–known accuracy problems. We shall have to employ a very small step
size initially in order to be able to meet our accuracy requirements. More-
over, the approach won’t work in the case of the AMi algorithms. Those
algorithms don’t eliminate the state derivative vector (the w–vector of
Eqs.(8.28a–b)), and we need to find an estimate for w0 at time t0 by means
of Newton iteration. The problem here is that there is no guarantee that the
Newton iteration will converge at all or will converge to the right solution
if our initial guesses for the state derivative values are far off. Therefore,
most DAE solvers on the market request that the user specify not only the
initial values for the state vector, but also good initial guesses for the state
derivative vector to be used as starting values for the first Newton iteration
on Eq.(8.1) at time t0.

How about using higher–order Runge–Kutta algorithms for startup? This
may turn out to again be a smart idea, but we need to postpone the dis-
cussion of this approach until we have talked about the DAE format of the
single–step algorithms.

Step–size control, order control, and the readout problem don’t cause
any difficulties beyond those that were already discussed in Chapter 4 of
this text.

332 Chapter 8. Differential Algebraic Equation Solvers

8.3 Single–step Formulae

In principle, DAE formulations of all single–step algorithms are straight-
forward. For example, a DAE formulation of our standard explicit RK4
algorithm could be implemented in the following way:

f (xk,k1,u(tk), tk) = 0.0

f
(
xk +

h

2
k1,k2,u(tk +

h

2
), tk +

h

2

)
= 0.0

f
(
xk +

h

2
k2,k3,u(tk +

h

2
), tk +

h

2

)
= 0.0

f (xk + hk3,k4,u(tk + h), tk + h) = 0.0

xk+1 = xk +
h

6
(k1 + 2k2 + 2k3 + k4)

Thus, this is exactly the same formula that we were using in Chapter 3
of this text, except that each and every formerly explicit evaluation of the
state derivative vector needs to be replaced by a Newton iteration.

In general, this is too costly. Let us take the example of BI3. BI3 contains
one explicit RK3 step forward and approximately four RK3 steps backward
due to the Newton iteration. Thus, BI3 contains altogether five RK3 steps,
each requiring three function evaluations. Consequently, BI3 calls for 15
function evaluations per step. This was for the ODE formulation. However,
in the DAE formulation, each of these function evaluations turns itself into
a Newton iteration requiring approximately four function evaluations, thus,
we are now looking at 60 function evaluations per step. If nothing else killed
the efficiency of the BI algorithms, this certainly will.

None of the techniques discussed in Chapter 3 will lead to efficient DAE
implementations. The techniques that are least affected by the DAE formu-
lation are the Richardson extrapolation techniques. They won’t become less
efficient by the DAE formulation . . . but they had been terribly inefficient
already for the ODE case.

Is it hopeless then? Salvation comes from the fully–implicit Runge–Kutta
algorithms [8.16]. Let us look at one type of these algorithms, namely the
Radau IIA algorithms. They can be represented by the following Butcher
tableaus:

1/3 5/12 -1/12
1 3/4 1/4
x 3/4 1/4

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
4+

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−√
6

36
16+

√
6

36
1
9

x 16−√
6

36
16+

√
6

36
1
9

8.3 Single–step Formulae 333

The method with the smaller Butcher tableau is a third–order accurate
fully–implicit two–stage Runge–Kutta algorithm, whereas the method with
the larger Butcher tableau is a fifth–order accurate fully–implicit three–
stage Runge–Kutta algorithm.

The Butcher tableau of the third–order accurate method can be inter-
preted in the ODE case as:

k1 = f
(
xk +

5h

12
k1 − h

12
k2,u(tk +

h

3
), tk +

h

3

)
(8.43a)

k2 = f
(
xk +

3h

4
k1 +

h

4
k2,u(tk + h), tk + h

)
(8.43b)

xk+1 = xk +
h

4
(3k1 + k2) (8.43c)

In the DAE formulation, the method can be written as:

f
(
xk +

5h

12
k1 − h

12
k2,k1,u(tk +

h

3
), tk +

h

3

)
= 0.0 (8.44a)

f
(
xk +

3h

4
k1 +

h

4
k2,k2,u(tk + h), tk + h

)
= 0.0 (8.44b)

xk+1 = xk +
h

4
(3k1 + k2) (8.44c)

There is hardly any difference between the two formulations. In both cases,
we are faced with a set of 2n coupled nonlinear equations in the 2n un-
knowns k1 and k2 that need to be solved simultaneously by Newton iter-
ation. Just as in the case of the AMi algorithms, we need to provide the
system with not only initial conditions for the state vector x(t0), but also
with a good estimate of the state derivative vector ẋ(t0). We set initially:

k1 = k2 = ẋ(t0) (8.45)

Let us now look at the accuracy and stability properties of the Radau IIA
algorithms. To this end, we plug Eqs.(8.43a–c) into the linear test problem.
We shall work with the ODE version, since it doesn’t make any difference,
which formulation we use. We obtain:

k1 = A
(
xk +

5h

12
k1 − h

12
k2

)
(8.46a)

k2 = A
(
xk +

3h

4
k1 +

h

4
k2

)
(8.46b)

xk+1 = xk +
h

4
(3k1 + k2) (8.46c)

334 Chapter 8. Differential Algebraic Equation Solvers

or solved for the unknowns k1 and k2:

k1 =
[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(
I(n) − Ah

3

)
· A · xk (8.47a)

k2 =
[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(
I(n) +

Ah

3

)
· A · xk (8.47b)

xk+1 = xk +
h

4
(3k1 + k2) (8.47c)

and therefore:

F = I(n) +
[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(
I(n) − Ah

6

)
· (Ah) (8.48)

Developing the denominator into a Taylor Series around h = 0.0, we find:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

36
(8.49)

Thus, the method is indeed third–order accurate (we proved this at least
for linear systems), and the error coefficient is:

ε =
1
72

(Ah)4 (8.50)

The fifth–order accurate Radau IIA method is characterized by the follow-
ing F–matrix:

F = I(n)+
[
I(n) − 3Ah

5
+

3(Ah)2

20
− (Ah)3

60

]−1(
I(n) − Ah

10
+

(Ah)2

60

)
Ah

(8.51)
Developing the denominator into a Taylor Series around h = 0.0, we find:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

120
+

11(Ah)6

7200
(8.52)

Thus, the method is indeed fifth–order accurate (at least for linear systems),
and the error coefficient is:

ε =
1

7200
(Ah)6 (8.53)

A frequently used fourth–order accurate fully–implicit Runge–Kutta algo-
rithm is Lobatto IIIC with the Butcher tableau:

0 1/6 -1/3 1/6
1/2 1/6 5/12 -1/12
1 1/6 2/3 1/6
x 1/6 2/3 1/6

8.3 Single–step Formulae 335

This method is characterized by the F–matrix:

F = I(n) +
[
I(n) − 3Ah

4
+

(Ah)2

4
− (Ah)3

24

]−1(
I(n) − Ah

4
+

(Ah)2

24

)
Ah

(8.54)
Developing the denominator into a Taylor Series around h = 0.0, we find:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

96
(8.55)

Thus, the method is indeed fourth–order accurate (at least for linear sys-
tems), and the error coefficient is:

ε =
1

480
(Ah)5 (8.56)

We plugged the three F–matrices into our general–purpose stability domain
plotting routine. The results are shown in Fig.8.5.

−4 −2 0 2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

6

8

Radau IIA(3)

Radau IIA(5)

Lobatto IIIC(4)

Stability Domains of IRK

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.5. Stability domains of fully–implicit Runge–Kutta algorithms.

All three methods are A–stable, a desirable property that we hadn’t been
able to achieve with the higher–order BDF algorithms. The Radau tech-
niques exhibit a somewhat larger unstable region in the right–half complex
plane, which may be profitable at times.

336 Chapter 8. Differential Algebraic Equation Solvers

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

Radau IIA(3)

Radau IIA(5)

Lobatto IIIC(4)

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−30

−25

−20

−15

−10

−5

0

Radau IIA

Lobatto IIIC

Damping Plot of IRK

−σd

Logarithmic Damping Plot of IRK

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.6. Damping plots of fully–implicit Runge–Kutta algorithms.

Let us also look at the damping plots for the three methods. These are
shown on Fig.8.6.

All three methods exhibit satisfyingly large asymptotic regions, much
more so than the BDF algorithms. Although Radau IIA(3) calls for a New-
ton iteration around two function evaluations, i.e., roughly eight function
evaluations per step, and Radau IIA(5) as well as Lobatto IIIC(4) call for a
Newton iteration around three function evaluations, adding up to approx-
imately 12 function evaluations per step, all these techniques will allow us
to use much larger step sizes than in the case of the BDF algorithms due
to their large asymptotic regions. This may well balance off the additional
cost. Consequently, fully–implicit Runge–Kutta algorithms can indeed be
quite competitive in execution speed.

All three methods are obviously L–stable, thus, they are good methods
for integrating stiff systems. The Lobatto IIIC technique has somewhat
better damping characteristics than the Radau IIA algorithms for poles
located far out in the left–half complex plane.

As the explicit RK algorithms are good starter algorithms for the Adams
family of methods, and the BI algorithms are good starters for BDF tech-
niques in ODE format, the fully–implicit Runge–Kutta algorithms can be
used during startup of a BDF method in DAE format.

8.4 DASSL 337

8.4 DASSL

DASSL is one of the most successful simulation codes on the market today.
It implements the BDF formulae of orders one to five in their DAE format,
as presented earlier in this chapter. DASSL is a variable–step, variable–
order code that uses order buildup during the startup period. The code
was written by Linda Petzold [8.4, 8.34].

The code has meanwhile been made the default simulator in Dymola
[8.9, 8.10] in spite of its inefficiency when dealing with non–stiff problems
due to the relatively large error coefficients of the BDF formulae, and in
spite of its inefficiency when dealing with highly nonlinear problems that
require frequent step–size adjustment, such as those that we shall look at
in Chapter 9 of this book.

Why did the developers of Dymola choose a stiff–system solver as the
default integration algorithm? Dymola was designed to be used in large–
scale system modeling. Complex models are almost invariably stiff, as the
complexity of the model usually arises from looking simultaneously at phe-
nomena with different time constants. Furthermore, most engineering users
don’t know whether their models are stiff or not. Since a stiff–system solver
is capable of dealing with non–stiff models as well (although not with op-
timal efficiency), whereas a non–stiff solver cannot deal with stiff models
at all, it may be a good idea to use the vacuum cleaner approach, and of-
fer, as the default simulation engine, a code that will be able to cope with
most problems somewhat successfully. After all, computers have become
fast in recent years, and therefore, optimal efficiency of the simulation en-
gine may no longer be a prime requirement of a modeling and simulation
environment.

Why did the developers of Dymola opt for DASSL as the default method
rather than e.g. Radau IIA? From what we have learnt, we would expect
Radau IIA to be much better suited than DASSL for dealing with highly
nonlinear problems requiring frequent step–size adjustment. After all, most
engineering models are highly nonlinear.

As we have mentioned earlier, the actual integration algorithm occupies
maybe five percent of a production code. The other 95 percent of the code
deal with step–size and order control, startup problems, readout problems,
and other problems that we haven’t looked at yet, such as discontinuity
handling (the so–called root solving problem).

The reason is quite simple. There is no production code implementing
the Radau IIA algorithms around that is as robust and well tested as the
DASSL code. In fact, we haven’t even talked yet about such issues as step–
size control in implicit Runge–Kutta algorithms.

According to [8.4], DASSL is able to simulate problems of perturbation
indices 0 and 1, whereas it may fail when confronted with higher–index
problems. Dymola usually reduces the perturbation index of the model
to zero, before simulating the model, i.e., although DASSL is capable of

338 Chapter 8. Differential Algebraic Equation Solvers

solving DAE problems directly, Dymola converts the model to explicit ODE
form first, before handing it over to DASSL for simulation.

This decision again sacrifices efficiency for convenience. Multiple New-
ton iterations may be set up within each other, as Dymola may set up
Newton iterations as part of the state–space model, and DASSL employs
an overall Newton iteration as part of the simulation process. Yet, solving
DAEs directly may be hard on the user, because in the DAE formulation,
it is not always evident, how many initial conditions are needed, and where
they must be specified. The conversion to explicit ODE form serves the
purpose of ensuring that a complete and consistent set of initial conditions
is available to properly initialize the simulation run.

Before bringing the discussion of DASSL to an end, let us discuss one
more problem that DASSL users may face, a problem that is caused by
exploiting the one–legged nature of the BDF formulae in setting up the
DAE solver.

Let us look once more at an explicit linear state–space model:

ẋ = A · x + B · u (8.57)

Let us use BDF3 in its ODE form to simulate this system:

xk+1 =
6
11

h · ẋk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (8.58)

We eliminate the state derivative vector from the Newton iteration by plug-
ging Eq.(8.57) into Eq.(8.58):

xBDF3
k+1 =

6
11

·A·h·xk+1+
6
11

·B·h·uk+1+
18
11

xk− 9
11

xk−1+
2
11

xk−2 (8.59)

We set the zero function for the Newton iteration up as follows:

F(xk+1)ODE = xtrue
k+1 − xBDF3

k+1 (8.60)

i.e., we compute the difference between the true yet unknown value of xtrue
k+1

and the approximation of the value using the integration algorithm, xBDF3
k+1 .

Thus, the Hessian can be computed as:

H(xk+1)ODE =
∂F(xk+1)ODE

∂xk+1
= I(n) − 6

11
· A · h (8.61)

or more generally:

H(xk+1)ODE = I(n) − 6
11

· J · h (8.62)

where J is the Jacobian of the system:

J (xk+1) =
∂f(xk+1)
∂xk+1

(8.63)

8.4 DASSL 339

Let us now analyze the DAE formulation instead. We use the BDF3
formula in its derivative form:

ẋBDF3
k+1 =

1
h

[
11
6

· xk+1 − 3xk +
3
2
xk−1 − 1

3
xk−2

]
(8.64)

We set the zero function up as follows:

F(xk+1)DAE = ẋst eq
k+1 − ẋBDF3

k+1 (8.65)

Thus, we subtract the BDF approximation of the state derivative vector,
ẋBDF3

k+1 from the state derivative vector computed from the state equations,
ẋst eq

k+1 , i.e., from Eq.(8.57). Both of these approximations are functions of
xk+1.

Hence the Hessian can now be computed as:

H(xk+1)DAE =
∂F(xk+1)DAE

∂xk+1
= A − 11

6h
· I(n) (8.66)

or more generally:

H(xk+1)DAE = J − 11
6h

· I(n) (8.67)

What happens when the step size, h, is made very small? In the ODE
case, we find:

lim
h→0

H(xk+1)ODE = I(n) (8.68)

Thus, the Hessian approaches the identity matrix as the step size ap-
proaches zero. In the DAE case, we find:

lim
h→0

H(xk+1)DAE → ∞ (8.69)

As the step size approaches zero, the Hessian approaches infinity. For small
step sizes, the Hessian is highly sensitive to a change in the step size. This
forebodes trouble.

Although the ODE and DAE formulations of the BDF formulae are the
same algorithms in theory, they may behave quite differently from a nu-
merical point of view for small step sizes due to roundoff.

Let us now look at the most general case of a nonlinear implicit model
of the type:

F(x, ẋ,u, t) = 0 (8.70)

In accordance with Chapter 4 of this book, the different BDF algorithms
can be written as:

340 Chapter 8. Differential Algebraic Equation Solvers

xk+1 = h · fk+1 + xk (8.71a)

xk+1 =
2
3
· h · fk+1 +

4
3
· xk − 1

3
· xk−1 (8.71b)

xk+1 =
6
11

· h · fk+1 +
18
11

· xk − 9
11

· xk−1 +
2
11

· xk−2 (8.71c)

etc. (8.71d)

Thus in general, we can write all of these equations in the form:

xk+1 = h̄ · fk+1 + old(x) (8.72)

where h̄ is proportional in the step size h, and old(x) is a function of previ-
ous values of the state vector, which won’t influence the Newton iteration
at this time.

We can turn Eq.(8.72) around:

fk+1 =
xk+1 − old(x)

h̄
(8.73)

When DASSL is applied to the model of Eq.(8.70), it plugs Eq.(8.73)
into Eq.(8.70):

F(xk+1,
xk+1 − old(x)

h̄
,uk+1, tk+1) = 0 (8.74)

at time tk+1, and iterates on xk+1. In setting up the Newton iteration,
we don’t actually need to perform the substitution, as we can see from
Eq.(8.74) what contributions the state derivative vector produces in the
computation of the Hessian:

H(xk+1) = Jx(xk+1) +
1
h̄
· Jẋ(xk+1) (8.75)

where:

Jx(xk+1) =
∂F
∂x

∣∣∣∣
x=xk+1,ẋ=ẋk+1

(8.76a)

Jẋ(xk+1) =
∂F
∂ẋ

∣∣∣∣
x=xk+1,ẋ=ẋk+1

(8.76b)

are partial Jacobians without substitution.
Hence we can set up the Newton iteration in the following way:(

Jx +
1
h̄
· Jẋ

)
· δ� = F(x�, ẋ�, t) (8.77a)

x�+1 = x� − δ� (8.77b)

ẋ�+1 = ẋ� − 1
h̄
· δ� (8.77c)

8.5 Inline Integration 341

By multiplying Eq.(8.77a) by the step size h, we can write the linear system
inside the Newton iteration as:

(h̄ · Jx + Jẋ) · δ� = h̄ · F(x�, ẋ�, t) (8.78)

Which variables need to be included in the iteration vector, x, of the
Newton iteration? If the problem to be solved is an index–0 problem, the
iteration vector is identical to the vector of independent state variables.
However, if the problem to be solved is an index–1 problem, then at least
the tearing variables of the algebraic loops need to be included in the
iteration vector, x, as well.

What happens if we let the normalized step size, h̄, go to zero? The
Hessian then degenerates to:

lim
h̄→0

H = Jẋ (8.79)

which, in the case of an index–1 problem, unfortunately is a singular matrix.
Thus, the smaller the step size, the more poorly conditioned the Newton
iteration will become in the simulation of an index–1 problem.

Unfortunately, small step sizes will haunt us throughout Chapters 9 and
10 of this book, which is yet another reason, why the producers of Dymola
chose to symbolically convert all DAEs to explicit ODE form prior to letting
DASSL handle the simulation.

8.5 Inline Integration

You, the reader, may meanwhile have come to the conclusion that direct
simulation of an index–1 DAE problem is a bad idea after all. Yet, the
problems that we encountered are not directly related to the index–1 DAE
problem, but rather to the way, in which DASSL was set up. When Linda
Petzold developed the code, she still clung to the idea that the simulation
engine must be separated from the model equations, in order to protect
the hapless user. In 1983, when DASSL was developed, computers were
still slow, memory was still expensive, and consequently, compilers were
still limited in their capabilities.

It turns out that direct simulation of a stiff index–1 DAE problem may
still be a good idea at times, but before we can attempt such a direct
simulation, the final barrier between the simulation engine and the model
equations must come down.

For the time being, let us restrict our discussion to the use of backward
Euler, i.e., BDF1:

xBE
k+1 = xk + h · ẋk+1 (8.80)

Let us look once more at the first of our three circuit problems. Its
schematic is displayed in Fig.8.7.

342 Chapter 8. Differential Algebraic Equation Solvers

U
0
=

1
0

R=20

C
=

1
.0

e
-6

L
=

0
.0

0
1
5

Ground
R

=
1

0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 8.7. Schematic of electrical RLC circuit.

However this time around, we shall insert the integration equations di-
rectly into the model. The enhanced set of model equations can be written
as follows:

u0 = f(t) (8.81a)
u1 = R1 · i1 (8.81b)
u2 = R2 · i2 (8.81c)
uL = L · diL (8.81d)
iC = C · duC (8.81e)
u0 = u1 + uC (8.81f)
uL = u1 + u2 (8.81g)
uC = u2 (8.81h)
i0 = i1 + iL (8.81i)
i1 = i2 + iC (8.81j)
iL = pre(iL) + h · diL (8.81k)
uC = pre(uC) + h · duC (8.81l)

pre(iL) denotes the previous value of iL. At time t = 0, we set pre(iL) = iL0 ,
i.e., we apply the initial conditions of the state variables to the vector of
previous states, and evaluate the model equations for the first time at t = h.

By inserting (“inlining”) the integrator equations into the model, we
eliminated the differential equations altogether [8.8]. We are now faced
with a set of difference equations that we need to solve once per step at

8.5 Inline Integration 343

times t = h, t = 2h, etc. diL and duC are no longer state derivatives. They
have now turned into algebraic variables with funny names.

The structure digraph of the above difference equation (ΔE) model is
shown in Fig.8.8.

Eq.(8.81a)

Eq.(8.81b)

Eq.(8.81c)

Eq.(8.81d)

Eq.(8.81e)

Eq.(8.81f)

Eq.(8.81g)

Eq.(8.81h)

Eq.(8.81i)

Eq.(8.81j)

Eq.(8.81k)

Eq.(8.81l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

FIGURE 8.8. Structure digraph of electrical circuit.

Let us start to causalize the structure digraph. The results of our efforts
are shown in Fig.8.9.

We were able to causalize five of our 12 equations, before encountering
an algebraic loop. Whereas the original DAE problem had been an index–0
problem, i.e., a problem not leading to an algebraic loop, the converted
ΔE problem contains an algebraic loop, which calls for a Newton iteration.
This is the Newton iteration caused by the implicit integration algorithm.

Let us find a suitable tearing structure. We shall not use our usual heuris-
tics. The reason is that we don’t want the step size, h, to show up in the
denominator of any equation. Thus, we shall use Eq.(8.81l) as our residual
equation, which we solve for the tearing variable, uC . It turns out that, with
this choice, we are able to causalize all remaining equations. The results of
the causalization are shown in Fig.8.10.

Using DASSL, we would have required two iteration variables, namely
the two state variables, iL and uC . Using inline integration, we only require
a single iteration variable, the tearing variable, uC .

The fact that we were using backward Euler in the above analysis is

344 Chapter 8. Differential Algebraic Equation Solvers

Eq.(8.81a)

Eq.(8.81b)

Eq.(8.81c)

Eq.(8.81d)

Eq.(8.81e)

Eq.(8.81f)

Eq.(8.81g)

Eq.(8.81h)

Eq.(8.81i)

Eq.(8.81j)

Eq.(8.81k)

Eq.(8.81l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

FIGURE 8.9. Partially causalized structure digraph of electrical circuit.

Eq.(8.81a)

Eq.(8.81b)

Eq.(8.81c)

Eq.(8.81d)

Eq.(8.81e)

Eq.(8.81f)

Eq.(8.81g)

Eq.(8.81h)

Eq.(8.81i)

Eq.(8.81j)

Eq.(8.81k)

Eq.(8.81l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

Residual Eq. Tearing Var.

Eq. #2

Eq. #3

Eq. #7

Eq. #4

Eq. #5

Eq. #6

FIGURE 8.10. Completely causalized structure digraph of electrical circuit.

actually irrelevant. We could have used any BDF algorithm, or in fact, we
even could have used a variable–step and variable–order BDF technique. All
we would have had to do is to replace the step size h by the normalized step
size h̄, and pre(x) by old(x). Neither of these two substitutions modifies
the structure digraph.

The causal set of ΔEs can be written as follows:

8.5 Inline Integration 345

u0 = f(t) (8.82a)
u1 = u0 − uC (8.82b)
u2 = uC (8.82c)

i1 =
1

R1
· u1 (8.82d)

i2 =
1

R2
· u2 (8.82e)

iC = i1 − i2 (8.82f)

duC =
1
C

· iC (8.82g)

uC = pre(uC) + h · duC (8.82h)
uL = u1 + u2 (8.82i)

diL =
1
L

· uL (8.82j)

iL = pre(iL) + h · diL (8.82k)
i0 = i1 + iL (8.82l)

Let us apply variable substitution to come up with a completely causal
set of equations.

uC = pre(uC) + h · duC

= pre(uC) +
h

C
· iC

= pre(uC) +
h

C
· i1 − h

C
· i2

= pre(uC) +
h

R1 · C · u1 − h

R2 · C · u2

= pre(uC) +
h

R1 · C · u0 − h

R1 · C · uC − h

R2 · C · uC

and therefore:[
1 +

h

R1 · C +
h

R2 · C
]
· uC = pre(uC) +

h

R1 · C · u0

or:

[R1 · R2 · C + h · (R1 + R2)] · uC = R1 · R2 · C · pre(uC) + h · R2 · u0

which can be solved for uC :

346 Chapter 8. Differential Algebraic Equation Solvers

uC =
R1 · R2 · C

R1 · R2 · C + h · (R1 + R2)
·pre(uC)+

h · R2

R1 · R2 · C + h · (R1 + R2)
·u0

(8.83)
If we let the step size go to zero, we find:

lim
h→0

uC = pre(uC) (8.84)

which is non–singular. Since the original DAE problem had been of index
0, this is not further surprising.

Let us now look at the second of our circuits. Its schematic is shown in
Fig.8.11.

U
0
=

1
0

R=20
L
=

0
.0

0
1
5

Ground

R
=

1
0

0

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL

FIGURE 8.11. Schematic of modified electrical RLC circuit.

Remember this circuit represents an index–1 problem. Inlining the single
integrator, we get the following set of acausal equations:

u0 = f(t) (8.85a)
u1 = R1 · i1 (8.85b)
u2 = R2 · i2 (8.85c)
u3 = R3 · i3 (8.85d)
uL = L · diL (8.85e)
u0 = u1 + u3 (8.85f)
uL = u1 + u2 (8.85g)
u3 = u2 (8.85h)

8.5 Inline Integration 347

i0 = i1 + iL (8.85i)
i1 = i2 + i3 (8.85j)
iL = pre(iL) + h · diL (8.85k)

Its structure digraph is shown in Fig.8.12.

Eq.(8.85a)

Eq.(8.85b)

Eq.(8.85c)

Eq.(8.85d)

Eq.(8.85e)

Eq.(8.85f)

Eq.(8.85g)

Eq.(8.85h)

Eq.(8.85i)

Eq.(8.85j)

Eq.(8.85k)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

FIGURE 8.12. Structure digraph of modified electrical circuit.

We begin to causalize the structure digraph. The partially causalized
structure digraph is shown in Fig.8.13.

We were able to causalize five of the 11 equations. Let us apply our
heuristic procedure to select a first residual equation and a first tearing
variable. The results of our efforts are shown in Fig.8.14.

A single tearing variable sufficed to causalize the entire equation system.
DASSL would have required at least two iteration variables, the state vari-
able, iL, and the single tearing variable of the algebraic loop, i3, of the
index–1 DAE system. Inline integration is more economical. We get away
with a single iteration variable, the tearing variable, i1, of the ΔE system.

Let us write down the causal equations:

u0 = f(t) (8.86a)
u1 = R1 · i1 (8.86b)
u3 = u0 − u1 (8.86c)
u2 = u3 (8.86d)

348 Chapter 8. Differential Algebraic Equation Solvers

Eq.(8.85a)

Eq.(8.85b)

Eq.(8.85c)

Eq.(8.85d)

Eq.(8.85e)

Eq.(8.85f)

Eq.(8.85g)

Eq.(8.85h)

Eq.(8.85i)

Eq.(8.85j)

Eq.(8.85k)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

Eq. #1

Eq. #11

Eq. #10

Eq. #9

Eq. #8

FIGURE 8.13. Partially causalized structure digraph of modified electrical circuit.

Eq.(8.85a)

Eq.(8.85b)

Eq.(8.85c)

Eq.(8.85d)

Eq.(8.85e)

Eq.(8.85f)

Eq.(8.85g)

Eq.(8.85h)

Eq.(8.85i)

Eq.(8.85j)

Eq.(8.85k)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

Eq. #1

Eq. #11

Eq. #10

Eq. #9

Eq. #8

Residual Eq.

Tearing Var.

Eq. #2

Eq. #6

Eq. #5

Eq. #3

Eq. #4

FIGURE 8.14. Completely causalized structure digraph of modified electrical
circuit.

i3 =
1

R3
· u3 (8.86e)

i2 =
1

R2
· u2 (8.86f)

i1 = i2 + i3 (8.86g)
uL = u1 + u2 (8.86h)

diL =
1
L

· uL (8.86i)

iL = pre(iL) + h · diL (8.86j)

8.5 Inline Integration 349

i0 = i1 + iL (8.86k)

Using the variable substitution technique, we can find a closed–form
expression for the tearing variable:

i1 =
R2 + R3

R1 · R2 + R1 · R3 + R2 · R3
· u0 (8.87)

The expression for i1 is not even a function of the step size h, i.e., it is
non–singular for any value of h.

Let us now analyze the third circuit. Its schematic is shown in Fig.8.15.
Remember this is an index–2 problem.

U
0
=

1
0

R=20

Ground

R
=

1
0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 8.15. Schematic of once more modified electrical RLC circuit.

After inlining the integrator equations, the acausal equations present
themselves in the following form:

u0 = f(t) (8.88a)
u1 = R1 · i1 (8.88b)
u2 = R2 · i2 (8.88c)
uL = L · diL (8.88d)
iC = C · duC (8.88e)
u0 = u1 + uL (8.88f)
uC = u1 + u2 (8.88g)
uL = u2 (8.88h)
i0 = i1 + iC (8.88i)

350 Chapter 8. Differential Algebraic Equation Solvers

i1 = i2 + iL (8.88j)
iL = pre(iL) + h · diL (8.88k)
uC = pre(uC) + h · duC (8.88l)

The structure digraph is shown in Fig.8.16.

Eq.(8.88a)

Eq.(8.88b)

Eq.(8.88c)

Eq.(8.88d)

Eq.(8.88e)

Eq.(8.88f)

Eq.(8.88g)

Eq.(8.88h)

Eq.(8.88i)

Eq.(8.88j)

Eq.(8.88k)

Eq.(8.88l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

FIGURE 8.16. Structure digraph of once more modified electrical circuit.

We begin to causalize the structure digraph. The results of our efforts
are shown in Fig.8.17.

We were able to causalize five of the 12 equations, before ending up
with an algebraic loop. Evidently, since the computational causalities of
all energy storage elements have been freed up after inlining the integrator
equations, we don’t obtain any constraint equation any longer.

Unfortunately, we already got ourselves into trouble, because Eq.(8.88l)
needs to be solved for duC :

duC =
uC − pre(uC)

h
(8.89)

i.e., we ended up with the step size, h, in the denominator, which invariably
will cause numerical difficulties, when we try to simulate the system using a
small step size. We had no choice in the matter, as the derivative causality
on the capacitor was dictated upon us.

8.5 Inline Integration 351

Eq.(8.88a)

Eq.(8.88b)

Eq.(8.88c)

Eq.(8.88d)

Eq.(8.88e)

Eq.(8.88f)

Eq.(8.88g)

Eq.(8.88h)

Eq.(8.88i)

Eq.(8.88j)

Eq.(8.88k)

Eq.(8.88l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

FIGURE 8.17. Partially causalized structure digraph of once more modified elec-
trical circuit.

Let us nevertheless continue by applying our heuristic procedure for se-
lecting a first residual equation and a first tearing variable. The results of
our efforts are shown in Fig.8.18.

Eq.(8.88a)

Eq.(8.88b)

Eq.(8.88c)

Eq.(8.88d)

Eq.(8.88e)

Eq.(8.88f)

Eq.(8.88g)

Eq.(8.88h)

Eq.(8.88i)

Eq.(8.88j)

Eq.(8.88k)

Eq.(8.88l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

Residual Eq.

Tearing Var.

Eq. #2

Eq. #7

Eq. #6

Eq. #3

Eq. #5

Eq. #4

FIGURE 8.18. Completely causalized structure digraph of once more modified
electrical circuit.

A single tearing variable suffices to causalize the entire equation system.

352 Chapter 8. Differential Algebraic Equation Solvers

The causal equations can be read out of the structure digraph of Fig.8.18.

u0 = f(t) (8.90a)
u1 = R1 · i1 (8.90b)
uL = u0 − u1 (8.90c)

diL =
1
L

· uL (8.90d)

u2 = uL (8.90e)
iL = pre(iL) + h · diL (8.90f)

i2 =
1

R2
· u2 (8.90g)

i1 = i2 + iL (8.90h)
uC = u1 + u2 (8.90i)

duC =
uC − pre(uC)

h
(8.90j)

iC = C · duC (8.90k)
i0 = i1 + iC (8.90l)

Using the variable substitution technique, we can find a closed–form
equation for the tearing variable, i1.

i1 =
L + h · R2

L · (R1 + R2) + h · R2
· u0 +

R2 · L
L · (R1 + R2) + h · R2

· pre(iL) (8.91)

If we let the step size go to zero, we find:

lim
h→0

i1 =
1

R1 + R2
· u0 +

R2

R1 + R2
· pre(iL) (8.92)

At least in the given example, inlining was able to solve also the higher–
index problem directly. This discovery shall prove important in the context
of the next chapter of this book. Yet, inlining the higher–index problem
directly came at a price, as we ended up with the step size, h, in the
denominator of one of the model equations. Thus, it is usually preferred to
first apply the index reduction algorithm by Pantelides.

We have shown that inline integration can solve DAE problems directly
and more economically than the standard version of DASSL1 In all of
these examples, we have used the backward Euler formula for inlining.

1The standard version of DASSL comes with a regular matrix solver and a band–
matrix solver. In addition, DASSL offers an interface for supplying other matrix solvers
externally. A sparse matrix solver can improve the efficiency of DASSL significantly fo
large numbers of states [8.31].

8.6 Inlining Implicit Runge–Kutta Algorithms 353

However, this is not necessary. If we replace the true step size, h, by the
normalized step size h̄, and the previous value of the state vector, pre(x),
by a combination of old state information, old(x), we can inline any and
all of the BDF algorithms in exactly the same fashion.

If we wish to implement a step–size and/or order controlled algorithm,
we can do so using the same techniques that were advocated in Chapter 4
of this book. Since both the new step size and the new order depend on
previous state information only, the equations for step–size and order con-
trol do not need to be inlined. Only the integration formula itself must be
inlined, which can be accomplished for all BDF algorithms in the manner
demonstrated in this section.

8.6 Inlining Implicit Runge–Kutta Algorithms

How can the inlining technique be generalized to implicit Runge–Kutta
algorithms as well? For each stage of the multi–stage algorithm, we need to
replicate the entire set of equations once. Let us explain the technique by
means of the first of the three circuit examples. We shall inline the third–
order accurate Radau IIA algorithm. Since this is a two–stage algorithm,
we need to write down the equations twice, once for each of the two stages,
for the time instant, when that stage needs to be computed.

The first stage is computed at time t = tk + h/3, whereas the second
stage is computed at time t = tk + h = tk+1. The integrator formulae can
thus be written as:

xk+ 1
3

= xk +
5h

12
· ẋk+ 1

3
− h

12
· ẋk+1 (8.93a)

xk+1 = xk +
3h

4
· ẋk+ 1

3
+

h

4
· ẋk+1 (8.93b)

Hence the complete set of equations for the circuit example can be writ-
ten as:

v0 = f(t +
h

3
) (8.94a)

v1 = R1 · j1 (8.94b)
v2 = R2 · j2 (8.94c)
vL = L · djL (8.94d)
jC = C · dvC (8.94e)
v0 = v1 + vC (8.94f)
vL = v1 + v2 (8.94g)
vC = v2 (8.94h)

354 Chapter 8. Differential Algebraic Equation Solvers

j0 = j1 + jL (8.94i)
j1 = j2 + jC (8.94j)

u0 = f(t + h) (8.94k)
u1 = R1 · i1 (8.94l)
u2 = R2 · i2 (8.94m)
uL = L · diL (8.94n)
iC = C · duC (8.94o)
u0 = u1 + uC (8.94p)
uL = u1 + u2 (8.94q)
uC = u2 (8.94r)
i0 = i1 + iL (8.94s)
i1 = i2 + iC (8.94t)

jL = pre(iL) +
5h

12
· djL − h

12
· diL (8.94u)

vC = pre(uC) +
5h

12
· dvC − h

12
· duC (8.94v)

iL = pre(iL) +
3h

4
· djL +

h

4
· diL (8.94w)

uC = pre(uC) +
3h

4
· dvC +

h

4
· duC (8.94x)

Thus, we end up with a difference equation (ΔE) system in 24 equations
and 24 unknowns. Since the two stages are implicitly coupled to each other,
they cannot be executed in sequence. They are simulated together leading
to a model containing twice as many equations and unknowns [8.6, 8.38].

We are only interested in the variables of the second stage. At the end
of the step, iL and uC need to be copied to the previous state vector,
pre(iL) and pre(uC). Yet, we must compute the variables of the first stage
simultaneously with those of the second stage due to the coupling between
the two stages.

We shall refrain from drawing the structure digraph for this ΔE system.
Let us summarize the results. 10 of the 24 equations can be causalized at
once. The heuristic procedure chooses vC as the first tearing variable, and
Eq.(8.94v) as the first residual equation. With this choice, seven additional
equations can be causalized. The procedure then chooses i1 as the second
tearing variable, and Eq.(8.94t) as the second residual equation. With this
choice, the remaining seven equations can be causalized.

Hence we can simulate this problem using the third–order accurate Radau
IIA algorithm with only two iteration variables in the Newton iteration.

8.7 Stiffly Stable Step–size Control of Radau IIA 355

8.7 Stiffly Stable Step–size Control of Radau IIA

A difficult problem with these types on numerical solvers concerns the
control of the step size. To this end, it is necessary to find an estimate
for the integration error, the order of approximation accuracy of which
is one order higher than that of the solver itself. Typically, designers of
such solvers will look for a second solver of the same or higher order of
approximation accuracy to compare it against the solver to be used for the
simulation.

While it is always possible to run two independent solvers in parallel for
the purpose of step–size control, this approach is clearly undesirable, as
it makes the solver highly inefficient. In explicit Runge–Kutta algorithms,
it has become customary to search for an embedding method, i.e., a sec-
ond solver that has most of the computations in common with the original
solver, such that they share a large portion of the computational load be-
tween them. Unfortunately, this approach won’t work in the case of fully
implicit Runge–Kutta algorithms, since these algorithms are so compact
and so highly optimized that there simply is not enough freedom left in
these algorithms for embedding methods to co–exist with them.

One solution that comes to mind immediately is to use a Backward Dif-
ference Formula in parallel with the implicit Runge–Kutta technique. This
solution can be implemented cheaply, because an appropriately accurate
state derivative at time tk+1 can be obtained up front using the Runge–
Kutta approximation, i.e., no Newton iteration is necessary. For example,
the 3rd–order accurate Radau IIA algorithm could be accompanied by a
3rd–order accurate BDF solver implemented as:

xBDF
k+1 =

18
11

xk − 9
11

xk−1 +
2
11

xk−2 +
6
11

· h · fk+1 (8.95)

where fk+1 is the function value evaluated from the state–space model at
time tk+1:

fk+1 = f(xIRK
k+1 ,uk+1, tk+1) (8.96)

and xIRK
k+1 is the solution found by the Radau IIA algorithm. Unfortunately,

such a solution inherits all the difficulties associated with step–size control
in linear multi–step methods. Alternatively, the step size can only be mod-
ified once every n steps, where n is the order of the algorithm, which elim-
inates an important aspect of the elegance and efficiency of Runge–Kutta
methods. For these reasons, we propose a different route.

Clearly, an embedding method cannot be found using only information
that is being used by the Radau IIA algorithm. In each step, there are
four pieces of information available: xk, xk+ 1

3
, ẋk+ 1

3
, and ẋk+1 to estimate

xk+1. Evidently, there is only one 3rd–order accurate polynomial going
through these four pieces of information, and it is this polynomial that

356 Chapter 8. Differential Algebraic Equation Solvers

defines the Radau IIA algorithm. However, enough redundancy can be ob-
tained to define an embedding algorithm if information from the two last
steps is being used. In this case, the following eight pieces of information
are available: xk−1, xk− 2

3
, xk, xk+ 1

3
, ẋk− 2

3
, ẋk, ẋk+ 1

3
, and ẋk+1. It was

decided to look for 4th–order accurate polynomials that go through any
five of these eight pieces of information. This technique defines 56 possible
embedding methods. Out of these 56 methods, only six are stiffly stable.
Two of those six techniques are not A–stable, i.e., have unstable regions
within the left half complex λ ·h plane. One method has a stability domain
with a discontinuous derivative at the real axis, which is suspicious. The
remaining three methods are:

x1
k+1 = − 25

279
xk−1 +

6
31

xk− 2
3

+
250
279

xk +
25h

31
ẋk+ 1

3
+

65h

279
ẋk+1

x2
k+1 = − 1

36
xk−1 +

16
9

xk − 3
4

xk+ 1
3

+ h ẋk+ 1
3

+
2h

9
ẋk+1 (8.97)

x3
k+1 = − 2

23
xk− 2

3
+

50
23

xk − 25
23

xk+ 1
3

+
25h

23
ẋk+ 1

3
+

5h

23
ẋk+1

All of these three techniques have nice stability domains looping in the
right half complex λ · h plane. Each of them is A–stable. It is possible to
write these methods in the linear case as:

xk+1 = F · xk−1 (8.98)

The F–matrices of the three methods can be expanded into Taylor series
around h = 0. The three F–matrices then take the form:

F1 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

2224
279

(Ah)3

6
+

877
58

(Ah)4

24
(8.99a)

F2 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

73
9

(Ah)3

6
+

859
54

(Ah)4

24
(8.99b)

F3 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

188
23

(Ah)3

6
+

374
23

(Ah)4

24
(8.99c)

What would have been expected of a 4th–order accurate method is:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
+ 8

(Ah)3

6
+ 16

(Ah)4

24
(8.100)

since the expansion is over a double step. Unfortunately, neither of these
three methods is even 3rd–order accurate. The problem is that although
xk+1 is 3rd–order accurate, the first stage of the method, xk+ 1

3
is only 2nd–

order accurate. We evidently cannot expect the order of approximation
accuracy of our 4th–order polynomials to be any higher than that of its

8.7 Stiffly Stable Step–size Control of Radau IIA 357

supporting values, and indeed, all three of our 4th–order polynomials are
only 2nd–order accurate.

Luckily, there are three such methods available. Hence it should be pos-
sible to blend them:

xblended
k+1 = α x1

k+1 + β x2
k+1 + (1 − α − β) x3

k+1 (8.101)

such that the coefficients of the Taylor–series expansion of the blended
method are correct up to the quartic term. Unfortunately, this doesn’t
work, because the three methods are not linearly independent of each other.
There really are only two methods. The third one is a linear combination
of the other two. However, it is possible to blend any two of these three
methods with the solution found by Radau IIA:

xblended
k+1 = α · x1

k+1 + β · x2
k+1 + (1 − α − β) · xRadau

k+1 (8.102)

These three techniques are indeed independent of each other. The resulting
algorithm is:

xblended
k+1 = xk−1 − 2 xk− 2

3
+ 2 xk+ 1

3
− h

2
ẋk+ 1

3
+

h

2
ẋk+1 (8.103)

This method is indeed 4th–order accurate. It has highly appealing coeffi-
cients. It has only one disadvantage. It is totally unstable everywhere.

It should be possible to find 4th–order accurate embedding methods
spanned by the information collected from Radau IIA over two steps. Yet,
for the purpose of step–size control, it is sufficient to find another 3rd–order
accurate embedding method. To this end, it suffices to blend any two of
the three algorithms found above:

xblended
k+1 = ϑ · x1

k+1 + (1 − ϑ) · x2
k+1 (8.104)

The resulting method is:

xblended
k+1 = − 1

13
xk−1+

2
13

xk− 2
3
+

14
13

xk− 2
13

xk+ 1
3
+

11h

13
ẋk+ 1

3
+

3h

13
ẋk+1

(8.105)
Also this method has beautifully simple rational coefficients. it is indeed
3rd–order accurate:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
+ 8

(Ah)3

6
+

149
156

· 16
(Ah)4

24
(8.106)

i.e., the error coefficient of the method is:

358 Chapter 8. Differential Algebraic Equation Solvers

−2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

Stability Domain of Radau IIA Error Method

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.19. Stability domain of blended Radau IIA embedding method

ε =
−7

3744
(Ah)4 (8.107)

The stability domain of the blended method is given in Figure 8.19.
The blended method relies on h not changing its values between the two

steps used in the approximation. It may be easiest to prevent the step size
from changing two steps in a row. This seems a small price to pay. After
the step size has remained constant for two consecutive steps, it is free to
change in any way suitable. The code needed to perform step–size control
can be merged with the model equations and the simulation equations,
i.e., it can be inlined as well, but this is not truly necessary. The step–size
control code can be kept in a separate routine called upon by the simulation
engine whenever needed.

Which of the two approximations should be propagated to the next step?
The error coefficient of the embedding method is considerably smaller than
that of Radau IIA. Hence on a first glance, it seems reasonable to propagate
the approximation of the embedding technique. However, there are two
problems with this choice.

First, the embedding technique was designed assuming that the Radau IIA
result would be propagated. If the embedding technique is being propa-
gated, the F–matrices change, and the blended method may no longer be
3rd–order accurate.

8.7 Stiffly Stable Step–size Control of Radau IIA 359

Second, Figure 8.20 shows the damping plot of the embedding method.
Comparing it with the damping plot of Radau IIA, it can be seen that the
embedding method is not L–stable, i.e., the damping does not approach
infinity as the eigenvalues of the model move further and further to the
left.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Radau IIA Error Method

−σd

Logarithmic Damping Plot of Radau IIA Error Method

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.20. Damping plot of the blended Radau IIA embedding method

Thus, in spite of the smaller error coefficient, the embedding method
should only be used for step–size control, not for propagation.

The fifth–order accurate Radau IIA method (Rad5) can be analyzed
analogously. A single step of Rad5 stores six pieces of information: xk, x1k

,
x2k

, ẋ1k
, ẋ2k

, and ẋk+1, where x1k
and x2k

are the approximations of the
two intermediate stages. There is only one 5th–order accurate polynomial
going through these six pieces of information, and it is this polynomial that
defines the Rad5 algorithm. Again, enough redundancy can be obtained
to define an embedding algorithm if information from the two last steps is
being used. In this case, the following 12 pieces of information are available:
xk−1, x1k−1

, x2k−1
, xk, x1k

, x2k
, ẋ1k−1

, ẋ2k−1
, ẋk, ẋ1k

, ẋ2k
, and ẋk+1.

Searching for 6th–order polynomials going through seven of these twelve
supporting values, there are 792 methods to be evaluated. Of those, 26
are A–stable methods that can be blended to form an alternate 5th–order
accurate embedding method.

Although Rad5 as a whole is 5th–order accurate, its first two stages are

360 Chapter 8. Differential Algebraic Equation Solvers

only 3rd–order accurate. Thus, we should not expect any of these 6th–order
polynomials to reach a higher order of approximation accuracy than three,
and indeed, this is what we get. Hence we need to blend at least three of
the methods to obtain a 5th–order accurate embedding method.

There exist 2600 combinations of blended methods from the 26 individual
methods. We need to eliminate those among them that are not A–stable.
We furthermore should choose a method with a small error coefficient and
decent damping characteristics. It would be an additional benefit if we could
come up with a method that has conveniently small rational coefficients.

A very good embedding method is the following:

xblended
k+1 = c1 · xk−1 + c2 · ẋ1k−1

+ c3 · x2k−1
+ c4 · ẋ2k−1

+ c5 · xk

+ c6 · x1k
+ c7 · ẋ1k

+ c8 · x2k
+ c9 · ẋ2k

+ c10 · ẋk+1 (8.108a)

with the coefficients:

c1 = −0.00517140382204 (8.109a)
c2 = −0.00094714677404 (8.109b)
c3 = −0.04060469717694 (8.109c)
c4 = −0.01364429384901 (8.109d)
c5 = +1.41786808325433 (8.109e)
c6 = −0.17475783086782 (8.109f)
c7 = +0.48299282769491 (8.109g)
c8 = −0.19733415138754 (8.109h)
c9 = +0.55942205973218 (8.109i)

c10 = +0.10695524944855 (8.109j)

We did program the computation of the coefficients also using MATLAB’s
symbolic toolbox, but the resulting expressions are quite awful, thus we
decided to offer the numerical versions instead.

The blending method is indeed 5th–order accurate. It exhibits a nice
convex A–stable stability domain, which is shown in Fig.8.21.

The damping plot exhibits a nice large asymptotic region and decent
damping characteristics far out in the left–half complex λ · h–plane. The
method is not L–stable, but that is neither surprising nor truly necessary.
The damping plot is presented in Fig.8.22.

8.8 Stiffly Stable Step–size Control of Lobatto IIIC

Let us now look at the Lobatto IIIC algorithm. Since the algorithm is less
compact than the Radau IIA algorithms, it should be easier to find suitable

8.8 Stiffly Stable Step–size Control of Lobatto IIIC 361

−4 −2 0 2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

6

8

Stability Domain of Radau IIA Error Method

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.21. Stability domain of blended 5th–order Radau IIA embedding
method

embedding methods. Yet, each algorithm is accompanied by its own set of
difficulties.

First, we checked the order of approximation accuracy of the intermediate
stages of the Lobatto IIIC algorithm. Unfortunately, they are only 2nd–
order accurate. Hence we shall still need to blend three methods to raise
the order of approximation accuracy of the embedding algorithm to four.

Secondly, although we again are working with 12 pieces of information
across two steps, Lobatto IIIC has a peculiarity. It experiences a zero time
advance between the third stage of one step and the first stage of the
next. Although xk and x1k

represent the state vector at the same time
instant, they are two different approximations. In particular, xk is 4th–order
accurate, whereas x1k

is only 2nd–order accurate. The zero time advance
reduces the flexibility in finding suitable error methods, as no individual
error method can use both xk and x1k

simultaneously.
16 individual error methods were found that are all A–stable. Two of

them are even L–stable. Of course, none of these error methods is of higher
order of approximation accuracy than two.

We then proceeded to blend any three of these methods. The best among
the 4th–order accurate blended methods is presented in the sequel. It can
be written as:

362 Chapter 8. Differential Algebraic Equation Solvers

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

1

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Radau IIA Error Method

−σd

Logarithmic Damping Plot of Radau IIA Error Method

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.22. Damping plot of the blended 5th–order Radau IIA embedding
method

xblended
k+1 =

63
4552

· x1k−1
− 91

81936
· ẋ1k−1

+
1381
81936

· ẋ2k−1
+

3101
2276

· xk

− 393
4552

· x1k
+

775
3414

· ẋ1k
− 165

569
· x2k

+
62179
81936

· ẋ2k

+
12881
81936

· ẋk+1 (8.110)

The coefficients of the blending method were calculated using MATLAB’s
symbolic toolbox.

The embedding method offers a beautiful convex stability domain, as
shown in Fig.8.23.

The damping characteristics of the embedding method are shown in
Fig.8.24.

The method is characterized by a large asymptotic region and a decently
large damping value far out in the left–half complex λ · h plane.

8.9 Inlining Partial Differential Equations

Let us return once more to the simulation of parabolic PDEs converted
to sets of ODEs using the MOL approach. In Chapter 6 of this book, we

8.9 Inlining Partial Differential Equations 363

−2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

Stability Domain of Lobatto IIIC Error Method

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.23. Stability domain of blended Lobatto IIIC embedding method

simulated these types of problems using a stiff–system solver, such as a BDF
algorithm. Whereas this approach worked quite well, the efficiency of the
simulations was less than satisfactory. What killed our attempts at solving
these problems efficiently was not the step size. The number of function
evaluations was actually quite low, at least as long as we computed the
Jacobian analytically. What made our simulations excruciatingly slow was
the computation of the inverse Hessians.

Let us discuss once more the 1D heat diffusion problem discretized using
5th–order accurate central differences, as described in Eqs.(6.39a–h). We
use 50 segments, n = 50.

Using the approach advertised in Chapter 6, we ended up with 50 ODEs,
requiring a Hessian matrix of size 50 × 50 to be inverted. More precisely,
a linear system of 50 equations in 50 unknowns had to be solved using
Gaussian elimination during every iteration step.

Let us now apply inline integration to the problem. Let us start by in-
lining a variable step and variable order BDF algorithm. We can write the
inlined ΔE system in matrix form as follows:

ẋ = A · x + b · u (8.111a)
x = old(x) + h̄ · ẋ (8.111b)

364 Chapter 8. Differential Algebraic Equation Solvers

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

1

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Lobatto IIIC Error Method

−σd

Logarithmic Damping Plot of Lobatto IIIC Error Method

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.24. Damping plot of the blended Lobatto IIIC embedding method

where A is the matrix:

A =
n2

120π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 − 4 14 − 6 1 . . . 0 0 0 0
16 −30 16 − 1 0 . . . 0 0 0 0
− 1 16 −30 16 − 1 . . . 0 0 0 0

0 − 1 16 −30 16 . . . 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 . . . 16 −30 16 − 1
0 0 0 0 0 . . . − 1 16 −31 16
0 0 0 0 0 . . . 0 − 2 32 −30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.112)

We can no longer hope to tear this equation system by hand. Thus, we
encoded our heuristic procedure in a MATLAB routine, and applied that
routine to the problem at hand. Since MATLAB works more naturally
with matrices than with linked lists, we based our implementation on the
structure incidence matrix instead of the structure digraph.

The structure incidence matrix for this problem is shown in Fig.8.25. We
numbered the equations such that we started with the state variables, and
concatenated them with the state derivatives.

Two trivial tearing structures come to mind immediately. We can either
plug Eq.(8.111a) into Eq.(8.111b), and thereby eliminate the state deriva-
tives from the set of iteration variables:

8.9 Inlining Partial Differential Equations 365

0 10 20 30 40 50 60 70 80 90 100
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Structure Incidence Matrix of 1D Heat Equation

Columns of S

R
ow

s
of

S

FIGURE 8.25. Structure incidence matrix of inlined 1D heat diffusion problem
using a BDF algorithm.

x = old(x) + h̄ · (A · x + b · u) (8.113)

or alternatively, we can plug Eq.(8.111b) into Eq.(8.111a), and thereby
eliminate the state variables from the set of iteration variables:

ẋ = A · (old(x) + h̄ · ẋ) + b · u (8.114)

In either case, we reduce the number of iteration variables back to 50, i.e.,
we end up with a Hessian of the same size as in Chapter 6.

Let us check, whether our heuristic procedure can do better. Applying
the heuristic procedure as proposed, we obtain immediately a solution in
32 residual equations and 32 tearing variables. If we modify our heuristic
procedure somewhat by searching for the number of additional equations
to be causalized across all unknowns appearing in a candidate residual
equation, rather than limiting the search to those variables with the largest
number of black (solid) lines attached to them, we obtain a solution with
25 residual equations and 25 tearing variables.

Using this modified heuristic procedure, we have extended the search
somewhat, thereby reducing the efficiency of the algorithm, but in return,
we have obtained a more economical tearing structure.

We suspect that the solution with 25 iteration variables is indeed the
optimal solution, but we are not sure of it. We did not attempt to solve the

366 Chapter 8. Differential Algebraic Equation Solvers

np–complete exhaustive search across all possible combinations of residual
equations and tearing variables.

This is a big improvement. The computational effort of the Gaussian
elimination algorithm grows quadratically in the size of the linear equation
system. Hence by reducing the size of the Hessian from 50× 50 to 25× 25,
we increase the simulation speed by a full factor of four.

Let us now discuss what happens when we inline the 3rd–order accurate
Radau IIA algorithm instead. Our ΔE system can now be written down as
follows:

ẏ = A · y + b · u(tk+ 1
3
) (8.115a)

ẋ = A · x + b · u(tk+1) (8.115b)

y = pre(x) +
5
12

· h · ẏ − 1
12

· h · ẋ (8.115c)

x = pre(x) +
3
4
· h · ẏ +

1
4
· h · ẋ (8.115d)

If we number the variables starting with y, concatenating to it x, then ẏ,
and finally ẋ, the structure incidence matrix assumes the structure shown
in Fig.8.26.

0 20 40 60 80 100 120 140 160 180 200
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Structure Incidence Matrix of 1D Heat Equation

Columns of S

R
ow

s
of

S

FIGURE 8.26. Structure incidence matrix of inlined 1D heat diffusion problem
using Radau IIA.

Two trivial tearing structures come to mind. We can either plug the two

8.9 Inlining Partial Differential Equations 367

sets of state equations into the two sets of integration equations, thereby
eliminating all state derivatives from the set of iteration variables:

y = pre(x) +
5
12

· h · (A · y + b · u(tk+ 1
3
))

− 1
12

· h · (A · x + b · u(tk+1)) (8.116a)

x = pre(x) +
3
4
· h · (A · y + b · u(tk+ 1

3
))

+
1
4
· h · (A · x + b · u(tk+1)) (8.116b)

or alternatively, we can plug the two sets of integration equations into the
two sets of state equations, thereby eliminating all state variables from the
set of iteration variables:

ẏ = A · (pre(x) +
5
12

· h · ẏ − 1
12

· h · ẋ) + b · u(tk+ 1
3
) (8.117a)

ẋ = A · (pre(x) +
3
4
· h · ẏ +

1
4
· h · ẋ) + b · u(tk+1) (8.117b)

In either case, we end up with 100 iteration variables.
Let us see whether our heuristic procedure can do better. Unfortunately,

the algorithm breaks down after having chosen about 60 tearing variables,
and after having causalized about 120 equations. The heuristic procedure
has maneuvered itself into a corner. Every further selection of a combination
of residual equation and tearing variable leads to a structural singularity.
Although the algorithm had been programmed to ignore selections that
would lead to a structural singularity at once, it hadn’t been programmed
to backtrack beyond the last selection, i.e., throw earlier residual equations
and tearing variables away to avoid future mishap.

This is why we wrote in Chapter 7 that the computational complexity of
the heuristic procedure grows quadratically with the size of the equation
system for most applications. It does so, if no backtracking is required.

I was curious how the tearing algorithm built into Dymola would fare
when faced with this problem. I quickly programmed the equation system
into Dymola Version 4.1d, and asked for a compilation. Whereas Dymola
usually tears equation systems with tens of thousands of equations within
a few seconds, it chewed on this problem for a very long time. I watched
an entire movie (Animal Farm) on TV, while Dymola was thinking about
the problem.

It turned out that the heuristic algorithm built into Version 4.1d of Dy-
mola did not break down. Evidently, it is programmed to backtrack suf-
ficiently to get itself out of a corner. Unfortunately after thinking hard,
Dymola came up with one of the two trivial tearing structures.

368 Chapter 8. Differential Algebraic Equation Solvers

The above paragraph had been written almost two years ago. Now, before
sending the manuscript off to the printer, we decided to run the example
once more through the current version of Dymola, which is Version 5.3d.
This time around, Dymola came up with an answer after only six seconds
of compilation time.

We had sent an earlier version of this chapter to Hilding Elmqvist. When-
ever someone stumbles upon an example that the tearing algorithm does
not handle well, the good folks up at Dynasim go into overdrive, trying to
come up with an improved version of their tearing algorithm as fast as they
can.

The answer, however, was still the same. Dymola chose one of the two
trivial structures as the most suitable tearing structure for this system.
We thus suspect that the trivial structures are indeed the optimal tearing
structures in this case, but of course, we aren’t sure. Going through an
exhaustive search for finding the optimal tearing structure would be too
painful to even consider.

Unfortunately, these are bad news. If indeed we pay for using Radau IIA
instead of BDF3 with increasing the size of the Hessian by a factor of four,
Radau IIA would have to be able to use step sizes that are on average
at least 16 times larger than those used by BDF for the same accuracy.
Otherwise, Radau IIA is not competitive for dealing with this problem. We
doubt very much that Radau IIA will be able to do so.

PDE problems are notoriously difficult simulation problems. Although
tearing is a very powerful symbolic sparse matrix technique, it cannot make
an intrinsically difficult problem easy to solve.

8.10 Overdetermined DAEs

At this point, we shall resume the discussion of the mechanical pendulum
problem that we began towards the end of Chapter 7. The mechanical
pendulum schematic is presented once more in Fig.8.27.

We had already come up with a set of causal equations without solv-
ability issues describing the motion of the mechanical pendulum. Let us
use the variable substitution technique to come up with a closed–form for-
mula for the tearing variable. Doing so, we find the following explicit ODE
description of the pendulum problem.

x = � · sin(ϕ) (8.118a)
vx = � · cos(ϕ) · ϕ̇ (8.118b)
y = � · cos(ϕ) (8.118c)

vy = −� · sin(ϕ) · ϕ̇ (8.118d)

8.10 Overdetermined DAEs 369

x

y

�ϕ

F

m · g
FIGURE 8.27. Mechanical pendulum.

dvx = −x · � · ϕ̇2 + x · cos(ϕ) · g
x · sin(ϕ) + y · cos(ϕ)

(8.118e)

ϕ̈ =
dvx

� · cos(ϕ)
+

sin(ϕ)
cos(ϕ)

· ϕ̇2 (8.118f)

dvy = −� · sin(ϕ) · ϕ̈ − � · cos(ϕ) · ϕ̇2 (8.118g)

F =
m · g · �

y
− m · � · dvy

y
(8.118h)

Eq.(8.118e) could have been simplified further, but this is unimportant for
the discussion at hand. The formula, as presented above, is the one that
Dymola will come up with, since it knows that sin2 ϕ + cos2 ϕ = 1, but it
doesn’t know to multiply both the numerator and the denominator with �
to eliminate the trigonometric functions from the expression.

We know that the pendulum, as described, is a conservative (Hamilto-
nian) system, since no friction was assumed anywhere. Hence the pendu-
lum, once disturbed, should swing forever with the same frequency and
amplitude. The total free energy, Ef :

Ef = Ep + Ek (8.119)

which is the sum of the potential energy, Ep, and the kinetic energy, Ek,
should be constant. The potential energy can be modeled as:

370 Chapter 8. Differential Algebraic Equation Solvers

Ep = m · g · (y0 − y) (8.120)

and the kinetic energy can be expressed using the formula:

Ek =
1
2
· m · v2

x +
1
2
· m · v2

y (8.121)

Let us add these three equations to the model.
Let us simulate this problem for a pendulum with g = 9.81 m/(sec2),

m = 10 kg, � = 1 m, ϕ0 = +45o = π/4 rad, and ϕ̇0 = 0 rad/sec. Thus,
y0 =

√
2/2 m.

We shall inline the forward Euler algorithm, thus we add the two equa-
tions:

ϕ̇k+1 = ϕ̇k + h · ϕ̈k (8.122a)
ϕk+1 = ϕk + h · ϕ̇k (8.122b)

We can now simulate the problem by simply iterating over these 13 equa-
tions. We shall simulate the problem during 10 sec with a fixed step size
of h = 0.01. The results of this simulation are shown in Fig.8.28.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Forward Euler Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.28. Inlined FE simulation of mechanical pendulum.

We just solved the world’s energy crisis once and for all. Evidently, we
are able to generate free energy out of thin air.

8.10 Overdetermined DAEs 371

Let us see whether backward Euler fares any better. Instead of inlining
Eqs.(8.122a–b), we inline the equations:

ϕ̇ = pre(ϕ̇) + h · ϕ̈ (8.123a)
ϕ = pre(ϕ) + h · ϕ̇ (8.123b)

Since the backward Euler algorithm is an implicit integration method, we
expect to encounter another algebraic loop. The partially causalized struc-
ture digraph for this equation system is shown in Fig.8.29.

Eq.(8.118a)

Eq.(8.118b)

Eq.(8.118c)

Eq.(8.118d)

Eq.(8.118e)

Eq.(8.118f)

Eq.(8.118g)

Eq.(8.118h)

Eq.(8.120)

Eq.(8.121)

Eq.(8.119)

Eq.(8.123a)

Eq.(8.123b)

x

vx

d2phi/dt2

phi

F

Ep

Eq. #13

Eq. #12

Eq. #11

Eq. #10

Eq. #9

y

vy

dvx

dphi/dt

dvy

Ek

Ef

Eq. #8

Eq. #7

FIGURE 8.29. Partially causalized structure digraph of mechanical pendulum
after BE inlining.

We indeed encountered an algebraic loop in six equations and six un-
knowns. Figure 8.30 shows the completely causalized equation system after
a residual equation and a tearing variable have been chosen.

In mechanical systems, it is generally a good idea to select accelera-
tions as tearing variables, and since the model equations had already been
causalized before, i.e., each variable appears exactly once to the left side
of the equal sign and does so in a linear fashion, it makes sense to use the
equation that defines the angular acceleration ϕ̈ as the residual equation.

The causal equations can be read out of Fig.8.30. They are:

ϕ̇ = pre(ϕ̇) + h · ϕ̈ (8.124a)
ϕ = pre(ϕ) + h · ϕ̇ (8.124b)
y = � · cos(ϕ) (8.124c)

372 Chapter 8. Differential Algebraic Equation Solvers

Eq.(8.118a)

Eq.(8.118b)

Eq.(8.118c)

Eq.(8.118d)

Eq.(8.118e)

Eq.(8.118f)

Eq.(8.118g)

Eq.(8.118h)

Eq.(8.120)

Eq.(8.121)

Eq.(8.119)

Eq.(8.123a)

Eq.(8.123b)

x

vx

d2phi/dt2

phi

F

Ep

Eq. #13

Eq. #12

Eq. #11

Eq. #10

Eq. #9

y

vy

dvx

dphi/dt

dvy

Ek

Ef

Eq. #8

Eq. #7

Residual Eq. Tearing Var.

Eq. #1

Eq. #5

Eq. #2

Eq. #4

Eq. #3

FIGURE 8.30. Completely causalized structure digraph of mechanical pendulum
after BE inlining.

x = � · sin(ϕ) (8.124d)

dvx = −x · � · ϕ̇2 + x · cos(ϕ) · g
x · sin(ϕ) + y · cos(ϕ)

(8.124e)

ϕ̈ =
dvx

� · cos(ϕ)
+

sin(ϕ)
cos(ϕ)

· ϕ̇2 (8.124f)

vy = −� · sin(ϕ) · ϕ̇ (8.124g)
vx = � · cos(ϕ) · ϕ̇ (8.124h)

Ek =
1
2
· m · v2

x +
1
2
· m · v2

y (8.124i)

Ep = m · g · (y0 − y) (8.124j)

dvy = −� · sin(ϕ) · ϕ̈ − � · cos(ϕ) · ϕ̇2 (8.124k)
Ef = Ep + Ek (8.124l)

F =
m · g · �

y
− m · � · dvy

y
(8.124m)

The first six of these equations, Eqs.(8.124a–f), constitute the algebraic
loop. This time, we used Newton iteration in the single tearing variable, ϕ̈,
to solve the algebraic loop. We computed the Hessian by means of algebraic
differentiation.

The simulation results are shown in Fig.8.31.
It didn’t work any better than before. This algorithm is losing energy,

where it shouldn’t. The result is easily explainable. This is a conservative
system. The two eigenvalues of its Jacobian are located on the imaginary
axis, at least on average. However, the numerical stability domain of the FE

8.10 Overdetermined DAEs 373

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

Backward Euler Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.31. Inlined BE simulation of mechanical pendulum.

algorithm loops into the left–half complex plane. Thus, the two eigenvalues
of the system are seen as mildly unstable, and the oscillation is growing.
The algorithm adds energy to the system. On the other hand, the stability
domain of the BE algorithm loops into the right–half complex plane. Con-
sequently, the two marginally stable eigenvalues are seen as mildly damped,
and the oscillation decays.

An F–stable algorithm, such as the BI technique, should be expected to
work better. Let us implement BI2 as a cyclic method, toggling between a
step of FE followed by a step of BE. The simulation results are presented
in Fig.8.32.

The approach worked. Yet, it only worked, because we were able to ana-
lyze the problem and come up with a suitable solution. The code itself still
has no inkling that it is supposed to conserve the free energy. It does so by
accident rather than by design.

Let us try to change that. We shall force the backward Euler algorithm
to preserve the free energy. To this end, we simply add the equation:

Ef = 0 (8.125)

to the set of equations.
This is a completely new situation. We haven’t added any new variables

to the set of equations. We only added another equation. Thus, we now
have 14 equations in 13 unknowns. Clearly, this problem is constrained.

374 Chapter 8. Differential Algebraic Equation Solvers

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

BI2 Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.32. Inlined BI2 simulation of mechanical pendulum.

If we present this problem to the Pantelides algorithm, it will differentiate
itself to death, or rather, until the compiler runs out of virtual memory. The
Pantelides algorithm always adds exactly as many equations as variables,
thus after each application of the algorithm, the number of equations is
still one larger than the number of variables.

Inlining again saves our neck. We simply add the constraint equation
to the iteration equations of the Newton iteration. Thus, the set of zero
functions can now be written as:

F =
(

ϕ̈new − ϕ̈
Ef

)
(8.126)

and therefore:

H =
(

∂ϕ̈new/∂ϕ̈ − 1
∂Ef/∂ϕ̈

)
(8.127)

The Newton iteration can be written as:

H� · dx� = F� (8.128a)

x�+1 = x� − dx� (8.128b)

However, H is no longer a square matrix. It is now a rectangular matrix
with 2 rows and 1 column. In general with n model equations and p con-
straints, the Hessian turns out to be a rectangular matrix with n + p rows

8.10 Overdetermined DAEs 375

and n columns. Thus, Eq.(8.128a) is overdetermined. It cannot be satisfied
exactly. The dx–vector can only be determined in a least square sense. This
can be accomplished by multiplying Eq.(8.128a) from the left with H∗, i.e.,
with the Hermitian transpose of H. If the rank of H is n, then H∗ · H is a
Hermitian matrix of full rank. Thus, we can compute dx as:

dx = (H∗ · H)−1 · H∗ · F (8.129)

where (H∗ · H)−1 · H∗ is called the Penrose–Moore pseudoinverse of H. In
MATLAB, this can be abbreviated as:

dx = H\F (8.130)

The results of the simulation are shown in Fig.8.33.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

Stabilized Backward Euler Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.33. Inlined stabilized BE simulation of mechanical pendulum.

The oscillation has indeed been stabilized. Of course, the equation:

F = 0 (8.131)

can no longer be solved precisely. The equation system does not contain
enough freedom to do so. Yet, the error is minimized in a least square
sense, and both the oscillation and the free energy are now stable by design.
Initially, the approach still loses a bit of free energy, but the loss stops after
the solution is stabilized. The solution using backinterpolation turns out to

376 Chapter 8. Differential Algebraic Equation Solvers

be better, but the solution using an overdetermined equation set is more
robust.

There are DAE solvers on the market that can handle overdetermined
DAEs, such as ODASSLRT (a “dialect” of DASSL) [8.12] and MEXX (a
code using Richardson extrapolation) [8.20]. Overdetermined DAE solvers
have become popular primarily among specialists of multibody dynamics,
and the early codes tackling this problem indeed evolved in the engineering
community. Most of these early codes were quite specialized. More recently,
the problem was discovered by mainstream applied mathematicians [8.15],
and it can therefore be expected that more general–purpose codes for the
numerical solution of overdetermined DAE systems will soon become avail-
able.

Yet, the problem of merging overdetermined linear system solvers with
general–purpose DAE codes is a difficult one. Most DAE solvers cannot
deal with higher–index problems, yet overdetermined DAEs have much in
common with higher–index problems. In our view, inlining overdetermined
DAEs is generally a better approach than trying to keep the model equa-
tions separate from the simulator equations.

Most applied mathematicians have shunned away from the inlining ap-
proach, because inlining without a powerful model compiler, such as Dy-
mola [8.9, 8.10], is a toy. Drawing structure digraphs by hand only works
for toy problems.

Hairer and his colleagues thus went a different route [8.15]. Rather than
constraining the DAE system, they generalized on the BI2 solution pre-
sented earlier in this section. It was not by accident that the BI2 solution
produced the correct answer to the problem.

To understand this result, the reader needs to remember our introduction
to the backinterpolation algorithms in Chapter 3 of this book. We recog-
nized that we can implement a class of implicit Runge–Kutta algorithms by
integrating the regular explicit Runge–Kutta algorithms backward through
time. As we simply replace the step size h by −h, the stability domains of
these methods get mirrored on the imaginary axis of the complex λ · h–
plane.

Some algorithms do not change, when h is replaced by −h. For example,
the trapezoidal rule:

xk+1 = xk +
h

2
· (ẋk + ẋk+1) (8.132)

turns into:
xk = xk+1 − h

2
· (ẋk+1 + ẋk) (8.133)

i.e., the formula doesn’t change. Such an ODE solver is called a symmetric
integration algorithm. The stability domains of symmetric ODE solvers
are symmetric to the imaginary axis. In particular, all of the F–stable
integration algorithms introduced in Chapter 3 are symmetric ODE solvers.

8.11 Electronic Circuit Simulators 377

Symmetric integration algorithms are not only symmetric to the imag-
inary axis w.r.t. their stability properties, but also w.r.t. their damping
properties. Thus, symmetric integration algorithms are accompanied by
symmetric order stars as well.

This symmetry can be exploited in the simulation of Hamiltonian sys-
tems. At least, if we carefully choose our step size to be in sync with the
eigenfrequency of oscillation of the system, we can ensure that the damp-
ing errors committed during the integration over a full period cancel out,
such that the solution at the end of one cycle coincides with that at the
beginning of the cycle.

Yet, we still prefer the constrained solution proposed in this section, as
it is considerably more robust. It works with any numerical integration
scheme and enforces the physical constraint directly rather than indirectly.

8.11 Electronic Circuit Simulators

One important application area where DAEs are frequently used is elec-
tronic circuit modeling. Let us briefly relate the topics of Chapters 7 and
8 of this book to the discussions presented in Chapters 3 and 6 of the
companion book on Continuous System Modeling [8.5].

We have seen that object–oriented modeling of electrical and electronic
circuits invariably leads to implicit DAE descriptions. We have furthermore
seen that the resulting sets of DAEs are often index–2 models.

You, the reader, may have come to the conclusion that whether or not a
set of DAEs describing an electrical circuit presents itself as a higher–index
model depends on the topology of the circuit. However, that conclusion
is too simple. The perturbation index of a model is influenced by the ab-
straction mechanism chosen in its mathematical description. In the case of
nonlinear systems, it even depends on the selection of state variables, as
nonlinear transformations performed on a model can influence the pertur-
bation index.

In an explicit ODE description of a system, the state variables are pre-
determined. They are simply the outputs of the integrators. However in
an implicit DAE description, the answer is no longer as clear cut. First
and second derivatives can show up multiple times anywhere within the
implicit equations. How do we even know, how many degrees of freedom a
DAE model really has? Here we have a true choice in deciding, which state
variables to use, and the perturbation index of the model is dependent on
that choice.

Inline integration blurs the situation even further. After inlining, all vari-
ables have become algebraic variables. The number of initial values needed
to simulate an inlined model depends on the number of tearing variables.
We need to specify one initial guess for each tearing variable, as well as

378 Chapter 8. Differential Algebraic Equation Solvers

initial conditions for all variables that appear in ‘pre(.)’ clauses.
In the companion book, we started out in Chapter 3 explaining the

derivations of circuit equations in terms of either mesh currents or cut-
set potentials. We chose a “tree” that defined either a minimal set of mesh
currents or a minimal set of cutset potentials.

We now understand much better, what it is that we accomplished. We
designed techniques to come up with small sets of tearing variables. The
mesh currents assume the role of tearing variables, if we work with mesh
equations, whereas the cutset potentials assume the same role, when we
work with cutset (node) equations.

Branch currents and/or branch voltages are poor choices as state vari-
ables, because they frequently lead to higher–index DAE models. If we
place two capacitors in parallel, we cannot choose the voltages across these
two capacitors as independent state variables. Similarly, if we place two
inductors in series, we cannot select the currents flowing through them as
independent state variables. If we work with such selections, we invariable
end up with index–2 models.

The problem disappears if we choose a subset of either mesh currents of
cutset potentials as state variables. These are always independent of each
other by design. The most difficult problem is to decide, which variables
and how many to select as tearing variables.

Commercial electronic circuit simulators, such as Spice [8.26, 8.39] or
Saber [8.24], work with the node potentials as their tearing variables [8.40].
Yet, rather than substituting the equations into each other, as we proposed
in the companion book, they simply write the equations down as is, and
iterate on them using either Newton iteration or at least fixed–point iter-
ation.

Let us start with the simplest case: an electronic circuit without voltage
sources and inductors. Spice [8.26, 8.39] uses all of the node potentials
as tearing variables. In Spice, this is called the nodeset. Evidently, this
is not a minimal set, but it makes the algorithm of finding the tearing
variables trivial. In fact, there are even two different nodesets in use. The
reduced nodeset contains all of the node potentials of user–defined nodes,
whereas the complete nodeset also includes the internal nodes of the circuit
expansions of the active devices (primarily BJT and MOS transistors).

We can formulate Kirchhoff’s Current Law (KCL) as follows:

Ψ · i = 0 (8.134)

where i is the vector of branch currents, and Ψ is the reduced node inci-
dence matrix. Ψ has as many rows as there are nodes in the circuit, and it
has as many columns as there are branches. It is called the reduced node
incidence matrix, because it only considers those nodes and branches that
are explicitly formulated in the model, excluding the expansions of the ac-
tive devices. The element Ψij has a value of +1, when the branch leaves the
node, i.e., when the positive direction of the branch current is away from

8.11 Electronic Circuit Simulators 379

the node. If assumes a value of −1, if the branch arrives at the node, and
it assumes a value of 0, if the branch is not connected to the node at all.
Eq.(8.134) simply states that the sum of all currents into a node is zero.

The equation:
u = ΨT · v (8.135)

relates the node potentials v to the branch voltages u.
Finally, the equation:

i = g(u, u̇,v, t) (8.136)

captures the element law for each of the branches, relating the voltages and
potentials to the currents.

Capacitors are implemented using the DAE formulation of a BDF for-
mula, i.e.:

u̇C =
uC − old(uC)

h̄
(8.137)

Notice that Spice made use of this approach years before DASSL was writ-
ten, but since the program was specialized to dealing with electronic circuits
only, the mathematical community hardly paid any attention to it.

If all elements are either current sources, or resistors (including the non-
linear diodes), or capacitors, we are already in business. If we assume
the node potentials, v, as known, we can use Eq.(8.135) to determine all
branch voltages, u. We can then use the implicit numerical differentiators
of Eq.(8.137) to compute the derivatives of the voltages for each of the ca-
pacitors. We can then use the elemental laws for each branch, Eq.(8.136),
to compute the branch currents.

Hence we can set up the Newton iteration as follows:

F = Ψ · i = 0 (8.138a)

H = Ψ · ∂i
∂v

(8.138b)

v�+1 = v� −H\F (8.138c)

H is a square matrix with as many rows and columns as the circuit has
nodes.

For the Newton iteration to converge properly, the circuit simulator will
need a consistent set of initial values for all tearing variables. This is why
Spice needs to compute an OP–point, i.e., a consistent set of initial con-
ditions for the loop variables, before the “transient analysis” (simulation)
can begin. If the initial OP–point does not converge, the program is in
difficulties.

To overcome this problem, some Spice dialects offer automated source
ramping. If all sources are initially set to zero and if all active devices are
switched off, the initial nodeset is trivial: all node potentials are equal to
zero. Then, the voltages are smoothly ramped up to their desired initial
values in a pre–simulation run, and are then kept at their final (initial)

380 Chapter 8. Differential Algebraic Equation Solvers

values for some time to give the circuit a chance to settle into a steady
state. The resulting node potentials are then used as the initial nodeset
for the subsequent true transient analysis. Due to the special nature of
circuit topologies, we have a simple and systematic way of determining a
consistent set of initial conditions, a luxury that we do not have in all DAE
simulations. Ramping had been described in Chapter 6 of the companion
book.

How do we deal with inductors? Inductors can be implemented in similar
ways as the capacitors. However, rather than using the BDF formula in its
derivative form, we use it in its integral form:

iL = old(iL) + h̄ · diL
dt

(8.139)

Given the branch voltage, we compute the derivative of the current using
the elemental law, then use the BDF formula in its integral form to find
the current.

How do we deal with the ideal independent voltage sources? In the com-
panion book, we proposed to move independent voltage sources into neigh-
boring branches of the circuit. Commercial circuit simulators do it differ-
ently.

Let us assume an ideal voltage source is placed in branch i, which is
located between node j and node k. The current through the voltage source
is free to assume any value it needs to assume. It is not constrained by an
elemental law.

Consequently, we can eliminate one row of the F vector, either the el-
ement number j, or the element number k, corresponding to either the
jth or the kth row of the Ψ matrix. We add the equation specified by the
eliminated row to the set of equations computing the currents, Eq.(8.136),
solved for the unknown current through the voltage source.

Since the number of nodes has remained the same as before, we are now
lacking one equation in F for the Newton iteration. We replace it by the
new zero function:

vj − vk − ui = 0 (8.140)

We can now proceed as before.
This is a fairly generic description of how electronic circuit simulators

may be implemented. The different simulators on the market vary in im-
plementational details of how they make use of the above equations. In
the circuit simulation literature, Eqs.(8.134–8.136) are generally called the
Sparse Tableau Equations [8.14, 8.25, 8.26].

Many circuit simulators shun away from estimating the complete Hes-
sian, and therefore, limit themselves to a fixed–point iteration only. In that
case, we must iterate over all the loop variables, i.e., the tearing approach
breaks down. In general, we are dealing with nn + 2 nb equations in the
same number of unknowns, where nn denotes the number of nodes, and nb

8.11 Electronic Circuit Simulators 381

is the number of branches. It may therefore be advantageous to reduce the
number of variables contained in the loop. To this end, Eq.(8.134) can be
combined with Eq.(8.136) in the following way:

Ψ · g(u, u̇,v, t) = 0 (8.141)

thereby eliminating the currents altogether from the iteration loop. Again,
there exist different variations of this general scheme, usually referred to in
the literature under the name Modified Nodal Analysis (MNA) [8.18, 8.25,
8.26].

All of the classical circuit simulators have in common that they limit
the symbolic preprocessing to the interpretation of the network topology.
The entire analysis is done numerically, using the equations pretty much as
they come. Contrary to a general–purpose DAE solver, such as DASSL, the
integration of the storage variables is performed in a decentralized manner,
i.e., for each storage element separately.

The approach only works, because the structure of all equations is pre-
determined. For this reason, circuit simulators cannot be combined with
other tools to form e.g. mechatronic system simulators. Even the thermal
analysis offered by the traditional circuit simulators is fairly limited. They
all allow a user to simulate a circuit at different temperatures (the circuit
parameter values, such as R and C, can be specified as functions of tem-
perature), but it is impossible to simulate how the flow of electrical current
through the circuit heats up the circuit, and then simulate the effects of
the change in temperature on the circuit’s electrical performance simulta-
neously. This cannot be done, because the structure of the equations would
change in such a way that it would violate the assumptions on which the
modified nodal analysis are based.

A mixed symbolic and numerical approach, as pursued e.g. in Dymola, is
therefore considerably more flexible and powerful. To preserve this gener-
ality, the developers of Dymola made it a point to make sure that Dymola
knows absolutely nothing about physics. All it understands are mathemat-
ical algorithms. The entire physical knowledge is encoded in the models
themselves, not in the underlying algorithms that are built (hardwired)
into Dymola.

The price that we pay for this generality is small. Electronic circuit sim-
ulations performed by Dymola are as fast and accurate as their Spice or
Saber counterparts. Furthermore, the maintenance of the electronic model
library is considerably easier in Dymola than in either Spice or Saber, be-
cause of the object–oriented nature of the Dymola modeling environment.
Furthermore, Dymola enables the user to simulate electronic circuits that
are parts of larger mechatronic systems in a mechatronic system simula-
tion. They also allow the electrical and thermal interactions of integrated
circuits to be explored in full, e.g. in the design of packages [8.35, 8.36].

382 Chapter 8. Differential Algebraic Equation Solvers

8.12 Multibody System Dynamics Simulators

Whereas Chapters 3 and 6 of the companion book describe fairly accu-
rately the state–of–the–art of electronic circuit modeling, Chapters 4 and 7
don’t describe state–of–the–art multibody system (MBS) dynamics model-
ing. This topic is simply too advanced to be presented in full in a general–
purpose modeling class. The companion book limited a detailed discus-
sion to one–dimensional devices. Unfortunately, this view does not extend
smoothly to two– or even three–dimensional devices, such as robots or ve-
hicles.

The problem is the following: Asking a user to come up with an ODE
model describing the dynamics of a complicated MBS is not a practical
proposition. DAE models, on the other hand, are fairly easy to derive. To
this end, one simply describes the dynamics of each body separately, and
adds the interactions between bodies as constraint equations. However, this
usually leads to index 3 models with nasty nonlinear constraints. Relying
on the Pantelides algorithm to blindly reduce the index down to index 1
will lead to an explosion in the complexity of the resulting equations, unless
the user is very cautious about how he or she chooses the variables in the
model. Furthermore, it often leads to models with solvability issues.

Selection of an appropriate coordinate system is absolutely essential. In
the case of tree-structured robots, special selections of generalized coordi-
nates both for the description of the direct MBS dynamics (motor torques
are inputs, and positions and velocities of the end–effector are outputs),
as well as for the description of inverse MBS dynamics (desired end–
effector positions and velocities are inputs, and necessary motor torques
to achieve those are outputs) have been found that don’t lead to algebraic
loops at all. Using these generalized coordinates, the number of equations
will grow linearly in the number of bodies described in the model. Al-
gorithms implementing this methodology are called order–n algorithms
or order–f algorithms, depending on the particular reference consulted
[8.2, 8.11, 8.21, 8.32].

MBS topologies with closed kinematic loops are more problematic, and
the final word on how to efficiently model such systems hasn’t been spoken
yet. However, let us at least explain briefly how such systems are currently
being modeled. Any tree–structured MBS can be brought into the form:

M(q, t) · q̈ = h(q, q̇, t) + f(q, t) (8.142)

where q are the generalized positions (including angular positions) of the
tree-structured MBS, M is the so–called mass matrix, h models the effects
of body–fixed coordinate systems (Coriolis and centripetal forces) as well
as friction phenomena, and f are the generalized forces (including torques)
acting on the joints.

If an MBS has kinematic constraints (closed kinematic loops), we can

8.12 Multibody System Dynamics Simulators 383

first cut these constraints open, thereby transforming the kinematically
constrained MBS into a tree–structured MBS. For this so modified MBS,
we can derive Eq.(8.142), e.g. using the algorithm described in [8.21].
We then add the constraints as additional constraint equations back into
the overall DAE description, thereby transforming the carefully formulated
index 1 model back into an index 3 model. Luckily, there often aren’t too
many of these additional constraint equations, and the Pantelides algorithm
may work quite decently. The resulting index 1 model can then either be
solved directly using a DAE solver (possibly using a symbolically generated
Hessian matrix), or we can try to reduce the model further to index 0 by
solving the algebraic loops. Luckily, the special structure of mechanical
manipulators suggests immediately a set of tearing variables, namely the
generalized accelerations, q̈.

Meanwhile, an MBS library has been designed for Dymola [8.30] that
enables even non–specialists of MBS dynamics to formulate efficient sets of
DAEs for multibody systems in an effective object–oriented manner. The
library contains models for most of the components that a user might need,
such as different types of joints (revolute joints, prismatic joints, screws,
etc.), rigid bodies and their connections, different types of force elements,
and so on. A top–down description of the topology of an arbitrarily con-
nected three–dimensional (or two–dimensional) tree–structured robot in
an object–oriented fashion is made a fairly simple undertaking using the
MBS library. The generated code compares favorably with other commer-
cial MBS systems such as Adams [8.17, 8.27], or SD–Fast [8.19] in terms
of run–time efficiency.

However, contrary to the more specialized tools, Dymola lends itself ele-
gantly to modeling and simulation of general mechatronic systems, i.e., the
drive chains, motors, and controllers of these robots can be described to-
gether with the MBS dynamics in a unified framework [8.3, 8.29, 8.30, 8.33].

Dymola does a fairly good job of coming up on its own with suitable
tearing structures even in the case of closed kinematic loops. However,
Dymola’s multibody systems (MBS) library [8.30] still supports Dymola
in this task by making sure that the (fully automated) tearing algorithm
starts out with a suitable set of equations. Let us explain.

In the MBS library, translational variables are being carried along in the
inertial frame, whereas rotational variables are described in a body–centric
coordinate system. This by itself already helps with generating efficient sim-
ulation code. Yet, the decision requires that the library perform coordinate
transformations from one body to the next in the rotational variables.

The coordinate transformation inside a joint model can be written as:

x2 = R · x1 (8.143)

where the vectors x1 and x2 contain generalized coordinates of the bod-
ies to the left and to the right, and the matrix R is a rotation matrix.

384 Chapter 8. Differential Algebraic Equation Solvers

This process was demonstrated in the research section of Chapter 4 of the
companion book for a six–degree–of–freedom Stanford robotic arm using
Denavit–Hartenberg (DH) coordinates [8.7].

Depending on where the inertial frame is, we need to use either Eq.(8.143)
or the inverse equation:

x1 = R−1 · x2 (8.144)

However, since R is an orthogonal matrix, the inverse of R can also be
written as a transpose:

x1 = RT · x2 (8.145)

which is more economical.
Unfortunately, Dymola, although offering a matrix manipulation lan-

guage similar to that of MATLAB, doesn’t understand the concept of or-
thogonal matrices. The reason is that Dymola, in order to provide full flex-
ibility for causalizing equations, expands all matrix expressions into scalar
expressions upon compilation. In the scalar version, the orthogonality of the
R–matrix is no longer easily visible. Thus, Dymola will do it the hard way
and solve a linear equation system, whenever it needs the transformation
equations in reversed causality.

In order to support Dymola in producing efficient simulation code, the
MBS library keeps track of where the root (inertial frame) is, and provides
the coordinate transformation to Dymola in a form similar to:

if rooted(frame a) then
x2 = R ∗ x1

else
x1 = transpose(R) ∗ x2

end if;

where frame a denotes the connector of the body to the left. In this way,
Dymola starts out with the best suited equation set when looking for tear-
ing variables using its built–in tearing algorithm.

8.13 Chemical Process Dynamics Simulators

Chemical processes are another prime candidate for DAE formulations.
Here, the problems are again quite different. Chemical processes are mod-
eled through highly nonlinear equations describing the (i) reaction rate
dynamics, (ii) mass flow dynamics, (iii) thermal dynamics, and (iv) energy
balance.

In Chapters 8 and 9 of the companion book, the basic equations de-
scribing chemical processes were introduced. However, these models mostly

8.13 Chemical Process Dynamics Simulators 385

served the purpose of furthering the understanding of what is going on
physically within a chemical reaction system. In reality, chemical reaction
processes are invariably distributed parameter systems that should be de-
scribed by PDEs. Also, there is no such thing as a homogeneous medium.
Consequently, we are dealing with accuracy problems. If a chemical engi-
neer can determine, in a simulation run, what is going on in the real process
with an accuracy of 1%, he or she is very lucky.

For these reasons, it isn’t warranted for practical simulations to deal with
the exact equations. Why use a very complicated model if it is inaccurate
anyway? Moreover, the energy balance equations have a much faster time
constant than e.g. the mass balance equations. Therefore, chemical reaction
processes are usually approximated by implicit ODEs describing average
reaction rates, implicit ODEs describing mass continuity, implicit ODEs
describing average temperatures, and algebraic constraint equations for
energy balances and the equation of state [8.22, 8.37].

The result is a set of higher–index DAEs with nasty nonlinearities. Index
reduction can usually be accomplished more easily here than in the case of
mechanical systems, since the nonlinearities are usually polynomial rather
than trigonometric. Consequently, the Pantelides algorithm will work fine.
In fact, it is for chemical process engineers that Constantinos Pantelides
developed his algorithm in the first place.

Solving the resulting algebraic loops is a different matter. Various tearing
strategies have been described for such purposes [8.23], but they are very
specialized and too complicated for our taste. Whenever we are confronted
in physics with an equation or an algorithm that is very complicated, we
should get suspicious that, probably, we are looking at the problem from a
wrong angle. A typical example are the equations describing celestial dy-
namics when adopting a geostationary world view. We believe strongly that
all physical laws governing this universe are basically simple. Complexity
is introduced into this universe of ours by having many different –and
simple– equations interact with each other. Equations can become more
messy when we are forced to average or aggregate (as is the case in chemi-
cal process engineering), but the DAEs themselves are still fairly harmless.
It is the conversion to explicit ODE form that makes them become truly
messy . . . and this has to do with the previously made simplifications
(aggregations). Thus, we should probably abstain from trying to convert
these equations to explicit ODE form.

So, if we stay with DAEs, where does tearing fit in? Isn’t tearing a
concept related to the transition from DAEs to ODEs? In chemical process
engineering, tearing has mostly been used to simplify the process of fixed–
point iteration of the resulting set of algebraic equations after inlining the
integration method into the implicit state–space model.

A first attempt at object–oriented modeling of chemical process dynamics
has recently been reported [8.28]. Bernt Nilsson didn’t use Dymola for that
purpose, but its twin brother, called Omola [8.1].

386 Chapter 8. Differential Algebraic Equation Solvers

8.14 Summary

In this chapter, mixtures of symbolic and numerical tools for the treatment
of differential and algebraic systems of equations were introduced. DAE
formulations of dynamic models are very natural to applications in many
areas of science and engineering. However, a direct approach to numerically
dealing with the DAEs as they present themselves initially may not be the
wisest thing to do. Automated symbolic preprocessing of the DAE models
into a form that is better suited for the subsequent numerical integration
is an exciting new development in modeling and simulation research.

A symbolic manipulation tool, Dymola, was introduced that has been
specifically designed for such purpose. Dymola is the most advanced tool
for that purpose currently on the market. While more generic symbolic
formula manipulation programs, such as Mathematica or Reduce, could be
used alternatively, they are not efficient for the task at hand. Dymola has
already proven its utility in very large MBS models, for example.

The chapter introduced the most common numerical algorithms for deal-
ing with the resulting set of index 1 DAEs, namely the BDF methods and
fully–implicit Runge–Kutta algorithms, and explained how they work. It
turns out that the solution of (potentially large) sets of algebraically cou-
pled equations are at the heart of dealing with DAE systems. It was shown
how the problem of numerical DAE solution is reduced to one of Newton
iteration, and symbolic generation of the Hessian matrix was proposed as
an additional tool for improvement of efficiency in numerical DAE solution.

By inlining the symbolic equations describing the integration algorithm
into the model, the derivative operator disappears from the model alto-
gether, and Dymola generates directly a set of difference equations that
can be solved by simply looping over the model.

The chapter ended with three application areas: electronic circuits, multi-
body system dynamics, and chemical process engineering. These applica-
tion areas demonstrate vividly the convenience and importance of a mixture
of symbolic and numerical tools that can deal with DAE formulations.

Interestingly enough, many topics became simpler rather than more com-
plicated when looking at them from a DAE rather than an ODE perspec-
tive. Yet, the research area of DAEs is much younger than that of ODEs.
This can be explained easily. When scientists and engineers became inter-
ested in numerically simulating dynamic phenomena, no computers were
available as yet. Armies of “applied mathematicians” (at that time not a
highly respected tag for a mathematician) were employed and placed in a
room for weeks in a row. Pipelining algorithms were designed such that
the first mathematician could calculate the first step at time zero, then
pass his or her result on to the next mathematician who would then solve
step two at time zero, while the first mathematician would start on step
one for time h, etc. Implicit algorithms don’t lend themselves that easily
to pipelining, and so, the focus was entirely on explicit algorithms, where

8.15 References 387

ODE formulations are most natural.
Later on when computers became available, engineers and scientists had

become so used to ODE formulations that it took a while before they
reconsidered the issue. The most exciting part of the story is that here
is a research area where not too much has happened yet. It has become
very difficult to hit a mark in numerical ODE solutions. Too many excel-
lent mathematicians have already ploughed the field in hope of finding a
leftover grain that might grow and bloom and flourish. This is not so in
numerical DAE solution. This is therefore an excellent field for young ap-
plied mathematicians (a proud and respected lot by now) to do research
in.

8.15 References

[8.1] Mats Andersson. Omola — An Object–Oriented Modelling Language.
Technical Report TFRT–7417, Dept. of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden, 1989.

[8.2] Helmut Brandl, Rainer Johanni, and Martin Otter. A Very Effi-
cient Algorithm for the Simulation of Robots and Similar Multibody–
Systems Without Inversion of the Mass Matrix. In P. Kopacek, Inge
Troch, and K. Desoyer, editors, Theory of Robots, pages 95–100. Perg-
amon Press, Oxford, United Kingdom, 1986.

[8.3] Dag Brück, Hilding Elmqvist, Hans Olsson, and Sven-Erik Mattsson.
Dymola for Multi–Engineering Modeling and Simulation. In Proceed-
ings 2nd Intl. Modelica Conference, pages 55:1–8, Munich, Germany,
2002.

[8.4] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[8.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[8.6] François E. Cellier. Inlining Step–size Controlled Fully Implicit
Runge–Kutta Algorithms for the Semi–analytical and Semi–numerical
Solution of Stiff ODEs and DAEs. In Proceedings Vth Conference on
Computer Simulation, pages 259–262, Mexico City, Mexico, 2000.

[8.7] Jacques Denavit and Richard S. Hartenberg. A Kinematic Notation
for Lower–Pair Mechanisms Based on Matrices. ASME Journal of
Applied Mechanics, 22(2):215–221, 1955.

388 Chapter 8. Differential Algebraic Equation Solvers

[8.8] Hilding Elmqvist, Martin Otter, and François E. Cellier. Inline
Integration: A New Mixed Symbolic/Numeric Approach for Solving
Differential–Algebraic Equation Systems. In Proceedings European
Simulation Multiconference, pages xxiii–xxxiv, Prague, Czech Repub-
lic, 1995.

[8.9] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[8.10] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den., 2004.

[8.11] Roy Featherstone. The Calculation of Robot Dynamics Using
Articulated–Body Inertias. Internat. Journal of Robotics Research,
2:13–30, 1983.

[8.12] Claus Führer and Ben J. Leimkuhler. Numerical Solution of
Differential–Algebraic Equations for Constrained Mechanical Motion.
Numerische Mathematik, 59:55–69, 1991.

[8.13] C. William Gear. The Simulataneous Numerical Solution of
Differential–Algebraic Equations. IEEE Trans. Circuit Theory, CT–
18(1):89–95, 1971.

[8.14] Gary D. Hachtel, Robert K. Brayton, and Fred G. Gustavson. The
Sparse Tableau Approach to Network Analysis and Design. IEEE
Trans. Circuit Theory, CT–18(1):101–118, 1971.

[8.15] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric
Numerical Integration: Structure–Preserving Algorithms for Ordinary
Differential Equations. Springer Verlag, Berlin, 2002. 515p.

[8.16] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems, volume 14 of
Series in Computational Mathematics. Springer–Verlag, Berlin, Ger-
many, 2nd edition, 1996. 632p.

[8.17] Russell C. Hibbeler. Engineering Mechanics: Dynamics. Prentice
Hall, Upper Saddle River, New Jersey, 9th edition, 2001. 688p.

[8.18] Chung-Wen Ho, Albert E. Ruehli, and Pierce A. Brennan. The
Modified Nodal Approach to Network Analysis. In Proceedings IEEE
Intl. Symposium on Circuits and Systems, pages 505–509, San Fran-
cisco, California, 1974.

8.15 References 389

[8.19] Michael G. Hollars, Rosenthal Dan E., and Michael A. Sherman.
SD/Fast: User’s Manual. Technical report, Symbolic Dynamics, Inc.,
Mountain View, California, 2001.

[8.20] Christian Lubich. Extrapolation Integrators for Constrained Multi-
body Systems. Impact on Computer Science and Engineering, 3:213–
234, 1991.

[8.21] Johnson Y. S. Luh, Michael W. Walker, and Richard P. Paul. On–
Line Computational Scheme for Mechanical Manipulators. Trans.
ASME, Journal of Dynamic Systems Measurement and Control,
102:69–76, 1980.

[8.22] William L. Luyben. Process Modeling, Simulation, and Control for
Chemical Engineers. McGraw–Hill, New York, 1973.

[8.23] Richard S. H. Mah. Chemical Process Structures and Information
Flows. Butterworth Publishing, London, United Kingdom, 1990.

[8.24] H. Alan Mantooth and Martin Vlach. Beyond Spice With Saber
and MAST. In Proceedings IEEE Intl. Symposium on Circuits and
Systems, pages 77–80, San Diego, California, 1993.

[8.25] William J. McCalla. Fundamentals of Computer–Aided Circuit Sim-
ulation. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1988. 175p.

[8.26] Laurence W. Nagel. SPICE2: A Computer Program to Simulate
Semiconductor Circuits. Technical Report ERL–M 520, Electronic
Research Laboratory, University of California Berkeley, Berkeley, Cal-
ifornia, 1975.

[8.27] Dan Negrut and Harris Brett. ADAMS: Theory in a Nutshell. Tech-
nical report, Dept. of Mechanical Engineering, University of Michigan,
Ann Arbor, Michigan, 2001.

[8.28] Bernt Nilsson. Structured Modelling of Chemical Processes — An
Object–Oriented Approach. PhD thesis, Lund Institute of Technology,
Lund, Sweden, 1989.

[8.29] Martin Otter, Hilding Elmqvist, and François E. Cellier. Modeling
of Multibody Systems with the Object–Oriented Modeling Language
Dymola. J. Nonlinear Dynamics, 9(1):91–112, 1996.

[8.30] Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. The
New Modelica Multibody Library. In Proceedings 3rd International
Modelica Conference, pages 311–330, Linköping, Sweden, 2003.

390 Chapter 8. Differential Algebraic Equation Solvers

[8.31] Martin Otter, Sven Erik Mattsson, Hans Olsson, and Hilding
Elmqvist. Simulator for Large Scale, Multi–physics Systems. Techni-
cal Report Deliverable D27, Report for Task 2.7, German Aerospace
Center, Oberpfaffenhofen, Germany, 2002.

[8.32] Martin Otter and Clemens Schlegel. Symbolic generation of efficient
simulation codes for robots. In Proceedings Second European Simula-
tion Multi–Conference, pages 119–122, Nice, France, 1988.

[8.33] Martin Otter. Objektorientierte Modellierung mechatronischer Sys-
teme am Beispiel geregelter Roboter. PhD thesis, Dept. of Mech. Engr.,
Ruhr–University Bochum, Germany, 1994.

[8.34] Linda R. Petzold. A Description of DASSL: A Differential/Algebraic
Equation Solver. In R.S. Stepleman, editor, Scientific Computing,
pages 65–68. North–Holland, Amsterdam, The Netherlands, 1983.

[8.35] Michael C. Schweisguth and François E. Cellier. A bond graph
model of the bipolar junction transistor. In Proceedings SCS Intl.
Conference on Bond Graph Modeling and Simulation, pages 344–349,
San Francisco, California, 1999.

[8.36] Michael C. Schweisguth. Semiconductor Modeling with Bondgraphs.
Master’s thesis, Dept. of Electrical & Computer Engineering, Univer-
sity of Arizona, Tucson, Arizona, 1997.

[8.37] George Stephanopoulos. Chemical Process Control: An Introduction
to Theory and Practice. Prentice–Hall, Englewood Cliffs, N.J., 1984.
696p.

[8.38] Vicha Treeaporn. Efficient Simulation of Physical System Mod-
els Using Inlined Implicit Runge–Kutta Algorithms. Master’s thesis,
Dept. of Electrical & Computer Engineering, University of Arizona,
Tucson, Arizona, 2005.

[8.39] Paul W. Tuinenga. Spice: A Guide to Circuit Simulation and Anal-
ysis Using PSpice. Prentice Hall, Englewood Cliffs, N.J., 3rd edition,
1988. 288p.

[8.40] Jiri Vlach and Kishore Singhal. Computer Methods for Circuit Anal-
ysis and Design. Van Nostrand Reinhold, New York, 2nd edition, 1994.
712p.

8.16 Bibliography

[B8.1] Braden A. Brooks and François E. Cellier. Modeling of a Distilla-
tion Column Using Bond Graphs. In Proceedings SCS International

8.17 Homework Problems 391

Conference on Bond Graph Modeling, pages 315–320, San Diego, Cal-
ifornia, 1993. SCS Publishing.

[B8.2] Roy Featherstone. Robot Dynamics Algorithms. Kluwer, Boston,
Mass, 1997. 228p.

[B8.3] Steve Gallun. Solution Procedures for Nonideal Equilibrium Stage
Processes at Steady and Unsteady State Described by Algebraic or
Differential–Algebraic Equations. PhD thesis, Texas A&M University,
1979.

[B8.4] Ernst Hairer, Christian Lubich, and Michel Roche. The Numerical
Solution of Differential–Algebraic Systems by Runge–Kutta Methods.
Springer–Verlag, Berlin, Germany, 1989. 139p.

[B8.5] Daryl Hild and François E. Cellier. Object–Oriented Electronic Cir-
cuit Modeling Using Dymola. In Proceedings OOS’94, SCS Object
Oriented Simulation Conference, pages 68–75, Tempe, Arizona, 1994.

[B8.6] Charles D. Holland and Athanasios I. Liapis. Computer Methods
for Solving Dynamic Separation Problems. McGraw–Hill, New York,
1983. 475p.

[B8.7] Asghar Husain. Chemical Process Simulation. John Wiley & Sons,
New York, 1986. 376p.

[B8.8] William L. Luyben. Practical Distillation Control. Van Nostrand
Reinhold, New York, 1992. 533p.

[B8.9] Parviz E. Nikravesh. Computer–Aided Analysis of Mechanical Sys-
tems. Prentice–Hall, Englewood Cliffs, N.J., 1988. 370p.

[B8.10] Richard P. Paul. Robot Manipulators: Mathematics, Programming,
and Control — The Computer Control of Robot Manipulators. MIT
Press, Cambridge, Mass., 1981. 279p.

[B8.11] Mark W. Spong and Mathukumalli Vidyasagar. Robot Dynamics
and Control. John Wiley & Sons, New York, 1989. 336p.

[B8.12] Michael W. Walker and David E. Orin. Efficient Dynamic Com-
puter Simulation of Robotic Mechanisms. Journal of Dynamic Sys-
tems, Measurement and Control, 104:205–211, 1982.

8.17 Homework Problems

[H8.1] Inlining BDF3

Given the electrical circuit shown in Fig.H8.1a.

392 Chapter 8. Differential Algebraic Equation Solvers

R=100

R1

C
=

1
e

-6

C

R=100

R2

R
=

2
0

R
3

L=0.01

L

u
0

=
1

0

i4 = 4·u3

u1

i1 i2

u2

u3

i3iC u4

i4

iL

uL

u0

i0

i4

FIGURE H8.1a. Electrical circuit.

The circuit contains a constant voltage source, u0, and a nonlinear (driven)
current source, i4, that depends on the voltage across the capacitor, C, and
the resistor, R3.

Write down the element equations for the seven circuit elements. Since
the voltage u3 is common to two circuit elements, these equations contain
13 rather than 14 unknowns. Add the voltage equations for the three meshes
and the current equations for three of the four nodes. One current equation
is redundant. Usually, the current equation for the ground node is therefore
omitted. In this way, you end up with 13 equations in the 13 unknowns.

We wish to inline a fixed–step BDF3 algorithm, using order buildup dur-
ing the startup phase. Draw the structure digraph of the inlined equation
system, which now consists of 15 equations in 15 unknowns, and causalize
it using the tearing method.

Simulate the ΔE system across 50 μsec using the inlined BDF3 algorithm
with zero initial conditions on both the capacitor and the inductor. Choose
a step size of h = 0.5 μsec. Use algebraic differentiation for the computation
of the Hessian.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.2] Inlining Radau IIA

We wish to repeat Hw.[H8.1], this time inlining the 3rd–order accurate
Radau IIA algorithm. Draw the structure digraph of the inlined equation
system, which now consists of 30 equations in 30 unknowns, and causalize
it using the tearing method.

Simulate the ΔE system across 50 μsec using the inlined Radau IIA algo-
rithm with zero initial conditions on both the capacitor and the inductor.
Choose a step size of h = 0.5 μsec. Use algebraic differentiation for the
computation of the Hessian.

8.17 Homework Problems 393

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.3] Step–size Control for Radau IIA

We wish to augment the solution to Hw.[H8.2] by adding a step–size control
algorithm.

Use Eq.(8.105) as the embedding method for the purpose of error es-
timation, and use Fehlberg’s step–size control algorithm, Eq.(3.89), for
the computation of the next step size. Of course, the formula needs to
be slightly modified, since it assumes the error estimate to be 5th–order ac-
curate, whereas in our algorithm, it is only 4th–order accurate. Remember
that the step size can never be modified two steps in a row.

Simulate the ΔE system across 50 μsec using the step–size controlled
inlined Radau IIA algorithm with zero initial conditions on both the ca-
pacitor and the inductor. Count the number of Newton iterations. Multiply
that number with the number of statements inside the loop. This should
provide you with a decent estimate of the computational efficiency of the
method.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.4] Inlining Lobatto IIIC

We wish to repeat Hw.[H8.2], this time inlining the 4th–order accurate
Lobatto IIIC algorithm. Draw the structure digraph of the inlined equation
system, which now consists of 45 equations in 45 unknowns, and causalize
it using the tearing method.

Simulate the ΔE system across 50 μsec using the inlined Lobatto IIIC
algorithm with zero initial conditions on both the capacitor and the induc-
tor. Choose a step size of h = 0.5 μsec. Use algebraic differentiation for the
computation of the Hessian.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.5] Step–size Control for Lobatto IIIC

We wish to augment the solution to Hw.[H8.4] by adding a step–size control
algorithm.

Use Eq.(8.110) as the embedding method for the purpose of error esti-
mation, and use Fehlberg’s step–size control algorithm, Eq.(3.89), for the
computation of the next step size. Remember that the step size can never
be modified two steps in a row.

Simulate the ΔE system across 50 μsec using the step–size controlled
inlined Lobatto IIIC algorithm with zero initial conditions on both the ca-
pacitor and the inductor. Count the number of Newton iterations. Multiply
that number with the number of statements inside the loop. This should

394 Chapter 8. Differential Algebraic Equation Solvers

provide you with a decent estimate of the computational efficiency of the
method. MATLAB used to offer a better means of estimating the efficiency
of a code by counting the number of floating point operations, using the
built–in function flops. Unfortunately, this feature has been disabled in
version 6 of MATLAB.

If you also solved Hw.[H8.3], you can compare the computational effi-
ciency of the two algorithms for solving the given circuit problem against
each other.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.6] Algebraic Differentiation

We wish to reproduce Fig.8.31 of this chapter. On purpose, we haven’t
shown you the details of how it has been derived. In particular, we didn’t
provide the symbolic equations for the computation of the Hessian by means
of algebraic differentiation.

[H8.7] Stabilized BE Simulation of Overdetermined DAE
System

We wish to reproduce Fig.8.33 of this chapter. On purpose, we haven’t
shown you the details of how it has been derived. In particular, we didn’t
provide you with a formula for when to end the Newton iteration. Since
the linear system is now only solved in a least square sense, you can no
longer test for ‖F‖ having decreased to a small value. The way we did it
was to compute the norm of F and save that value between iterations. We
then tested, whether the norm of F has no longer decreased significantly
from one iteration to the next:

while abs(‖F�‖ − ‖F�−1‖) < 1.0e − 6,
perform iteration

end,

8.18 Projects

[P8.1] Inlining DIRK

There exists yet another interesting class of implicit stiffly stable Runge–
Kutta algorithms that we haven’t discussed in this chapter. These are called
diagonally implicit Runge–Kutta algorithms, and are usually abbreviated as
DIRK algorithms. One of the more fashionable among the DIRK algorithms
is HW–SDIRK(3)4 [8.16] with the Butcher tableau:

8.18 Projects 395

1
4

1
4 0 0 0 0

3
4

1
2

1
4 0 0 0

11
20

17
50

−1
25

1
4 0 0

1
2

371
1360

−137
2720

15
544

1
4 0

1 25
24

−49
48

125
16

−85
12

1
4

x 59
48

−17
96

225
32

−85
12 0

x̂ 25
24

−49
48

125
16

−85
12

1
4

HW–SDIRK(3)4 is a five–stage algorithm. DIRKs are much less compact
than their IRK cousins, and therefore, allow proper embedding algorithms
to exist within them. x represents a 3rd–order accurate method, whereas x̂
represents a 4th–order accurate method.

DIRK methods are attractive alternatives to the IRK methods discussed
in this chapter, since they can be implemented with one Newton iteration
per stage, rather than with one Newton iteration across all stages.

Remember the dilemma that we were facing when we tried to inline
parabolic PDEs. Inlining a BDF algorithm, we had to perform a Newton
iteration in 25 tearing variables, whereas inlining the 3rd–order accurate
Radau IIA algorithm, we had to perform a Newton iteration in 100 tearing
variables. Thus, Radau IIA would need to be able to use step sizes that are
at least 16 times as large as those used by BDF3 in order to be competitive.

Inlining HW–SDIRK(3)4, we would expect to require five Newton it-
erations, each in 25 tearing variables. Thus, we would need to use only
five times as large step sizes as those employed by BDF3, in order to be
competitive.

Find the F–matrices of the two embedded methods, and perform Taylor–
series expansions to verify that the two methods are indeed 3rd–order and
4th–order accurate, respectively. Compute the error coefficient of the error–
controlled method.

Plot the stability domains as well as the damping plots of the two indi-
vidual methods. Decide, which of the two estimates should be propagated
to the next step.

Show how HW–SDIRK(3)4 can be inlined by means of the problem dis-
cussed in Hw.[H8.1].

Simulate the circuit using the step–size controlled inlined HW–SDIRK(3)4
algorithm.

396 Chapter 8. Differential Algebraic Equation Solvers

8.19 Research

[R8.1] Inlining Parabolic PDEs

Develop suitable heuristic procedures for finding small sets of tearing vari-
ables for inlining parabolic PDEs in multiple space dimensions.

As we have discussed in Chapter 6 of this book, the simulation of parabolic
PDEs converted to sets of ODEs by the MOL approach often requires in-
ternal Newton iterations due to either nonlinear boundary conditions or
irregular domain boundaries. Hence inlining them might be quite attrac-
tive.

The numerical PDE literature is full of descriptions of sparse matrix
algorithms for improving the efficiency of the simulation of such problems.
Tearing can also be viewed as a sparse matrix technique, although it is
applied in a symbolic form.

Compare the computational efficiency of the ΔE simulation after inlining
with that of alternative ODE simulations without inlining.

