
CHAPTER �

RANDOM NUMBER GENERATION�

Pierre L�Ecuyer

Universit�e de Montr�eal�

��� INTRODUCTION

Random numbers are the nuts and bolts of simulation� Typically� all the randomness

required by the model is simulated by a random number generator whose output is

assumed to be a sequence of independent and identically distributed �IID� U��� �� ran�

dom variables �i�e�� continuous random variables distributed uniformly over the interval

��� ���� These random numbers are then transformed as needed to simulate random

variables from di�erent probability distributions� such as the normal� exponential� Pois�

son� binomial� geometric� discrete uniform� etc�� as well as multivariate distributions

and more complicated random objects� In general� the validity of the transformation

methods depends strongly on the IID U��� �� assumption� But this assumption is false�

since the random number generators are actually simple deterministic programs trying

to fool the user by producing a deterministic sequence that looks random�

What could be the impact of this on the simulation results	 Despite this problem�

are there 
safe� generators	 What about the generators commonly available in system

libraries and simulation packages	 If they are not satisfactory� how can we build better

ones	 Which ones should be used� and where is the code	 These are some of the topics

addressed in this chapter�

�Chapter � of the Handbook on Simulation� Ed�� Jerry Banks� Wiley� ����� Version� February ���
����

�D	epartement d
informatique et de recherche op	erationnelle� Universit	e de Montr	eal� C�P� �����
Succ� Centre�Ville� Montr	eal� HC J�� Canada� Email� lecuyer�iro�umontreal�ca



����� Pseudorandom Numbers

To draw the winning number for several million dollars in a lottery� people would gen�

erally not trust a computer� They would rather prefer a simple physical system that

they understand well� such as drawing balls from one or more container�s� to select the

successive digits of the number �as done� for example� by Loto Quebec each week in

Montreal�� Even this requires many precautions� The balls must have identical weights

and sizes� be well mixed� and be changed regularly to reduce the chances that some

numbers come out more frequently than others in the long run� Such a procedure is

clearly not practical for computer simulations� which often require millions and millions

of random numbers�

Several other physical devices to produce random noise have been proposed and ex�

periments have been conducted using these generators� These devices include gamma

ray counters� noise diodes� and so on ��� ���� Some of these devices have been commer�

cialized and can be purchased to produce random numbers on a computer� But they are

cumbersome and they may produce unsatisfactory outputs� as there may be signi�cant

correlation between the successive numbers� Marsaglia ��� applied a battery of statis�

tical tests to three such commercial devices recently and he reports that all three failed

the tests spectacularly�

As of today� the most convenient and most reliable way of generating the random

numbers for stochastic simulations appears to be via deterministic algorithms with a

solid mathematical basis� These algorithms produce a sequence of numbers which are

in fact not random at all� but seem to behave like independent random numbers� that

is� like a realization of a sequence of IID U��� �� random variables� Such a sequence is

called pseudorandom and the program that produces it is called a pseudorandom number

generator � In simulation contexts� the term random is used instead of pseudorandom �a

slight abuse of language� for simpli�cation� and we do so in this chapter� The following

de�nition is taken from L�Ecuyer ��� ����

De�nition � A �pseudo�random number generator is a structure G � �S� s�� T� U�G��
where S is a �nite set of states� s� � S is the initial state �or seed�� the mapping

�



T � S � S is the transition function� U is a �nite set of output symbols� and G � S � U

is the output function�

The state of the generator is initially s� and evolves according to the recurrence sn �

T �sn���� for n � �� �� �� � � �� At step n� the generator outputs the number un � G�sn��

The un� n � �� are the observations� and are also called the random numbers produced

by the generator� Clearly� the sequence of states sn is eventually periodic� since the

state space S is �nite� Indeed� the generator must eventually revisit a state previously

seen� that is� sj � si for some j � i � �� From then on� one must have sj�n � si�n

and uj�n � ui�n for all n � �� The period length is the smallest integer � � � such

that for some integer � � � and for all n � � � s��n � sn� The smallest � with this

property is called the transient� Often� � � � and the sequence is then called purely

periodic� Note that the period length cannot exceed jSj� the cardinality of the state
space� Good generators typically have their � very close to jSj �otherwise� there is a
waste of computer memory��

����� Example� A Linear Congruential Generator

Example � The best�known and �still� most widely used types of generators are the

simple linear congruential generators �LCGs� ��� ��� ��� ���� The state at step n is an

integer xn and the transition function T is de�ned by the recurrence

xn � �axn�� � c� mod m� ���

where m � �� a � �� and c are integers called the modulus� the multiplier � and the

additive constant � respectively� Here� 
mod m� denotes the operation of taking the least

nonnegative residue modulo m� In other words� multiply xn�� by a� add c� divide the

result by m� and put xn equal to the remainder of the division� One can identify sn with

xn and the state space S is the set f�� � � � � m � �g� To produce values in the interval
�� ��� one can simply de�ne the output function G by un � G�xn� � xn�m�

When c � �� this generator is called a multiplicative linear congruential generator

�MLCG�� The maximal period length for the LCG is m in general� For the MLCG it

�



cannot exceed m � �� since xn � � is an absorbing state that must be avoided� Two

popular values ofm arem � ����� andm � ���� But as discussed later� these values are

too small for the requirements of today�s simulations� LCGs with such small moduli are

still in widespread use� mainly because of their simplicity and ease of implementation�

but we believe that they should be discarded and replaced by more robust generators�

For a concrete illustration� let m � ��� � � � ����������� c � �� and a � ������

These parameters were originally proposed in ���� Take x� � ������ Then

x� � ������ ����� mod m � ����������

u� � ����������m � �������������

x� � ������ ��������� mod m � �����������

u� � �����������m � �������������

x� � ������ ���������� mod m � �����������

u� � �����������m � �������������

and so on�

����� Seasoning the Sequence with External Randomness

In certain circumstances one may want to combine the deterministic sequence with

external physical noise� The simplest and most frequently used way of doing this in

simulation contexts is to select the seed s� randomly� If s� is drawn uniformly from S�

say by picking balls randomly from a container or by tossing fair coins� the generator

can be viewed as an extensor of randomness� It stretches a short� truly random seed into

a longer sequence of random�looking numbers� De�nition � can easily be generalized to

accommodate this possibility� Add to the structure a probability distribution � de�ned

on S and say that s� is selected from ��

In some contexts� one may want to rerandomize the state sn of the generator every

now and then� or to jump ahead from sn to sn�� for some random integer �� For example�

�



certain types of slot machines in casinos use a simple deterministic random number

generator� which keeps running at full speed �i�e�� computing its successive states� even

when there is nobody playing with the machine� Whenever a player hits the appropriate

button and some random numbers are needed to determine the winning combination

�e�g�� in the game of Keno� or to draw a hand of cards �e�g�� for poker machines�� the

generator provides the output corresponding to its current state� Each time the player

hits the button� he or she selects a �� as just mentioned� This � is random �although

not uniformly distributed�� Since typical generators can advance by more than � million

states per second� hitting the button at the right time to get a speci�c state or predicting

the next output value from the previous ones is almost impossible�

One could go further and select not only the seed� but also some parameters of the

generator at random� For example� for a MLCG� one may select the multiplier a at

random from a given set of values �for a �xed m� or select the pairs �a�m� at random

from a given set� Certain classes of generators for cryptographic applications are de�ned

in a way that the parameters of the recurrence �e�g�� the modulus� are viewed as part of

the seed and must be generated randomly for the generator to be safe �in the sense of

unpredictability��

After observing that physical phenomena by themselves are bad sources of random

numbers and that the deterministic generators may produce sequences with too much

structure� Marsaglia ��� decided to combine the output of some random number gen�

erators with various sources of white and black noise� such as music� pictures� or noise

produced by physical devices� The combination was done by addition modulo � �bitwise

exclusive�or� between the successive bits of the generator�s output and of the binary

�les containing the noise� The result was used to produce a CD�ROM containing ���

billion random bits� which appear to behave as independent bits distributed uniformly

over the set f�� �g� Such a CD�ROM may be interesting but is no universal solution� Its

use cannot match the speed and convenience of a good generator� and some applications

require much more random numbers than provided on this disk�

�



����� Design of Good Generators

How can one build a deterministic generator whose output looks totally random	 Per�

haps a �rst idea is to write a computer program more or less at random that can also

modify its own code in an unpredictable way� However� experience shows that random

number generators should not be built at random �see Knuth ��� for more discussion

on this�� Building a good random number generator may look easy on the surface� but

it is not� It requires a good understanding of heavy mathematics�

The techniques used to evaluate the quality of random number generators can be

partitioned into two main classes� The structural analysis methods �sometimes called

theoretical tests� and the statistical methods �also called empirical tests�� An empirical

test views the generator as a black box� It observes the output and applies a statistical

test of hypothesis to catch up signi�cant statistical defects� An unlimited number of such

tests can be designed� Structural analysis� on the other hand� studies the mathematical

structure underlying the successsive values produced by the generator� most often over

its entire period length� For example� vectors of t successive output values of a LCG

can be viewed as points in the t�dimensional unit hypercube �� ��t� It turns out that

all these points� over the entire period of the generator� form a regular lattice structure�

As a result� all the points lie in a limited number of equidistant parallel hyperplanes� in

each dimension t� Computing certain numerical �gures of merit for these lattices �e�g��

computing the distances between neighboring hyperplanes� is an example of structural

analysis� Statistical testing and structural analysis is discussed more extensively in

forthcoming sections� We emphasize that all these methods are in a sense heuristic�

None ever proves that a particular generator is perfectly random or fully reliable for

simulation� The best they can do is improve our con�dence in the generator�

����� Overview of What Follows

We now give an overview of the remainder of this chapter� In the next section we por�

tray our ideal random number generator� The desired properties include uniformity�

independence� long period� rapid jump�ahead capability� ease of implementation� and

�



e�ciency in terms of speed and space �memory size used�� In certain situations� unpre�

dictability is also an issue� We discuss the scope and signi�cance of structural analysis

as a guide to select families of generators and choose speci�c parameters� Section ���

covers generators based on linear recurrences� This includes the linear congruential�

multiple recursive� multiply�with�carry� Tausworthe� generalized feedback shift register

generators� all of which have several variants� and also di�erent types of combinations of

these� We study their structural properties at length� Section ��� is devoted to methods

based on nonlinear recurrences� such as inversive and quadratic congruential generators�

as well as other types of methods originating from the �eld of cryptology� Section ���

summarizes the ideas of statistical testing� In Section ��� we outline the speci�cations

of a modern uniform random number package and refers to available implementations�

We also discuss parallel generators brie�y�

��� DESIRED PROPERTIES

����� Unpredictability and 	True
 Randomness

From the user�s perspective� an ideal random number generator should be like a black box

producing a sequence that cannot be distinguished from a truly random one� In other

words� the goal is that given the output sequence �u�� u�� � � �� and an in�nite sequence

of IID U��� �� random variables� no statistical test �or computer program� could tell

which is which with probability larger than ���� An equivalent requirement is that after

observing any �nite number of output values� one cannot guess any given bit of any given

unobserved number better than by �ipping a fair coin� But this is an impossible dream�

The pseudorandom sequence can always be determined by observing it su�ciently� since

it is periodic� Similarly� for any periodic sequence� if enough computing time is allowed�

it is always possible to construct a statistical test that the sequence will fail spectacularly�

To dilute the goal we may limit the time of observation of the sequence and the

computing time for the test� This leads to the introduction of computational complexity

into the picture� More speci�cally� we now consider a family of generators� fGk� k �
�� �� � � �g� indexed by an integral parameter k equal to the number of bits required to

�



represent the state of the generator� We assume that the time required to compute the

functions T and G is �at worst� polynomial in k� We also restrict our attention to the

class of statistical tests whose running time is polynomial in k� Since the period length

typically increases as �k� this precludes the tests that exhaust the period� A test is also

allowed to toss coins at random� so its outcome is really a random variable� We say that

the family fGkg is polynomial�time perfect if� for any polynomial time statistical test

trying to distinguish the output sequence of the generator from an in�nite sequence of

IID U��� �� random variables� the probability that the test makes the right guess does

not exceed ��� � e�k�� where � is a positive constant� An equivalent requirement is

that no polynomial�time algorithm can predict any given bit of un with probability of

success larger than ��� � e�k�� after observing u�� � � � � un��� for some � � �� This setup

is based on the idea that what cannot be computed in polynomial time is practically

impossible to compute if k is reasonably large� It was introduced in cryptology� where

unpredictability is a key issue �see �� �� ��� ��� and other references given there��

Are e�cient polynomial�time perfect families of generators available	 Actually� no�

body knows for sure whether or not such a family exists� But some generator families

are conjectured to be polynomial�time perfect� The one with apparently the best behav�

ior so far is the BBS� introduced by Blum� Blum� and Shub ��� explained in the next

example�

Example � The BBS generator of size k is de�ned as follows� The state space Sk is

the set of triplets �p� q� x� such that p and q are �k����bit prime integers� p�� and q��

are both divisible by �� and x is a quadratic residue modulo m � pq� relatively prime to

m �i�e�� x can be expressed as x � y� mod m for some integer y that is not divisible by p

or q�� The initial state �seed� is chosen randomly from Sk� with the uniform distribution�

The state then evolves as follows� p and q remain unchanged and the successive values

of x follow the recurrence

xn � x�n�� mod m�

At each step� the generator outputs the �k least signi�cant bits of xn �i�e�� un �

xn mod �
�k�� where �k � K log k for some constant K� The relevant conjecture here

�



is that with probability at least � � e�k� for some � � �� factoring m �i�e�� �nding p

or q� given m� cannot be done in polynomial time �in k�� Under this conjecture� the

BBS generator has been proved polynomial�time perfect �� ����� Now� a down�to�earth

question is� How large should be k to be safe in practice	 Also� how small should be

K	 Perhaps no one really knows� A k larger than a few thousands is probably pretty

safe but makes the generator too slow for general simulation use�

Most of the generators discussed in the remainder of this chapter are known not to be

polynomial�time perfect� However� they seem to have good enough statistical properties

for most reasonable simulation applications�

����� What Is a Random Sequence�

The idea of a truly random sequence makes sense only in the �abstract� framework of

probability theory� Several authors �see� e�g�� ���� give de�nitions of a random sequence�

but these de�nitions require nonperiodic in�nite�length sequences� Whenever one selects

a generator with a �xed seed� as in De�nition �� one always obtains a deterministic

sequence of �nite length �the length of the period� which repeats itself inde�nitely�

Choosing such a random number generator then amounts to selecting a �nite�length

sequence� But among all sequences of length � of symbols from the set U � for given �

and �nite U � which ones are better than others	 Let jU j be the cardinality of the set
U � If all the symbols are chosen uniformly and independently from U � each of the jU j�
possible sequences of symbols from U has the same probability of occurring� namely

jU j��� So it appears that no particular sequence �i�e�� no generator� is better than any
other� A pretty disconcerting conclusion� To get out of this dead end� one must take a

di�erent point of view�

Suppose that a starting index n is randomly selected� uniformly from the set f�� �� � � � �
�g� and consider the output vector �or subsequence� un � �un� � � � � un�t���� where t� ��

Now� un is a �truly� random vector� We would like un to be uniformly distributed �or

almost� over the set U t of all vectors of length t� This requires � � jU jt� since there are
at most � di�erent values of un in the sequence� For � 	 jU jt� the set  � fun� � �

�



n � �g can cover only part of the set U t� Then one may ask  to be uniformly

spread over U t� For example� if U is a discretization of the unit interval �� ��� such as

U � f�� ��m� ��m� � � � � �m� ���mg for some large integer m� and if the points of  are
evenly distributed over U t� they are also �pretty much� evenly distributed over the unit

hypercube �� ��t�

Example � Suppose that U � f�� ������ ������ � � � � ������g and that the period of
the generator is � � ���� Here we have jU j � ��� and � � jU j�� In dimension �� the
pairs un � �un� un��� can be uniformly distributed over U

�� and this happens if and

only if each pair of successive values of the form �i����� j������ for � � i� j 	 ��� occurs

exactly once over the period� In dimension t � �� we have jU jt � ���t points to cover
but can cover only ��� of those because of the limited period length of our generator� In

dimension �� for instance� we can cover only ��� points out of ���� We would like those

��� points that are covered to be very uniformly distributed over the unit cube �� ����

An even distribution of  over U t� in all dimensions t� will be our basis for discrimi�

nating among generators� The rationale is that under these requirements� subsequences

of any t successive output values produced by the generator� from a random seed� should

behave much like random points in the unit hypercube� This captures both uniformity

and independence� If un � �un� � � � � un�t��� is generated according to the uniform dis�

tribution over �� ��t� the components of un are independent and uniformly distributed

over �� ��� This idea of looking at what happens when the seed is random� for a given

�nite sequence� is very similar to the scanning ensemble idea of Compagner ��� ����

except that we use the framework of probability theory instead�

The reader may have already noticed that under these requirements�  will not

look at all like a random set of points� because its distribution over U t is too even

�or superuniform� as some authors say ������ But what the foregoing model assumes

is that only a few points are selected at random from the set  � In this case� the

best one can do for these points to be distributed approximately as IID uniforms is to

take  superuniformly distributed over U t� For this to make some sense� � must be

��



several orders of magnitude larger than the number of output values actually used by

the simulation�

To assess this even distribution of the points over the entire period� some �theoretical�

understanding of their structural properties is necessary� Generators whose structural

properties are well understood and precisely described may look less random� but those

that are more complicated and less understood are not necessarily better� They may

hide strong correlations or other important defects� One should avoid generators without

convincing theoretical support� As a basic requirement� the period length must be known

and huge� But this is not enough� Analyzing the equidistribution of the points as just

discussed� which is sometimes achieved by studying the lattice structure� usually gives

good insight on how the generator behaves� Empirical tests can be applied thereafter�

just to improve one�s con�dence�

����� Discrepancy

A well�established class of measures of uniformity for �nite sequences of numbers are

based on the notion of discrepancy � This notion and most related results are well covered

by Niederreiter ����� We only recall the most basic ideas here�

Consider the N points un � �un� � � � � un�t���� for n � �� � � � � N � �� in dimension
t� formed by �overlapping� vectors of t successive output values of the generator� For

any hyper�rectangular box aligned with the axes� of the form R �
Qt

j��
j� �j�� with

� � 
j 	 �j � �� let I�R� be the number of points un falling into R� and V �R� �Qt
j����j � 
j� be the volume of R� Let R be the set of all such regions R� and

D
�t	
N � max

R�R
jV �R�� I�R��N j�

This quantity is called the t�dimensional �extreme� discrepancy of the set of points

fu�� � � � �uN��g� If we impose 
j � � for all j� that is� we restrict R to those boxes

which have one corner at the origin� then the corresponding quantity is called the star

discrepancy � denoted by D
��t	
N � Other variants also exist� with richer R�

��



A low discrepancy value means that the points are very evenly distributed in the

unit hypercube� To get superuniformity of the sequence over its entire period� one

might want to minimize the discrepancy D�t	
� or D��t	

� for t � �� �� � � �� A major practical

di�culty with discrepancy is that it can be computed only for very special cases� For

LCGs� for example� it can be computed e�ciently in dimension t � �� but for larger

t� the computing cost then increases as O�N t�� In most cases� only �upper and lower�

bounds on the discrepancy are available� Often� these bounds are expressed as orders

of magnitude as a function of N � are de�ned for N � �� and�or are averages over a

large �speci�c� class of generators �e�g�� over all full�period MLCGs with a given prime

modulus�� Discrepancy also depends on the rectangular orientation of the axes� in

contrast to other measures of uniformity� such as the distances between hyperplanes for

LCGs �see Section ������� On the other hand� it applies to all types of generators� not

only those based on linear recurrences�

We previously argued for superuniformity over the entire period� which means seeking

the lowest possible discrepancy� When a subsequence of length N is used �for N � ���

starting� say� at a random point along the entire sequence� the discrepancy of that sub�

sequence should behave �viewed as a random variable� as the discrepancy of a sequence

of IID U��� �� random variables� The latter is �roughly� of order O�N����� for both the

star and extreme discrepancies�

Niederreiter ���� shows that the discrepancy of full�period MLCGs over their en�

tire period �of length � � m � ��� on the average over multipliers a� is of order

O�m���logm�t log log�m����� This order is much smaller �for large m� than O�m������

meaning superuniformity� Over small fractions of the period length� the available bounds

on the discrepancy are more in accordance with the law of the iterated logarithm �����

This is yet another important justi�cation for never using more than a negligible fraction

of the period�

Suppose now that numbers are generated in �� �� with L fractional binary digits�

This gives resolution ��L� which means that all un�s are multiples of �
�L� It then follows

������ that D
��t	
N � ��L for all t � � and N � �� Therefore� as a necessary condition

for the discrepancy to be of the right order of magnitude� the resolution ��L must be

��



small enough for the number of points N that we plan to generate� ��L should be much

smaller than N����� A too coarse discretization implies a too large discrepancy�

����� Quasi�random Sequences

The interest in discrepancy stems largely from the fact that deterministic error bounds

for �Monte Carlo� numerical integration of a function are available in terms of D
�t	
N

and of a certain measure of variability of the function� In that context� the smaller the

discrepancy� the better �because the aim is to minimize the numerical error� not really to

imitate IID U��� �� random variables�� Sequences for which the discrepancy of the �rst

N values is small for all N are called low�discrepancy or quasi�random sequences �����

Numerical integration using such sequences is called quasi�Monte Carlo integration� To

estimate the integral using N points� one simply evaluates the function �say� a function

of t variables� at the �rst N points of the sequence� takes the average� multiplies by

the volume of the domain of integration� and uses the result as an approximation of the

integral� Speci�c low�discrepancy sequences have been constructed by Sobol�� Faure�

and Niederreiter� among others �see ������ Owen ���� gives a recent survey of their

use� In this chapter we concentrate on pseudorandom sequences and will not discuss

quasi�random sequences further�

����� Long Period

Let us now return to the desired properties of pseudorandom sequences� starting with the

length of the period� What is long enough	 Suppose that a simulation experiment takes

N random numbers from a sequence of length �� Several reasons justify the need to take

� � N �see� e�g�� ��� ��� ��� ���� ������ Based on geometric arguments� Ripley ����

suggests that � � N� for linear congruential generators� The papers ��� ��� provide

strong experimental support for this� based on extensive empirical tests� Our previous

discussion also supports the view that � must be huge in general�

Period lengths of ��� or smaller� which are typical for the default generators of many

operating systems and software packages� are unacceptably too small� Such period

��



lengths can be exhausted in a matter of minutes on today�s workstations� Even � � ���

is a relatively small period length� Generators with period lengths over ���� are now

available�

���� E�ciency

Some say that the speed of a random number generator �the number of values that it

can generate per second� say� is not very important for simulation� since generating the

numbers typically takes only a tiny fraction of the simulation time� But there are several

counterexamples� such as for certain large simulations in particle physics ���� or when

using intensive Monte Carlo simulation to estimate with precision the distribution of a

statistic that is fast to compute but requires many random numbers� Moreover� even if a

fast generator takes only� say� �! of the simulation time� changing to another one that is

�� times slower will approximately double the total simulation time� Since simulations

often consume several hours of CPU time� this is signi�cant�

The memory size used by a generator might also be important in general� espe�

cially since simulations often use several generators in parallel� for instance to maintain

synchronization for variance reduction purposes �see Section ��� and �� ��� for more

details��

����� Repeatability� Splitting Facilities� and Ease of Implementation

The ability to replicate exactly the same sequence of random numbers� called repeatabil�

ity � is important for program veri�cation and to facilitate the implementation of certain

variance reduction techniques �� ��� ��� ����� Repeatability is a major advantage of

pseudorandom sequences over sequences generated by physical devices� The latter can

of course be stored on disks or other memory devices� and then reread as needed� but

this is less convenient than a good pseudorandom number generator that �ts in a few

lines of code in a high�level language�

A code is said to be portable if it works without change and produces exactly the

same sequence �at least up to machine accuracy� across all 
standard� compilers and

��



computers� A portable code in a high�level language is clearly much more convenient

than a machine�dependent assembly�language implementation� for which repeatability

is likely to be more di�cult to achieve�

Ease of implementation also means the ease of splitting the sequence into �long�

disjoint substreams and jumping quickly from one substream to the next� In Section ���

we show why this is important� For this� there should be an e�cient way to compute the

state sn�� for any large �� given sn� For most linear�type generators� we know how to do

that� But for certain types of nonlinear generators and for some methods of combination

�such as shu�ing�� good jump�ahead techniques are unknown� Implementing a random

number package as described in Section ��� requires e�cient jump�ahead techniques�

����� Historical Accounts

There is an enormous amount of scienti�c literature on random number generation� Law

and Kelton ��� present a short �but interesting� historical overview� Further surveys

and historical accounts of the old days are provided in ��� ��� �����

Early attempts to construct pseudorandom number generators have given rise to all

sorts of bad designs� sometimes leading to disatrous results� An illustrative example is

the middle�square method� which works as follows �see� e�g�� ��� ����� Take a b�digit

number xi�� �say� in base ��� with b even�� square it to obtain a �b�digit number �perhaps

with zeros on the left�� and extract the b middle digits to de�ne the next number xi� To

obtain an output value ui in �� ��� divide xi by ��
b� The period length of this generator

depends on the initial value and is typically very short� sometimes of length � �such as

when the sequence reaches the absorbing state xi � ��� Hopefully� it is no longer used�

Another example of a bad generator is RANDU �see G� in Table ���

��



��� LINEAR METHODS

����� Multiple�Recursive Generator

Consider the linear recurrence

xn � �a�xn�� � � � �� akxn�k� mod m� ���

where the order k and the modulus m are positive integers� while the coe�cients

a�� � � � � ak are integers in the range f��m � ��� � � � � m � �g� De�ne ZZm as the set

f�� �� � � � � m��g on which operations are performed modulom� The state at step n of the
multiple recursive generator �MRG� ��� ��� ���� is the vector sn � �xn� � � � � xn�k��� �
ZZ

k
m� The output function can be de�ned simply by un � G�sn� � xn�m� which gives

a value in �� ��� or by a more re�ned transformation if a better resolution than ��m is

required� The special case where k � � is the MLCG mentioned previously�

The characteristic polynomial P of ��� is de�ned by

P �z� � zk � a�z
k�� � � � � � ak� ���

The maximal period length of ��� is � � mk � �� reached if and only if m is prime and

P is a primitive polynomial over ZZm� identi�ed here as the �nite �eld with m elements�

Suppose that m is prime and let r � �mk � ����m� ��� The polynomial P is primitive
over ZZm if and only if it satis�es the following conditions� where everything is assumed

to be modulo m �see ����

�a� ����k��ak��m��	�q 	� � for each prime factor q of m� �

�b� zr mod P �z� � ����k��ak

�c� zr�q mod P �z� has degree � � for each prime factor q of r� � 	 q 	 r�

For k � � and a � a� �the MLCG case�� these conditions simplify to a 	� � �mod m�
and a�m��	�q 	� � �modm� for each prime factor q ofm��� For large r� �nding the factors
q to check condition �c� can be too di�cult� since it requires the factorization of r� In this

��



case� the trick is to choose m and k so that r is prime �this can be done only for prime

k�� Testing primality of large numbers �using probabilistic algorithms� for example� as

in ��� ����� is much easier than factoring� Given m� k� and the factorizations of m� �
and r� primitive polynomials are generally easy to �nd� simply by random search�

If m is not prime� the period length of ��� has an upper bound typically much lower

than mk � �� For k � � and m � �e� e � �� the maximum period length is �e��� which
is reached if a� � � or � �mod �� and x� is odd ��� p� ���� Otherwise� if m � pe for p

prime and e � �� and k � � or p � �� the upper bound is �pk � ��pe�� ���� Clearly�
p � � is very convenient from the implementation point of view� because the modulo

operation then amounts to chopping�o� the higher�order bits� So to compute ax mod m

in that case� for example with e � �� on a ���bit computer� just make sure that the

over�ow�checking option or the compiler is turned o�� and compute the product ax using

unsigned integers while ignoring the over�ow�

However� taking m � �e imposes a big sacri�ce on the period length� especially for

k � �� For example� if k � � and m � ��� � � �a prime�� the maximal period length is
�������
�� 
 ���
� But for m � ��� and the same value of k� the upper bound becomes

� � ��
 � ������� 	 ��
� which is more than ���� times shorter� For k � � and p � ��

an upper bound on the period length of the ith least signi�cant bit of xn is max��� �
i���

��� and if a full cycle is split into �d equal segments� all segments are identical except

for their d most signi�cant bits ��� ���� For k � � and p � �� the upper bound on the

period length of the ith least signi�cant bit is ��k � ���i��� So the low�order bits are
typically much too regular when p � �� For k � � and m � ���� for example� the least

signi�cant bit has period length at most �
 � � � ���� the second least signi�cant bit
has period length at most ���
 � �� � ���� and so on�

Example � Consider the recurrence xn � �����xn�� mod �
��� with x� � ������ The

�rst eight values of xn� in base �� and in base �� are

x� � ����� � ����������������

x� � ����� � ����������������

��



x� � ����� � ����������������

x� � ���� � ����������������

x� � ����� � ����������������

x� � ���� � ����������������

x� � ����� � ����������������

x
 � ����� � �����������������

The last two bits are always the same� The third least signi�cant bit has a period length

of �� the fourth least signi�cant bit has a period length of �� and so on�

Adding a constant c as in ��� can slightly increase the period�length� The LCG with

recurrence ��� has period length m if and only if the following conditions are satis�ed

���� p� ����

�� c is relatively prime to m�

�� a � � is a multiple of p for every prime factor p of m �including m itself if m is

prime��

�� If m is a multiple of �� then a� � is also a multiple of ��

For m � �e � �� these conditions simplify to c is odd and a mod � � �� But the low�

order bits are again too regular� The period length of the ith least signi�cant bit of xn

is at most �i�

A constant c can also be added to the right side of the recurrence ���� One can show

�see ���� that a linear recurrence of order k with such a constant term is equivalent

to some linear recurrence of order k � � with no constant term� As a result� an upper

bound on the period length of such a recurrence with m � pe is �pk��� ��pe��� which is
much smaller than mk for large e and k�

All of this argues against the use of power�of�� moduli in general� despite their

advantage in terms of implementation� It favors prime moduli instead� Later� when

��



discussing combined generators� we will also be interested in moduli that are the products

of a few large primes�

����� Implementation for Prime m

For k � � and primem� for the characteristic polynomialP to be primitive� it is necessary

that ak and at least another coe�cient aj be nonzero� From the implementation point

of view� it is best to have only two nonzero coe�cients� that is� a recurrence of the form

xn � �arxn�r � akxn�k� mod m ���

with characteristic trinomial P de�ned by P �z� � zk � arz
k�r� ak� Note that replacing

r by k � r generates the same sequence in reverse order�

When m is not a power of �� computing and adding the products modulo m in ���

or ��� is not necessarily straightforward� using ordinary integer arithmetic� because of

the possibility of over�ow� The products can exceed the largest integer representable on

the computer� For example� if m � ��� � � and a� � ������ then xn�� can be as large
as ��� � �� so the product a�xn�� can easily exceed ���� L�Ecuyer and C"ot�e ��� study
and compare di�erent techniques for computing a product modulo a large integer m�

using only integer arithmetic� so that no intermediate result ever exceeds m� Among

the general methods� working for all representable integers and easily implementable in

a high�level language� decomposition was the fastest in their experiments� Roughly� this

method simply decomposes each of the two integers that are to be multiplied in two

blocks of bits �e�g�� the �� least signi�cant bits and the �� most signi�cant ones� for a

���bit integer� and then cross�multiplies the blocks and adds �modulo m� just as one

does when multiplying large numbers by hand�

There is a faster way to compute ax mod m for � 	 a� x 	 m� called approximate

factoring � which works under the condition that

a �m mod a� 	 m� ���

This condition is satis�ed if and only if a � i or a � bm�ic for i 	 p
m �here bxc denotes

the largest integer smaller or equal to x� so bm�ic is the integer division of m by i�� To

��



implement the approximate factoring method� one initially precomputes �once for all�

the constants q � bm�ac and r � m mod a� Then� for any positive integer x 	 m� the

following instructions have the same e�ect as the assignment x� ax mod m� but with

all intermediate �integer� results remaining strictly between �m and m �� ��� �����

y � bx�qc�
x� a�x� yq�� yr�

IF x 	 � THEN x� x�m END�

As an illustration� if m � ��� � � and a � ������ the generator satis�es the condition�
since ����� 	

p
m� In this case� one has q � ������ and r � �����

H#ormann and Der�inger ��� give a di�erent method� which is about as fast� for the

case where m � ���� �� Fishman ��� p� ���� also uses a di�erent method to implement
the LCG with m � ��� � � and a � ��������� which does not satisfy ����

Another approach is to represent all the numbers and perform all the arithmetic

modulo m in double�precision �oating point� This works provided that the multipliers

ai are small enough so that the integers aixn�i and their sum are always represented

exactly by the �oating�point values� A su�cient condition is that the �oating�point

numbers are represented with at least

dlog� ��m� ���a� � � � �� ak��e

bits of precision in their mantissa� where dxe denotes the smallest integer larger or
equal to x� On computers with good ���bit �oating�point hardware �most computers

nowadays�� this approach usually gives by far the fastest implementation �see� e�g�� ���

for examples and timings��

����� Jumping Ahead

To jump ahead from xn to xn�� with an MLCG� just use the relation

xn�� � a�xn mod m � �a� mod m�xn mod m�

��



If many jumps are to be performed with the same �� the constant a� mod m can be

precomputed once and used for all subsequent computations�

Example � Again� let m � ����������� a � ������ and x� � ������ Suppose that we

want to compute x� directly from x�� so � � �� One easily �nds that �����
� mod m �

���������� and x� � ����������x� mod m � ����������� which agrees with the value

given in Example �� Of course� we are usually interested in much larger values of �� but

the method works the same way�

For the LCG� with c 	� �� one has

xn�� �

�
a�xn �

c�a� � ��
a� �

�
mod m�

To jump ahead with the MRG� one way is to use the fact that it can be represented as

a matrix MLCG� Xn � AXn�� mod m� where Xn is sn represented as a column vector

and A is a k� k square matrix� Jumping ahead is then achieved in the same way as for

the MLCG�

Xn�� � A�Xn mod m � �A� mod m�Xn mod m�

Another way is to transform the MRG into its polynomial representation ���� in which

jumping ahead is easier� and then apply the inverse transformation to recover the original

representation�

����� Lattice Structure of LCGs and MRGs

A lattice of dimension t� in the t�dimensional real space IRt� is a set of the form

L �

��
�V �

tX
j��

zjVj j each zj � ZZ

��
� � ���

where ZZ is the set of all integers and fV�� � � � � Vtg is a basis of IRt� The lattice L is thus

the set of all integer linear combinations of the vectors V�� � � � � Vt� and these vectors are

called a lattice basis of L� The basis fW�� � � � �Wtg of IRt which satis�es V �
iWj � �ij

for all � � i� j � t �where the prime means 
transpose� and where �ij � � if i � j� �

��



otherwise� is called the dual of the basis fV�� � � � � Vtg� and the lattice generated by this
dual basis is called the dual lattice to L�

Consider the set

Tt � fun � �un� � � � � un�t��� j n � �� s� � �x�� � � � � xk��� � ZZ
k
mg ���

of all overlapping t�tuples of successive values produced by ���� with un � xn�m� from

all possible initial seeds� Then this set Tt is the intersection of a lattice Lt with the

t�dimensional unit hypercube I t � �� ��t� For more detailed studies and to see how to

construct a basis for this lattice Lt and its dual� see ��� ��� ��� ���� For t � k it is

clear from the de�nition of Tt that each vector �x�� � � � � xt��� in ZZ
t
m can be taken as s��

so Tt � ZZ
t
m�m � �ZZt�m� � I t� that is� Lt is the set of all t�dimensional vectors whose

coordinates are multiples of ��m� and Tt is the set of m
t points in Lt whose coordinates

belong to f�� ��m� � � � � �m � ���mg� For a full�period MRG� this also holds if we �x
s� in the de�nition of Tt to any nonzero vector of ZZ

k
m� and then add the zero vector

to Tt� In dimension t � k� the set Tt contains only m
k points� while ZZtm�m contains

mt points� Therefore� for large t� Tt contains only a small fraction of the t�dimensional

vectors whose coordinates are multiples of ��m�

For full�period MRGs� the generator covers all of Tt except the zero state in one

cycle� In other cases� such as for MRGs with nonprime moduli or MLCGs with power�

of�� moduli� each cycle covers only a smaller subset of Tt� and the lattice generated by

that subset is often equal to Lt� but may in some cases be a strict sublattice or subgrid

�i�e�� a shifted lattice of the form V� � L where V� � IRt and L is a lattice�� In the

latter case� to analyze the structural properties of the generator� one should examine

the appropriate sublattice or subgrid instead of Lt� Consider� for example� an MLCG

for which m is a power of �� a mod � � �� and x� is odd� The t�dimensional points

constructed from successive values produced by this generator form a subgrid of Lt

containing one�fourth of the points �� ���� For a LCG with m a power of � and c 	� ��
with full period length � � m� the points all lie in a grid that is a shift of the lattice

Lt associated with the corresponding MLCG �with the same a amd m�� The value of c

determines only the shifting and has no other e�ect on the lattice structure�

��



��� ���

un

���

���

un��
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

Figure �� All pairs �un� un��� for the LCG with m � ��� and a � ���

Example  Figures � to � illustrate the lattice structure of a small� but instructional�

LCGs with �prime� modulusm � ��� and full period length � � ���� in dimension t � ��

They show all ��� pairs of successive values �un� un��� produced by these generators�

for the multipliers a � ��� a � �� and a � ��� respectively� In each case� one clearly

sees the lattice structure of the points� Any pair of vectors forming a basis determine

a parallelogram of area ������ This holds more generally� In dimension t� the vectors

of any basis of Lt determine a parallelepiped of volume ��m
k� Conversely� any set of t

vectors that determine such a parallelepiped form a lattice basis�

The points are much more evenly distributed in the square for a � �� than for

a � ��� and slightly more evenly distributed for a � �� than for a � �� The points of Lt

are generally more evenly distributed when there exists a basis comprised of vectors of

similar lengths� One also sees from the �gures that all the points lie in a relative small

number of equidistant parallel lines� In Figure �� only two lines contain all the points

and this leaves large empty spaces between the lines� which is bad�

��



��� ���

un

���

���

un�� �

�

�

�

�
�

�

� �

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

��

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

Figure �� All pairs �un� un��� for the LCG with m � ��� and a � ��

In general� the lattice structure implies that all the points of Tt lie on a family of

equidistant parallel hyperplanes� Among all such families of parallel hyperplanes that

cover all the points� take the one for which the successive hyperplanes are farthest apart�

The distance dt between these successive hyperplanes is equal to ��t� where t is the

length of a shortest nonzero vector in the dual lattice to Lt� Computing a shortest

nonzero vector in a lattice L means �nding the combination of values of zj in ��� giving

the shortest V � This is a quadratic optimization problem with integer variables and can

be solved by a branch�and�bound algorithm� as in ��� ���� In these papers the authors

use an ellipsoid method to compute the bounds on the zj for the branch�and�bound�

This appears to be the best �general� approach known to date and is certainly much

faster than the algorithm given in ��� and ���� This idea of analyzing dt was introduced

by Coveyou and MacPherson ��� through the viewpoint of spectral analysis� For this

historical reason� computing dt is often called the spectral test �

The shorter the distance dt� the better� because a large dt means thick empty slices

��



��� ���

un

���

���

un��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
���

�

�

�

�

�

�

�

�

�

�

�

Figure �� All pairs �un� un��� for the LCG with m � ��� and a � ���

of space between the hyperplanes� One has the theoretical lower bound

dt � d�t �
�

�tmk�t
� ���

where �t is a constant which depends only on t and whose exact value is currently

known only for t � � ���� So� for t � � and T � �� one can de�ne the �gures of merit
St � d�t�dt and MT � mink�t�T St� which lie between � and �� Values close to � are

desired� Another lower bound on dt� for t � k� is �see ����

dt �
�
	� � kX

j��

a�j



A
����

� ���

This means that an MRG whose coe�cients aj are small is guaranteed to have a large

�bad� dt�

Other �gures of merit have been introduced to measure the quality of random number

generators in terms of their lattice structure� For example� one can count the minimal

number of hyperplanes that contain all the points or compute the ratio of lengths of

��



the shortest and longest vectors in a Minkowski�reduced basis of the lattice� For more

details on the latter� which is typically much more costly to compute than dt� the reader

can consult ��� and the references given there� These alternative �gures of merit do not

tell us much important information in addition to dt�

Tables � and � give the values of dt and St for certain LCGs and MRGs� All these

generators have full period length� The LCGs of the �rst table are well known and

most are �or have been� heavily used� For m � ��� � �� the multiplier a � ���������
was found by Fishman and Moore ��� in an exhaustive search for the MLCGs with the

best value of M� for this value of m� It is used in the GPSS�H simulation environment�

The second multiplier� a � ������ was originally proposed in ���� is suggested in many

simulation books and papers �e�g�� �� ���� ����� and appears in several software systems

such as the SLAM II and SIMAN simulation programming languages� MATLAB ����

the IMSL statistical library ���� and in operating systems for the IBM and Macintosh

computers� It satis�es condition ���� The IMSL library also has available the two

multipliers ��������� and ���������� with the same modulus� as well as the possibility

of adding a shu$e to the LCG� The multiplier a � ��������� was proposed in ����� is

recommended in ��� ��� among others� and is used in software such as the SIMSCRIPT

II�� and INSIGHT simulation programming languages� Generator G�� with modulus

m � ��� and multiplier a � ������ is the infamous RANDU generator� used for a

long time in the IBM���� operating system� Its lattice structure is particularly bad in

dimension �� where all the points lie in only �� parallel planes� Law and Kelton ���

give a graphical illustration� Generator G�� with m � ���� a � ������ and c � �� is used

in the VAX�VMS operating system� The LCG G�� with modulus m � ���� multiplier

a � ������������ and constant c � ��� is the generator implemented in the procedure

drand�� of the SUN Unix system�s library ����� G�� whose period length is slighly less

than ���� is used in the Maple mathematical software� We actually recommend none

of the generators G� to G�� Their period lengths are too short and they fail many

statistical tests �see Section �����

In Table �� G� and G� are two MRGs of order � found by a random search for

multipliers with a 
good� lattice structure in all dimensions t � ��� among those giving

��



Table �� Distances between hyperplanes for some LCGs

G� G� G� G� G� G� G	

m ��� � � ��� � � ��� � � ��� ��� ��� ���� � ��
k � � � � � � �

a 	��
����� ����	 ��������� ����
 �
��
 �����
��
�	 ��	��
��
���

c � � � � � �� �

� ��� � � ��� � � ��� � � ��� ��� ��� ���� � ��

S� ����	� ����	� ������ ��
��	 ������ ������ ��	���

S� �����	 ������ �����	 �����
 ���
	� ������ ��	���

S� �����	 ���	�� ��	��� ����
� ������ ����
� ����
�

S� �����
 ��	��� ������ ����	� ������ �����	 ��	��	

S� ������ ������ ���	�� ���
�	 ������ �����	 ������

S� �����
 ���	�� ���	�� ������ ����

 ������ ����
�

S� ��	��	 ����
� ��	��� ����	� ������ ���


 ������

��m ����E�� ����E�� ����E�� ����E�� ����E�� ����E�� ����E��

d� �����E� ��
��E� �����E� �����E� ���	�E� �����E	 ����
E�

d� �����E� �����E� ���

E� ���
�� ����
E� ���
�E� ����
E�

d� �����E� ��	
�E� ��
�	E� ���
�� ���		E� ���	�E� ���
�E�

d� ������ ������ ������ ���
�� ������ ��	
�E� �����E�

d� �����
 ������ ����	
 ���
�� ������ �����E� ������

d� ������ ������ ������ ���
�� ���	�	 	�
��E� ������

d� ������ ���	
� ������ ���
�� ���	�	 ������ ������

d� ������ ������ ���
�	 ���
�� ������ ������ ����		

d�	 ������ ������ ������ ������ �����	 ����	� ���	��

d�� ����
� �����
 ����	� ������ ������ ������ ���		�

d�� ������ ���
�� ������ ������ ������ ������ ������

d�� ������ ���
�� ������ ���
�� ������ ����
� ������

d�� ������ ������ ������ ������ ���
�� ���
�� ������

d�� ������ ������ ������ ������ ������ ���
�� ������

d�� ������ ������ ����
� �����	 ������ ������ ������

d�� ������ ������ �����	 ����	� ������ ����
� ����
�

d�� ������ ������ ������ ����	� ������ ����
� ����
�

d�� ����	� ������ ������ ����	� ������ ����	� ���
��

d�	 ����	� �����	 ����	� �����	 ������ ������ ������

d�� ����	� �����	 ����	� �����	 ������ �����	 ����
�

d�� �����	 �����	 ���		� �����	 ������ ���	�� ����
�

d�� �����	 �����	 ���		� ������ ������ ����
� ����
�

d�� ������ �����	 ������ ������ ������ ���
�� ����
�

d�� ������ �����	 ������ ������ ������ ���
�� ������

d�� ������ �����	 ������ ������ ������ ���
�� ������

d�� ������ ������ ������ ������ ������ ���
�� ������

d�� ������ ������ ������ ������ ������ ������ ����	�

d�� ������ ������ ������ ������ ������ ������ ����	�

d�	 ������ ������ ������ ������ ������ ������ ����	�

��



Table �� Distances between hyperplanes for some MRGs

G� G
 G�� G��

m ��� � �� ��� � �� ���� � ������ � �������� ���� � ������� � ����
k 	 	 � �

a� �
	�
��	�� ��	���� ������	�������	��

 �
������	��	�������

a� �	������
 � ��	��		���
��������

a� �������
� � ��	�	���������	���

a� �������	� �

a� ����
�	��� �

a� ���������� �

a� ������	��� �������

S� �������

S� ��	���


S� ��	�
�� ���
���

S� ��		
�	 ��	����

S� ��	���� ���	���

S� ��	���� �������

S� ��	���� �����
� ��	���� �������

��m ���E�� ���E�� ���E�� ���E��

d� ���E��

d� 	���E	

d� ���E�� ����E�

d� ���E�� ����E�

d� ��	E�� ���
E�

d� 
���E
 ����E�

d� ���	E
 ��
�E	 
���E� ��	�E�

d� ��
�E� ����E� ����E	 
��	E�

d�	 ���	E	 ����E� ����E� ��	�E�

d�� ����E� ����E� ����E� ����E�

d�� ����E� ����E� ����E� ���	E�

d�� 
��
E� ����E� ����E� ���	E�

d�� ��

E� ���	E� ����E� ��
�E�

d�� ���	E� ����E� ����E� ��
�E�

d�� 	���E� ����E� ����E� ���	E�

d�� ����E� ����E� ����E� ����E�

d�� ��		E� ����E� 	���E� 	���E�

d�� ��
�E� ����E� ����E� ���
E�

d�	 ����E� ���	E� ����E� ��		E�

��



a full period with m � ���� ��� For G� there are the additional restrictions that a� and
a
 satisfy condition ��� and ai � � for � � i � �� This m is the largest prime under ���

such that �m
� ����m� �� is also prime� The latter property facilitates the veri�cation
of condition �c� in the full�period conditions for an MRG� These two generators are taken

from ���� where one can also �nd more details on the search and a precise de�nition of

the selection criterion� It turns out that G� has a very bad �gure of merit S�� and larger

values of dt than G� for t slightly larger than �� This is due to the restrictions ai � �

for � � i � �� under which the lower bound ��� is always much larger than d�t for t � ��
The distances between the hyperplanes for G� are nevertheless much smaller than the

corresponding values of any LCG of Table �� so this generator is a clear improvement

over those� G� is better in terms of lattice structure� but also much more costly to run�

because there are seven products modulo m to compute instead of two at each iteration

of the recurrence� The other generators in this table are discussed later�

����� Lacunary Indices

Instead of constructing vectors of successive values as in ���� one can �more generally�

construct vectors with values that are a �xed distance apart in the sequence� using

lacunary indices� More speci�cally� let I � fi�� i�� � � � � itg be a given set of integers and
de�ne� for an MRG�

Tt�I� � f�ui��n� � � � � uit�n� j n � �� s� � �x�� � � � � xk��� � ZZ
k
mg�

Consider the lattice Lt�I� spanned by Tt�I� and ZZ
t� and let dt�I� be the distance between

the hyperplanes in this lattice� L�Ecuyer and Couture ��� show how to construct bases

for such lattices� how to compute dt�I�� and so on� The following provides 
quick�and�

dirty� lower bounds on dt�I� ��� ����

�� If I contains all the indices i such that ak�i�� 	� �� then

dt�I� �
�
	� � kX

j��

a�i



A
����

� ����

��



In particular� if xn � �arxn�r�akxn�k� mod m and I � f�� k�r� kg� then d��I� �
�� � a�r � a�k�

�����

�� If m can be written as m �
Pt

j�� cija
ij for some integers cij � then

dt�I� �
�
	 tX
j��

c�ij



A
����

� ����

As a special case of ����� consider the lagged�Fibonacci generator � based on a recur�

rence whose only two nonzero coe�cients satisfy ar � � and ak � �� In this case�
for I � f�� k � r� kg� d��I� � ��

p
� 
 ������ The set of all vectors �un� un�k�r� un�k�

produced by such a generator lie in successive parallel planes that are at distance ��
p
�

to each other� and orthogonal to the vector ��� �� ��� Therefore� apart from the vector

��� �� ��� all other vectors of this form are contained in only two planes� Speci�c in�

stances of this generator are the one proposed by Mitchell and Moore and recommended

by Knuth ���� based on the recurrence xn � �xn��� � xn���� mod �
e for e equal to the

computer�s word length� as well as the addrans function in the SUN Unix library �����

based on xn � �xn�� � xn��
� mod �
��� These generators should not be used� at least

not in their original form�

���� Combined LCGs and MRGs

Several authors advocated the idea of combining in some way di�erent generators �e�g��

two or three di�erent LCGs�� hoping that the composite generator will behave better

than any of its components alone� See ��� ��� ��� ��� ��� and dozens of other references

given there� Combination can provably increase the period length� Empirical tests show

that it typically improves the statistical behavior as well� Some authors �e�g�� �� ��� ����

have also given theoretical results which �on the surface� appear to 
prove� that the out�

put of a combined generator is 
more random� than �or at least 
as random� as� the

output of each of its components� However� these theoretical results make sense only

for random variables de�ned in a probability space setup� For �deterministic� pseudo�

random sequences� they prove nothing and can be used only as heuristic arguments to

��



support the idea of combination� To assess the quality of a speci�c combined generator�

one should make a structural analysis of the combined generator itself� not only analyze

the individual components and assume that combination will make things more random�

This implies that the structural e�ect of the combination method must be well under�

stood� Law and Kelton ��� Prob� ���� give an example where combination makes things

worse�

The two most widely known combination methods are�

�� Shu$ing one sequence with another or with itself�

�� Adding two or more integer sequences modulo some integer m�� or adding se�

quences of real numbers in �� �� modulo �� or adding binary fractions bitwise

modulo ��

Shu$ing one LCG with another can be accomplished as follows� Fill up a table of

size d with the �rst d output values from the �rst LCG �suggested values of d go from

� up to ��� or more�� Then each time a random number is needed� generate an index

I � f�� � � � � dg using the log��d� most signi�cant bits of the next output value from the

second LCG� return �as output of the combined generator� the value stored in the table

at position I� then replace this value by the next output value from the �rst LCG�

Roughly� the �rst LCG produces the numbers and the second LCG changes the order of

their occurrence� There are several variants of this shu$ing scheme� In some of them�

the same LCG that produces the numbers to �ll up the table is also used to generate

the values of I� A large number of empirical investigations performed over the past

�� years strongly support shu$ing and many generators available in software libraries

use it �e�g�� ��� ���� ������ However� it has two important drawbacks� ��� the e�ect

of shu$ing is not well�enough understood from the theoretical viewpoint� and ��� one

does not know how to jump ahead quickly to an arbitrary point in the sequence of the

combined generator�

The second class of combination method� by modular addition� is generally better

understood theoretically� Moreover� jumping ahead in the composite sequence amounts

��



to jumping ahead with each of the individual components� which we know how to do if

the components are LCGs or MRGs�

Consider J MRGs evolving in parallel� The jth MRG is based on the recurrence

xj�n � �aj��xj�n�� � � � �� aj�kxj�n�k� mod mj�

for j � �� � � � � J � We assume that the moduli mj are pairwise relatively prime and

that each recurrence is purely periodic �has zero transient� with period length �j� Let

��� � � � � �J be arbitrary integers such that for each j� �j and mj have no common factor�

De�ne the two combinations

zn �

�
	 JX
j��

�jxj�n



A mod m� un � zn�m� ����

and

wn �

�
	 JX
j��

�j
xj�n
mj



A mod �� ����

Let k � max�k�� � � � � kJ� and m �
QJ

j��mj� The following results were proved in ��� for

the case of MLCG components �k � �� and in ��� for the more general case�

�� The sequences fung and fwng both have period length � � lcm���� � � � � �J� �the

least common multiple of the period lengths of the components��

�� The wn obey the recurrence

xn � �a�xn�� � � � �� akxn�k� mod m� wn � xn�m� ����

where the ai can be computed by a formula given in ��� and do not depend on

the �j�

�� One has un � wn � �n� with %
� � �n � %�� where %� and %� can be computed

as explained in ��� and are generally extremely small when the mj are close to

each other�

��



The combinations ���� and ���� can then be viewed as e�cient ways to implement

an MRG with very large modulus m� A structural analysis of the combination can

be done by analyzing this MRG �e�g�� its lattice structure�� The MRG components

can be chosen with only two nonzero coe�cients aij� both satisfying condition ���� for

ease of implementation� and the recurrence of the combination ���� can still have all

of its coe�cients nonzero and large� If each mj is an odd prime and each MRG has

maximal period length �j � m
kj
j ��� each �j is even� so � � �mk�

� ��� � � � �mkJ
J �����J��

and this upper bound is attained if the �m
kj
j � ���� are pairwise relatively prime ����

The combination ���� generalizes an idea of Wichmann and Hill ����� while ���� is

a generalization of the combination method proposed by L�Ecuyer ���� The latter

combination somewhat scrambles the lattice structure because of the added 
noise� �n�

Example � L�Ecuyer ��� proposes the following parameters and gives a computer

code in the C language that implements ����� Take J � � components� �� � ��� � ��
m� � �

�� � �� m� � �
�� � �������� k� � k� � �� �a���� a���� a���� � ��� ���������������

and �a���� a���� a���� � ������� ����������� Each component has period length �j �

m�
j � �� and the combination has period length � � ������ 
 ����� The MRG ����

that corresponds to the combination is called G�� in Table �� where distances between

hyperplanes for the associated lattice are given� Generator G�� requires four modular

products at each step of the recurrence� so it is slower than G� but faster than G�� The

combined MLCG originally proposed by L�Ecuyer ��� also has an approximating LCG

called G�� in the table� Note that this combined generator was originally constructed on

the basis of the lattice structure of the components only� without examining the lattice

structure of the combination� Slightly better combinations of the same size have been

constructed since this original proposal ��� ���� Other combinations of di�erent sizes

are given in ����

��



����� Matrix LCGs and MRGs

A natural way to generalize LCGs and MRGs is to consider linear recurrences for vectors�

with matrix coe�cients

Xn � �A�Xn�� � � � �� AkXn�k� mod m� ����

where A�� � � � � Ak are L�L matrices and each Xn is an L�dimensional vector of elements

of ZZm� which we denote by

Xn �

�
B	
xn��
���

xn�L



CA �

At each step� one can use each component of Xn to produce a uniform variate�

unL�j�� � xn�j�m� Niederreiter ���� introduced this generalization and calls it the

multiple recursive matrix method for the generation of vectors� The recurrence ���� can

also be written as a matrix LCG of the form Xn � AXn�� mod m� where

A �

�
BBB	
� I � � � �
���

���
� � �

���
� � � � � I
Ak Ak�� � � � A�



CCCA and Xn �

�
BBBB	

Xn

Xn��
���

Xn�k��



CCCCA ����

are a matrix of dimension kL � kL and a vector of dimension kL� respectively �here I

is the L � L identity matrix�� This matrix notation applies to the MRG as well� with

L � ��

Is the matrix LCG more general than the MRG	 Not much� If a k�dimensional

vector Xn follows the recurrence Xn � AXn�� mod m� where the k � k matrix A has a

primitive characteristic polynomial P �z� � zk � a�z
k�� � � � � � ak� then Xn also follows

the recurrence ��� ��� ����

Xn � �a�Xn�� � � � �� akXn�k� mod m ����

So each component of the vector Xn evolves according to ���� In other words� one simply

has k copies of the same MRG sequence in parallel� usually with some shifting between

those copies� This also applies to the matrix MRG ����� since it can be written as a

��



matrix LCG of dimension kL and therefore corresponds to kL copies of the same MRG

of order kL �and maximal period length mkL � ��� The di�erence with the single MRG
��� is that instead of taking successive values from a single sequence� one takes values

from di�erent copies of the same sequence� in a round�robin fashion� Observe also that

when using ����� the dimension of Xn in this recurrence �i�e�� the number of parallel

copies� does not need to be equal to k�

����� Linear Recurrences with Carry

Consider a generator based on the following recurrence�

xn � �a�xn�� � � � �� akxn�k � cn��� mod b� ����

cn � �a�xn�� � � � �� akxn�k � cn��� div b� ����

un � xn�b�

where 
div� denotes the integer division� For each n� xn � ZZb� cn � ZZ� and the state at

step n is sn � �xn� � � � � xn�k��� cn�� As in ��� ��� ���� we call this a multiply�with�carry

�MWC� generator� The idea was suggested in ��� ���� The recurrence looks like that of

an MRG� except that a carry cn is propagated between the steps� What is the e�ect of

this carry	

Assume that b is a power of �� which is very nice form the implementation viewpoint�

De�ne a� � ���
m �

kX
���

a�b
��

and let a be such that ab mod m � � �a is the inverse of b in arithmetic modulo m��

Note that m could be either positive or negative� but for simplicity we now assume that

m � �� Consider the LCG�

zn � azn�� mod m� wn � zn�m� ����

There is a close correspondence between the LCG ���� and the MWC generator� assum�

ing that their initial states agree ���� More speci�cally� if

wn �
�X
i��

xn�i��b
�i ����

��



holds for n � �� then it holds for all n� As a consequence� jun�wnj � ��b for all n� For
example� if b � ���� then un and wn are the same up to �� bits of precision� The MWC

generator can thus be viewed as just another way to implement �approximately� a LCG

with huge modulus and period length� It also inherits from this LCG an approximate

lattice structure� which can be analyzed as usual�

The LCG ���� is purely periodic� so each state zn is recurrent �none is transient��

On the other hand� the MWC has an in�nite number of states �since we imposed no

bound on cn� and most of them turn out to be transient� How can one characterize the

recurrent states	 They are �essentially� the states s� that correspond to a given z� via

����&����� Couture and L�Ecuyer ��� give necessary and su�cient conditions for a state

s� to be recurrent� In particular� if a� � � for  � �� all the recurrent states satisfy

� � cn 	 a� � � � �� ak� In view of this inequality� we want the a� to be small� for their

sum to �t into a computer word� More speci�cally� one can impose a� � � � � � ak � b�

Now b is a nice upper bound on the cn as well as on the xn�

Since b is a power of �� a is a quadratic residue and so cannot be primitive mod m�

Therefore� the period length cannot reach m� � even if m is prime� But if �m� ���� is
odd and � is primitive mod m �e�g�� if �m� ���� is prime�� then ���� has period length
� � �m� �����

Couture and L�Ecuyer ��� show that the lattice structure of the LCG ���� satis�es

the following� In dimensions t � k� the distances dt do not depend on the parameters

a�� � � � � ak� but only on b� while in dimension t � k � �� the shortest vector in the dual

lattice to Lt is �a�� � � � � ak�� so that

dt � �� � a�� � � � �� a�k�
����� ����

The distance dk�� is then minimized if we put all the weight on one coe�cient a�� It

is also better to put more weight on ak� to get a larger m� So one should choose ak close

to b� with a� � � � �� ak � b� Marsaglia ��� proposed two speci�c parameter sets� They

are analyzed in ���� where a better set of parameters in terms of the lattice structure

of the LCG is also given�

��



Special cases of the MWC include the add�with�carry �AWC� and subtract�with�

borrow �SWB� generators� originally proposed by Marsaglia and Zaman ��� and subse�

quently analyzed in ��� ����� For the AWC� put ar � ak � �a� � � for � 	 r 	 k and

all other a� equal to zero� This gives the simple recurrence

xn � �xn�r � xn�k � cn��� mod b�

cn � Ixn�r � xn�k � cn�� � b��

where I denotes the indicator function� equal to � if the bracketted inequality is true and

to � otherwise� The SWB is similar� except that either ar or ak is �� and the carry cn is
� or ��� The correspondence between AWC�SWB generators and LCGs was established
in �����

Equation ���� tells us very clearly that all AWC�SWB generators have a bad lat�

tice structure in dimension k � �� A little more can be said when looking at the

lacunary indices� For I � f�� r� kg� one has d��I� � ��
p
� and all vectors of the

form �wn� wn�r� wn�k� produced by the LCG ���� lie in only two planes in the three�

dimensional unit cube� exactly as for the lagged�Fibonacci generators discussed in Sec�

tion ������ Obviously� this is bad�

Perhaps one way to get around this problem is to take only k successive output

values� then skip �say� � values� take another k successive ones� skip another �� and so

on� L#uscher ��� has proposed such an approach� with speci�c values of � for a speci�c

SWB generator� with theoretical justi�cation based on chaos theory� James ��� gives a

Fortran implementation of L#uscher�s generator� The system Mathematica uses a SWB

generator ����� p� ������� but the documentation does not specify if it skips values�

����� Digital Method� LFSR� GFSR� TGFSR� etc�� and Their Combination

The MRG ���� matrix MRG ����� combined MRG ����� and MWC ���&��� have res�

olution ��m� ��m� ��m�� and ��b� respectively� �The resolution is the largest number

x such that all output values are multiples of x�� This could be seen as a limitation�

To improve the resolution� one can simply take several successive xn to construct each

��



output value un� Consider the MRG� Choose two positive integers s and L � k� and

rede�ne

un �
LX
j��

xns�j��m
�j� ����

Call s the step size and L the number of digits in the m�adic expansion� The state at

step n is now sn � �xns� � � � � xns�k���� The output values un are multiples ofm
�L instead

of m��� This output sequence� usually with L � s� is called a digital multistep sequence

��� ����� Taking s � L means that s � L values of the sequence fxng are skipped at
each step of ����� If the MRG sequence has period � and if s has no common factor with

�� the sequence fung also has period ��
Now� it is no longer necessary for m to be large� A small m with large s and L can

do as well� In particular� one can take m � �� Then fxng becomes a sequence of bits
�zeros and ones� and the un are constructed by juxtaposing L successive bits from this

sequence� This is called a linear feedback shift register �LFSR� or Tausworthe generator

��� ��� ���� ����� although the bits of each un are often �lled in reverse order than

in ����� An e�cient computer code that implements the sequence ����� for the case

where the recurrence has the form xn � �xn�r � xn�k� mod � with s � r and �r � k�

can be found in ��� ���� ����� For specialized jump�ahead algorithms� see ��� ����

Unfortunately� such simple recurrences lead to LFSR generators with bad structural

properties �see ��� ��� ��� ���� and other references therein�� But combining several

recurrences of this type can give good generators�

Consider J LFSR generators� where the jth one is based on a recurrence fxj�ng
with primitive characteristic polynomial Pj�z� of degree kj �with binary coe�cients��

an m�adic expansion to L digits� and a step size sj such that sj and the period length

�j � �kj � � have no common factor� Let fuj�ng be the output sequence of the jth
generator and de�ne un as the bitwise exclusive�or �i�e�� bitwise addition modulo �� of

u��n� � � � � uj�n� If the polynomials P��z�� � � � � PJ�z� are pairwise relatively prime �no pair

of polynomials has a common factor�� the period length � of the combined sequence fung
is equal to the least common multiple of the individual periods ��� � � � � �J � These �j can

be relatively prime� so it is possible here to have � �
QJ

j�� �j� The resulting combined

generator is also exactly equivalent to a LFSR generator based on a recurrence with

��



characteristic polynomial P �z� � P��z� � � �PJ�z�� All of this is shown in ����� where

speci�c combinations with two components are also suggested� For good combinations

with more components� see ���� Wang and Compagner ���� also suggested similar

combinations� with much longer periods� They recommended constructing the combi�

nation so that the polynomial P �z� has approximately half of its coe�cients equal to

�� In a sense� the main justi�cation for combined LFSR generators is the e�cient im�

plementation of a generator based on a �reducible� polynomial P �z� with many nonzero

coe�cients�

The digital method can be applied to the matrix MRG ���� or to the parallel MRG

���� by making a digital expansion of the components of Xn �assumed to have dimension

L��

un �
LX
j��

xn�jm
�j� ����

The combination of ���� with ���� gives the multiple recursive matrix method of Nieder�

reiter ����� For the matrix LCG� L�Ecuyer ��� shows that if the shifts between the

successive L copies of the sequence are all equal to some integer d having no common

factor with the period length � � mk � �� the sequence ���� is exactly the same as
the digital multistep sequence ���� with s equal to the inverse of d modulo m� The

converse also holds� In other words� ���� and ����� with these conditions on the shifts�

are basically two di�erent implementations of the same generator� So one can be ana�

lyzed by analyzing the other� and vice versa� If one uses the implementation ����� one

must be careful with the initialization of X�� � � � � Xk�� in ���� to maintain the corre�

spondence� The shift between the states �x��j� � � � � xk���j� and �x��j��� � � � � xk���j��� in

the MRG sequence must be equal to the proper value d for all j�

The implementation ���� requires more memory than ����� but may give a faster

generator� An important instance of this is the generalized feedback shift register �GFSR�

generator ��� ��� ���� which we now describe� Takem � � and L equal to the computer�s

word length� The recurrence ���� can then be computed by a bitwise exclusive�or of the

Xn�j for which aj � �� In particular� if the MRG recurrence has only two nonzero

��



coe�cients� say ak and ar� we obtain

Xn � Xn�r �Xn�k�

where � denotes the bitwise exclusive�or� The output is then constructed via the binary
fractional expansion ����� This GFSR can be viewed as a di�erent way to implement a

LFSR generator� provided that it is initialized accordingly� and the structural proper�

ties of the GFSR can then be analyzed by analyzing those of the corresponding LFSR

generator ��� ����

For the recurrence ����� we need to memorize kL integers in ZZm� With this memory

size� one should expect a period length close to mkL� but the actual period length

cannot exceed mk � �� A big waste� Observe that ���� is a special case of ����� with
Ai � aiI� An interesting idea is to 
twist� the recurrence ���� slightly so that each aiI

is replaced by a matrix Ai such that the corresponding recurrence ���� has full period

length mkL� � while its implementation remains essentially as fast as ����� Matsumoto
and Kurita ��� ��� proposed a speci�c way to do this for GFSR generators and called

the resulting generators twisted GFSR �TGFSR�� Their second paper and ��� ���� point

out some defects in the generators proposed in their �rst paper� proposes better speci�c

generators� and give nice computer codes in C� Investigations are currently made to �nd

other twists with good properties� The multiple recursive matrix method of ���� is a

generalization of these ideas�

������ Equidistribution Properties for the Digital Method

Suppose that we partition the unit hypercube �� ��t into mt� cubic cells of equal size�

This is called a �t� ��equidissection in base m� A set of points is said to be �t� ��

equidistributed if each cell contains the same number of points from that set� If the set

contains mk points� the �t� ��equidistribution is possible only for  � bk�tc� For a given
digital multistep sequence� let

Tt � fu� � �u�� � � � � ut��� j �x�� � � � � xk��� � ZZ
k
mg ����

��



�where repeated points are counted as many times as they appear in Tt� and t �

min�L� bk�tc�� If the set Tt is �t� t��equidistributed for all t � k� we call it a maximally

equidistributed �ME� set and say that the generator is ME� If it has the additional

property that for all t� for t 	  � L� no cell of the �t� ��equidissection contains more

than one point� we also call it collision�free �CF�� ME�CF generators have their sets of

points Tt very evenly distributed in the unit hypercube� in all dimensions t�

Full�period LFSR generators are all �bk�sc� s��equidistributed� Full�period GFSR
generators are all �k� ���equidistributed� but their �k� ��equidistribution for  � �

depends on the initial state �i�e�� on the shifts between the di�erent copies of the

MRG�� Fushimi and Tezuka ��� give a necessary and su�cient condition on this initial

state for �t� L��equidistribution� for t � bk�Lc� The condition says that the tL bits

�x���� � � � � x��L� � � � � xt����� � � � � xt���L� must be independent� in the sense that the tL � k

matrix which expresses them as a linear transformation of �x���� � � � � xk����� has �full�

rank tL� Fushimi ��� gives an initialization procedure satisfying this condition�

Couture et al� ��� show how the �t� ��equidistribution of simple and combined LFSR

generators can be analyzed via the lattice structure of an equivalent LCG in a space of

formal series� A di�erent �simpler� approach is taken in ���� Check if the matrix that

expresses the �rst  bits of un as a linear transformation of �x�� � � � � xk��� has full rank�

This is a necessary and su�cient condition for �t� ��equidistribution�

An ME LFSR generator based on the recurrence xn � �xn���
�xn��
�� mod �� with

s � ��� and L � ��� is given in ����� But as stated previously� only two nonzero

coe�cients for the recurrence is much too few� L�Ecuyer ��� ��� gives the results of

computer searches for ME and ME�CF combined LFSR generators with J � �� �� �� �

components� as described in subSection ������ Each search was made within a class

with each component j based on a characteristic trinomial Pj�z� � zkj � zrj � �� with
L � �� or L � ��� and step size sj such that sj � rj and �rj � kj� The period length is

� � ��k� � �� � � � ��kJ � �� in most cases� sometimes slightly smaller� The searches were
for good parameters rj and sj� We summarize here a few examples of search results�

For more details� as well as speci�c implementations in the C language� see ��� ����

��



Example �

�a� For J � �� k� � ��� and k� � ��� there are ���� parameter sets that satisfy the

conditions above� None of these combinations is ME� Speci�c combinations which

are nearly ME� within this same class� can be found in �����

�b� Let J � �� k� � ��� k� � ��� and k� � ��� In an exhaustive search among �����

possibilities satisfying our conditions within this class� �� ME combinations were

found� and � of them are also CF�

�c� Let J � �� k� � ��� k� � ��� k� � ��� and k� � ��� Here� in an exhaustive search

among ������� possibilities� we found ����� ME combinations� and ���� of them

also CF�

These results illustrate the fact that ME combinations are much easier to �nd as J

increases� This appears to be due to more possibilities to 
�ll up� the coe�cients of P �z�

when it is the product of more trinomials� Since GFSR generators can be viewed as a

way to implement fast LFSR generators� these search methods and results can be used

as well to �nd good combined GFSRs� where the combination is de�ned by a bitwise

exclusive�or as in the LFSR case�

One may strenghten the notion of �t� ��equidistribution as follows� Instead of looking

only at equidissections comprised of cubic volume elements of identical sizes� look at more

general partitions� Such a stronger notion is that of a �q� k� t��net in base m� where there

should be the same number of points in each box for any partition of the unit hypercube

into rectangular boxes of identical shape and equal volume mq�k� with the length of each

side of the box equal to a multiple of ��m� Niederreiter ���� de�nes a �gure of merit

r�t	 such that for all t � bk�Lc� the mk points of Tt for ���� form a �q� k� t��net in base

m with q � k � r�t	� A problem with r�t	 is the di�culty to compute it for medium and

large t �say� t � ���

��



��� NONLINEAR METHODS

An obvious way to remove the linear �and perhaps too regular� structure is to use a

nonlinear transformation� There are basically two classes of approaches�

�� Keep the transition function T linear� but use a nonlinear transformation G to

produce the output�

�� Use a nonlinear transition function T �

Several types of nonlinear generators have been proposed over the last decade or so�

and an impressive volume of theoretical results have been obtained for them� See� for

example� ��� ��� ��� ��� ���� ���� and other references given there� Here� we give a brief

overview of this rapidly developing area�

Nonlinear generators avoid lattice structures� Typically� no t�dimensional hyperplane

contains more than t overlapping t�tuples of successive values� More important� their

output behaves much like 
truly� random numbers� even over the entire period� with

respect to discrepancy� Roughly� there are lower and upper bounds on their discrepancy

�or in some cases on the average discrepancy over a certain set of parameters� whose

asymptotic order �as the period length increases to in�nity� is the same as that of an IID

U��� �� sequence of random variables� They have also succeeded quite well in empirical

tests performed so far ���� Fast implementations with speci�c well�tested parameters are

still under development� although several generic implementations are already available

��� ����

����� Inversive Congruential Generators

To construct a nonlinear generator with long period� a �rst idea is simply to add a

nonlinear twist to the output of a known generator� For example� take a full�period

MRG with prime modulus m and replace the output function un � xn�m by

zn � �'xn��'x
��
n � mod m and un � zn�m� ����

��



where 'xi denotes the ith nonzero value in the sequence fxng and 'x��n is the inverse of

'xn modulo m� �The zero values are skipped because they have no inverse�� For xn 	� ��
its inverse x��n can be computed by the formula x��n � xm��n mod m� with O�logm�

multiplications modulo m� The sequence fzng has period mk��� under conditions given

in ��� ����� This class of generators was introduced and �rst studied in ��� ��� ���� For

k � �� ���� is equivalent to the recurrence

zn �

�
�a� � a�z

��
n��� mod m if zn�� 	� ��

a� if zn�� � ��
����

where a� and a� are the MRG coe�cients�

A more direct approach is the explicit inversive congruential method of ���� de�ned

as follows� Let xn � an � c for n � �� where a 	� � and c are in ZZm and m is prime�

Then� de�ne

zn � x��n � �an � c�m�� mod m and un � zn�m� ����

This sequence has period � � m� According to ���� this family of generators seems to en�

joy the most favorable properties among the currently proposed inversive and quadratic

families� As a simple illustrative example� take m � ��� � � and a � c � �� �However�

at the moment� we are not in a position to recommend these particular parameters nor

any other speci�c ones��

Inversive congruential generators with power�of�� moduli have also been studied

��� ��� ���� However� they have have more regular structures than those based on

prime moduli ��� ���� Their low�order bits have the same short period lengths as for

the LCGs� The idea of combined generators� discussed earlier for the linear case� also

applies to nonlinear generators and o�ers some computational advantages� Huber ���

and Eichenauer�Herrmann ��� introduced and analyzed the following method� Take J

inversive generators as in ����� with distinct prime moduli m�� � � � � mJ � all larger than

�� and full period length �j � mj� For each generator j� let zj�n be the state at step n

and let uj�n � zj�n�mj� The output at step n is de�ned by the following combination�

un � �u��n � � � �� uJ�n� mod ��

��



The sequence fung turns out to be equivalent to the output of an inversive generator
���� with modulus m � m� � � �mJ and period length � � m� Conceptually� this is

pretty similar to the combined LCGs and MRGs discussed previously� and provides a

convenient way to implement an inversive generator with large modulus m� Eichenauer�

Herrmann ��� shows that this type of generator has favorable asymptotic discrepancy

properties� much like ����&�����

����� Quadratic Congruential Generators

Suppose that the transformation T is quadratic instead of linear� Consider the recurrence

xn � �ax
�
n�� � bxn�� � c� mod m�

where a� b� c � ZZm and xn � ZZm for each n� This is studied in ��� ��� ��� ����� If

m is a power of �� this generator has full period �� � m� if and only if a is even�

�b � a� mod � � �� and c is odd� Its t�dimensional points turn out to lie on a union of

grids� Also� the discrepancy tends to be too large� Our usual caveat against power�of��

moduli applies again�

����� BBS and Other Cryptographic Generators

The BBS generator� explained in Section ���� is conjectured to be polynomial�time per�

fect� This means that for a large enough size k� a BBS generator with properly �ran�

domly� chosen parameters is practically certain to behave very well from the statistical

point of view� However� it is not clear how large k must be and how K can be chosen in

practice for the generator to be really safe� The speed of the generator slows down with

k� since at each step we must square a �k�bit integer modulo another �k�bit integer� An

implementation based on fast modular multiplication is proposed by Moreau ����

Other classes of generators� conjectured to be polynomial�time perfect� have been

proposed� From empirical experiments� they have appeared no better than the BBS�

See �� ��� ��� for overviews and discussions� An interesting idea� pursued for instance in

��



��� is to combine a slow but cryptographically strong generator �e�g�� a polynomial�time

perfect one� with a fast �but unsecure� one� The slow generator is used sparingly� mostly

in a preprocessing step� The result is an interesting compromise between speed� size�

and security� In ��� it is also suggested to use a block cipher encryption algorithm for

the slow generator� These authors actually use triple�DES �three passes over the well�

known data encryption standard algorithm� with three di�erent keys�� combined with a

linear hashing function de�ned by a matrix� The keys and the hashing matrix must be

�truly� random� Their fast generator is implemented with a six�regular expander graph

�see their paper for more details��

��� EMPIRICAL STATISTICAL TESTING

Statistical testing of random number generators is indeed a very empirical and heuristic

activity� The main idea is to seek situations where the behavior of some function of the

generator�s output is signi�cantly di�erent than the normal or expected behavior of the

same function applied to a sequence of IID uniform random variables�

Example � As a simple illustration� suppose that one generates n random numbers

from a generator whose output is supposed to imitate IID U��� �� random variables�

Let T be the number of values that turn out to be below ���� among those n� For

large n� T should normally be not too far from n��� In fact� one should expect T to

behave like a binomial random variable with parameters �n� ����� So if one repeats

this experiment several times �e�g�� generating N values of T �� the distribution of the

values of T obtained should resemble that of the binomial distribution �and the normal

distribution with mean n�� and standard deviation
p
n�� for large n�� If N � ��� and

n � ������ the mean and standard deviation are ���� and ��� respectively� With these

parameters� if one observes� for instance� that �� values of T are less than ����� or that

�� values of T out of ��� are less than ����� one would readily conclude that something

is wrong with the generator� On the other hand� if the values of T behave as expected�

one may conclude that the generator seems to reproduce the correct behavior for this

��



particular statistic T �and for this particular sample size�� But nothing prevents other

statistics than this T to behave wrongly�

����� General Setup

De�ne the null hypothesis H� as� 
The generator�s output is a sequence of IID U��� ��

random variables�� Formally� this hypothesis is false� since the sequence is periodic and

usually deterministic �except parhaps for the seed�� But if this cannot be detected by

reasonable statistical tests� one may assume that H� holds anyway� In fact� what really

counts in the end is that the statistics of interest in a given simulation have �sample�

distributions close enough to their theoretical ones�

A statistical test for H� can be de�ned by any function T of a �nite number of U��� ��

random variables� for which the distribution under H� is known or can be approximated

well enough� The random variable T is called the test statistic� The statistical test tries

to �nd empirical evidence against H��

When applying a statistical test to a random number generator� a single�level pro�

cedure computes the value of T � say t�� then computes the p�value

�� � P T � t� j H���

and� in the case of a two�sided test� rejects H� if �� is too close to either � or �� A

single�sided test will reject only of �� is too close to �� or only if it is too close to ��

The choice of rejection area depends on what the test aims to detect� Under H�� �� is a

U��� �� random variable�

A two�level test obtains �say� N 
independent� copies of T � denoted T�� � � � � TN � and

computes their empirical distribution "FN � This empirical distribution is then compared

to the theoretical distribution of T under H�� say F � via a standard goodness�of��t test�

such as the Kolmogorov&Smirnov �KS� or Anderson&Darling tests ��� ����� One version

of the KS goodness�of��t test uses the statistic

DN � sup
���x��

j "FN�x�� F �x�j�

��



for which an approximation of the distribution under H� is available� assuming that the

distribution F is continuous ���� Once the value dN of the statistic DN is known� one

computes the p�value of the test� de�ned as

�� � P DN � dN j H���

which is again a U��� �� random variable under H�� Here one would reject H� if �� is

too close to ��

Choosing N � � yields a single�level test� For a given test and a �xed computing

budget� the question arises of what is best� To choose a small N �e�g�� N � �� and

base the test statistic T on a large sample size� or the opposite	 There is no universal

winner� It depends on the test and on the alternative hypothesis� The rationale for

two�level testing is to test the sequence not only globally� but also locally� by looking

at the distribution of values of T over shorter subsequences ���� In most cases� when

testing random number generators� N � � turns out to be the best choice because the

same regularities or defects of the generators tend to repeat themselves over all long�

enough subsequences� But it also happens for certain tests that the cost of computing

T increases faster than linearly with the sample size� and this gives another argument

for choosing N � ��

In statistical analyses where a limited amount of data is available� it is common

practice to �x some signi�cance level 
 in advance and reject H� when and only when

the p�value is below 
� Popular values of 
 are ���� and ���� �mainly for historical

reasons�� When testing random number generators� one can always produce an arbitrary

amount of data to make the test more powerful and come up with a clean�cut decision

when suspicious p�values occur� We would thus recommend the following strategy� If the

outcome is clear� for example if the p�value is less than ������ reject H�� Otherwise� if

the p�value is suspicious ������� for example�� then increase the sample size or repeat the

test with other segments of the sequence� In most cases� either suspicion will disappear

or clear evidence against H� will show up rapidly�

When H� is not rejected� this somewhat improves con�dence in the generator but

never proves that it will always behave correctly� It may well be that the next test

��



T to be designed will be the one that catches the generator� Generally speaking� the

more extensive and varied is the set of tests that a given generator has passed� the more

faith we have in the generator� For still better con�dence� it is always a good idea to

run important simulations twice �or more�� using random number generators of totally

di�erent types�

����� Available Batteries of Tests

The statistical tests described by Knuth ��� have long been considered the 
standard�

tests for random number generators� A Fortran implementation of �roughly� this set of

tests is given in the package TESTRAND ���� A newer battery of tests is DIEHARD�

designed by Marsaglia ��� ���� It contains more stringent tests than those in ���� in

the sense that more generators tend to fail some of the tests� An extensive testing

package called TestU�� ���� that implements most of the tests proposed so far� as

well as several classes of generators implemented in generic form� is under development�

References to other statistical tests applied to random number generators can be found

in ��� ��� ��� ��� ��� ��� ��� �����

Simply testing uniformity� or pair correlations� is far from enough� Good tests are

designed to catch higher�order correlation properties or geometric patterns of the suc�

cessive numbers� Such patterns can easily show up in certain classes of applications

��� ��� ���� Which are the best tests	 No one can really answer this question� If the

generator is to be used to estimate the expectation of some random variable T by gener�

ating replicates of T � the best test would be the one based on T as a statistic� But this

is impractical� since if one knew the distribution of T � one would not use simulation to

estimate its mean� Ideally� a good test for this kind of application should be based on

a statistic T � whose distribution is known and resembles that of T � But such a test is

rarely easily available� Moreover� only the user can apply it� When designing a general

purpose generator� one has no idea of what kind of random variable interests the user�

So� the best the designer can do �after the generator has been properly designed� is to

apply a wide variety of tests that tend to detect defects of di�erent natures�

��



����� Two Examples of Empirical Tests

For a short illustration� we now apply two statistical tests to some of the random number

generators discussed previously� The �rst test is a variant of the well�know serial test

and the second one is a close�pairs test� More details about these tests� as well as re�ned

variants� can be found in ��� ��� ��� ����

Both tests generate n nonoverlapping vectors in the t�dimensional unit cube �� ��t�

That is� they produce the point set�

Pt � fU i � �Ut�i��	� � � � � Uti���� i � �� � � � � ng�

where U�� U�� � � � is the generator�s output� Under H�� Pt contains n IID random vectors

uniformly distributed over the unit hypercube�

For the serial test� we construct a �t� ��equidissection in base � of the hypercube �see

Section �������� and compute how many points fall in each of the k � �t� cells� More

speci�cally� let Xj be the number of points U i falling in cell j� for j � �� � � � � k� and

de�ne the chi�square statistic

X� �
kX

j��

�Xj � n�k��

n�k
� ����

Under H�� the exact mean and variance of X
� are � � EX�� � k � � and �� �

VarX�� � ��k����n����n� respectively� Moreover� if n�� for �xed k� X� converges

in distribution to a chi�square random variable with k � � degrees of freedom� whereas
if n � � and k � � simultaneously so that n�k � � for some constant �� �X� �
���� converges in distribution to a N��� �� �a standard normal� random variable� Most

authors use a chi�square approximation to the distribution of X�� with n�k � � �say�

and very large n� But one can also take k � n and use the normal approximation� as

in the forthcoming numerical illustration�

For the close�pairs test� let Dn�i�j be the Euclidean distance between the points U j

and U i in the unit torus� i�e�� where the opposite faces of the hypercube are identi�ed

so that points facing each other on opposite sides become close to each other� For s � ��

��



let Yn�s� be the number of distinct pairs of points i 	 j such Dt
n�i�jVtn�n � ���� � s�

where Vt is the volume of a ball of radius � in the t�dimensional real space� Under H��

for any constant s� � �� as n � �� the process fYn�s�� � � s � s�g converges weakly
to a Poisson process with unit rate� Let � � Tn�� � Tn�� � Tn�� � � � � be the jump times
of the process Yn� and let Wn�i � � � exp��Tn�i � Tn�i����� For a �xed integer m � �

and large enough n� the random variables Wn��� � � � �Wn�m are approximately IID U��� ��

under H�� To compare their empirical distribution to the uniform� one can compute� for

example� the Anderson&Darling statistic

A�
m � �m� �

m

mX
i��

n
��i� �� ln�W�n�i	� � ��m� �� �i� ln���W�n�i	�

o
�

and reject H� if the p�value is too small �i�e�� if A
�
m is too large��

These tests have been applied to the generators G� to G�� in Tables ��� and ���� We

took N � � and dimension t � �� We applied two instances of the serial test� one named

ST�� with n � ��� and  � �� which gives k � ��
 and n�k � ������ and the second one

named ST�� with n � ��� and  � ��� so k � ��� and n�k � ������ For the close�pairs

�CP� test� we took n � ��� and m � ��� In each case� �n random numbers were used�

and this value is much smaller than the period length of the generators tested� For all

generators� at the beginning of the �rst test� we used the initial seed ����� when a single

integer was needed and the vector ������� � � � � ������ when a vector was needed� The

seed was not reset between the tests� Table � gives the p�values of these tests for G� to

G�� For G� to G��� all p�values remained inside the interval ������ ������

For the serial test� the p�values that are too close to � �e�g�� ST� and ST� for G��

indicate that the n points are too evenly distributed among the k cells compared to what

one would expect from random points �X� is too small�� On the other hand� the very

small p�values indicate that the points tend to go signi�cantly more often in certain cells

than in others �X� is too large�� The p�values less than ����� for the CP test stem from

the fact that the jumps of the process Yn tend to be clustered �and often superposed��

because there are often equalities �or almost� among the small Dn�i�j�s� due to the lattice

structure of the generator ��� ����� This implies that several Wn�i are very close to

zero� and the Anderson�Darling statistic is especially sensitive for detecting this type of

��



Table �� The p�values of two empirical tests applied to Generators G� to G���

Generator ST� ST� CP
G� �� ����� ���� � �� ����� 	 �����

G� ����� 	 ����� 	 �����

G� �� ����� ���� 	 ����� 	 �����

G� 	 ����� 	 ����� 	 �����

G� ����� � �� ����� 	 �����

problem� As a general rule of thumb� all LCGs and MRGs� whatever be the quality of

their lattice structure� fail spectacularly this close�pairs test with N � � and m � ��

when n exceeds the square root of the period length ����

G� and G� pass these tests� but will soon fail both tests if we increase the sample

size� For G� to G��� on the other hand� the sample size required for clear failure is so

large that the test becomes too long to run in reasonable time� This is especially true

for G� and G���

One could raise the issue of whether these tests are really relevant� As mentioned in

the previous subsection� the relevant test statistics are those that behave similarly as the

random variable of interest to the user� So� relevance depends on the application� For

simulations that deal with random points in space� the close�pairs test could be relevant�

Such simulations are performed� for example� to estimate the �unknown� distribution of

certain random variables in spatial statistics ���� As an illustration� suppose one wishes

to estimate the distribution of mini�j Dn�i�j for some �xed n� by Monte Carlo simulation�

For this purpose I would not trust the generators G� to G�� The e�ect of failing the serial

or close�pairs test in general is unclear� In many cases� if not so many random numbers

are used and if the application does not interact constructively with the structure of

the point set produced by the generator� no bad e�ect will show up� On the other

hand� simulations using more than� say� ��� random numbers are becoming increasingly

common� Clearly� G� to G� and all other generators of that size are unsuitable for such

simulations�

��



����� Empirical Testing� Summary

Experience from years of empirical testing with di�erent kinds of tests and di�erent

generator families provides certain guidelines ��� ��� ��� ��� ��� ��� ���� Some of these

guidelines are summarized in the following remarks�

�� Generators with period length less than ��� �say� can now be considered as 
baby

toys� and should not be used in general software packages� In particular� all LCGs

of that size fail spectacularly several tests that run in a reasonably short time and

use much less random numbers than the period length�

�� LCGs with power�of�� moduli are easier to crack than those with prime moduli�

especially if we look at lower�order bits�

�� LFSRs and GFSRs based on primitive trinomials� or lagged�Fibonacci and AWC�SWB

generators� whose structure is too simple in moderately large dimension� also fail

several simple tests�

�� Combined generators with long periods and good structural properties do well in

the tests� When a large fraction of the period length is used� nonlinear inversive

generators with prime modulus do better than the linear ones�

�� In general� generators with good theoretical �gures of merit �e�g�� good lattice

structure or good equidistribution over the entire period� when only a small frac�

tion of the period is used� behave better in the tests� As a crude general rule�

generators based on more complicated recurrences �e�g�� combined generators� and

good theoretical properties perform better�

��� PRACTICAL RANDOM NUMBER PACKAGES

���� Recommended Implementations

As stated previously� no random number generator can be guaranteed against all pos�

sible defects� However� there are generators with fairly good theoretical support�

��



that have been extensively tested� and for which computer codes are available� We

now give references to such implementations� Some of them are already mentioned

earlier� We do not reproduce the computer codes here� but the user can easily

�nd them from the references� More references and pointers can be found from the

pages http���www�iro�umontreal�ca��lecuyer and http���random�mat�sbg�ac�at
on the World Wide Web�

Computer implementations that this author can suggest for the moment include

those of the MRGs given in ���� the combined MRGs given in ��� ���� the combined

Tausworthe generators given in ��� ���� the twisted GFSRs given in ��� ���� and perhaps

the RANLUX code of ����

���� Multigenerator Packages with Jump�Ahead Facilities

Good simulation languages usually o�er many �virtual� random number generators�

often numbered �� �� �� � � � � In most cases this is the same generator but starting with

di�erent seeds� widely spaced in the sequence� L�Ecuyer and C"ot�e ��� have constructed

a package with �� generators �which can be easily extended to ������ Each generator

is in fact based on the same recurrence �a combined LCG of period length near �����

with seeds spaced ��� values apart� Moreover� each subsequence of ��� values is split

further into ��� segments of length ���� A simple procedure call permits one to have

any of the generators jump ahead to the beginning of its next segment� or its current

segment� or to the beginning of its �rst segment� The user can also set the initial seed

of the �rst generator to any admissible value �a pair of positive integers� and all other

initial seeds are automatically recalculated so that they remain ��� values apart� This

is implemented with e�cient jump�ahead tools� A boolean switch can also make any

generator produce antithetic variates if desired�

To illustrate the utility of such a package� suppose that simulation is used to com�

pare two similar systems using common random numbers� with n simulation runs for

each system� To ensure proper synchronization� one would typically assign di�erent

generators to di�erent streams of random numbers required by the simulation �e�g�� in

��



a queueing network� one stream for the interarrival times� one stream for the service

times at each node� one stream for routing decisions� etc��� and make sure that for each

run� each generator starts at the same seed and produces the same sequence of numbers

for the two systems� Without appropriate tools� this may require tricky programming�

because the two systems do not necessarily use the same number of random numbers in

a given run� But with the package in ���� one can simply assign each run to a segment

number� With the �rst system� use the initial seed for the �rst run� and before each new

run� advance each generator to the beginning of the next segment� After the nth run�

reset the generators to their initial seeds and do the same for the second system�

The number and length of segments in the package of ��� are now deemed too small

for current and future needs� A similar package based on a combined LCG with period

length near ���� in given in ���� and other systems of this type� based on generators with

much larger periods� are under development� In some of those packages� generators can

be seen as objects that can be created by the user as needed� in practically unlimited

number�

When a generator�s sequence is cut into subsequences spaced� say� � values apart

as we just described� to provide for multiple generators running in parallel� one must

analyze and test the vectors of nonsuccessive output values �with lacunary indices� see

Section ������ spaced � values apart� For LCGs and MRGs� for example� the lattice

structure can be analyzed with such lacunary indices� See ��� ��� for more details and

numerical examples�

���� Generators for Parallel Computers

Another situation where multiple random number generators are needed is for simula�

tion on parallel processors� The same approach can be taken� Partition the sequence

of a single random number generator with very long period into disjoint subsequences

and use a di�erent subsequence on each processor� So the same packages that provide

multiple generators for sequential computers can be used to provide generators for par�

allel processors� Other approaches� such as using completely di�erent generators on the

��



di�erent processors or using the same type of generator with di�erent parameters �e�g��

changing the additive term or the multiplier in a LCG�� have been proposed but appear

much less convenient and sometimes dangerous ��� ���� For di�erent ideas and surveys

on parallel generators� the reader can consult �� �� ��� ��� �����

ACKNOWLEDGMENTS

This work has been supported by NSERC�Canada Grant ODGP������� and SMF��������

and FCAR�Qu�ebec Grant ��ER����� Thanks to Christos Alexopoulos� Jerry Banks�

Raymond Couture� Hannes Leeb� Thierry Moreau� and Richard Simard for their helpful

comments�

REFERENCES

�� Aiello� W�� S� Rajagopalan and R� Venkatesan ������� Design of practical and prov�

ably good random number generators� Manuscript �contact venkie�bellcore�com��

�� Anderson� S� L� ������� Random number generators on vector supercomputers and

other advanced architecture� SIAM Review� Vol� ��� pp� ���&����

�� Atkinson� A� C� ������� Tests of pseudo�random numbers� Applied Statistics� Vol�

��� pp� ���&����

�� Blum� L�� M� Blum and M� Schub ������� A simple unpredictable pseudo�random

number generator� SIAM Journal on Computing� Vol� ��� No� �� pp� ���&����

�� Boucher� M� ������� La g�en�eration pseudo�al�eatoire cryptographiquement s�ecuritaire

et ses consid�erations pratiques� Master�s thesis� D�epartement d�I�R�O�� Universit�e

de Montr�eal�

�� Brassard� G� ������� Modern Cryptology � A Tutorial� volume ��� of Lecture Notes

in Computer Science� Springer Verlag�

�� Bratley� P�� B� L� Fox and L� E� Schrage ������� A Guide to Simulation� second

edition� Springer�Verlag� New York�

�� Brown� M� and H� Solomon ������� On combining pseudorandom number generators�

Annals of Statistics� Vol� �� pp� ���&����

��



�� Chen� J� and P� Whitlock ������� Implementation of a distributed pseudorandom

number generator� In H� Niederreiter and P� J��S� Shiue� editors� Monte Carlo and

Quasi�Monte Carlo Methods in Scienti�c Computing� number ��� in Lecture Notes

in Statistics� pp� ���&���� Springer�Verlag�

��� Collings� B� J� ������� Compound random number generators� Journal of the Amer�

ican Statistical Association� Vol� ��� No� ���� pp� ���&����

��� Compagner� A� ������� The hierarchy of correlations in random binary sequences�

Journal of Statistical Physics� Vol� ��� pp� ���&����

��� Compagner� A� ������� Operational conditions for random number generation� Phys�

ical Review E� Vol� ��� No� ��B� pp� ����&�����

��� Couture� R� and P� L�Ecuyer ������� On the lattice structure of certain linear con�

gruential sequences related to AWC�SWB generators� Mathematics of Computation�

Vol� ��� No� ���� pp� ���&����

��� Couture� R� and P� L�Ecuyer ������� Linear recurrences with carry as random

number generators� In Proceedings of the ���� Winter Simulation Conference� pp�

���&����

��� Couture� R� and P� L�Ecuyer ������� Computation of a shortest vector and

Minkowski�reduced bases in a lattice� In preparation�

��� Couture� R� and P� L�Ecuyer ������� Distribution properties of multiply�with�carry

random number generators� Mathematics of Computation� Vol� ��� No� ���� pp�

���&����

��� Couture� R�� P� L�Ecuyer and S� Tezuka ������� On the distribution of k�dimensional

vectors for simple and combined Tausworthe sequences� Mathematics of Computa�

tion� Vol� ��� No� ���� pp� ���&���� S��&S���

��� Coveyou� R� R� and R� D� MacPherson ������� Fourier analysis of uniform random

number generators� Journal of the ACM� Vol� ��� pp� ���&����

��� Cressie� N� ������� Statistics for Spatial Data� Wiley� New York�

��� De Matteis� A� and S� Pagnutti ������� Parallelization of random number generators

and long�range correlations� Numerische Mathematik� Vol� ��� pp� ���&����

��� De Matteis� A� and S� Pagnutti ������� A class of parallel random number generators�

��



Parallel Computing� Vol� ��� pp� ���&����

��� De�ak� I� ������� Uniform random number generators for parallel computers� Parallel

Computing� Vol� ��� pp� ���&����

��� Dieter� U� ������� How to calculate shortest vectors in a lattice� Mathematics of

Computation� Vol� ��� No� ���� pp� ���&����

��� Dudewicz� E� J� and T� G� Ralley ������� The Handbook of Random Number Gen�

eration and Testing with TESTRAND Computer Code� American Sciences Press�

Columbus� Ohio�

��� Durbin� J� ������� Distribution Theory for Tests Based on the Sample Distribution

Function� SIAM CBMS�NSF Regional Conference Series in Applied Mathematics�

SIAM� Philadelphia�

��� Durst� M� J� ������� Using linear congruential generators for parallel random number

generation� In Proceedings of the ��	� Winter Simulation Conference� pp� ���&����

IEEE Press�

��� Eichenauer� J�� H� Grothe� J� Lehn and A� Topuz(oglu ������� A multiple recursive

nonlinear congruential pseudorandom number generator� Manuscripta Mathematica�

Vol� ��� pp� ���&����

��� Eichenauer� J� and J� Lehn ������� A nonlinear congruential pseudorandom number

generator� Statistische Hefte� Vol� ��� pp� ���&����

��� Eichenauer� J� and J� Lehn ������� On the structure of quadratic congruential

sequences� Manuscripta Mathematica� Vol� ��� pp� ���&����

��� Eichenauer� J�� J� Lehn and A� Topuz(oglu ������� A nonlinear congruential pseudo�

random number generator with power of two modulus� Mathematics of Computation�

Vol� ��� No� ���� pp� ���&����

��� Eichenauer�Herrmann� J� ������� Inversive congruential pseudorandom numbers� A

tutorial� International Statistical Reviews� Vol� ��� pp� ���&����

��� Eichenauer�Herrmann� J� ������� Statistical independence of a new class of inversive

congruential pseudorandom numbers� Mathematics of Computation� Vol� ��� pp�

���&����

��� Eichenauer�Herrmann� J� ������� On generalized inversive congruential pseudoran�

��



dom numbers� Mathematics of Computation� Vol� ��� pp� ���&����

��� Eichenauer�Herrmann� J� ������� Pseudorandom number generation by nonlinear

methods� International Statistical Reviews� Vol� ��� pp� ���&����

��� Eichenauer�Herrmann� J� and H� Grothe ������� A new inversive congruential pseu�

dorandom number generator with power of two modulus� ACM Transactions on

Modeling and Computer Simulation� Vol� �� No� �� pp� �&���

��� Eichenauer�Herrmann� J�� H� Grothe and J� Lehn ������� On the period length of

pseudorandom vector sequences generated by matrix generators� Mathematics of

Computation� Vol� ��� No� ���� pp� ���&����

��� Eichenauer�Herrmann� J� and H� Niederreiter ������� An improved upper bound for

the discrepancy of quadratic congruential pseudorandom numbers� Acta Arithmetica�

Vol� LXIX��� pp� ���&����

��� Entacher� K� ������� Bad subsequences of well�known linear congruential pseudoran�

dom number generators� ACM Transactions on Modeling and Computer Simulation�

Vol� �� No� �� To appear�

��� Ferrenberg� A� M�� D� P� Landau and Y� J� Wong ������� Monte Carlo simulations�

Hidden errors from 
good� random number generators� Physical Review Letters�

Vol� ��� No� ��� pp� ����&�����

��� Fincke� U� and M� Pohst ������� Improved methods for calculating vectors of short

length in a lattice� including a complexity analysis� Mathematics of Computation�

Vol� ��� pp� ���&����

��� Fishman� G� S� ������� Monte Carlo
 Concepts� Algorithms� and Applications�

Springer Series in Operations Research� Springer�Verlag� New York�

��� Fishman� G� S� and L� S� Moore III ������� An exhaustive analysis of multiplicative

congruential random number generators with modulus ��� � �� SIAM Journal on

Scienti�c and Statistical Computing� Vol� �� No� �� pp� ��&���

��� Fushimi� M� ������� Increasing the orders of equidistribution of the leading bits of

the Tausworthe sequence� Information Processing Letters� Vol� ��� pp� ���&����

��� Fushimi� M� ������� An equivalence relation between Tausworthe and GFSR se�

quences and applications� Applied Mathematics Letters� Vol� �� No� �� pp� ���&����

��



��� Fushimi� M� and S� Tezuka ������� The k�distribution of generalized feedback shift

register pseudorandom numbers� Communications of the ACM� Vol� ��� No� �� pp�

���&����

��� Good� I� J� ������� Probability and the Weighting of Evidence� Gri�n� London�

��� Good� I� J� ������� How random are random numbers	 The American Statistician�

Vol� � pp� ��&���

��� Grothe� H� ������� Matrix generators for pseudo�random vectors generation� Statis�

tische Hefte� Vol� ��� pp� ���&����

��� Hellekalek� P� ������� Inversive pseudorandom number generators� Concepts� results�

and links� In C� Alexopoulos� K� Kang� W� R� Lilegdon� and D� Goldsman� editors�

Proceedings of the ���� Winter Simulation Conference� pp� ���&���� IEEE Press�

��� Hoaglin� D� C� and M� L� King ������� A remark on algorithm AS ��� The spectral

test for the evaluation of congruential pseudo�random generators� Applied Statistics�

Vol� ��� pp� ���&����

��� H#ormann� W� and G� Der�inger ������� A portable random number generator well

suited for the rejection method� ACM Transactions on Mathematical Software� Vol�

��� No� �� pp� ���&����

��� Huber� K� ������� On the period length of generalized inversive pseudorandom num�

ber generators� Applied Algebra in Engineering� Communications� and Computing�

Vol� �� pp� ���&����

��� Hull� T� E� ������� Random number generators� SIAM Review� Vol� �� pp� ���&����

��� IMSL ������� IMSL Library Users�s Manual� Vol�� IMSL� Houston� Texas�

��� James� F� ������� A review of pseudorandom number generators� Computer Physics

Communications� Vol� ��� pp� ���&����

��� James� F� ������� RANLUX� A Fortran implementation of the high�quality pseudo�

random number generator of L#uscher� Computer Physics Communications� Vol� ���

pp� ���&����

��� Knuth� D� E� ������� The Art of Computer Programming� Volume �
 Seminumerical

Algorithms� second edition� Addison�Wesley� Reading� Mass�

��� Ko)c� C� ������� Recurring�with�carry sequences� Journal of Applied Probability� Vol�

��



��� pp� ���&����

��� Lagarias� J� C� ������� Pseudorandom numbers� Statistical Science� Vol� �� No� ��

pp� ��&���

��� Law� A� M� and W� D� Kelton ������� Simulation Modeling and Analysis� second

edition� McGraw�Hill� New York�

��� L�Ecuyer� P� ������� E�cient and portable combined random number generators�

Communications of the ACM� Vol� ��� No� �� pp� ���&��� and ���� See also the

correspondence in the same journal� Vol� ��� No� � ������� pp� ����&�����

��� L�Ecuyer� P� ������� Random numbers for simulation� Communications of the ACM�

Vol� ��� No� ��� pp� ��&���

��� L�Ecuyer� P� ������� Testing random number generators� In Proceedings of the ����

Winter Simulation Conference� pp� ���&���� IEEE Press�

��� L�Ecuyer� P� ������� Uniform random number generation� Annals of Operations

Research� Vol� ��� pp� ��&����

��� L�Ecuyer� P� ������� Combined multiple recursive random number generators� Op�

erations Research� Vol� ��� No� �� pp� ���&����

��� L�Ecuyer� P� ������� Maximally equidistributed combined Tausworthe generators�

Mathematics of Computation� Vol� ��� No� ���� pp� ���&����

��� L�Ecuyer� P� ������� Bad lattice structures for vectors of non�successive values

produced by some linear recurrences� INFORMS Journal on Computing� Vol� �� No�

�� pp� ��&���

��� L�Ecuyer� P� ������� Good parameters and implementations for combined multiple

recursive random number generators� Manuscript�

��� L�Ecuyer� P� ������� Tests based on sum�functions of spacings for uniform random

numbers� Journal of Statistical Computation and Simulation� Vol� ��� pp� ���&����

��� L�Ecuyer� P� ������� Tables of maximally equidistributed combined LFSR genera�

tors� Mathematics of Computation� To appear�

��� L�Ecuyer� P� �Circa ������ TestU��� Un logiciel pour appliquer des tests statistiques

*a des g�en�erateurs de valeurs al�eatoires� In preparation�

��� L�Ecuyer� P� and T� H� Andres ������� A random number generator based on the

��



combination of four LCGs� Mathematics and Computers in Simulation� Vol� ��� pp�

��&����

��� L�Ecuyer� P�� F� Blouin and R� Couture ������� A search for good multiple recur�

sive random number generators� ACM Transactions on Modeling and Computer

Simulation� Vol� �� No� �� pp� ��&���

��� L�Ecuyer� P�� A� Compagner and J��F� Cordeau ������� Entropy tests for random

number generators� Manuscript�

��� L�Ecuyer� P�� J��F� Cordeau and R� Simard ������� Close�point spatial tests and

their application to random number generators� Submitted�

��� L�Ecuyer� P� and S� C"ot�e ������� Implementing a random number package with

splitting facilities� ACM Transactions on Mathematical Software� Vol� ��� No� �� pp�

��&����

��� L�Ecuyer� P� and R� Couture ������� An implementation of the lattice and spectral

tests for multiple recursive linear random number generators� INFORMS Journal

on Computing� Vol� �� No� �� pp� ���&����

��� L�Ecuyer� P� and R� Proulx ������� About polynomial�time 
unpredictable� genera�

tors� In Proceedings of the ��	� Winter Simulation Conference� pp� ���&���� IEEE

Press�

��� L�Ecuyer� P�� R� Simard and S� Wegenkittl ������� Sparse serial tests of randomness�

In preparation�

��� L�Ecuyer� P� and S� Tezuka ������� Structural properties for two classes of combined

random number generators� Mathematics of Computation� Vol� ��� No� ���� pp� ���&

����

��� Leeb� H� and S� Wegenkittl ������� Inversive and linear congruential pseudorandom

number generators in empirical tests� ACM Transactions on Modeling and Computer

Simulation� Vol� �� No� �� pp� ���&����

��� Lehmer� D� H� ������� Mathematical methods in large scale computing units� Annals

Comp Laboratory Harvard University� Vol� ��� pp� ���&����

��� Lewis� P� A� W�� A� S� Goodman and J� M� Miller ������� A pseudo�random number

generator for the system����� IBM System�s Journal� Vol� �� pp� ���&����

��



��� Lewis� T� G� and W� H� Payne ������� Generalized feedback shift register pseudo�

random number algorithm� Journal of the ACM� Vol� ��� No� �� pp� ���&����

��� L#uscher� M� ������� A portable high�quality random number generator for lattice

�eld theory simulations� Computer Physics Communications� Vol� ��� pp� ���&����

��� MacLaren� N� M� ������� A limit on the usable length of a pseudorandom sequence�

Journal of Statistical Computing and Simulation� Vol� ��� pp� ��&���

��� Marsaglia� G� ������� A current view of random number generators� In Com�

puter Science and Statistics� Sixteenth Symposium on the Interface� pp� �&��� North�

Holland� Amsterdam� Elsevier Science Publishers�

��� Marsaglia� G� ������� Yet another rng� Posted to the electronic billboard

sci�stat�math� August ��

��� Marsaglia� G� ������� DIEHARD� a battery of tests of randomness� See

http���stat�fsu�edu��geo�diehard�html�

��� Marsaglia� G� ������� The Marsaglia random number CDROM� See

http���stat�fsu�edu��geo��

��� Marsaglia� G� and A� Zaman ������� A new class of random number generators�

The Annals of Applied Probability� Vol� �� pp� ���&����

��� Marse� K� and S� D� Roberts ������� Implementing a portable FORTRAN uniform

����� generator� Simulation� Vol� ��� No� �� pp� ���&����

��� Mascagni� M�� M� L� Robinson� D� V� Pryor and S� A� Cuccaro ������� Parallel

pseudorandom number generation using additive lagged��bonacci recursions� In

H� Niederreiter and P� J��S� Shiue� editors� Monte Carlo and Quasi�Monte Carlo

Methods in Scienti�c Computing� number ��� in Lecture Notes in Statistics� pp�

���&���� Springer�Verlag�

��� MATLAB ������� MATLAB Reference Manual� The MathWorks Inc�� Natick� Mass�

��� Matsumoto� M� and Y� Kurita ������� Twisted GFSR generators� ACM Transactions

on Modeling and Computer Simulation� Vol� �� No� �� pp� ���&����

��� Matsumoto� M� and Y� Kurita ������� Twisted GFSR generators II� ACM Trans�

actions on Modeling and Computer Simulation� Vol� �� No� �� pp� ���&����

��� Matsumoto� M� and Y� Kurita ������� Strong deviations from randomness in m�

��



sequences based on trinomials� ACM Transactions on Modeling and Computer Sim�

ulation� Vol� �� No� �� pp� ��&����

��� Matsumoto� M� and T� Nishimura ������� Mersenne twister� A ����dimensionally

equidistributed uniform pseudorandom number generator� ACM Transactions on

Modeling and Computer Simulation� Vol� �� No� �� To appear�

��� Moreau� T� ������� A practical 
perfect� pseudo�random number generator� Man�

uscript�

���� Niederreiter� H� ������� The serial test for pseudorandom numbers generated by

the linear congruential method� Numerische Mathematik� Vol� ��� pp� ��&���

���� Niederreiter� H� ������� A pseudorandom vector generator based on �nite �eld

arithmetic� Mathematica Japonica� Vol� ��� pp� ���&����

���� Niederreiter� H� ������� Random Number Generation and Quasi�Monte Carlo Meth�

ods� volume �� of SIAM CBMS�NSF Regional Conference Series in Applied Mathe�

matics� SIAM� Philadelphia�

���� Niederreiter� H� ������� The multiple�recursive matrix method for pseudorandom

number generation� Finite Fields and their Applications� Vol� �� pp� �&���

���� Niederreiter� H� ������� New developments in uniform pseudorandom number and

vector generation� In H� Niederreiter and P� J��S� Shiue� editors� Monte Carlo and

Quasi�Monte Carlo Methods in Scienti�c Computing� number ��� in Lecture Notes

in Statistics� pp� ��&���� Springer�Verlag�

���� Niederreiter� H� ������� Pseudorandom vector generation by the multiple�recursive

matrix method� Mathematics of Computation� Vol� ��� No� ���� pp� ���&����

���� Owen� A� B� ������� Latin supercube sampling for very high dimensional simula�

tions� ACM Transactions of Modeling and Computer Simulation� Vol� �� No� �� To

appear�

���� Park� S� K� and K� W� Miller ������� Random number generators� Good ones are

hard to �nd� Communications of the ACM� Vol� ��� No� ��� pp� ����&�����

���� Payne� W� H�� J� R� Rabung and T� P� Bogyo ������� Coding the Lehmer pseudo�

random number generator� Communications of the ACM� Vol� ��� pp� ��&���

���� Percus� D� E� and M� Kalos ������� Random number generators for MIMD parallel

��



processors� Journal of Parallel and Distributed Computation� Vol� �� pp� ���&����

���� Press� W� H� and S� A� Teukolsky ������� Portable random number generators�

Computers in Physics� Vol� �� No� �� pp� ���&����

���� Rabin� M� O� ������� Probabilistic algorithms for primality testing� J Number

Theory� Vol� ��� pp� ���&����

���� Ripley� B� D� ������� Stochastic Simulation� Wiley� New York�

���� Ripley� B� D� ������� Thoughts on pseudorandom number generators� Journal of

Computational and Applied Mathematics� Vol� ��� pp� ���&����

���� Schrage� L� ������� A more portable fortran random number generator� ACM

Transactions on Mathematical Software� Vol� �� pp� ���&����

���� Stephens� M� S� ������� Tests based on EDF statistics� In R� B� D�Agostino and

M� S� Stephens� editors� Goodness�of�Fit Techniques� Marcel Dekker� New York and

Basel�

���� Stephens� M� S� ������� Tests for the uniform distribution� In R� B� D�Agostino and

M� S� Stephens� editors� Goodness�of�Fit Techniques� pp� ���&���� Marcel Dekker�

New York and Basel�

���� Sun Microsystems ������� Numerical Computations Guide� Document number

������������

���� Tausworthe� R� C� ������� Random numbers generated by linear recurrence modulo

two� Mathematics of Computation� Vol� ��� pp� ���&����

���� Teichroew� D� ������� A history of distribution sampling prior to the era of com�

puter and its relevance to simulation� Journal of the American Statistical Associa�

tion� Vol� ��� pp� ��&���

���� Tezuka� S� ������� Uniform Random Numbers
 Theory and Practice� Kluwer

Academic Publishers� Norwell� Mass�

���� Tezuka� S� and P� L�Ecuyer ������� E�cient and portable combined Tausworthe

random number generators� ACM Transactions on Modeling and Computer Simu�

lation� Vol� �� No� �� pp� ��&����

���� Tezuka� S�� P� L�Ecuyer and R� Couture ������� On the add�with�carry and

subtract�with�borrow random number generators� ACM Transactions of Modeling

��



and Computer Simulation� Vol� �� No� �� pp� ���&����

���� Tootill� J� P� R�� W� D� Robinson and D� J� Eagle ������� An asymptotically

random Tausworthe sequence� Journal of the ACM� Vol� ��� pp� ���&����

���� Vazirani� U� and V� Vazirani ������� E�cient and secure pseudo�random number

generation� In Proceedings of the ��th IEEE Symposium on Foundations of Computer

Science� pp� ���&����

���� Wang� D� and A� Compagner ������� On the use of reducible polynomials as

random number generators� Mathematics of Computation� Vol� ��� pp� ���&����

���� Wichmann� B� A� and I� D� Hill ������� An e�cient and portable pseudo�random

number generator� Applied Statistics� Vol� ��� pp� ���&���� See also corrections and

remarks in the same journal by Wichmann and Hill� Vol� �� ������ p� ���� McLeod

Vol� �� ������ pp� ���&���� Zeisel Vol� �� ������ p� ���

���� Wolfram� S� ������� The Mathematica Book� third edition� Wolfram Me�

dia�Cambridge University Press� Champaign� USA�

��


