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Simulation of Discontinuous
Systems

Preview

In this chapter, we shall discuss how discontinuous models can be han-
dled by the simulation software, and in particular by the numerical inte-
gration algorithm. Discontinuous models are extremely common in many
areas of engineering, e.g. to describe dry friction phenomena or impact be-
tween bodies in mechanical engineering, or to describe switching circuits
in electronics. In the first part of this chapter, we shall be dealing with the
numerical aspects of integrating across discontinuities. Two types of discon-
tinuities are introduced, time events and state events, that require different
treatment by the simulation software. In the second part of this chapter,
we shall discuss the modeling aspects of how discontinuities can be conve-
niently described by the user in an object–oriented manner, and what the
compiler needs to do to translate these object–oriented descriptions down
into event descriptions.

9.1 Introduction

As we have seen, all numerical integration algorithms used in today’s sim-
ulation programs are based, either explicitly or implicitly, on Taylor–Series
expansions. Simulation trajectories are always approximated by polynomi-
als or rational functions in the step size h around the current time tk.

This causes problems when dealing with discontinuous models, since
polynomials never exhibit discontinuities at all, and also rational functions
only exhibit occasional poles, but no discontinuities. Thus, if an integration
algorithm tries to integrate across a discontinuity, it will invariably be in
trouble.

Since the step size is finite, the integration algorithm doesn’t recognize
a discontinuity as such. It simply notices that the trajectory suddenly and
unexpectedly changes its behavior by showing symptoms of a very steep
gradient. Thus, the integration algorithm experiences the discontinuity as
the sudden appearance of a new eigenvalue far out to the left in the complex
plane. If the algorithm is step–size controlled, it will react to this obser-
vation by reducing the step–size in order to shrink the eigenvalue into the
asymptotic region of the (λ · h)–plane. Unfortunately, this new eigenvalue
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has the nasty habit of being evasive. Although the step size is made smaller
and smaller, the eigenvalue doesn’t allow itself to be captured. The inte-
gration algorithm thus experiences the discontinuity as a singular point of
infinite stiffness.

The algorithm finally gives up, as its step size is either reduced to the
smallest tolerable value, or because the step–size control is getting fooled.
We shall see why this can easily happen. As a consequence, the disconti-
nuity is passed through with a very small step size . . . and the spooky
phenomenon vanishes as fast as it appeared. The integration algorithm no-
tices that the funny eigenvalue has disappeared again, and consequently will
enhance the step size in the steps to come, until the appropriate optimal
step size has been regained. It is in this fashion that the step–size control
within the numerical integration algorithm is able to handle discontinuities
. . . and often, it does so with quite decent success.

Figure 9.1 illustrates how step–size control handles discontinuities.

t

log(h)

discontinuities

FIGURE 9.1. Discontinuity handling by step–size control.

Figure 9.1 shows the logarithm of the step size, h, plotted across simu-
lated time, t. As the integration algorithm approaches a discontinuity, the
step size is reduced until the algorithm judges the solution to be correct.
After the discontinuity has passed, the step size is cautiously increased
again until the next discontinuity is encountered. This is quite inefficient,
but often produces decent results.

It is this lucky by–product of the step–size control mechanism that al-
lowed the simulation software producers to get by for many years without
spending too much of a thought on the problem of discontinuity handling.
Unfortunately, things can go awfully awry as was demonstrated in [9.5].
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9.2 Basic Difficulties

In the seventies, one of the authors was a Ph.D. student at ETH Zürich
in Switzerland. He was working on a dissertation on exactly the topic of
this chapter [9.5]. One day, a colleague of his, who had difficulties with
his simulation program, came to see him. He had worked on his program
for weeks and weeks, and it simply didn’t want to run properly. He was
another Ph.D. student, working on the design of a velocity controller for
electrically driven locomotive engines [9.25]. When analyzing his friend’s
problem, he soon realized that his program exhibited difficulties that were
closely related to the way the numerical integration algorithm handled the
discontinuities in his model. Let us explain.

In Switzerland, electric train engines are operated by AC current with a
frequency of 162

3 Hz. The amplitude of the voltage available to the engine
is constant, thus velocity control cannot be achieved by simply modifying
the voltage. An Ohmic voltage divider is out of the question, since we want
to propel the engine, not heat it up. Variable transformers, on the other
hand, are too large and bulky.

Previously, train engines in Switzerland had been equipped with a thyris-
tor circuit controlling the firing angle of the thyristor. Figure 9.2 shows the
circuit diagram of the thyristor circuit.
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FIGURE 9.2. Circuit diagram of thyristor circuit for train speed control.
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The partly Ohmic partly inductive load represents the engine. This model
is simplified, but shall do to explain the difficulties with this approach. The
thyristor is a switch element. It can be “fired” (i.e., closed) by applying a
low voltage impulse to the thyristor gate. The thyristor then stays on until
the current through the thyristor passes through zero. At zero current, the
thyristor automatically opens again.

Figure 9.3 shows the current, iLoad, flowing through the load and the
voltage, vLoad across the load, assuming that the thyristor is repetitively
fired by an impulse applied once every period after a given firing angle α.
In the example, we chose α = 30o.
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FIGURE 9.3. Voltage and current of thyristor–controlled train engine.

The Ohmic power made available to the engine for conversion to me-
chanical power is approximately:

POhmic = vLoad · iLoad (9.1)

Evidently, it is possible to control the Ohmic power by changing the firing
angle α. For α = 0o, the full sine wave goes through, i.e., the power is
maximized. For α ≥ 180o, no power goes through at all.

This control strategy worked exceedingly well and almost everyone was
very happy . . . except for the electricity company of the Canton of Uri.
Let us explain.

Figure 9.4 shows the power spectrum of the thyristor–controlled voltage
signal.
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FIGURE 9.4. Power spectrum of thyristor–controlled voltage signal.

This was computed by simulating the above circuit across 1.5 seconds of
simulated time using 1200 communication points. A fast Fourier transform
(FFT) of POhmic was then computed. Figure 9.4 shows the real part of the
low frequency end of that spectrum plotted across frequency.

Roughly 17% of the power is DC power, 30% are at the base frequency,
another 30% are at the 2nd harmonic, roughly 15% are at the 3rd harmonic,
and 4% are at the 4th harmonic.

The 3rd harmonic thus carries a substantial percentage of the overall
power of the signal. Unfortunately, the 3rd harmonic happens to be lo-
cated at 50 Hz, i.e., precisely at the frequency, with which the electric
power company delivers electric power to the households in Switzerland.
It so happened that whenever one of these trains (usually equipped with
two engines) drove up the St.Gotthard mountain, the electric counters in
households located near the rails were reset to zero.

Next, the train engineers tried burst control . Figure 9.5 shows the circuit
diagram of a burst–controlled engine.

Figure 9.6 shows the voltage across and current through the train engine
when using burst control. The high–voltage circuitry is very similar to the
one used in the previous approach. This time, we use two thyristors with
a common gate control logic. However, the gate control of the thyristor
now works differently. Rather than letting through a certain percentage of
every period, the burst–controlled thyristor fires constantly during a certain
number of periods, and then stops firing for the remainder of the burst.

It was decided to use bursts of eight periods. Consequently, the burst
frequency is one eighth of the line frequency, i.e., 2 1

12 Hz. Out of these
eight periods, a certain number of periods is being let through, and the
remainder is stopped. In Fig.9.6, five out of every eight periods are let
through. Evidently, engines using this speed control strategy cannot operate
at an arbitrary percentage of the full power, but only at 1

8

th, or 2
8

th, or 3
8

th,
etc. of the full power.

The advantages of this simple solution were twofold. On the one hand,
it solved the problem of resetting the electric counters, since the power
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FIGURE 9.5. Circuit diagram of thyristor circuit for burst control.

spectrum no longer contains a significant amount of power at 50 Hz, and
secondly, it was very cheap, since the (expensive) high–voltage circuitry
needed very little modification. Only the (comparatively inexpensive) low–
voltage circuitry needed to be replaced.

These circuits were installed in the trains that served the northern shore
of Lake Zürich, on the line Zürich–Meilen–Rapperswil, and were used there
for a number of years. When the train pulled out of the station, it operated
during one burst (about 0.5 seconds) at 1

8

th of full power, then during the

next burst at 2
8

th, etc. These trains weren’t able to accelerate smoothly.
The speed changed abruptly, which the customers felt noticeably in their
stomachs. It just wasn’t very comfortable.

Thus, our colleague had been asked to come up with something better.
He designed the circuitry shown in Fig.9.7.

This time, the engine is represented by something that drains current out
of the net, i.e., as a current source. The representation is not accurate, but
it is good enough for the task at hand. Also, the line frequency has been
normalized to ω = 2πf = 1 sec−1, so that the same circuit would also work
for other countries with different line frequencies. The impedance values
have been adjusted accordingly.
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FIGURE 9.6. Voltage and current of burst–controlled train engine.
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FIGURE 9.7. Circuit diagram of SCR circuit for train speed control.

The gate control logic is also shown on Fig.9.7. The line current, iL, is
controlled in such a way that it always remains in the vicinity of:

Y (t) =
15 · 106

uL
sin ωt (9.2)

For Az = 0.0, the line current, iL, grows rapidly until it crosses (Y + BT )
in the positive direction. At that moment, Az assumes a value of Az = 1.0,
and iL decays quickly again until it reaches (Y − BT ), where Az takes a
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value of AZ = 0.0 as before.

BT = 200.0 Amps (9.3)

is the allowed tolerance around Y (t), within which iL is supposed to oper-
ate.

Figure 9.8 shows two signals of this circuit during the first half–period,
namely the filter voltage uF within the control loop, and the load voltage,
uz.
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FIGURE 9.8. Filter and load voltage in SCR–controlled train engine.

If a numerical integration algorithm could fall into depression, this might
be as good a reason for it to do so as any. What nightmarish curves to in-
tegrate over (!) The filter voltage, uF , after an initial transitory phase,
essentially follows a sine wave. It toggles back and forth between the sine
wave itself and the same curve with a constant DC value of about 300 Volts
superposed. The load voltage, uz, is regulated to stay essentially at a con-
stant value, in the given example somewhere around 1184 Volts. The power
spectrum of the load is mostly DC, except for a small percentage located
at frequencies much higher than 50 Hz.

However, these are not the results that our colleague had found, when
he came to discuss his simulation results. Figure 9.9 presents the results
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that he had obtained.

FIGURE 9.9. Filter voltage in SCR–controlled train engine.

This is an old plot that we scanned in from [9.5]. We were unable to
reproduce precisely the results that our colleague had obtained, since they
had been produced by an old simulation software, CSMP–III, that we don’t
have around any longer. It was a software specifically designed for use on
IBM mainframes, machines that have been moth–balled long ago.

The graph shows the filter voltage, uF , plotted over time together with
some other signals. The reader notices that the curve looks similar to the
newly obtained one, except during the time interval from about 8 msec to
24 msec, when the filter voltage on the old plot didn’t exhibit the high
frequency oscillation.

The simulation took forever to run. For this reason, we recommended to
our friend to also plot the step size, h, used as a function of simulated time.
It is shown in Figure 9.10.

The step size varies a lot over time, as the step–size control algorithm is
being used to catch the discontinuities. However, it is quite evident from the
plot that the simulation uses consistently a very small step size during the
period from 8 msec to 24 msec, i.e., the period, during which the simulation
results are incorrect. The simulation exhibits creeping behavior.

Somehow, the gate control had gotten stuck. The numerical integration
algorithm was aware of that fact and tried to fix it by using very small step
sizes, but was unable to do so. Thus, using the step–size control mechanism
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FIGURE 9.10. Step size in SCR–controlled train engine.

for handling discontinuities evidently is not only inefficient, it can also be
dangerous. Notice that the simulation program did not produce any error
message at all.

How can these results be explained? The step–size control mechanism
of any step–size–controlled integration algorithm is based on an error esti-
mate. This error estimate, for an nth–order algorithm, is something like:

ε = c · hn+1 (9.4)

Consequently, as we reduce the step size more and more, the error esti-
mate will become smaller and smaller, irrespective of whether the integra-
tion makes any sense or not. Practically speaking, as we reduce the step
size, the higher–order terms in the Taylor–Series expansion become less
and less important until, finally, every integration algorithm behaves like
Euler. Explicit algorithms will behave like forward Euler, whereas implicit
algorithms may behave either like forward Euler or like backward Euler.

If we try to integrate across a discontinuity, the two formulae that are
compared to each other for the purpose of step–size control, will eventually
both behave like Euler, and at that time, they will agree on their “solution”
. . . not necessarily the correct solution, mind you, but at least a solution
they both came up with. If two numerical codes agree on a solution to a
problem, that may indeed indicate that the solution is correct . . . but it
may just as well simply mean that the two codes employ the same (possibly
flawed) algorithm. Therefore, if two different numerical codes miraculously
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agree on a solution to almost machine resolution, we are usually much more
suspicious of foul play than if their agreement is less spectacular.

Clearly, in the case of Fig.9.9, this is what happened. During some pe-
riods of time, the two algorithms agreed happily on the same –evidently
quite wrong– solution. What happened was the following. The program
used a step–size controlled explicit single–step algorithm, some variant of
a fourth–order Runge–Kutta method, more precisely, it used the Runge–
Kutta–Simpson method described in H3.16, a rather dubious method, as
we now understand.

When the solution approached the threshold, the solution managed to
switch several times back and forth within a single integration step. If the
number of switchings happened to be odd, the step ended with the other
model, and integration proceeded as desired. On the other hand, if the
number of switchings was even, the step ended in the same switch position
it had started out with, and the algorithm went through the same switching
immediately again during the next step. This explains why the solution was
creeping along the switching boundary, unable to leave it.

Abusing the step–size control for locating discontinuities is always quite
inefficient. The reason is that the algorithm doesn’t know, and cannot
know, that a discontinuity is taking place. It must therefore assume the
worst, namely that the system is highly nonlinear with rapidly changing
eigenvalues of its Jacobian matrix. Consequently, the algorithm has to be
cautious in increasing its step size again after the discontinuity has been
cleared in order to avoid potential numerical instability problems that may
be caused by a hyperactive step–size adjustment strategy. This is docu-
mented in Fig.9.1, where the step size remains constantly at too small a
value since the next discontinuity is always encountered before the step size
could regain its optimal value.

Abusing the step–size control for locating discontinuities can sometimes
lead to incorrect results that may be difficult to identify as such, i.e., in-
correct results may be produced and go unnoticed. The above application
is a good example of that.

We evidently need something better.

9.3 Time Events

In many cases, we do know some time in advance when a discontinuity will
take place. For example, in the case of the original thyristor gate control
logic, we know that the thyristor will close exactly αo after the start of each
period. It is just a question of providing this information to the integration
algorithm. Discontinuities will from now on be called discrete events , and if
we know when such an event will take place, we can schedule it to happen
by entering the event time and the event type into a calendar of forthcoming
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events .
The event calendar is a linearly–linked list of events arranged in the order

of increasing times of occurrence, thus the first event in the event calendar
is always the next event . In the case of multiple simultaneous events, addi-
tional tie–breaking rules can be specified to decide which event comes first.
The sequence may matter. For example, if a car arrives at a traffic light
that simultaneously switches to red, it may make a big difference whether
the simulation program decides that the car arrived first, or whether it de-
cides that the light changed first. Therefore, tie–breaking rules should be
implemented, and should be considered carefully.

The next event time is considered by the step–size control of the inte-
gration algorithm exactly like a communication or readout point. If the
integration algorithm usually will adjust the step size in the vicinity of a
readout point in order to hit the point accurately (mostly done in the case
of single–step algorithms), then so should it treat the next event time. If
the next event time falls in between the current time and the time when
the next step should ordinarily end, the step size is reduced in order not to
miss the communication point. If the next event can be reached by increas-
ing the next step by not more than 10%, then this is justifiable in order
to prevent a very short step thereafter. On the other hand, if the integra-
tion algorithm interpolates in order to visit the next communication point
(mostly done in multi–step integration by use of the Nordsieck vector),
then it should do the same in order to accommodate the next event time.

Notice that no discontinuity takes places while the event is being located.
The discontinuity is not directly coded into the model, only the condition
of its occurrence is. Thus, the trajectories seen by the integration algo-
rithm are perfectly continuous, and the integration algorithm therefore has
nothing to worry about.

Once the next event time has been located, the continuous simulation
comes to a halt, and a discrete event section of the simulation program is
visited that implements the consequences of the event taking place, i.e.,
sets the state variables to their new values, changes the current values of
input functions, etc. It is this section that implements the discontinuities.
A simulation program may contain many different discrete event sections,
one for every event type.

The end result of event handling can be considered a new set of initial
conditions, from which a completely new integration can start. Thus, a sim-
ulation run across a discontinuous model can be interpreted as a sequence
of distinct strictly continuous simulation runs, separated by discrete events.

The recipe is so trivial that one would assume that all serious continu-
ous system simulation languages (CSSLs) would meanwhile have adopted
it . . . or faced the destiny of natural attrition. However, due to the soi–
disant “event handling” capabilities of the step–size control algorithms
themselves, many simulation software designers never bothered to look into
the issue . . . and so far they got away with it. Well, hopefully this book
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will finally change all of this.
Let us consider once more the thyristor–controlled train engine model.

The gate needs to be closed after αo. Thus, the time of the first time event
that closes the gate takes place at:

tperiod =
1

2πf
(9.5a)

tevent =
α

360
· tperiod (9.5b)

Since we know from the beginning of the simulation, when this event is
going to take place, the event can be scheduled in the initialization portion
of the simulation program.

Thus, the initialization section of the simulation program could contain
the statements (in pseudo–code):

Gate = open
schedule CloseGate at t event

The event description section of the simulation program would then close
the gate, and schedule the next gate closing event one period later:

Gate = closed
schedule CloseGate at t + t period

The variable Gate can be referred to from within the continuous–time
simulation model. This is not dangerous, since discrete states behave ex-
actly like parameters or constants as far as the integration algorithm is
concerned. They never change their values while the integration is pro-
ceeding. They only change their values in between segments of numerical
integration, i.e., at event times.

We haven’t talked yet about the gate opening event. We cannot handle
the gate opening event in the same fashion as the gate closing event, because
we don’t know beforehand, when the gate will open. We only know, under
what condition this will be the case, namely when the current that flows
through the thyristor becomes negative.

The gate opening event will be discussed in due course.

9.4 Simulation of Sampled–data Systems

A typical application of time events is the simulation of sampled–data con-
trol systems. A continuous–time plant is being controlled by one or several
discrete–time controllers that may operate on the same or on different fre-
quencies (multi–rate sampling).

A typical application is shown in Fig.9.11.
A robot arm is to be controlled by one or several computers. The inner-

most control loop serves the purposes of stabilization, linearization, and
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FIGURE 9.11. Robot control.

decoupling. The purpose of this controller is to make the larger control
issues easier to tackle. The signal needs to be sampled in short time in-
tervals, T1, in order to keep the control loop stable. This first controller is
then added to the plant, i.e., the next higher–level controller considers the
innermost control loop part of the plant to be controlled. Its purpose is to
translate a desired path into control signals for the actuators of the motors
that drive the individual joints of the robot arm. This controller solves the
dynamic control problem. It can operate at a slightly slower sampling rate,
T2, than the stabilizing controller. The next higher–level controller solves
the static control problem. It translates descriptions of individual unit op-
erations into desired end–effector positions expressed as functions of time.
It again can operate at a somewhat reduced sampling rate, T3. Finally, the
task planner decomposes complex tasks into series of unit operations that
it then submits to the path planner for execution. The task planner can
operate at a considerably slower sampling rate, T4. Thus:

T1 ≤ T2 ≤ T3 � T4 (9.6)

Figure 9.11 is somewhat stylized. There are multiple signals to be fed back,
and after decoupling, there may be multiple control loops, one for each
joint.

The simulation program will contain a single dynamic block describing
the motion of the robot arm itself together with its motors and drive trains
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in between events. The program also contains four separate discrete blocks,
one for each controller, that are executed at different, yet previously known,
points in time. All four discrete controllers are probably scheduled to be
executed for the first time during initialization of the simulation. Thus, we
are confronted with four simultaneous events, and it will be important that
the task planner is executed first, then the path planner, then the trajectory
planner, and finally the stabilizer, since the inner control loops need the set
points from the outer control loops to function properly. Each controller
will, as part of its event description, schedule the next execution of itself to
occur Ti time units into the future. At a later time, it is probably better to
resolve ties by assigning a higher priority to the inner control loops, since
they are more time–critical.

At any point in time, there are thus scheduled four different time events
to take place at different time instants in the future. These are maintained
by the so–called event queue, which is usually implemented as a linear
linked list with pointers back and forth, in which future events are placed
in ascending order of execution time using additional rules for tie breaking.

9.5 State Events

Frequently, the time of occurrence of a discontinuity is not known in ad-
vance. For example in the thyristor circuit, it is not known in advance
when the thyristor will open again. All we know is that it will open when
the current passes through zero. Thus, we know the event condition, rather
than the event time, specified in terms of a function of continuously varying
simulation variables.

Event conditions are usually specified implicitly, i.e., in the form of zero–
crossing functions. A state event occurs when a variable associated with it
crosses through zero. Multiple zero–crossing functions may be associated
with a single event type.

The zero–crossing functions must be tested continuously during simula-
tion. Thus, they are part of the continuous system simulation environment.
To this end, many of the numerical ODE solvers currently on the market of-
fer so–called root solvers. Variables to be tested for zero crossing are placed
in a vector. These variables are monitored constantly during simulation,
and if one of them passes through zero, an iteration is started to determine
the zero–crossing time with a pre–specified precision.

Since we don’t know when event conditions become true, we cannot
reduce the step size to hit them accurately. Instead, we need some sort of
iteration (or interpolation) mechanism to locate the event time. Thus, when
an event condition is alerted during the execution of an integration step, it
influences the step–size control mechanism of the integration algorithm by
forcing the continuous simulation to iterate (or interpolate) to the earliest



412 Chapter 9. Simulation of Discontinuous Systems

zero–crossing within the current integration step.

9.5.1 Multiple Zero Crossings

Figure 9.12 illustrates the iteration of event conditions, assuming that mul-
tiple zero crossings have taken place within a single integration step.
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FIGURE 9.12. Iteration of multiple event conditions using Regula Falsi.

Figure 9.12 shows three different zero–crossing functions, f1, f2, and f3.
At time tk = 1.0, f1 is positive, whereas f2 and f3 are negative. We perform
an integration step of length h = 3.0. At time tk+1 = 4.0, f1 is still positive,
whereas both f2 and f3 are now also positive, i.e., two zero crossings have
taken place within this integration step.

We connect the end points of each zero–crossing function, determine,
where these straight lines cross through zero, and choose the smallest of
these time instants as the next time point. Mathematically:

tnext = min
∀i

[
fi(tk+1) · tk − fi(tk) · tk+1

fi(tk+1) − fi(tk)

]
(9.7)

where i stretches over all functions with a zero crossing within the interval.
Thus, we repeat the last time step with a step size of h = tnext − tk.

If no zero crossing has taken place during the reduced step from tk to
tnext, we accept tnext as tk and repeat the algorithm using the remainder
of the interval.
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If more than one zero crossing has taken place during the reduced inter-
val, we reduce tk+1 to tnext, and apply the same algorithm once more to
the so reduced interval.

If exactly one zero crossing has taken place during the reduced interval,
we have simplified the problem to that of finding the zero crossing of a single
zero–crossing function, for which a number of algorithms can be used that
shall be presented in due course.

The algorithm converges always, as the interval is reduced during each
iteration step. Unfortunately, it is not possible to estimate the number
of iteration steps needed until convergence has been reached using this
method. Convergence can indeed be quite slow.

Another algorithm that is sometimes used instead is the Golden Section
method. The Golden Section method has the advantage that, in each iter-
ation step, the interval is reduced by a fixed ratio. Thus, the interval will
soon become quite small. This is how it works.

Already the ancient Greeks had discovered that there exists a special
rectangle with the property that if one cuts off a square, the remaining
rectangle has the same proportions as the original one. This is shown in
Fig.9.13.

1

x

x

1-x

FIGURE 9.13. The Golden Section.

Thus:
x

1
=

1 − x

x
(9.8)

which leads to x = 0.618.
This idea can be applied to the problem of isolating individual zero–

crossing functions. The method is shown in Fig.9.14.
Once the iteration algorithm has been triggered by multiple zero cross-

ings within a single step, the interval is subdivided by calculating two
partial steps, one of length (1 − x) · h, the other of length x · h. Both of
these partial steps start at time tk. In this way, the interval is subdivided
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FIGURE 9.14. Iteration of multiple event conditions using Golden Section.

into three subintervals.
If there is no zero crossing within the leftmost of these three subintervals,

then that subinterval can be thrown away, i.e. tk is updated to tk+(1−x)·h,
and a new partial step is computed, as shown in the lower part of Fig.9.14.

If there are multiple zero crossings within the leftmost of the three subin-
tervals, then the rightmost subinterval is discarded, tk+1 is updated to
tk + x · h, and a new partial step is computed, always keeping the propor-
tions of the three subintervals the same.

If there is exactly one zero crossing within the leftmost of the four subin-
tervals, then tk+1 is updated to tk+(1−x)·h, and we continue with any one
of the algorithms for finding a single zero crossing within a given interval.

The Golden Section algorithm can be slightly improved using a Fibonacci
Series instead, but this is hardly ever worth it. The Fibonacci Series shrinks
the interval slightly faster than the Golden Section technique, but it can
be shown that the Fibonacci Series is always less than one iteration step
ahead of Golden Section, and it is only better at all, if we decide up front
how many iteration steps we are going to perform altogether.

9.5.2 Single Zero Crossings, Single–step Algorithms

Of course, any of the techniques presented so far for isolating individual
zero–crossing functions can also be used to find the zero crossings them-
selves. Yet, this may be inefficient, as all of these techniques offer only
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linear convergence speed.
All simulation variables in a state–space model can ultimately be ex-

pressed in terms of state variables and inputs only. This also applies to
the zero–crossing functions. Thus, we could use, in the determination of
the zero crossings, not only the values of the zero–crossing functions them-
selves at different points in time, but also the values of their derivatives.

A first algorithm that exploits this possibility is the well-known Newton
iteration algorithm that we have used so often already in this book, albeit
for different purposes. Figure 9.15 documents the approach.
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FIGURE 9.15. Iteration on single zero–crossing functions using Newton iteration.

Once a zero–crossing function has been isolated, we can use either tk or
tk+1 as the starting point of a Newton iteration.

The good news about Newton iteration is that the algorithm exhibits a
quadratic convergence speed. Thus, Newton iteration converges much more
rapidly than either Regula Falsi or Golden Section, if the algorithm con-
verges at all.

Unfortunately, and contrary to the previously introduced algorithms, the
Newton iteration algorithm does not always converge. In the given example,
if we start at tk+1, the algorithm converges quickly, whereas if we start at tk,
already the next step takes the algorithm far outside the interval [tk, tk+1].

Furthermore, it may not be easy to determine upfront, whether or not
the algorithm will converge on a given example. For these reasons, Newton
iteration may not be the method of choice to be used as a root solver.

A better approach may be to use the derivative values at both ends of
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the interval [tk, tk+1] simultaneously. Since we have access to four pieces
of information: fk, dfk/dt, fk+1, and dfk+1/dt, we can lay a third-order
polynomial through these four pieces of information and solve for its roots.

The interpolation polynomial can thus be written as:

p(t) = a · t3 + b · t2 + c · t + d (9.9)

with the derivative:
ṗ(t) = 3a · t2 + 2b · t + c (9.10)

Thus, we can write the four pieces of information as follows:

p(tk) = a · t3k + b · t2k + c · tk + d = fk (9.11a)

p(tk+1) = a · t3k+1 + b · t2k+1 + c · tk+1 + d = fk+1 (9.11b)

ṗ(tk) = 3a · t2k + 2b · tk + c = ḟk = hk (9.11c)

ṗ(tk+1) = 3a · t2k+1 + 2b · tk+1 + c = ḟk+1 = hk+1 (9.11d)

which can be written in matrix/vector form as:⎛
⎜⎜⎝

fk

fk+1

hk

hk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

t3k t2k tk 1
t3k+1 t2k+1 tk+1 1
3t2k 2tk 1 0

3t2k+1 2tk+1 1 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ (9.12)

Equation 9.12 can then be solved for the unknown coefficients a, b, c, and
d.

Figure 9.16 illustrates the method.
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FIGURE 9.16. Iteration on single zero–crossing functions using cubic interpola-
tion.

The method converges even faster than Newton iteration, as it exhibits
cubic convergence speed. Furthermore, it is guaranteed to converge, just like
Regula Falsi and Golden Section.
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The cubic polynomial must have at least one real solution within the
interval [tk, tk+1]. Possibly there are three real solutions within the interval,
in which case any one of them could be used as the next evaluation time,
tnext.

Yet, we may be able to improve on that method even a little further. One
drawback of the proposed technique is that we need to solve for the roots
of a cubic polynomial to determine a real root that lies inside the interval
[tk, tk+1].

Instead of fitting a cubic polynomial as proposed above, we could also
fit an inverse cubic polynomial of the type:

t(p) = a1 · p3 + b1 · p2 + c1 · p + d1 (9.13)

which can simply be evaluated for p = 0. Thus, the next evaluation time
can be computed as:

tnext = t(p = 0) = d1 (9.14)

The following four pieces of information are at our disposal:

tk = t(fk) (9.15a)
tk+1 = t(fk+1) (9.15b)

uk =
dt(fk)

df
=

1
hk

(9.15c)

uk+1 =
dt(fk+1)

df
=

1
hk+1

(9.15d)

We know that:

tk = a1 · f3
k + b1 · f2

k + c1 · fk + d1 (9.16a)

tk+1 = a1 · f3
k+1 + b1 · f2

k+1 + c1 · fk+1 + d1 (9.16b)

uk = 3a1 · f2
k + 2b1 · fk + c1 (9.16c)

uk+1 = 3a1 · f2
k+1 + 2b1 · fk+1 + c1 (9.16d)

or in matrix form:⎛
⎜⎜⎝

tk
tk+1

uk

uk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f3
k f2

k fk 1
f3

k+1 f2
k+1 fk+1 1

3f2
k 2fk 1 0

3f2
k+1 2fk+1 1 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a1

b1

c1

d1

⎞
⎟⎟⎠ (9.17)

which could be solved directly for the four unknowns by means of Gaussian
elimination.

Yet, we can do even better. We shall use inverse Hermite interpolation.
The scheme is called inverse interpolation, since we fit the inverse function
with the polynomial. The polynomials that we shall use to span our base
are Hermite polynomials.
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We shall introduce a new variable φ of the type:

φ = coef1 · f + coef2 (9.18)

such that:

t f φ

tk fk 0.0
tk+1 fk+1 1.0
tnext 0.0 φ̂

TABLE 9.1. Variable transformation.

We find that:

coef1 =
1

fk+1 − fk
(9.19a)

coef2 = − fk

fk+1 − fk
= φ̂ (9.19b)

We now construct four auxiliary polynomials in φ:

pi(φ) = αi · φ3 + βi · φ2 + γi · φ + δi (9.20a)
dpi(φ)

dφ
= 3αi · φ2 + 2βi · φ + γi (9.20b)

such that:

p1(0) = 1 ; p1(1) = 0 ;
dp1(0)

dφ
= 0 ;

dp1(1)
dφ

= 0 (9.21a)

p2(0) = 0 ; p2(1) = 1 ;
dp2(0)

dφ
= 0 ;

dp2(1)
dφ

= 0 (9.21b)

p3(0) = 0 ; p3(1) = 0 ;
dp3(0)

dφ
= 1 ;

dp3(1)
dφ

= 0 (9.21c)

p4(0) = 0 ; p4(1) = 0 ;
dp4(0)

dφ
= 0 ;

dp4(1)
dφ

= 1 (9.21d)

It is easy to verify that these polynomials are:

p1(φ) = 2φ3 − 3φ2 + 1 (9.22a)

p2(φ) = −2φ3 + 3φ2 (9.22b)

p3(φ) = φ3 − 2φ2 + φ (9.22c)

p4(φ) = φ3 − φ2 (9.22d)

The inverse Hermite interpolation polynomial:

p(φ) = a2 · φ3 + b2 · φ2 + c2 · φ + d2 (9.23)
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now expressed as a function of φ rather than of f , can be written in these
auxiliary polynomials as:

p(φ) = tk · p1(φ) + tk+1 · p2(φ) + sk · p3(φ) + sk+1 · p4(φ) (9.24)

where:

sk =
dtk
dφ

=
1

dφk/dt
=

1
coef1 · (dfk/dt)

=
fk+1 − fk

hk
(9.25a)

sk+1 =
fk+1 − fk

hk+1
(9.25b)

In order to obtain the desired zero–crossing time, tnext, we simply evaluate
Eq.(9.24) at φ = φ̂.

Figure 9.17 illustrates the method.
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FIGURE 9.17. Iteration on single zero–crossing functions using inverse cubic
interpolation.

Inverse Hermite interpolation is certainly more elegant than direct cubic
interpolation. Unfortunately, the simplification in the computation came
at a dire price, as we lost our guaranteed convergence. We can no longer
guarantee that the solution is to be found within the interval [tk, tk+1], and
in the given example, this indeed is not the case.

Notice that all of these techniques were used only to determine the next
time instant, tnext, for evaluating the zero–crossing function. The actual
computation of the zero–crossing function is done by means of numerical
integration, i.e., using the same higher–order numerical integration scheme
used throughout the simulation. Thus, no approximation accuracy is lost
in the process.

9.5.3 Single Zero Crossings, Multi–step Algorithms

In the case of multi–step algorithms, we may be able to do even better
[9.3]. At the end of the step that puts the event conditions on alert, i.e., at
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time tk+1, we have the Nordsieck vector available. Thus, we can write:

F(ĥ) =Fi(tnext) = Fi(tk+1) + ĥ
dFi(tk+1)

dt
+

ĥ2

2
d2Fi(tk+1)

dt2

+
ĥ3

6
d3Fi(tk+1)

dt3
+ · · · = 0.0 (9.26)

This is a function in the unknown ĥ that can be solved by Newton iteration.
We set:

ĥ0 = 0.5 · (tk − tk+1) (9.27)

and iterate:

ĥ�+1 = ĥ� − F(ĥ�)

H(ĥ�)
(9.28)

where:

H(ĥ) =
dF(ĥ)

dĥ
=

dFi(tk+1)
dt

+ ĥ
d2Fi(tk+1)

dt2
+

ĥ2

2
d3Fi(tk+1)

dt3
+ . . . (9.29)

Using this technique, we can determine the time of the zero–crossing in a
single step with the same accuracy as the integration itself. However, we
have the Nordsieck vector only available for state variables, not for algebraic
variables. Therefore, it is useful to treat event conditions as additional state
variables, by writing:

xn+i = Fi(x) (9.30a)

ẋn+i =
dFi(x)

dt
(9.30b)

For the benefit of improved accuracy, it is probably a good idea to keep both
equations in the model rather than integrating Eq.(9.30b) into Eq.(9.30a).
However, the variables will be treated like additional state variables, and
will be maintained by the integration algorithm in its data base of old
values. In this way, it is possible to compute the Nordsieck vector for event
conditions whenever needed.

We shall need to compute Eq.(9.30b) anyway, since otherwise, we can-
not conveniently apply an iteration procedure other than Regula Falsi or
Golden Section.

9.5.4 Non–essential State Events

Sometimes, it may be a good idea to even add Eq.(9.30b) as a non–essential
event condition to the set of event conditions. Figure 9.18 illustrates the
reason for this suggestion.

f1 is an essential event condition, whereas f2 = ḟ1 is a non–essential
event condition. A non–essential event condition is an event condition that
doesn’t have an event action associated with it.
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FIGURE 9.18. Non–essential event conditions.

Had we only formulated f1 as a zero–crossing function, the event at
time t = 1.55 would have been missed, because the essential zero–crossing
function, f1, crosses through zero twice within the single integration step
from time tk = 1.0 to time tk+1 = 4.0.

Adding the non–essential zero–crossing function, f2, to the set of zero–
crossing functions solves the dilemma, because f2 exhibits a zero crossing,
whenever f1 goes through an extremum.

During the iteration of the non–essential event condition, f2, the algo-
rithm will discover that also f1 crosses through zero, and will iterate on
that zero crossing first, as it happens earlier.

9.6 Consistent Initial Conditions

Figure 9.19 shows a piecewise linear function with three segments. In the
“left” region, y = a1 · x + b1, in the “center” region, y = a2 · x + b2, and in
the “right” region, y = a3 · x + b3.

Traditionally, we would describe such a function using an if–statement:
if x < x1 then y = a1 · x + b1

else if x < x2 then y = a2 · x + b2
else y = a3 · x + b3;

However, we know meanwhile that, if the variable y is used in a state–space
model, this will force the step–size control mechanism to reduce the step



422 Chapter 9. Simulation of Discontinuous Systems

x

y

y = a1 · x + b1

y = a2 · x + b2

y = a3 · x + b3

x1 x2

left center right

FIGURE 9.19. Discontinuous function.

size, whenever x crosses through one of the two thresholds, x1 or x2, within
an integration step.

Thus, we may choose to program the function using three different mod-
els, one for each region, with appropriate zero–crossing functions describing
the conditions for switching from one region to the next.

In pseudo–code, we might write:
case region

left : y = a1 · x + b1;
schedule Center when x − x1 == 0;

center : y = a2 · x + b2;
schedule Left when x − x1 == 0;
schedule Right when x − x2 == 0;

right : y = a3 · x + b3;
schedule Center when x − x2 == 0;

end;

together with the three discrete event descriptions:
event Left

region := left;
end Left;

event Center
region := center;

end Center;

event Right
region := right;

end Right;

The schedule–statements are used in this pseudo–code to describe zero–
crossing functions. The variable region is not a continuously changing vari-
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able. From the point of view of the continuous simulation, it assumes the
role of a parameter. Its value can only change within a discrete event de-
scription.

This should work except for one little detail. The variable region is a
discrete state variable that needs to be initialized. Somewhere in the initial
region of the simulation program, we would need a statement such as:

if x < x1 then region := left;

else if x < x2 then region := center;
else region := right;

Will this code always work? Unfortunately, the answer to that question
is no. One problem that we haven’t considered yet is that x may reach one
of the thresholds without actually crossing through it.

Let us assume that:

x(t) =
x2 − x1

2
· sin(t) +

x1 + x2

2
(9.31)

In this case, x will always remain in the center region. It will only just
reach the two thresholds, x1 and x2, every once in a while.

The event description, as programmed above, would make the model
switch regions, each time a threshold is reached. One of the more diffi-
cult problems associated with the simulation of discontinuous functions is
to know, in which region the model operates after the event has been pro-
cessed, i.e., to find a consistent set of initial conditions after event handling.

The problem is by no means an academic one. Consider the case of a set
of bowling balls resting on a guide rail. They are all in contact with each
other. A new ball arrives with velocity v that hits the first of these balls.
We all know what will happen: the new ball will come to rest at once, and
the last of the previously resting balls will move away with the same speed
v. Yet, convincing a simulation program that this is what must happen is
anything but trivial.

One way to deal with this problem is to define a narrow band around
each of the zero–crossing functions. The event is detected when the function
crosses through zero, at which time the event is being processed. Yet, before
starting with the next continuous–time simulation segment, trial steps are
taken to determine whether or not the zero-crossing functions will leave the
bands placed around the zero crossing as expected. It happens frequently
that one event immediately triggers other events that change the condition
on the original event again.

An example of this problem might be a robot arm with sticking fric-
tion in each of its articulations [9.11]. Once the force in an articulation
overcomes sticking friction, the articulation starts to move. Yet, this imme-
diately changes the forces in neighboring articulations. As a consequence,
another neighboring articulation may come out of sticking friction also,
which changes the forces in the articulations once again, with the possible
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effect that the original articulation returns back to its sticking region.
Modeling this situation correctly is anything but trivial. Let us attempt

this task. Figure 9.20 shows a typical friction model with sticking friction,
dry (Coulomb) friction, and viscous friction.

v

F(v)

Fd

Fs

-Fs

-Fd

FIGURE 9.20. Friction characteristic.

There are three different regions (modes) of this nonlinear model: a back-
ward mode, a sticking mode, and a forward mode. While the velocity of
the articulation is zero, the articulation operates in its sticking mode. It
will remain in this mode, until the sum of forces applied to this articula-
tion becomes either larger than the positive sticking friction force, Fs, or
smaller than the negative sticking friction force, −Fs. When this happens,
the articulation comes out of sticking friction, and changes its operational
mode to moving either forward or backward, in which the friction force is
computed as the sum of a dry (Coulomb) friction component, ±Fd, and a
linear (viscous) friction component. Once the model operates in one of its
two moving modes, it will remain in that mode, until the velocity of the
articulation crosses through zero, at which time the model will return to
its sticking mode.

Yet, this model is still too simple, as it does not account for the possibility
that the result of coming out of sticking friction might be to return to stick-
ing friction immediately again, after having freed up another articulation
in the process.

A more complete model is shown in Figure 9.21, which exhibits a state
transition diagram of the friction characteristic.

The new model possesses six different modes. Beside from the three
modes used in the earlier model, we also have a Start Forward mode, and
a Start Backward mode. If the sum of all forces applied to the articulation
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FIGURE 9.21. State transition diagram of friction characteristic.

is larger than zero, the articulation leaves the sticking mode. However, it
doesn’t proceed immediately to the Forward mode yet. Instead, it enters a
transitory mode, called the Start Forward mode. As the sum of all forces is
larger than zero, also the acceleration, in accordance with Newton’s law, is
now positive. However, the velocity is initially still zero. It will only become
positive through integration, as time proceeds forward.

However, before integration starts again, the new forces are propagated
to the neighboring bodies, possibly taking some other articulations also out
of their sticking mode. As the condition for mode switching is programmed
in the form of state conditions, rather than time events, integration needs
to start, in order for this propagation to take place.

As integration starts, multiple zero–crossing functions may be triggered
during the first new integration step. One would be to take the original
articulation from the Start Forward mode to the Forward mode. Another
may be to take a neighboring articulation from the Sticking mode to the
Start Forward mode.

The model must make sure that the latter event takes precedence over the
former. This is accomplished by recognizing the velocity as being positive
only, after the velocity has become larger than some fudge factor v > ε,
which implements the narrow band around the zero crossings that we wrote
about earlier.

The Start mode implements the initialization of the discrete state vari-
able. The discrete state variable starts out in its Start mode, from where it
proceeds immediately to one of the other modes, depending on the initial
velocity.

9.7 Object–oriented Descriptions of Discontinuities

What a mess have we created here! In order to protect the integration
algorithm from having to integrate across discontinuities, we introduced
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two new modeling elements: time events and state events, that make the
simulation of discontinuous models safer and faster, but make the modeling
task quite a bit more complicated.

Is this impressively complicated apparatus really necessary? The answer
to this question is yes and no. On the one hand, we truly require integration
algorithms with root solvers for safe and efficient discontinuity handling.
We also require time events for the description of discontinuities that take
place at previously known event times. Yet, state event descriptions are
not a sufficiently high–level mechanism to bother the average simulation
practitioner with.

Although the simulation code, i.e., the code used by the numerical inte-
gration algorithm, may have to be complex and messy, this doesn’t mean
that the modeler has to manually enter it in this fashion.

Returning once more to the example of Fig. 9.19. What is wrong with a
description of the type:

y = if x < x1 then a1 · x + b1
else if x < x2 then a2 · x + b2
else a3 · x + b3;

to describe what this function does? It expresses perfectly well and in an
unambiguous fashion, what the model is supposed to do. Can’t we build a
model compiler that takes such a description, and translates it down to the
level of state events at compile time?

This is the approach that was taken in the design of the Dymola modeling
environment [9.11, 9.12], and indeed, the syntax of the program segment
shown above is that of Dymola.

Already in the previous two chapters, we encountered the need for sym-
bolic preprocessing of model equations, in order to obtain numerically suit-
able simulation code. Although we applied these symbolic graph coloring
algorithms in a manual fashion, by manually causalizing the structure di-
graph, this can obviously only be done for toy problems, such as the simple
electrical circuits used to introduce the algorithms.

In a realistically complex model, such as a six–degree–of–freedom robot
arm, leading to possibly 10,000 equations initially, it must be possible to
apply all of these algorithms in a completely automated fashion. This is
what the Dymola model compiler does [9.4]. The algorithms implemented
in Dymola [9.12] are essentially those that were introduced in the previous
two chapters.

Yet, Dymola is capable of performing considerably more complex model
compilations, as it decomposes object–oriented descriptions of discontinu-
ous models into suitable event descriptions at compile time.

Up to this point, we were able to either describe our algorithms in MAT-
LAB, or apply them manually, as we did with some of the algorithms in
the previous two chapters. Now, we don’t have that luxury any longer, as
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even simple functions, such as the friction model introduced earlier, quickly
become too involved to conveniently describe them as a collection of event
descriptions.

Thus, we shall need to introduce some of the low–level modeling con-
structs of Dymola [9.12] at this time to be able to describe the necessary
discontinuity handling algorithms in a suitably compact fashion.

9.7.1 The Computational Causality of if–Statements

We have seen in the previous two chapters that the computational causality
of statements should not be predetermined, but must be allowed to vary
depending on the embedding of the objects containing these statements
within their environment.

The equal sign of an equation is not to be interpreted as an assignment
in the usual sense of sequential programming languages, but rather as an
equality in the algebraic sense.

Hence in a Dymola program, it doesn’t matter whether Ohm’s law is
formulated as:

u = R ∗ i

or:

i = u/R

or finally:

0 = u − R ∗ i

Dymola will treat each of these statements in exactly the same fashion. It
will turn equations around symbolically as needed.

It may now have become clear, why the Dymola syntax for the if –
statement of the nonlinear characteristic of Fig. 9.19 is:

y = if x < x1 then a1 · x + b1
else if x < x2 then a2 · x + b2
else a3 · x + b3;

rather than:

if x < x1 then y = a1 · x + b1
else if x < x2 then y = a2 · x + b2
else y = a3 · x + b3;

Dymola needs to ensure that each branch of the if –statement computes
the same variable, as otherwise, the vertical sorting algorithm would invari-
ably fail.
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Do if –statements have a fixed computational causality, or is it possible to
turn them around in the same way as we turn around algebraic equations?

To answer this question, let us translate the above if –statements to an
event description that looks a bit different from the one used before. To
this end, we shall introduce three additional integer variables, ml, mc, and
mr, whose values are linked to the linguistic discrete state variable, region,
in the following way:

region ml mc mr

left 1 0 0
center 0 1 0
right 0 0 1

Using these new variables, the event description of the nonlinear charac-
teristic can be rewritten as follows:

y = ml · (a1 · x + b1) + mc · (a2 · x + b2) + mr · (a3 · x + b3);
case region

left : schedule Center when x − x1 == 0;
center : schedule Left when x − x1 == 0;

schedule Right when x − x2 == 0;
right : schedule Center when x − x2 == 0;

end;

together with the three discrete event descriptions:

event Left
region := left;
ml = 1; mc = 0; mr = 0;

end Left;

event Center
region := center;
ml = 0; mc = 1; mr = 0;

end Center;

event Right
region := right;
ml = 0; mc = 0; mr = 1;

end Right;

In this way, the former if –statement has been converted to the algebraic
statement:

y = ml · (a1 · x + b1) + mc · (a2 · x + b2) + mr · (a3 · x + b3) (9.32)
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which can be turned around in the usual way:

x =
y − ml · b1 − mc · b2 − mr · b3

ml · a1 − mc · a2 − mr · a3
(9.33)

as long as none of the three slopes is flat, i.e., as long as none of the
parameters a1, a2, or a3 is equal to zero.

9.7.2 Multi–valued Functions

The if –statements that we have introduced so far don’t allow the de-
scription of multi–valued functions, such as the dry hysteresis function of
Fig. 9.22.

x
x1
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y

y1

y2

FIGURE 9.22. Dry hysteresis function.

A possible event description for the dry hysteresis function could look as
follows:

y = ylast;
case region

up : schedule Down when x − x1 == 0;
down : schedule Up when x − x2 == 0;

end;

together with the two discrete event descriptions:
event Up

region := up;
ylast := y2;

end Left;
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event Down
region := down;
ylast := y1;

end Center;

Dymola offers a when–statement that allows to encode such an event
description in a compact form. We could try to encode the dry hysteresis
function as follows:

when x < x1

y = y1;

end when;

when x > x2

y = y2;
end when;

Contrary to the if –statement that takes the semantics of “if is,” the
when–statement has associated with it the semantics “when becomes.”
Thus, the former of the two when clauses will only be executed, when-
ever x becomes smaller than x1, whereas the latter of the two when clauses
will only be executed, whenever x becomes larger than x2. At all other
times, y simply retains its former value.

Consequently, we shall require an appropriate initialization section to
provide an initial value for the discrete state variable, y.

Unfortunately, the above program won’t work correctly, because it can-
not be sorted. We again ended up with two different statements assigning
values to the variable y. This problem can be fixed easily as follows:

when x < x1 or x > x2

y = if x < 0 then y1 else y2;
end when;

Here, y assumes a new value if and only if either x becomes smaller than
x1 or if x becomes larger than x2. The new value of y will be y1, if x is at
that time smaller than 0, else y assumes a value of y2.

9.8 The Switch Equation

Let us now try to describe the electrical switch of Fig. 9.23.
When the switch is open, the current flowing through it is zero. When it

is closed, the voltage across it is zero.
An elegant way to describe the switch properties in Dymola using a single

statement would be:
0 = if switch == open then i else u;



9.8 The Switch Equation 431

u
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FIGURE 9.23. Electrical switch.

Let us convert the if –statement to an equivalent algebraic statement. To
this end, we introduce an integer variable, mo, with the following values:

switch mo

open 1
closed 0

Using the new variable mo, we can rewrite the switch equation as follows:

0 = mo · i + (1 − mo) · u (9.34)

The algebraic switch equation can be made causal in two different ways:

i =
mo − 1

mo
· u (9.35a)

u =
mo

mo − 1
· i (9.35b)

Unfortunately, neither of these two equations will work correctly in both
switch positions. Equation (9.35a) will lead to a division by zero, when-
ever the switch closes, whereas Eq.(9.35b) will lead to a division by zero,
whenever the switch opens.

The switch equation confronts us with a new problem. The correct com-
putational causality of the switch equation depends on the numerical value
of a parameter. In the given example, it depends on the numerical value of
mo.

In previous chapters, we have learnt that the computational causality
of all equations is fixed, except for those that show up inside an algebraic
loop.

Hence we may postulate that:

Switch equations must always be placed inside algebraic loops.

Let us illustrate this concept by means of a simple circuit example, as
shown in Fig. 9.24.
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FIGURE 9.24. Electrical circuit containing a switch.

The circuit operates correctly in both switch positions. If the switch is
open, the resistor across the voltage source assumes a value of R1 + R2,
otherwise it assumes a value of R1 only.

We can read out the equations from this circuit:

U0 = f(t) (9.36a)
u1 = R1 · i1 (9.36b)
u2 = R2 · i2 (9.36c)
U0 = u1 + u2 (9.36d)
i1 = is + i2 (9.36e)
0 = mo · is + (1 − mo) · u2 (9.36f)

The structure digraph of this equation system is shown on Fig. 9.25.
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FIGURE 9.25. Partially causalized structure digraph of switching circuit.

The equation system indeed contains an algebraic loop in five equations
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and five unknowns, and as expected, the switch equation shows up inside
the algebraic loop.

This time around, we didn’t use our normal heuristics for choosing a
suitable tearing structure. We want our switch equation to serve as the
residual equation, solving it for whichever variable works better. In the
given example, we chose u2 as the tearing variable, since this allowed us to
causalize all remaining equations. The resulting set of causal equations is:

U0 = f(t) (9.37a)

i2 =
1

R2
· u2 (9.37b)

u1 = U0 − u2 (9.37c)

i1 =
1

R1
· u1 (9.37d)

is = i1 − i2 (9.37e)

u2 =
mo

mo − 1
· is (9.37f)

where Eq.(9.37f) is the residual equation, and u2 serves as the tearing
variable.

Using the variable substitution method, we find the following replace-
ment equation for the residual equation:

u2 =
mo · R2

mo · (R1 + R2) + (mo − 1) · R1 · R2
· U0 (9.38)

Equation(9.38) is indeed the correct equation in both switch positions,
since, when the switch is closed, i.e., mo = 0:

u2 = 0 (9.39)

and when the switch is open, i.e., mo = 1:

u2 =
R2

R1 + R2
· U0 (9.40)

No division by zero is obtained in either of the two switch positions.

9.9 Ideal Diodes and Parameterized Curve
Descriptions

Ideal diodes are ideal electrical switches complemented by an internal logic
for determining the switch position. An ideal diode closes its switch, when
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the voltage across the diode from the anode to the cathode becomes pos-
itive, and it opens its switch again, when the current through the diode
passes through zero, if at that time the voltage across the diode is nega-
tive.

An ideal diode can be modeled in Dymola as follows:
0 = mo · id + (1 − mo) · ud;
mo = if ud <= 0 and not id > 0 then 1 else 0;

A yet more compact way to describe this model would be:
0 = if OpenSwitch then id else ud;
OpenSwitch = ud <= 0 and not id > 0;

OpenSwitch is here a Boolean variable, the value of which is computed in the
above Boolean expression. If OpenSwitch is true, the switch is considered
open.

The latest example exhibits a third way for encoding state–event de-
scriptions, beside from the previously introduced if –statements and when–
statements. Any Boolean function of real–valued variables is automatically
converted to a state–event description by Dymola’s model compiler.

In reality, this is even the only way to produce state–event descriptions, as
Dymola extracts the conditions of if – and when–statements into separate
Boolean statements prior to expanding them.

How are Boolean functions of real–valued variables converted to zero–
crossing functions? In the simplest cases, such as:

B1 = x > x2 (9.41)

i.e., cases in which the Boolean expression is formed by a single relational
operator, the conversion is trivial, as B1 is almost in the correct form
already. The corresponding zero–crossing function can be written as:

f1 = x − x2 (9.42)

The case:
when x < x1 or x > x2

y = if x < 0 then y1 else y2;
end when;

is a bit more difficult to handle. The condition of the when–statement gets
extracted into the Boolean function:

B2 = x < x1 ∨ x > x2 (9.43)

which gets then converted to the following zero–crossing function:

f2 = if B2 then 1 else − 1 (9.44)
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Whenever B2 switches from true to false or vice–versa, f2 crosses through
zero.

Unfortunately, f2 is anything but a smooth function. In fact, the gradi-
ent of f2 is zero everywhere except at the zero crossing itself, where it is
infinite. Thus, no higher–order method, such as cubic interpolation or in-
verse Hermite interpolation can be used on such a zero–crossing function.
Only first–order methods, such as the Regula Falsi or the Golden Section
method can be used, and of those, even only the Golden Section method
can be used efficiently.

A better solution would have been to generate two separate zero–crossing
functions:

f2a = x − x1 (9.45a)
f2b = x − x2 (9.45b)

that are both being associated with the same event action:

y = if x < 0 then y1 else y2 (9.46)

The Dymola user can enforce that the model is being translated in this
fashion by employing a slightly different model syntax:

when { x < x1 , x > x2 }
y = if x < 0 then y1 else y2;

end when;

Using this syntax, each of the set of conditions of the when–statement is
converted independently to a separate zero–crossing function. All of these
zero–crossing functions are associated with the same event action.

Unfortunately, even with the enhanced syntax, the problem:
0 = if OpenSwitch then id else ud;
OpenSwitch = ud <= 0 and not id > 0;

cannot be converted to a set of smooth zero–crossing functions. The pro-
posed technique works only in the case of a set of simple Boolean expres-
sions that are connected by or–conditions. Another approach must thus be
taken.

To this end, we shall apply a parameterized curve description, as advo-
cated in [9.22]. Figure 9.26 displays the diode characteristic in the id(ud)
plane.

The curve is parameterized by adding an additional variable, s, to the
model, defined such that s = ud whenever the diode is blocking, and s = id,
whenever the diode is conducting. This allows us to program a smooth
zero–crossing function in terms of the newly introduced variable s:

ud = if OpenSwitch then s else 0;
id = if OpenSwitch then 0 else s;
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FIGURE 9.26. Diode characteristic.

OpenSwitch = s < 0;

This is how the ideal diode has been modeled in Dymola’s standard elec-
trical library.

An algebraic version of that model can be written as:

ud = mo · s;
id = (1 − mo) · s;
mo = if s < 0 then 1 else 0;

which is the version that we shall work with here, as these equations are
easier to analyze.

Let us illustrate the use of the ideal diode model by means of the simple
half–way rectifier circuit of Fig.9.27.
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FIGURE 9.27. Half–way rectifier circuit.
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We can read the equations from that circuit:

u0 = f(t) (9.47a)
u1 = Ri · i0 (9.47b)
u2 = RL · iR (9.47c)

iC = C · du2

dt
(9.47d)

u0 = u1 + ud + u2 (9.47e)
i0 = iC + iR (9.47f)
ud = mo · s (9.47g)
i0 = (1 − mo) · s (9.47h)

The partially causalized structure digraph of this equation system is
shown in Fig. 9.28. We ended up with an algebraic loop in four equations
and four unknowns. The switch equations are contained within the alge-
braic loop.
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Eq. #7

Eq. #2

FIGURE 9.28. Partially causalized structure digraph.

We now must choose a suitable tearing structure. Once again, we won’t
use our normal heuristics. Instead, we want to make sure that the variable
s is being selected as the tearing variable. We choose one of the two switch
equations, e.g. Eq.(9.47h), as the corresponding residual equation.

The completely causalized structure digraph of this equation system is
shown in Fig. 9.29.

Thus, the horizontally and vertically sorted equations can be written as:

u0 = f(t) (9.48a)
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FIGURE 9.29. Completely causalized structure digraph.

iR =
1

RL
· u2 (9.48b)

ud = mo · s (9.48c)
u1 = u0 − ud − u2 (9.48d)

i0 =
1
Ri

· u1 (9.48e)

s =
1

1 − mo
· i0 (9.48f)

iC = i0 − iR (9.48g)
du2

dt
=

1
C

· iC (9.48h)

where Eq.(9.48f) is the residual equation, with s having been chosen as the
tearing variable.

Using the substitution technique, we find a replacement equation for the
residual equation:

s =
1

mo + (1 − mo) · Ri
· (u0 − u2) (9.49)

which is correct in both switch positions.
The following equation system results:

u0 = f(t) (9.50a)

iR =
1

RL
· u2 (9.50b)

s =
1

mo + (1 − mo) · Ri
· (u0 − u2) (9.50c)

ud = mo · s (9.50d)
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u1 = u0 − ud − u2 (9.50e)

i0 =
1
Ri

· u1 (9.50f)

iC = i0 − iR (9.50g)
du2

dt
=

1
C

· iC (9.50h)

which can be simulated without any difficulties using any numerical inte-
gration algorithm with a root solver.

There is only a single zero–crossing function:

f = s (9.51)

with the associated event action:
event Toggle

mo := 1 − mo;

end Toggle;

The correct initial value of the discrete state variable, mo, is assigned to that
variable in an appropriate initialization section of the simulation program.

The voltage across the capacitor is shown in Fig. 9.30 as a function of
time.
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FIGURE 9.30. Voltage across capacitor of half–way rectifier circuit.

The default algorithm used in Dymola is DASSLRT, an implementation of
the well–known DASSL algorithm supplemented with a root solver.

9.10 Variable Structure Models

Let us repeat the previous analysis for the slightly different circuit of
Fig. 9.31.

The following set of equations characterizes this circuit:
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FIGURE 9.31. Half–way rectifier circuit with line inductance.

u0 = f(t) (9.52a)
u1 = Ri · i0 (9.52b)
u2 = RL · iR (9.52c)

iC = C · du2

dt
(9.52d)

uL = L · di0
dt

(9.52e)

u0 = uL + u1 + ud + u2 (9.52f)
i0 = iC + iR (9.52g)
ud = mo · s (9.52h)
i0 = (1 − mo) · s (9.52i)

The structure digraph is shown in Fig. 9.32.
There is no algebraic loop. All equations have fixed causality. The causal

equations are:

u0 = f(t) (9.53a)
u1 = Ri · i0 (9.53b)

iR =
1

RL
· u2 (9.53c)

s =
1

1 − mo
· i0 (9.53d)

iC = i0 − iR (9.53e)
ud = mo · s (9.53f)
uL = u0 − u1 − ud − u2 (9.53g)

du2

dt
=

1
C

· iC (9.53h)
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FIGURE 9.32. Causalized structure digraph of half–way rectifier circuit with line
inductance model.

di0
dt

=
1
L

· uL (9.53i)

These equations unfortunately cannot be simulated, since Eq.(9.53d) leads
to a division by zero, as soon as the switch opens.

What happened? The current through the inductor is a state variable.
Thus, the inductor computes the current i0, which means that the causality
of the diode is fixed. The diode has no choice but to compute the voltage
ud.

If we replace the diode by a manual switch, we see at once what happens.
If we try to open the switch, while current is flowing through it, we’ll draw
an arc, because the current through the inductance cannot go instantly to
zero. The arc can be modeled as a nonlinear resistor, the value of which
increases, as the gap widens. This resistance drives the current to zero. Yet,
this effect was not included in the model equations.

With a diode, this cannot happen, as the diode always opens at the
moment, when the current passes through zero. Yet, our model doesn’t
know this. Since the logic for when the diode switch opens or closes is not
contained in the continuous model equations, but forms part of the event
description, the continuous model equations are identical in the case of the
diode and the manual switch.

Dymola tackles this problem by offering in its standard electrical library
a leaky diode model, as shown in Fig. 9.33.

The leaky diode can be modeled using the equations:
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FIGURE 9.33. Leaky diode characteristic.

ud = if OpenSwitch then s else R0 · s;
id = if OpenSwitch then G0 · s else s;
OpenSwitch = s < 0;

or formulated algebraically:

ud = [mo + (1 − mo) · R0] · s;
id = [mo · G0 + (1 − mo)] · s;
mo = if s < 0 then 1 else 0;

R0 is the resistance of the wires connected to the switch, when the switch
is closed, and G0 is the conductance of the air in the gap, while the switch
is open.

The leaky diode model doesn’t change the causalities of the equation
system, i.e., the structure digraph of the model using the leaky diode is
exactly the same as that using the ideal diode. However, the leaky diode
avoids the division by zero.

The causal equations of the model using the leaky diode are:

u0 = f(t) (9.54a)
u1 = Ri · i0 (9.54b)

iR =
1

RL
· u2 (9.54c)

s =
1

mo · G0 + (1 − mo)
· i0 (9.54d)

iC = i0 − iR (9.54e)
ud = [mo + (1 − mo) · R0] · s (9.54f)
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uL = u0 − u1 − ud − u2 (9.54g)
du2

dt
=

1
C

· iC (9.54h)

di0
dt

=
1
L

· uL (9.54i)

This model is valid in both switch positions, i.e., it can be simulated. Un-
fortunately, whenever the original model containing an ideal diode exhibits
a division by zero, the new model containing a leaky diode becomes very
stiff. The degree of stiffness is directly related to the values of the two leak-
age parameters, R0 and G0. The smaller the leakage parameters are chosen,
the stiffer the model will become. Hence we would prefer to use the ideal
model, if we could.

What is so special about this model? When the switch is closed, i.e.,
while the diode is conducting, the model exhibits second–order dynamics.
However, once the switch opens, i.e., while the diode blocks the current, we
are faced with only first–order dynamics. The inductor does not contribute
to the dynamics in that case.

We call a model that exhibits different structural properties, such as a
varying number of differential equations depending on the position of some
switches a variable structure model.

Variable structure systems are very common, e.g. in mechanical engi-
neering. All systems involving clutches are by their very nature variable
structure systems. In electrical engineering, most switching power convert-
ers are variable structure systems.

The way, the equations of our system were formulated, Eqs.(9.52a–i), it
doesn’t look like these equations contain a structural singularity though.
There is no constraint equation to be found. The singularity looks to be
parametric in nature, thus the Pantelides algorithm [9.23] cannot be ap-
plied to solve it.

9.11 Mixed–mode Integration

One way to tackle this problem, while preserving the use of an ideal diode
model, is to relax the causality on the inductor, by inlining the integrator
that is associated with it. This approach was first proposed in [9.18].

An approach to simulation by applying different integration algorithms to
different integrators contained in the model is called simulation by mixed–
mode integration [9.24].

The system equations now take the form:

u0 = f(t) (9.55a)
u1 = Ri · i0 (9.55b)
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u2 = RL · iR (9.55c)

iC = C · du2

dt
(9.55d)

i0 = pre(io) +
h

L
· uL (9.55e)

u0 = uL + u1 + ud + u2 (9.55f)
i0 = iC + iR (9.55g)
ud = mo · s (9.55h)
i0 = (1 − mo) · s (9.55i)

The partially causalized structure digraph of this model is given in Fig. 9.34.
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FIGURE 9.34. Partially causalized structure digraph of half–way rectifier circuit
with inlined inductor.

Only four of the nine equations could be causalized directly. There now
appeared an algebraic loop, which includes the switch equations.

We need to choose s as a tearing variable, because otherwise, the equation
computing s will invariably contain either the term mo or the term (1−mo)
alone in the denominator, which consequently leads to a division by zero
in one of the two switch positions.

We can choose either Eq.(9.55h) or Eq.(9.55i) as the associated residual
equation. If we choose Eq.(9.55h) as the residual equation, we can causalize
all of the remaining equations. Unfortunately, Eq.(9.55e) will in that case be
solved for uL, which we don’t like, since it leaves h alone in the denominator.

Thus, we chose Eq.(9.55i) as the associated residual equation. The further
causalized structure digraph is shown in Fig. 9.35.
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FIGURE 9.35. Partially causalized structure digraph of half–way rectifier circuit
with inlined inductor.

There remains a second algebraic loop in three equations and three un-
knowns. This time, we choose Eq.(9.55e) as the new residual equation, and
i0 as the tearing variable. In this way, we can force the causality on the
inlined integrator equation as well. The completely causalized structure
digraph is shown in Fig. 9.36.
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FIGURE 9.36. Completely causalized structure digraph of half–way rectifier cir-
cuit with inlined inductor.

The causalized equations can be read out of the structure digraph:

u0 = f(t) (9.56a)

iR =
1

RL
· u2 (9.56b)
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ud = mo · s (9.56c)
u1 = Ri · i0 (9.56d)
uL = u0 − u1 − ud − u2 (9.56e)

i0 = pre(io) +
h

L
· uL (9.56f)

s =
1

1 − mo
· i0 (9.56g)

iC = i0 − iR (9.56h)
du2

dt
=

1
C

· iC (9.56i)

Using the variable substitution technique, we find replacement equations
for the two residual equations. The final set of horizontally and vertically
sorted equations presents itself as follows:

u0 = f(t) (9.57a)

iR =
1

RL
· u2 (9.57b)

s =
L · pre(io) + h · (u0 − u2)

h · mo + (L + h · Ri) · (1 − mo)
(9.57c)

ud = mo · s (9.57d)
i0 = (1 − mo) · s (9.57e)
u1 = Ri · i0 (9.57f)
uL = u0 − u1 − ud − u2 (9.57g)
iC = i0 − iR (9.57h)

du2

dt
=

1
C

· iC (9.57i)

Let us analyze this set of equations a bit further. The only potentially
dangerous equation is Eq.(9.57c). Let us discuss, how this equation behaves
in the two switch positions.

If the switch is closed, mo = 0, Eq.(9.57c) degenerates to:

s =
L · pre(io) + h · (u0 − u2)

L + h · Ri
(9.58)

which is completely harmless for all values of the step size, h.
If the switch is open, mo = 1, Eq.(9.57c) degenerates to:

s =
L

h
· pre(io) + u0 − u2 (9.59)

This equation is correct for all values of the step size, h, if switching occurs
at a moment, when the current, i0, goes through zero, as this will always be
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the case for a diode. However, if switching occurs for any other value of i0,
only one step will be incorrect, since during that first step, the current i0
will be reduced to zero due to Eq.(9.57e). Thus, already one step later, the
solution is again accurate. There is no stiffness problem using this approach.

9.12 State Transition Diagrams

Let us now return to the discussion of friction phenomena, an important
application of discontinuous models in mechanical engineering.

Before a possible general model for the friction element can be pre-
sented, the friction phenomenon needs to be carefully analyzed. According
to Fig.9.20, the friction force is a known applied force if the velocity v is
different from zero. In that situation, the computational causality of the
friction model is such that the velocity is an input to the model, whereas
the friction force is its output.

When the velocity becomes zero, the two bodies, between which the
friction force is acting, become stuck. In this situation, the model changes
its structure: A new equation, v = 0.0, and a new unknown force, Fc, are
added to the model. The constraint force Fc is determined such that the
new constraint on the velocity, v = 0.0, is always met.

This is a new situation as compared to the electrical switch, because the
electrical switch toggles between two different equations one of which is
always active. Thus, the number of equations remains the same. In contrast,
the friction element adds one equation and one variable to the model, when
v becomes 0, and removes them again, when abs(Fc) becomes larger than
the threshold value Fs.

Simulation environments do not usually allow to add/remove variables
during integration. Therefore, a dummy equation is added, which becomes
active, when the constraint equation, v = 0.0, is removed. The dummy
equation is used to provide a unique –but arbitrary– value for Fc during
sliding motion. For example, Fc = 0.0 is as good a value as any.

The friction force F can thus be defined through the following equations:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then v else Fc

The third equation is our meanwhile well–known switch equation.
The model is so simple, it looks like magic . . . and it also works like magic,

i.e., it doesn’t. In a Newtonian world, it is not sufficient to describe how the
rabbit is being pulled out of the magician’s hat. We also need to describe
how it got into the hat in the first place, at which time, unfortunately, the
magic is gone.

There are two problems with the above model. First, we haven’t come
up yet with an equation for the discrete state variable Sticking . Evidently,
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it won’t do to say that:

Sticking = v == 0 (9.60)

as this would simply state that whenever v equals zero, then v equals zero,
which is undoubtedly a true statement, but unfortunately, it isn’t a very
useful one.

The second problem with this model is that the then–branch of the switch
equation is constrained, since the velocity v is a state variable. Thus, the
causality of the switch equation is fixed, which invariably leads to a division
by zero in one of the two switch positions.

Let us tackle the latter problem first. We already know one possible
solution to this problem. We could relax the causality on the velocity, v, by
inlining the integrator that integrates the acceleration, a, into the velocity,
v. Yet, there is a better way.

While in the sticking position, the velocity, v, remains constantly zero.
Thus, also the acceleration, a, must remain constantly zero. We can thus
replace the former switch equation in the velocity, v, by a modified switch
equation in the acceleration, a, as follows:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then a else Fc

This looks like a generalization of the Pantelides algorithm [9.23]. We seem
to have partially differentiated the switch equation. Unfortunately, this
technique rarely works. The Pantelides algorithm can only be generalized to
the case of conditional index changes modeled by means of switch equations,
if either both branches of the if –statement formulating the switch equation
are constrained, or if the unconstrained branch is unimportant.

In the case of the friction model, the then–branch of the switch equation
is constrained, as it is a function of state variables only, whereas the else–
branch is unimportant. While the model is not sticking, we don’t care what
value the variable Fc assumes. Thus, there is no need to differentiate the
else–branch of the switch equation simultaneously with the then–branch.

There is still a small problem with this formulation though. Since the
friction model enters its Sticking region when the velocity passes through
zero, the velocity may numerically not be exactly equal to zero, after the
model entered its “Sticking” region. Therefore, the position, x, may slowly
drift away.

This problem can be easily fixed by adding:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then a else Fc

when Sticking then
reinit(v, 0);

end when;
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to the model. Thus, when the friction model enters its Sticking region, the
velocity, v, is explicitly re–initialized to 0.

Let us now tackle the other problem. We haven’t defined yet, how the
discrete state variable, Sticking , is computed by the model. To this end,
we need to define, how the switching between the sliding and the sticking
phases takes place.

It is advantageous to split the friction force law into the following five
different regions:

region: region conditions:

Forward : v > 0 and F = cf · v + Fd

StartForward : v = 0 and a > 0 and F = +Fd

Sticking : v = 0 and a = 0 and F ∈ [−Fs, +Fs]
StartBackward : v = 0 and a < 0 and F = −Fd

Backward : v < 0 and F = cf · v − Fd

Regions Forward and Backward describe the sliding phase and are defined
by a non–zero velocity. Region Sticking denotes the sticking phase and is
defined by identically vanishing velocity and acceleration. Regions Start-
Forward and StartBackward define the transition from sticking to sliding.
These regions are characterized by a zero velocity. The difference to the
sticking phase is that the acceleration is no longer fixed to zero. The above
five regions cannot be encoded directly, because the equality relation “=”
appears in the definition. It is not meaningful to test computed real–valued
variables for being equal to zero.

Hence an indirect approach will be used. The switching between the five
regions is described by a deterministic finite state machine (DFSM) [9.1].
The state transition diagram of the DFSM was shown earlier in this chapter.
It is repeated here.

Start

Sticking

a = 0 ; v = 0

Forward
v > 0

Backward

v < 0

Start
Forward

a > 0

Start
Backward

a < 0

v < 0 v > 0

else

v < 0 v > 0F > FΣ sF < -FΣ s

a > 0  and not  v < 0_ a < 0  and not  v > 0_

v > 0_ v < 0_

FIGURE 9.37. State transition diagram of friction characteristic.

The DFSM has six states, corresponding to the five regions of the model
and a Start state. Starting from any one state of the DFSM and using one
of the mutually exclusive conditions, a new state of the DFSM is reached
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in an unambiguous fashion. None of the switching conditions contains the
equality relation.

A valid Dymola code can be easily derived from a DFSM by defining
a boolean variable (a discrete state variable) for every state of the DFSM
and by encoding the state transitions leading into or out of each state as
boolean expressions determining the next value of that state.

F = if Forward then cf · v + Fd else
if Backward then cf · v − Fd else
if StartForward then +Fd else
if StartBackward then −Fd else Fc;

0 = if Sticking or Start then a else Fc;

Forward = pre(Start) and v > 0 or
pre(StartForward) and v > 0 or
pre(Forward) and not v <= 0;

Backward = pre(Start) and v < 0 or
pre(StartBackward) and v < 0 or
pre(Backward) and not v >= 0;

StartForward = pre(Sticking) and Fc > +Fs or
pre(StartForward) and not
(v > 0 or a <= 0 and not v > 0);

StartBackward = pre(Sticking) and Fc < −Fs or
pre(StartBackward) and not
(v < 0 or a >= 0 and not v < 0);

Sticking = not (Start or
Forward or StartForward or
Backward or StartBackward);

when Sticking and not Start then
reinit(v, 0);

end when;

Comparing this Dymola model with the DFSM of Fig.9.37, it can be seen
that the translation of one into the other is systematic and quite straight-
forward.

This model can be simulated. Unfortunately, it is characterized by fairly
complicated switching conditions that lead to zero–crossing functions that
aren’t smooth. Let us see, whether this situation can be rectified.

To this end, we shall employ the parameterized curve description tech-
nique once again. Figure 9.38 shows a slightly simplified friction charac-
teristic that has been parameterized in similar ways as with the diode
characteristic introduced earlier in this chapter.

The curve parameter is defined as follows:
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FIGURE 9.38. Simplified friction characteristic with curve parameterization.
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Curve parameters can be defined in any way that is most suitable. They
don’t have to be equidistantly spaced, and they can even adopt different
units in different regions, as the example demonstrates. Using the new
variable, s, we can define the simplified friction model as follows [9.22]:

Forward = s > +1;
Backward = s < −1;
v = if Forward then s − 1 else

if Backward then s + 1 else 0;
F = if Forward then cf · (s − 1) + Fd else

if Backward then cf · (s + 1) − Fd else Fd · s;

This model is correct in the sense that it describes unambiguously our
intentions of what the model is supposed to accomplish. Thus, we might
expect that a decent model compiler would be capable of translating the
model down to an event description that can be properly simulated.

Unfortunately, the Dymola model compiler, as it is currently imple-
mented, is unable to do so. There are two problems with this model. Let
us explain.

While the model operates in its Forward region, the velocity, v, is a state
variable, thus can be assumed known. Hence the curve parameter, s, can
be computed from the equation s = v + 1, and the friction force can be
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obtained using the equation F = cf · (s − 1) + Fd.
What happens, when s becomes smaller than +1? The model is now

entering its Sticking region. In this region, we have the equation; v = 0.
Thus, the velocity, v, can no longer be treated as a known state variable,
and we are confronted with a conditional index change. Somehow, we shall
have to deal with this problem.

Let us now assume that the model is currently operating in its Sticking
region. What happens, when s becomes larger than +1? The model is
now entering its Forward region. In this region, we compute s using the
equation s = v + 1, and since v was initialized to zero after the event, s
returns immediately back to one. As a consequence, a new state event is
triggered that throws the model right back into its Sticking region. Thus,
the model is stuck in its Sticking region forever! This problem seems to
be related to the narrow band problem encountered earlier, although it
manifests itself a bit differently.

We can tackle the former problem using the same argumentation that
had been used already in the previous model: If the velocity, v, is constantly
equal to zero over a period of time, then also the acceleration, a, must be
constantly equal to zero during that time period.

Thus, we can describe the Sticking region and its immediate surroundings
by looking at the acceleration, rather than the velocity. This concept is
illustrated in Fig. 9.39.
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FIGURE 9.39. Sticking region of simplified friction characteristic with curve pa-
rameterization.

Since this is a different friction curve from the one shown before, the
model uses a different parameter for its curve parameterization, ŝ. The
model can be described using the same techniques introduced earlier:
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StartForward = ŝ > +1;
StartBackward = ŝ < −1;
a = if StartForward then ŝ − 1 else

if StartBackward then ŝ + 1 else 0;
F = if StartForward then +Fd else

if StartBackward then −Fd else Fd · ŝ;

We shall use a DFSM to describe the switching between the three main
regions of the model, as illustrated in Fig. 9.40.
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v < 0

v < 0 v > 0

else

StartBackward  and  v < 0 StartForward  and  v > 0

v > 0_ v < 0_

FIGURE 9.40. Deterministic finite state machine modeling the switching events
of the simplified friction characteristic.

This is a much simplified version of the DFSM of Fig. 9.37 used by the
earlier model. The new DFSM has only four instead of six discrete states
(regions). The StartForward and StartBackward modes of operation are no
longer considered separate regions. Instead, they are contained within the
Sticking region model. They only represent different aspects of the Sticking
region.

We shall not offer an encoding of the DFSM at this point, but instead, we
shall leave this problem for one of the exercises at the end of this chapter.

Unfortunately, the simplified DFSM still contains two mixed switching
conditions, describing the conditions under which the model leaves the
Sticking region. These switching conditions prevent Dymola from generat-
ing smooth zero–crossing functions in those cases. Yet, the problem is not
too damaging numerically, because these switchings occur always as an al-
most immediate result of a previous switching to one of the two transitory
modes, StartForward and StartBackward , for which smooth zero–crossing
functions in the curve parameter, ŝ, had been defined.
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9.13 Petri Nets

We shall now demonstrate that it is always possible to decompose complex
(combined) event conditions into sets of simple event conditions that consist
of a single relational operator only. Thus, all zero–crossing functions can
be made smooth. To this end, we shall introduce a new model description
tool: the Petri net.

Petri nets [9.20] consist of two modeling elements: places and transitions.
Places are holders of tokens. Each place maintains a discrete state variable
that counts the number of tokens currently held by the place. Transitions
connect places. When a transition fires, it takes some tokens out of places
connected at its inputs, and places some new tokens at places connected at
its outputs in accordance with some logic to be defined. A transition may
fire, when an external firing condition is true, if the conditions concerning
the necessary numbers of tokens held by its input places are true as well.

If one place feeds several transitions, additional logic may be required to
determine firing preferences in the case of simultaneous events, i.e., in the
case where the external firing conditions of several transitions become true
simultaneously, because there may be enough tokens in the input place to
fire one or the other of these transitions, but not all of them.

Many different dialects of Petri nets have been described in the literature
[9.21].

Bounded Petri nets are Petri nets with capacity limitations imposed on
its places. Normal Petri nets are Petri nets with a capacity limit of one
imposed on each place. In a normal Petri net, the discrete state counting
the number of tokens contained in a place can thus be represented as a
Boolean state. If the state has a value of true, there is a token located at
the place. If the state has a value of false, there is no token at the place.

Priority Petri nets resolve the ambiguity associated with multiple transi-
tions being able to fire simultaneously by associating a prioritization scheme
to these transitions.

Normal priority Petri nets (NPPNs) are normal Petri nets employing
prioritization schemes in all of their transitions.

A NPPN place with two inputs and two outputs has been depicted in
Fig. 9.41.

The place passes state information, si, to all neighboring transitions, and
in turn receives firing information, fi, back from these transitions.

The NPPN place could be governed by the following equations:

s1 = pre(p1) (9.61a)
s2 = pre(p1) or f1 (9.61b)
s3 = pre(p1) (9.61c)
s4 = pre(p1) and not f3 (9.61d)
p1 = [pre(p1) and not (f3 or f4)] or f1 or f2 (9.61e)
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FIGURE 9.41. NPPN place with two inputs and two outputs.

The logic of these equations goes as follows. The place first provides the first
input transition, t1, with its state information. Transition t1 needs to know
this information, because, due to the single–token capacity limitation, it
cannot fire, unless the place, p1, is currently unoccupied. The place receives
the firing information, f1, back from transition t1. If t1 fires, it means that
it is going to place a new token at p1.

The place then provides the appropriate state information, s2, to the
second input transition, t2. Transition t2 is assigned a lower priority than
transition t1. Transition t2 is not allowed to fire if either there is already
a token at place p1, or if the other input transition, t1, decided to fire,
because if both transitions were to fire simultaneously, they both would try
to place a token at p1, which would violate the imposed capacity limit of
one.

The place then provides its state information to the first output transi-
tion, t3. Transition t3 is allowed to fire if a token is currently at p1. If it
fires, it will take the token away from place p1.

The place then provides the appropriate state information, s4, to the
second output transition, t4. Transition t4 is assigned a lower priority than
transition t3. Transition t4 is not allowed to fire, unless there is currently a
token at place p1 and transition t3 has not decided to fire, because if both
transitions were to fire simultaneously, they both would fight over who gets
to remove the token from p1.

Finally, the place must update its own state information. If there was a
token at p1 before, and neither of the two output transitions, t3 or t4, has
taken it away, or, if one of the two input transitions, t1 or t2, has placed a
new token at p1, there will be a token at that place during the next cycle.

Let us now look at a transition with two input places and two output
places. It has been depicted in Fig. 9.42.

The logic governing the transitions could be the following. The transi-
tion is allowed to fire along all of its connections, when the external firing



456 Chapter 9. Simulation of Discontinuous Systems

s2

f2

s3

f3
s1

f1

s4

f4

c1

FIGURE 9.42. NPPN transition with two inputs and two outputs.

condition, c1, is true, and if each of the input places holds a token (or more
precisely, if the state information arriving from all of the input places is
true), and if none of the output places holds a token (or more precisely, if
the state information of none of the output places is true).

This logic can be described by the following set of equations:

fire = c1 and s1 and s2 and not (s3 or s4) (9.62a)
f1 = fire (9.62b)
f2 = fire (9.62c)
f3 = fire (9.62d)
f4 = fire (9.62e)

DFSMs can be modeled as normal priority Petri nets with the additional
constraints that there is only one token in the system that is initially located
at the Start place. Furthermore, DFSMs map to NPPNs, in which each
transition is associated with exactly one input place and one output place.

Let us model the DFSM of Fig. 9.37 as a Petri net. The corresponding
NPPN representation is depicted in Fig. 9.43.

We immediately recognize what the external firing conditions, ci, repre-
sent. These are the conditions that are associated with state transitions in
the DFSM. Hence those are the edge–triggered Boolean variables associated
with the zero–crossing functions.

What have we gained by this representation? In the past, we had many
different discrete event blocks representing the actions to be taken, when
one or the other of the zero–crossing functions triggered an event. This is
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FIGURE 9.43. Petri net representation of friction characteristic.

no longer the case. All of the discrete equations governing both places and
transitions are valid at every event, since they were formulated as functions
of the current location of the tokens, i.e., they were functions of the discrete
state that the system is currently operating in.

Thus, every discontinuous model, as complex as it may be, can be de-
scribed by exactly three sets of equations. There are the implicitly defined
algebraic and differential equations describing the continuous subsystem.
There is the set of zero–crossing functions that are all evaluated in paral-
lel, while the continuous subsystem is being simulated. If a state event is
being triggered by one of them, an iteration (or interpolation) takes place
to locate the event time as accurately as necessary. At that moment, the
third set of simultaneous equations is being executed. These are the (pos-
sibly implicitly defined) algebraic and difference equations describing the
discrete subsystem.

The discrete equations are executed iteratively, until no discrete state
changes occur any longer. When this happens, we have found our new
initial state, from which we can start the continuous simulation afresh.

A simulation model that has been compiled into this form, can be simu-
lated in an organized and systematic fashion based on a synchronous data
flow [9.22].

It may not be convenient for the end user of the modeling and simu-
lation environment to describe his or her model in this fashion. Different
application domains make use of different modeling formalisms that users
are familiar with. It is the job of the model compiler to dissect the model
description that the user supplies, and translate it down to sets of simul-
taneous equations that can be simulated without numerical difficulties.

As this book concerns itself with the set of algorithms underlying a pow-
erful modeling and simulation environment, such as Dymola [9.12], we
had to show step by step, how model equations need to be preconditioned,
until they are finally in a form such that they can be simulated without
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difficulties. Yet, it was no longer convenient to translate every model that
we came across manually down to such a form.

Will the iteration on the simultaneous discrete equations always con-
verge? If the model of a physical system is formulated correctly, the iter-
ation should always converge, as our Newtonian world is deterministic in
nature. Yet, it is easy to make mistakes, and formulate a set of discrete
equations that will not converge. It is very easy to specify logical condi-
tions that are contradicting themselves. In the Petri–net implementation,
this leads to oscillations of discrete state variables with infinite frequency,
i.e., it prevents the algorithm from finding a consistent initial state, from
which the continuous simulation can be started.

For example, the discrete “equation”:

p1 = not pre(p1) (9.63)

should not be contained in the set of discrete equations, as this will lead
to an oscillation between the two states true and false that will never end.
If we mean to toggle between two discrete states as a response to a state–
event being triggered (a fairly common situation), we need to model this
using two separate places with transitions back and forth that get fired by
zero–crossing functions.

How can complex zero–crossing functions be reduced to simple ones? or–
conditions can be mapped to a set of parallel transitions located between
the same two places. They can thus be easily implemented. and–conditions
are harder to implement, as they would require transitions to be placed in
series with each other. Unfortunately, this cannot be done without intro-
ducing a new place between them. Thus, and–conditions invariably call for
an increase in the number of discrete states.

We shall demonstrate this concept by means of the DFSM of Fig. 9.40.
We recognize that we wouldn’t need the and–conditions on the zero–crossing
functions in this example, if we were to have available separate discrete
states called StartForward and StartBackward . Thus, we shall decompose
the state Slipping again into three separate discrete states. Luckily, we
know the conditions for switching between them.

We don’t need to draw the modified Petri net, as is looks exactly like the
one of Fig. 9.43. Only the interpretation of the zero–crossing functions is
now different. They are:

c1 = v < 0 (9.64a)
c2 = v > 0 (9.64b)
c3 = v == 0 (9.64c)
c4 = v < 0 (9.64d)
c5 = v > 0 (9.64e)
c6 = ŝ < −1 (9.64f)
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c7 = ŝ > 1 (9.64g)
c8 = ŝ >= −1 (9.64h)
c9 = ŝ <= 1 (9.64i)

c10 = v >= 0 (9.64j)
c11 = v <= 0 (9.64k)

As expected, all of the zero–crossing functions are now simple functions
consisting of a single relational operation only.

9.14 Summary

In this chapter, we have dealt with heavily discontinuous models. We have
shown that integration algorithms should be spared from having to deal
with discontinuous models directly. Two types of event descriptions were
introduced, the time events and the state events, that enable the simula-
tion software to treat discontinuous models in a safe and efficient manner,
while protecting the integration algorithms from them. Special root finding
algorithms were discussed that are particularly well suited to locate state
events.

Event descriptions are quite general, and can be used to deal with most
types of discontinuities adequately from a numerical point of view. Excep-
tions may be the propagation of discontinuous functions through conser-
vation equations. If a step enters an ideal wave equation, a discontinuity
will occur that travels through space with time. Consequently, the event
times will be infinitely dense, which, from a practical point of view, doesn’t
make any sense. Adequate handling of discontinuities in hyperbolic PDEs
is a very difficult task, and no good answer has been found to date for
tackling this challenging problem. The best answer currently available is
to apply a variable transformation that will ensure that the waves travel
at least along the axes of the coordinate system rather than in an arbi-
trary direction, which boils down to using the method of characteristics.
However, even this approach doesn’t solve the problem. It only alleviates
it somewhat.

It was also shown that event descriptions are awkward when dealing with
complex engineering models. They are low–level constructs that should not
be viewed as modeling elements, but only as intermediate descriptions that
are automatically being generated by the model compiler on the way of
transforming the model, as specified by the user, into a simulation pro-
gram that can be executed safely and efficiently using numerical integration
software.

Higher–level constructs were introduced in the form of object–oriented
if –expressions and when–clauses, and several fairly advanced applications
of these tools have been demonstrated.
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It was finally shown that, although the description mechanisms using
these constructs are general and convenient, currently available modeling
software (i.e., Dymola) is still unable to translate all possible (and physi-
cally meaningful) models described using these constructs down into prop-
erly executable simulation code. Variable structure models may be con-
taminated by conditional index changes that require special handling, such
as inlining those integrators that are responsible for the partial constraint
on a switch equation. Sometimes it is also possible to apply a generalized
version of the Pantelides algorithm instead. Whereas it should be possible
to at least automate the former approach using the inlining technique, this
has not yet been attempted in the current version of the Dymola model
compiler.
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9.17 Homework Problems

[H9.1] Runge–Kutta–Fehlberg with Root Solver

Implement in MATLAB the RKF4/5 algorithm introduced in Chapter 3
of this book together with the optimistic step–size control algorithm of
Eq.(3.89).

Add a root solver (RKF4/5RT) to the method that is based on an im-
plementation of the Regula Falsi algorithm.

[H9.2] Runge–Kutta–Fehlberg with Root Solver

Repeat Hw.[H9.1]. This time around, we wish to add a root solver based
on an implementation of the Golden Section algorithm to the method.

[H9.3] Runge–Kutta–Fehlberg with Root Solver

Repeat Hw.[H9.1]. This time around, we wish to add a root solver based
on an implementation of direct cubic interpolation to the method.

[H9.4] Direct Hermite Interpolation

We wish to improve the solution to Hw.[H9.3]. Rather than solving for
the coefficients of the cubic interpolation polynomial directly using matrix
inversion, we want to define a set of spanning polynomials, similar to the
way introduced earlier in the chapter in the implementation of the inverse
Hermite interpolation algorithm.

[H9.5] The Mechanical Loose Element

The functioning of a mechanical loose element is illustrated graphically in
Fig.H9.5a.

The output, y, lags behind the input, x, by no more than the distance, d.
If the direction of x changes, y remains constant, until it again lags behind
by d, now in the opposite direction.

Model the loose element using if – and when–statements such that the
model equations can be sorted appropriately.
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FIGURE H9.5a. Mechanical loose element.

[H9.6] Quantization With Hysteresis

The hysteretic quantization function is illustrated graphically in Fig.H9.6a.

x

y

q

FIGURE H9.6a. Hysteretic quantization function.

The output, y, stays always in the vicinity of the input, x. The distance
between them is never greater than half of the quantization distance, q/2.
Yet, whereas x can change continuously over time, y is a discrete state
variable.

Model the hysteretic quantization element using if – and when–statements
such that the model equations can be sorted appropriately.

[H9.7] Thyristor

We wish to model the thyristor described earlier in the chapter by means
of if –statements. The thyristor element is depicted in Fig. H9.7a.
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u

i

fire

FIGURE H9.7a. Thyrisor.

The thyristor is a diode with a modified firing logic. The diode can only
close when the external Boolean variable fire has a value of true. The
opening logic is the same as for the regular diode.

Since the thyristor is a diode, we can use the same parameterized curve
description that we used for the regular diode. Only the switching condition
is modified.

Convert all if –statements of the thyristor model to their algebraic equiv-
alents. Write down all of the equations governing the thyristor–controlled
rectifier circuit of Fig. H9.7b.

RLoad

vLine

750V
16     Hz2 3

+

-

vTh

v

i

i

LLoad
10mH

Line

Load

Load

RSh
10Ω

1Ω

FIGURE H9.7b. Thyrisor–controlled rectifier circuit.

Draw the structure digraph of the resulting equation system, and show
that the switch equations indeed appear inside an algebraic loop.

Choose a suitable tearing structure, and solve the equations both hori-
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zontally and vertically using the variable substitution technique.
Using any one of the integration algorithms of Hw.[H9.1–4], simulate the

model in MATLAB across 0.2 seconds. The external control variable of the
thyristor, fire, is to be assigned a value of true from the angle of 30o until
the angle of 45o, and from the angle of 210o until the angle of 225o during
each period of the line voltage, vLine. During all other times, it is set to
false. Plot the load voltage, vLoad, as well as the load current, iLoad, as
functions of time.

[H9.8] Thyristor

We wish to repeat the simulation of Hw.[H9.7] for the modified thyristor–
controlled rectifier circuit of Fig. H9.8a.

RLoad

vTh

v

i

i

Line

Load

Load

1Ω

vLine

750V
16     Hz2 3

+

-

LLoad
10mH

FIGURE H9.8a. Thyrisor–controlled rectifier circuit.

Draw the structure digraph of the resulting equation system, and show
that the switch equations do not appear inside an algebraic loop.

Inline the integrator for the inductor using backward Euler. Draw the
structure digraph of the modified equation system. Show that the switch
equations now indeed appear inside an algebraic loop.

Choose a suitable tearing structure, and solve the equations both hori-
zontally and vertically using the variable substitution technique.

Simulate the model in MATLAB across 0.2 seconds. The external control
variable of the thyristor, fire, is to be assigned a value of true from the angle
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of 30o until the angle of 45o, and from the angle of 210o until the angle of
225o during each period of the line voltage, vLine. During all other times,
it is set to false. Since there is no integrator left in the model, you cannot
use RKF4/5RT any longer. Instead, you need to program the iteration on
the zero–crossing function directly into the simulation program. Plot the
load voltage, vLoad, as well as the load current, iLoad, as functions of time.

[H9.9] Zener Diode

No diode can hold current against an arbitrarily strong electrical field.
Thus, if the negative voltage across the diode becomes too large, we are
confronted with avalanche breakdown. The diode suddenly starts conduct-
ing again.

A Zener diode makes use of the avalanche breakdown phenomenon, by
constructing a diode such that avalanche breakdown occurs early and at a
well defined voltage.

Zener diodes are not used like regular diodes, but rather as reverse diodes.
Thus, the voltage, in a Zener diode, is defined positive from the cathode to
the anode, rather than from the anode to the cathode.

Figure H9.9a shows the Zener diode element together with its voltage
and current conventions.

u

i

FIGURE H9.9a. Zener diode.

The current/voltage characteristic of the ideal Zener diode is shown in
Fig. H9.9b.

The voltage uB is the breakdown voltage of the device.
Zener diodes are commonly placed in parallel with delicate equipment,

such as electro–motors. Their purpose is to protect the equipment from
potential damage caused by high voltage.

Use the parameterized curve description technique to derive a model of
the ideal Zener diode.

[H9.10] Tunnel Diode

A tunnel diode is a regular diode with a tunnelling effect in the conduct-
ing area of the device. The tunnel diode element is shown in Fig. H9.10a
together with its voltage and current conventions.
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FIGURE H9.9b. Ideal Zener diode characteristic.
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FIGURE H9.10a. Tunnel diode.

The current/voltage characteristic of a typical tunnel diode are shown in
Fig. H9.10b.
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FIGURE H9.10b. Typical tunnel diode characteristic.

When the voltage across the tunnel diode becomes positive, the tunnel
diode, just like a regular diode, starts conducting. Yet, the current doesn’t
grow as rapidly as in the case of a regular diode. With increasing voltage,
the current first starts growing, then it decays once more (the tunnelling
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effect), before it starts growing rapidly like with a regular diode.
Tunnel diodes are sometimes used for constructing nonlinear oscillator

circuits.
We wish to idealize the tunnel diode. To this end, we shall describe it by

the idealized characteristic of Fig. H9.10c.

ut

it

u1

i1

u2

i2

FIGURE H9.10c. Ideal tunnel diode characteristic.

Derive a model of the ideal tunnel diode using the parameterized curve
description technique.

[H9.11] Friction

Translate the DFSM of Fig. 9.40 into a set of Boolean expressions governing
the four states and their transitions.

Integrate this model with the model of the simplified friction character-
istic of Fig. 9.39 developed in the chapter, and convince yourself by manual
simulation that the integrated model represents the simplified friction char-
acteristic correctly under all operating conditions.

[H9.12] Dry Hysteresis

Given the dry hysteresis function of Fig. 9.22. Let us assume that x1 =
y1 = −1, and x2 = y2 = +1. We wish to drive that model using the input:

x(t) = 2 · cos(t) (H9.12a)

Derive a Petri net description of the dry hysteresis function. Develop
generic synchronous data flow models for the different types of places and
transitions encountered in the model.

Extract all of the equations of the discrete model as well as the zero–
crossing functions. Implement the model in MATLAB using a suitable al-
gorithm for state–event detection.

Simulate the model in MATLAB across 10 seconds of simulated time,
and plot y as a function of x.
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[H9.13] Limiter Function

Given the limiter function of Fig. H9.13a.

x

y

x1

y1

x2

y2

FIGURE H9.13a. Limiter function.

Let us assume that x1 = y1 = −1, and x2 = y2 = +1. We wish to drive
that model using the input:

x(t) = 2 · cos(t) (H9.13a)

Derive a Petri net description of the limiter function. Develop generic
synchronous data flow models for the different types of places and transi-
tions encountered in the model.

Extract all of the equations of the discrete model as well as the zero–
crossing functions. Implement the model in MATLAB using a suitable al-
gorithm for state–event detection.

Simulate the model in MATLAB across 10 seconds of simulated time,
and plot y as a function of x.

9.18 Projects

[P9.1] State Event Localization

In this chapter, we talked little about the use of linear multi–step methods
in the simulation of discontinuous models. The reason is that the overhead
associated with restarting such a method after an event has occurred is
too large to make these methods attractive for the simulation of models
containing frequent discontinuities.

Yet, multi–step techniques have an advantage over single–step algorithms
due to the availability of the Nordsieck vector. The Nordsieck vector makes
it possible to find the zero crossing of a zero–crossing function expressed
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as a state variable through interpolation instead of iteration. This can be
done using an interpolation polynomial of the same order of approximation
accuracy as the integration method itself. Therefore, zero crossings found
in this way are almost as accurate as those found by iteration. They may
still be a little less accurate, because the iteration technique involves a
reduction of the integration step size in the vicinity of the event, whereas
the interpolation method does not.

We had to use iteration in the case of the Runge–Kutta algorithms,
because the solution is only available to us with full approximation accuracy
at the end of the interval, not at any point in between.

The problem of finding interpolation algorithms for Runge–Kutta meth-
ods was first tackled by Horn [9.15, 9.16]. The most commonly used codes
today offering implementations of explicit Runge–Kutta algorithms with
dense output interpolation algorithms are codes based on DOPRI4/5 [9.6,
9.7].

The DOPRI4/5 algorithm is characterized by the Butcher tableau:

0 0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45

−56
15

32
9 0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729 0 0 0

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656 0 0

1 35
384 0 500

1113
125
192

−2187
6784

11
84 0

x1
5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40

x2
35
384 0 500

1113
125
192

−2187
6784

11
84 0

where:

f1(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1097

120000
q5 +

161
120000

q6 +
1

24000
q7

f2(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1

120
q5 +

1
600

q6

In DOPRI4/5, usually the 5th–order accurate algorithm is propagated,
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whereas the 4th–order accurate algorithm is used for step–size control pur-
poses.

Dormand and Prince determined that a third algorithm can be added
without adding an additional stage:

x3(σ) = xn + σ · h ·
7∑

i=1

b̂i(σ) · fi (P9.1b)

where:
σ ∈ [0, 1]

The third approximation polynomial, x3(σ), is parameterized in an ad-
ditional parameter σ. It offers a 5th–order accurate smooth interpolation
polynomial valid anywhere between tn and tn+1, where σ denotes the per-
centage of the step taken, i.e.

x(σ) = x(tσ) = x(tn + σ · h) (P9.1c)

Thus:

x3(σ = 0) = xn (P9.1d)
x3(σ = 1) = x2 = xn+1 (P9.1e)

The coefficients b̂i are cubic polynomials in σ[9.13]:

b̂1 = −435σ3 − 1184σ2 + 1098σ − 384
384

(P9.1f)

b̂2 = 0 (P9.1g)

b̂3 =
500σ(6σ2 − 14σ + 9)

1113
(P9.1h)

b̂4 = −125σ(9σ2 − 16σ + 6)
192

(P9.1i)

b̂5 =
729σ(35σ2 − 64σ + 26)

6784
(P9.1j)

b̂6 = −11σ(3σ − 2)(5σ − 6)
84

(P9.1k)

b̂7 =
σ(σ − 1)(5σ − 3)

2
(P9.1l)

Dense output interpolation was originally designed as a means to facil-
itating the display of smoother output curves. Yet, the technique is very
useful for the localization of zero–crossing functions in discontinuous mod-
els as well. Other applications concern the simulation of delay–differential
equations, and also aspects of real–time simulation, as we shall demonstrate
in the next chapter of this book.
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Assuming that the derivatives of all zero–crossing functions have been
added to the model as additional state equations, the zero–crossing func-
tions themselves are state variables, for which dense interpolation is avail-
able.

Assuming further that xn · xn+1 < 0 for any of the zero–crossing states,
we can find the corresponding next event time tnext by computing the value
σ̂, for which x3(σ̂) = 0. Then, tnext = tσ̂ = tn + σ̂ · h.

Develop effective algorithms for determining σ̂, and compare the com-
putational efficiency of the interpolation technique with that of the earlier
introduced iteration techniques.

[P9.2] State Event Detection

We have demonstrated in this chapter that state events may be missed, if
the corresponding zero–crossing functions exhibit two zero crossings that
are only separated by a short distance in time.

One approach to dealing with this problem, as demonstrated in this
chapter, is through adding unimportant state events to the set of events to
be iterated upon by appending the derivative of the original zero–crossing
function as an additional zero–crossing function to the set.

Yet, this is not the only way of tackling this problem. Another approach
has been described in the literature that might be worth considering as an
alternative.

Given an nth–order polynomial:

p0(t) = tn + an−1 · tn−1 + an−2 · tn−2 + · · · + a1 · t + a0 (P9.2a)

We can define the following series of polynomials:

p1(t) =
d

dt
p0(t) (P9.2b)

and:

p2(t) = −rem
(

p0(t)
p1(t)

)
(P9.2c)

... (P9.2d)

pm(t) = −rem
(

pm−2(t)
pm−1(t)

)
(P9.2e)

where the rem–operator denotes the remainder of the polynomial division.
Such a series of polynomials is called a Sturm sequence [9.2].

If we wish to determine, how many zero crossings the polynomial p0(t)
has in the time interval [ta, tb], we can evaluate the polynomials of the
Sturm sequence for t = ta and for t = tb. We count the number of sign
changes in the values of the Sturm sequence separately at both ends. The
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difference between the number of sign changes at both ends equals the
number of zero crossings of the polynomial p0(t) in the interval [ta, tb].

If the zero–crossing function has been defined as a state variable, and if
we simulate the model using a Runge–Kutta triple, we have an nth–order
interpolation polynomial available, as was shown in Pr.[P9.1].

Thus, we can define the Storm sequence of that interpolation polynomial
and determine accurately, how many zero crossings occur within the time
interval [tn, tn+1] [9.26].

Study, how the Sturm sequence can be implemented most effectively.
Compare algorithms for detection of short–living state events that are

based on augmented sets of zero–crossing functions with methods based on
the Sturm sequence for their computational efficiency and reliability.

[P9.3] Delay–Differential Equations

Delay–differential equations are frequently encountered in geological engi-
neering applications and also in chemical process engineering models. In
these types of applications, it happens frequently that one process gener-
ates some material that is then transported to another process, where it is
being used as an input. Other applications of delay–differential equations
include the remote control of equipment in space, where the communication
delays have to be taken into account.

In all of these cases, we encounter delay–differential equations of the
form:

ẋ2(t) = f(x1(t − Δ)) (P9.3a)

The problem here is that the time instant t − Δ may not be an output
point, or even the end of an integration step.

In many applications, a small error in the delay, Δ does not matter.
However when it does matter, i.e., if there is a feedback loop back from x2

to x1, then we have a problem.
If the model is simulated using a linear multi–step algorithm, it no longer

suffices to store the state variables at each output point. We need to store
the entire Nordsieck vector at the end of each integration step for at least
Δ time units, so that we can appropriately interpolate to evaluate x1 at
time t − Δ.

If the model is simulated using a single–step algorithm, it may again be
preferable to use one of the Runge–Kutta triples. However in that case,
we would need to store the solution of every stage of the algorithm at
the end of each integration step for at least Δ time units, so that we can
appropriately interpolate to evaluate x1 at time t − Δ.

Although this technique doesn’t create any principle difficulties, it causes
significant computational overhead. The issue thus is how solvers for delay–
differential equations can be implemented in a computationally efficient
way. Circular shift registers are one approach that comes to mind, but this
may not be the only one, or even the best approach to dealing with this
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problem.
Study computationally efficient ways of data storage and retrieval for the

numerical simulation of delay–differential equations, and modify existing
codes to implement those.

9.19 Research

[R9.1] Stiff Discontinuous Models

If a discontinuous model is stiff, we must use an implicit integration algo-
rithm to simulate it. Although we could use a code, such as DASSLRT, this
may be quite inefficient, because linear multi–step methods are hardly ever
suitable for dealing with heavily discontinuous models due to the overhead
and inaccuracy associated with the start–up algorithm needed after each
event.

Thus, it is important to extend the idea of an interpolation polynomial to
obtain dense output from the explicit Runge–Kutta algorithms to implicit
ones, such as the Radau–IIA, or Lobatto–IIIC algorithms introduced earlier
in this book.

The problem has been recognized, and a number of research groups are
currently working on this issue. First results have recently been published
[9.14].

Yet, the problem is still essentially unsolved. The reason is that the
interpolated result needs to be propagated to the next step. Thus, it is
insufficient to prove that the interpolated result is nth–order accurate. We
ought to prove in addition that it is also numerically stable.

[R9.2] Discontinuous Hyperbolic PDEs

Whereas we have discussed in this chapter the problems associated with the
detection and localization of state events, we always made the assumption
that the event times are somewhat spaced out, i.e., within a finite time
interval, the number of events must remain finite.

Unfortunately, this assumption does not always hold true. If we apply a
discontinuity to a hyperbolic PDE, such as the wave equation, the disconti-
nuity travels through the medium with time, i.e., at any point in time, the
discontinuity can be located somewhere in the medium. Hence the event
times are no longer spread out.

Some researchers have applied moving grid methods to these types of
problems [9.19]. Others have applied frequency–domain techniques [9.8].
Yet, whereas these techniques may be suitable to track steep wave fronts,
neither of these techniques is geared to dealing with true discontinuities.

How do we know that inaccuracies in estimating, where the discontinuity
is located at any point in time will not propagate through the solution
and accumulate as time passes? Do we have any handle on the numerical
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stability problems associated with these types of situations?
There must exist better ways to calculate with arbitrary accuracy, where

the discontinuity is located when, and tackle the problem by subdividing
the domain into “left” and “right” regions in space, and “before” and “af-
ter” domains in time, and extrapolate (interpolate) to the location of the
discontinuity from all sides.

[R9.3] Sliding Motion

Sliding motion is a second type of problem that can lead to events with
infinite frequency of occurrence.

In this chapter, we have encountered creeping behavior of a simulation
code implementing a discontinuous model twice.

The first time was in the context of the train engine model. However,
the creeping behavior only occurred because we had implemented the dis-
continuity handling incorrectly. Once we solved that problem, the creeping
behavior went away.

The second time, we ran into a similar problem was in the context of one
of our friction models, where we found that coming out of sticking friction
caused the model to be thrown back into sticking friction immediately
again. This happened, in spite of the fact that the model is formally correct.

Here, we were able to tackle the problem by introducing two additional
discrete states, StartForward and StartBackward . Once these states had
been introduced and the state transition logic had been undated appropri-
ately, the problem went away.

Is this the worst that can happen? Unfortunately, the answer to this
question is negative. Let us explain this assertion by means of an example.

Figure R9.3a shows a flying vehicle on a slow collision course with a
sloped wall.

FIGURE R9.3a. Sliding motion.

Once the vehicle arrives at the wall, it either gets stuck there, or if the
thrust is sufficiently large to overcome sticking friction, it will glide up the
slope, as it has no choice in the matter.
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Unfortunately, it is a rather difficult problem to convince the simulation
code that this is what must happen. If Newton’s law is being formulated
separately for the horizontal and vertical motions, the vehicle cannot move
forward at all, as the wall is in the way. It can only move upward. However
as it moves upward, it no longer remains in contact with the wall. Thus, the
vehicle starts moving forward again. However by doing so, it bumps imme-
diately back into the wall. The model ends up with state events occurring
at infinite frequency. Of course, the problem will go away, if we modify the
coordinate system to coincide with the slope of the ramp.

Although the example looks somewhat academic, the problem itself is
quite realistic, and these types of problems indeed occur frequently in me-
chanical systems with closed kinematic loops, such as the simulation of a
car moving on a road. As all four wheels are in contact with the ground,
we are faced with multiple closed kinematic loops. If the car drives around
a bend, two of the wheels need to move a little faster than the other two.
Any numerical discrepancy between the simulated motion and the physical
constraint will invariably lead to the type of behavior explained above.

These types of problems have been studied in recent years [9.9, 9.10]. Yet,
no fully automated algorithms have been designed that can detect these
problems and modify the problem formulation automatically and on the fly
in such a way as to remove the events occurring with infinite frequency.

[R9.4] Simulation of Noisy Models

A third type of problems that will lead, in the theoretical limit, to a series
of events occurring with infinite frequency is the simulation of models with
noise.

Most continuous–system simulation software offers at least uniform and
Gaussian distributed random number generators that enable the modeler
to superpose noise to some input signals of his or her model. The noise
signal may e.g. be used to describe the headwind facing a helicopter in
flight, or it may be used to describe the unevenness of a road along which
a vehicle is driving. In the case of the helicopter, the purpose of including
the headwind may be to test the robustness of the control algorithm. In the
case of the road vehicle, it may be to simulate the behavior of the shock
absorbers.

Unfortunately, the random number generator is a rather dubious model-
ing element, as it changes its behavior as a function of the integration step
size used.

Uncorrelated white noise ought to have a frequency spectrum that is
totally flat at all frequencies. Yet, plotting the frequency spectrum of a
random number generator used in a simulation model, we notice that the
spectrum eventually decays as 1/f . The bandwidth of the random number
generator is band–limited by the sampling rate. The smaller we choose the
step size, the larger the bandwidth of the random number generator will



478 Chapter 9. Simulation of Discontinuous Systems

become.
Although some highly theoretical investigations have looked at the ana-

lytical solutions of stochastic differential equations [9.17], this is not useful
for our purpose.

The problem that we are confronted with is that we cannot use event
handling mechanisms to deal with random signals. Yet, if we ignore them,
they will invariably get entangled with the step–size control of the variable–
step integration algorithms.

Very little research has been done to date that looks at this problem
from a practical perspective.




