
To appear in the Annals of Operations Research ������

Version� Fall ����

UNIFORM RANDOM NUMBER GENERATION

Pierre L�ECUYER

D�epartement d�IRO� Universit�e de Montr�eal� C�P� ����� Succ�A� Montr�eal� H�C �J	� Canada

Abstract

In typical stochastic simulations� randomness is produced by generating a sequence of inde�

pendent uniform variates �usually real�valued between � and �� or integer�valued in some interval�

and transforming them in an appropriate way� In this paper� we examine practical ways of gener�

ating �deterministic approximations to� such uniform variates on a computer� We compare them

in terms of ease of implementation� e�ciency� theoretical support� and statistical robustness� We

look in particular at several classes of generators� such as linear congruential� multiple recursive�

digital multistep� Tausworthe� lagged�Fibonacci� generalized feedback shift register� matrix� linear

congruential over �elds of formal series� and combined generators� and show how all of them can

be analyzed in terms of their lattice structure� We also mention other classes of generators� like

non�linear generators� discuss other kinds of theoretical and empirical statistical tests� and give a

bibliographic survey of the most recent papers on the subject�

Keywords� Simulation� random number generation� pseudorandom� uniform random num�
bers� linear congruential� lattice structure� discrepancy� nonlinear generators� combined generators

�� Introduction

Simulating stochastic models requires a source of randomness� Modelers and program�
mers normally assume that random variables from di�erent probability distributions� like
normal� exponential� Bernouilli� Poisson� and so on� are available� The methods that have

been designed to generate those random variables �see� e�g�� Bratley� Fox� and Schrage �����
Devroye ��	�� or Law and Kelton �
��� assume in turn the availability of a source of i�i�d�
U��� ��� i�e�� continuous random variables distributed uniformly over the real interval ��� ���
or sometimes discrete random variables distributed uniformly over some nite set of integers

�like� e�g�� random bits�� In this paper� we discuss the methods which are most widely used�
or most promising� for generating sequences of values which try to imitate such uniform
random variables for simulation purposes� Those sequences are called pseudorandom and

the programs which produce them are called pseudorandom number generators� In most of
this paper� we will just use the term �random� instead of �pseudorandom�� a slight abuse
of language which is common usage in simulation contexts�

���� TRULY RANDOM VS PSEUDORANDOM SEQUENCES

In lotteries with prize money� the winning number is usually �hopefully� a truly random
number� each digit being determined� for example� by physically drawing a �numbered� ball
from some kind of container� This is not very practical for computer simulation� especially
when millions of random numbers are required� as is often the case� Using truly random

numbers for simulation and other Monte Carlo methods has been tried for a while� a few
decades ago� but practically abandoned for various reasons ����
	�� On modern computers�
pseudorandom numbers are generated by completely deterministic algorithms� We want

these numbers to look� from the outside� as if they where truly random� We would be pretty
much happy if� for example� nobody who observes only the output sequence �and does not
know the structure of the generator� can distinguish it from a truly random sequence in
�feasible� time �say� a few years of cpu time on a large computer� better than by �ipping

a fair coin� In practice� however� most of the generators we use do not have such strong
properties� This is still okay for many practical situations� but not all� There are reasonable
applications for which many of the generators currently available on computers are useless �or
dangerous�� For example� for applications dealing with the geometrical behavior of random

vectors in high dimensions� many generators must be avoided because of the bad geometrical
structure of the vectors of successive points that they produce ����� For cryptology� most
available generators are dangerous because there are e�cient ways of predicting the next
value� given the sequence of values already produced by the generator �	�
��
���

���� BAD AND DANGEROUS GENERATORS

There is a well developed body of theory concerning the construction and analysis
of �pseudo�random number generators� Good introductory references and survey papers

include ��� ��� ���
��

�
��
	� ��� ��� ��� ��� ���� Unfortunately� practice does not always
keep up with theory� Many of the �default� generators currently o�ered in popular computer

�

softwares� or suggested in some simulation textbooks� are old ones� and are not competitive

with those based on the more recent theory� Much worse� many bad generators are still
proposed every year in �supposedly serious� journal articles� One of my favorite exercises
for students when I teach a simulation course is to have them test a bad generator recently
proposed in a journal or available on a popular computer� For more on bad generators� see

�
�� ��� �	� ���� As Ripley ��
� said� �Random number generation seems to be one of the most
misunderstood subjects in computer science�� On the surface� it looks easy and attractive�
This is probably why so many new generators are proposed by people from so many di�erent
elds �mathematics� computer science� physics� electrical engineering� management science�

etc��� But building good generators is not so easy and requires a good understanding of
the theory� As Knuth �

� page �� said� �Random numbers should not be generated with a
method chosen at random��

���� A DEFINITION OF A GENERATOR

Today�s practical random number generators are computer programs which produce a
deterministic� periodic sequence of numbers� The following denition is a slight variation
from L�Ecuyer �
	��

DEFINITION ��

A generator is a structure G � �S� s�� T� U�G�� where S is a nite set of states� s� � S

is the initial state� T � S � S is the transition function� U is a nite set of output symbols�
and G � S � U is the output function�

A generator operates as follows� Start from the initial state s� �called the seed� and
let u� �� G�s��� Then� for i �� �� �� � � �� let si �� T �si��� and ui �� G�si�� We assume that
e�cient procedures are available to compute T and G� The sequence fuig is the output of the
generator and the ui�s are called the observations� For pseudorandom number generators�

one would expect the observations to behave from the outside as if they were the values of
i�i�d� random variables� uniformly distributed over U � The set U is often a set of integers of
the form f�� � � � �m� �g� or a nite set of values between � and � to approximate the U��� ��
distribution�

���� PERIOD AND TRANSIENT

Since S is nite� the sequence of states is ultimately periodic� The period is the smallest
positive integer � such that for some integer � � � and for all n � � � s��n � sn� The smallest

� with this property is called the transient� When � � �� the sequence is said to be purely
periodic�

���� QUASI�RANDOM SEQUENCES

The aim of a generator is not always to imitate true randomness as closely as possible�

For example� in Monte Carlo numerical integration� one can take a sample of points over the
domain of integration� and use the average of the function values at those points� multiplied

�

by the volume of the integration domain� as an estimator of the integral� This can be done

by using a pseudorandom sequence� But in terms of bounds on the integration error� one can
often do better if the sample points are spread more evenly over the integration domain than
a typical sample from the uniform distribution� The so�called quasi�Monte Carlo methods
construct generators �in the sense of Denition �� which produce deterministic sequences

whose purpose is not to look random� but to give the best possible deterministic bounds on
the integration error� Such sequences are called quasi�random� Bounds on the integration
error can be obtained in terms of the discrepancy of the sequence �we will brie�y explain
that concept later on� and of some measure of variability of the function� Then� one looks for

quasi�random sequences with the lowest possible discrepancy �or� in practice� with the lowest
upper bound on their discrepancy� since the discrepancy can rarely be computed exactly��
Niederreiter ���� is an excellent �high�level� introduction to quasi�Monte Carlo methods� In
this paper� we will not enter further into that subject� Our interest will be in pseudorandom

sequences�

���� A LITTLE BIT OF TRUE RANDOMNESS

In our denition of generator �Denition ��� the initial state s� was assumed to be

given �deterministic�� To introduce some real randomness� one can choose this initial state
randomly� say by drawing balls from a box� In other words� we can generalize our denition
by saying that the initial state s� is generated randomly according to some probability
distribution � on S� Generating a truly random seed is much less work and is more reasonable

than generating a long sequence of truly random numbers� A generator with a random seed
can be viewed as an extensor of randomness� whose purpose is to save �coin tosses�� It
stretches a short truly random seed into a long sequence of values that is supposed to appear
and behave like a true random sequence�

���� OVERVIEW OF THE PAPER

In the next section� we discuss what we think are the properties that a good general
purpose generator must possess� good statistical properties� long period� speed� low memory�

portability� reproducibility� and splitting facilities� In x�� we dene di�erent classes of gen�
erators based on linear recurrences over some nite space �often a nite eld�� This will be
our framework for most of what will follow afterwards� In x
� we give full�period conditions
for recurrences over nite elds and discuss their verication in practice� We also look at

the period lengths of other classes of generators� In x�� we examine the lattice structure of
di�erent classes of generators dened in x�� Some have a lattice structure in real space IRt�
while others have a lattice structure in a vector space of formal series� In both cases� the
lattice structure characterizes how well the �overlapping� vectors of t successive values pro�

duced by the generator� over its entire period� are evenly distributed over the t�dimensional
unit hypercube� We brie�y discuss the notion of discrepancy in x�� Practical implementation
considerations� especially for linear congruential� multiple recursive� and Tausworthe gener�

ators� are discussed in x�� In x�� we address the question of parallel generators and explain

�

how to implement jumping�ahead �and splitting� facilities� The most popular approach for

trying to improve the quality of generators is by combination of many di�erent generators�
This is the subject of x	� We discuss in more details two classes of combination approaches
which have been recently analyzed successfully� x�� is about nonlinear generators� which do
not have the same kind of lattice structure as the linear ones and have better discrepancy

properties� but which are also slower� The question of empirical statistical testing is treated
in x���

�� What is a Good generator �

We summarize in this section the major requirements for a good random number gen�
erator� for general purpose simulation� These requirements are also discussed in ����
�� �	�
�
�� and we do not always share the views of all these authors�

���� STATISTICAL UNIFORMITY AND UNPREDICTABILITY

As we said� the sequence of observations from a generator should behave as if it was
the realization of a sequence of independent random variables� uniformly distributed over
the set U � But what does the word �behave� mean exactly here� and how can we verify

whether the sequence behaves satisfactorily � Various denitions of �random� sequence are
given in Knuth �

�� These denitions apply to innite� non�periodic� sequences� whereas the
practical generators produce periodic sequences� From a pragmatic point of view� we can say

that the generator should pass statistical tests for uniformity and independence� But after
more careful thinking� we nd out that this is a meaningless requirement� Indeed� since the
sequence is deterministic and periodic� we know in advance that it is not truly uniform� In
other words� we know that it is always possible to build a statistical test powerful enough�

if enough time is allowed� so that the generator will fail it miserably� This looks like an
hopeless situation�

One way out of this apparent deadend is to consider the time it takes to apply the tests
in practice� We know that there is a test that can catch our generator� But if running that

test requires billions of years of CPU time on the most powerful computers� then perhaps we
don�t care about that test� In other words� we might feel happy if the generator passes all �or
almost all� the tests which can be run in �reasonable� time� This can be made more precise
by using the ideas of computational complexity� The following denition is from L�Ecuyer

and Proulx ��
��
Consider a family fGk� k � �g of generators� where k represents the size �e�g�� the

number of bits to represent the state�� The family is called PT�perfect �polynomial�time

perfect� if Gk �runs� in polynomial�time �in k� and if any polynomial�time �in k� statistical
test which tries to distinguish the output of the generator from a truly random sequence�
and to guess which is which� will not make the right guess with a probability larger than
�����k� where �k� k � � converges to zero exponentially fast� An equivalent denition is that

no polynomial�time algorithm should be able to predict successfully ui�� from �u�� � � � � ui�
with a probability larger than ��jU j � �k� i�e�� signicantly better than by picking a value

uniformly from U � So� by taking k large enough� one has a safe generator which would

pass all the statistical tests that can be run in reasonable time� For further details on these
notions� see ���
	� �
� and the references given there� The idea of PT�perfect generators
was introduced by cryptologists� for which �unpredictability� is a crucial property� All of
this looks nice� but the bad news are that no generator �family� has been proven PT�perfect

to date� In fact� nobody even knows for sure whether there really exists any PT�perfect
generator� Some generators conjectured to be PT�perfect have been proposed� However�
they are still too slow for practical simulation use�

The generators mostly used in simulation �linear congruential� multiple recursive�

GFSR� � � � � are known not to be PT�perfect� �E�cient� algorithms have been designed
to infer their sequence by looking at the rst few numbers �	�
��� But in practice� they
remain quite useful for simulation� mainly because of their speed� When their parameters
are well chosen and only a small fraction of their period is used� they show good statistical

behavior with respect to most reasonable empirical tests� Binary �or m�ary� expansions of
algebraic numbers �roots of polynomials with integral coe�cients� or of some transcendental
numbers �including �� do not dene PT�perfect generators either� Kannan et al� �
�� give

e�cient algorithms to compute further digits given a long enough initial segment of the
expansion�

So� seeking PT�perfect generators for simulation might be too demanding and we are
back to a weaker denition of �reasonable statistical test�� Current practice sets up standard

batteries of tests and apply them to the generators ����
�� ��� ���� Ideally� the tests should
be selected in relation with the target application� But this is not always �easily� feasible�
especially for �general purpose� generators which are to be provided in software packages or
libraries� The question of statistical testing is further discussed in x���

���� THEORETICAL SUPPORT

Empirical testing is ne� but there are often better ways of understanding the behavior
of a generator� by theoretical analysis� Properties like the period length� lattice structure

�or lack thereof�� discrepancy� equidistribution� etc�� usually give better insight on how the
generator behaves� Generators lacking strong and convincing theoretical support must be
avoided� The right approach for selecting a generator is to rst screen out generators on
the basis of their theoretical properties� and then submit the retained ones to appropriate

empirical tests� In the next few sections� we will look at some of those theoretical properties�
In most cases� however� the available theoretical results are valid only for the entire

period� For example� we might know that in a given dimension t� the t�tuples of successive
output values� over the entire period� are very evenly distributed in the t�dimensional unit

hypercube ��� ��t� But in practice� we should use only a tiny fraction of the generator�s
period� Good equidistribution over the whole period might improve our condence in good
statistical behavior over the fraction of the period that we use� but provides no proof of such
good behavior� In fact� when we use a generator whose points are very evenly distributed

over the whole period� we implicitly hope and assume that over the small fraction of the
period that we use� the points look like a random �and not perfectly evenly distributed� set

�

of points� Indeed� points that are too evenly distributed fail to imitate randomness as well

as points whose distribution is too far from even� Intuitively� we may view the set of points
P over the entire period as a nite �but large� sample space� and the �much smaller� set
of points P� that we use as a �random sample� �without replacement� from this set� If the
points of P are not well distributed in the hypercube ��� ��t� then it is likely that the points

of P� will not look random� But if the points of P are very evenly distributed in ��� ��t and
P� contains only a �negligible� fraction of those points� then the points of P� are likely to
look random� as long as they behave somewhat like a random sample from P � As an analogy�
imagine you want to put ���� balls in a box� each bearing a number from � to ���� then draw

���� of them without replacement� to simulate a sample of ���� i�i�d� uniform variates from
the set f�� � � � � ���g� Then� the best you can do is to put ��� balls of each number in the
box� Of course� if you draw a sample of size close to ���� instead of ����� the set of numbers
you will get will look too uniform �or �super�uniform��� but if you draw just a few� you will

get nice random looking numbers�
However� we must be aware that this intuitive analogy has a catch� the points P� that

we generate over a tiny part of the period are not a random sample� because the generator is

deterministic� It may happen that in some dimension t� the points are generated in such an
order that small subsets of successive points do not look random at all� So� having the points
very evenly distributed over the entire period is appealing� but not enough� Theoretical
results do not always apply only to the entire period� sometimes we can characterize the

behavior of shorter subsequences as well� But in general� albeit necessary� theoretical support
is not su�cient and should be supplemented by other empirical tests�

���� PERIOD LENGTH

As computers become increasingly faster� people perform larger simulations� which

require more and more random numbers� Generators whose period length was su�cient
some years ago are now unacceptable� For example� the period length of a multiplicative
linear congruential generator with modulus ���� which is � � ���� can be exhausted in a few

minutes of CPU time of a small workstation� Acceptable generators should have at least a
period length of ��� or more� and a much larger value is probably safer�

For most linear�type generators� the discrepancy of the vectors of successive values
over the entire period is much too small compared with the discrepancy of truly random

sequences �see x� and ������ Therefore� at most a small fraction of the period should be used�
This gives further motivation for very long period generators� Based on a �nearest pair�
argument� Ripley ���� p� ��� suggests that for linear congruential generators� the period �and
the modulus� should always be at least an order of magnitude larger than the square of the

number of values we use� Further� in many simulation applications� the generator�s sequence
is �split� into a large number of �disjoint� substreams� which should behave themselves as
virtual generators �see ���� ��� and x��� Then� the period must be orders of magnitude
longer� Families of fast�speed low�memory generators� with period lengths well over �����

have been proposed and analyzed recently and will be discussed in this paper�

�

���� EFFICIENCY

Despite the dramatic increases in computing power� speed and memory usage are still
major concerns regarding generators� The time and memory space used by the random
number generator might be insignicant in some cases �
��� but �i� this will usually not be

the case if the generator is slow or requires a lot of memory and �ii� there are cases where
the time and space used by even the most e�cient generators cannot be neglected ����
��
�
�� Memory frugality becomes especially important when many �virtual� generators �i�e��
many substreams� are maintained in parallel on a single computer �see x���

���� REPEATABILITY	 PORTABILITY	 JUMPING AHEAD	 AND EASE OF IMPLE�

MENTATION

A generator must be easy to implement e�ciently in a standard high�level language�

The code must be portable� i�e�� produce exactly the same sequence �at least up to machine
accuracy� with all �standard� compilers and on all �reasonable� computers� There is no
good reason for choosing a generator which can be implemented only in machine�dependent
assembly language� We do not say that a generator should never be implemented in assembly

language� but at least� a high�level portable implementation must be available� Being able
to reproduce the same sequence of random numbers on a given computer �called repeatabil�
ity� is important for program verication and for variance reduction purposes ����
�� �
��
Reproducing the same sequence on di�erent computers is also important� for example for

program verication across computers �
��� Repeatability is a major advantage of pseudo�
random sequences with respect to sequences generated by physical devices� Of course� for
the latter� one could store an extremely long sequence on a large disk or tape� and reuse it as

needed thereafter� But this is not as convenient as a good pseudorandom number generator�
which can stand in a few lines of code�

In our mind� ease of implementation also means the ease of breaking up the sequence
into long disjoint substreams and jump ahead quickly from one substream to the other

�see x��� This means that given the state sn� it should be possible to calculate quickly
the state sn�� for any large � �without generating all the intermediate states� of course��
Most �classical� �linear� generators allow such �leapfrogging� �even though the appropriate
software tools are rarely available in packages or libraries�� But there are classes of nonlinear

and combined generators for which e�cient ways of jumping ahead are unknown� One should
think twice before selecting the backbone generator of a simulation package from such a class�

�� Generators Based on Linear Recurrences over Finite Fields

���� GENERAL FRAMEWORK

Most of the random number generators used in practice can be expressed by linear
recurrences in modular arithmetic� over a nite set S� Often� S is a nite eld and the
transition function has the form T �s� � 	s� where 	� s � S� In the latter case� S has the
form S � IFmk � where m � pe� p is prime� and e� k are positive integers� For k � �� one has

�

S � IFm� the nite eld with m elements� Recall that IFm exists if and only if m is a power

of a prime� When m is prime� one can identify IFm with the set ZZm � f�� �� � � � �m� �g on
which arithmetic operations are performed modulo m� For k � �� IFmk can be constructed as
a factor ring IFm�x���P �� which can be identied with the space of polynomials modulo P and
with coe�cients in IFm� where P is an irreducible polynomial of degree k with coe�cients

in IFm� The state space S can also be viewed as the k�dimensional vector space IFk
m �space

of k�dimensional vectors with elements in IFm�� A good reference on nite elds and related
topics is Lidl and Niederreiter �����

In what follows� unless otherwise indicated� we will assume that m is prime and that

	 � S � IFmk � Then� the state sn of the generator evolves in IFmk as

sn � 	sn��� ���

Let
P �z� � zk � a�z

k�� � � � � � ak � IFm�z�

be the minimal polynomial of 	 over IFm� Then� in IFmk � one has P �	� � �� i�e��

	n � a�	
n�� � � � �� ak	

n�k� ���

The value of k is called the order of the recurrence� If P �z� is a primitive polynomial over

IFm and 	 is a generator of the cyclic group IF�mk � IFmk n f�g� then the generator has full
period � � mk � �� which means that if s� �� �� any subsequence of � consecutive values of
sn will visit each element of IF�mk once and only once �of course� s � � should not be visited�
because it is an absorbing state�� Further� 	� � 	mk�� � � and 	��� � 	�� in IFmk �

Suppose that the output function is dened as a composition of the form G � G� �G��
where G� � IFmk � IFm is a linear form over IFmk � and G� � IFm � ��� ��� This is the usual
form of the output function in practice� Then� if xn � G��sn� � IFm� one has

xn � a�xn�� � � � �� akxn�k ���

in IFm� Typically� we will directly implement the recurrence ��� over IFm instead of the
recurrence ��� over IFmk � The transformation G� is sometimes dened by G��x� � x�m�
where x � Fm is identied with its representative in ZZm� The sequence fxng is called a
linear recurring sequence with characteristic polynomial P �z�� In fact� we will use that

denition even when P �z� is not primitive and even when m is neither a prime nor a power
of a prime �in the latter case� the recurrence is in ZZm� which is not a eld�� As we will
see later on� some classes of generators based on linear recurrences with non�primitive �and
reducible� characteristic polynomials� or linear recurrences modulo an integer m which has

distinct prime factors� have very attractive practical properties�
To design a generator� typically� one selects m� k� U � and the output function G�

then one nds a characteristic polynomial P �z� of a desired form for which ��� can be
implemented e�ciently� and nally one tests the structural and statistical properties of the

output sequence� In the remainder of this paper� we will discuss di�erent ways of performing
these tasks� We now examine a series of examples�

�

���� THE MULTIPLICATIVE LINEAR CONGRUENTIAL GENERATOR

Let k � �� m prime� and identify IFm with ZZm� Let a � a� � 	 � ZZ
�
m � ZZm n f�g�

Then ��� becomes
xn � axn�� mod m� �
�

If G � ZZm � ��� �� is dened by G�x� � x�m� this gives the classical multiplicative linear

congruential generator �MLCG�� which has been deeply analyzed� scrutinized� and often
criticized� over the past �� years or so ���� ��� �
�

�
	� ��� ���� Despite well founded
critics� this kind of generator is still largely used in practice ����
��� One can also use

�
� with a non�prime modulus m� Then� ZZm is not a eld� but we still call the generator
a MLCG� For example� m can be a large power of two� In that case� the characteristic
polynomial P �z� � z � a cannot be primitive and the largest possible period is only m�
�
reached when a mod � � � and x� is odd� If m is prime� the period is m� � if and only if

the multiplier a is a primitive root modulo m and x� �� �� Specic moduli and multipliers
are analyzed in ���� �
�
��

�
�� �	��

���� THE MULTIPLE RECURSIVE GENERATOR

Let k � � and m prime� Again� identify IFm with ZZm� The recurrence ��� is now

xn � �a�xn�� � � � �� akxn�k� mod m� ���

The generator�s state at step n is the vector sn � �xn� � � � � xn�k��� � ZZ
k
m� which could be

transformed into a value un � ��� �� by un � G�sn� � xn�m� This kind of higher�order linear
congruential generator is known as a multiple recursive generator �MRG� ����
	� ��� ����
The special case where k � � gives the usual MLCG with prime modulus� For k
 �� for

P �z� to be primitive� it is necessary that ak and at least another aj be non�zero� So� the
most favorable case in terms of implementation is when P �z� is a trinomial� of the form
P �z� � zk � arz

k�r � ak� The recurrence ��� then becomes

xn � �arxn�r � akxn�k� mod m� ���

���� DIGITAL MULTISTEP SEQUENCES AND THE TAUSWORTHE GENERATOR

Consider again the recurrence ���� for prime m� but redene sn � �xns� � � � � xns�k���
and

un � G�sn� �
LX
j��

xns�j��m
�j � ���

where s and L � k are positive integers� Here� computing sn from sn�� involves performing
s steps of the recurrence ���� Using a digital expansion in base m as in ��� yields a better

resolution for the output values �for L
 �� than when un is just xn�m� The output
sequence fung obtained from such a generator is called a digital multistep sequence ����
��� �Niederreiter ���� ��� imposes the additional constraints L � s � k� so our denition is
more general�� If ��� has full period � � mk�� and s is coprime �� then the digital multistep

	

sequence ��� also has period � � mk � �� Note that the previous example is a special case�

with s � L � �� Another important special case is when m � p � �� the output values
un are then constructed by taking blocks of L successive bits from the binary sequence ���
with spacings of s � L � � bits between the blocks� This was introduced by Tausworthe
���� and is known as a Tausworthe generator �

� ��� 	�� 	��� �Sometimes� the Tausworthe

generator is dened slightly di�erently� by lling up the bits of un from the least signicant
to the most signicant one� instead of from most to least signicant as in ���� See ���� 	���
This corresponds to generating the sequence ��� in reverse order��

���� LINEAR RECURRENCES OVER SPACES OF POLYNOMIALS OR FORMAL

SERIES

Let P �z� � zk � a�z
k�� � � � � � ak be a primitive polynomial over IFm� S � IFmk �

IFm�z���P � �the eld of polynomials modulo P �z�� with coe�cients in IFm�� and 	 � S be

a non�zero polynomial of the form g�z� � �zs mod P �z��� where s is a positive integer�
Observe that since P �z� is primitive� any non�zero polynomial g�z� � S can be expressed
as g�z� � zs mod P �z� for some integer s in the range f�� � � � �mk � �g� Therefore� there

is no loss of generality in imposing that form to g�z�� The state sn at step n is a non�zero
polynomial of degree smaller than k� with coe�cients in IFm� The transition function is given
by

sn�z� � zssn���z� mod P �z�� ���

where the arithmetic on the polynomial coe�cients is performed in IFm� Again� IFm can be
identied with ZZm�

If we formally divide sn�z� by P �z�� we obtain a formal Laurent series expansion in
z��� with coe�cients dn�j � IFm�

�sn�z� � sn�z��P �z� �
�X
j��

dn�jz
�j� �	�

Dividing the equation ��� by P �z�� we see that this generator is in fact a linear congruential
generator dened over the space of formal Laurent series�

�sn�z� � zs�sn���z� mod IFm�z�� ����

The multiplication by zs in ���� corresponds to shifting the coe�cients of �sn�z� to the left by
s positions� and the �mod IFm�z�� operation means dropping o� the terms with non�negative
exponents in the formal series� i�e�� those who were in the rst s positions� In other words�
one has dn�j � dn���j�s� Dene xj�� � d��j for each j � �� Then� dn�j � d��ns�j � xns�j���

From the denition of �s��z�� one obtains �replacing d��j by xj����

s��z� � P �z��s��z�

�

�
zk �

kX
i��

aiz
k�i

��� �X
j��

xj��z
�j

�
A

��

�
kX

h��

�
xh�� �

h��X
���

a�xh����

�
zk�h

�
�X

h�k��

�xh�� � a�xh�� � � � � � akxh�k���z
k�h�

Since s��z� is a polynomial� the coe�cient of zk�h must be zero for each h
 k� i�e��

xj � �a�xj�� � � � �� akxj�k� mod m

for each j � k� This is exactly the same recurrence as ���� Therefore� ���� ����� and ��� with
sn � �xsn� � � � � xsn�k��� �as in x��
� are just di�erent ways of expressing the same generator�

The above development of s��z� also allows one to recover its coe�cients from the

sequence fxng� One can similarly recover the coe�cients of sn�z� for any n� the coe�cient
of zj in sn�z� is

cn�j � �xns�j�k�� � a�xns�j�k�� � � � � � ah��xns�j�k�h� mod m

� �ahxns�j�k�h�� � � � �� akxns�j��� mod m�

Replacing the formal variable z by the integer m in the formal series

�s��z� �
�X
j��

d��jz
�j �

�X
j��

xj��z
�j �

we obtain a digital fractional expansion in base m� namely

�u� �
�X
j��

xj��m
�j � �x�x�x� � � � � ����

Similarly� replacing z by m in �sn�z� gives

�un �
�X
j��

xns�j��m
�j � �xnsxns��xns�� � � � � ����

It is easily seen that �un is obtained by shifting the digital expansion of �u� by ns positions to

the left� and dropping the non�fractional digits� To produce the output un in practice� the
digital expansion of �un can be truncated to� say� L digits� This yields

un �
LX
j��

xns�j��m
�j �

which is the same as ���� So� we have just recovered the digital multistep sequence by
following a di�erent development� This alternative view was rst suggested by Tezuka and
turns out to be quite useful for analyzing some of the structural properties of the sequence
whenm is small �e�g��m � �� ��
� �	� 	�� 	��� The Tausworthe� MRG� and MLCG generators

are special cases of this� In �	��� for m � �� the generator dened by ������� is called an
LS� generator�

��

���� MLCG
S IN MATRIX FORM

Let P �z� � zk � a�z
k�� � � � � � ak be a primitive polynomial and A a k � k matrix

whose elements are in IFm and with characteristic polynomial P �z�� Consider the recurrence

Xn � AXn��� ����

where each Xn is a k�dimensional column vector of elements of IFm and the arithmetic is in
IFm� Then� it can be shown �see ���� ��� ��� ���� that fXng follows the recurrence

Xn � a�Xn�� � � � �� akXn�k � ��
�

In other words� each component of the vector Xn evolves according to ���� which means
that we just have k copies of the same linear recurring sequence evolving in parallel� with
perhaps di�erent lags �or shiftings� between themselves �i�e�� di�erent initial states�� Using
��
� directly instead of ���� multiplies by k the size of the required memory� but often leads

to quicker implementations �the state is then redened as sn � �Xn� � � � �Xn�k����� We will
call ��
� the parallel MRG implementation of the matrix generator ����� One instance of
this is the GFSR generator� to be discussed later on�

Let us write Xn as

Xn �

�
B�
xn��
���

xn�k

�
CA �

Dene yn � xn�� and for j
 �� let dj be the lag �or shift� associated with the component
j of Xn� That is� xn�j � xn�dj �� � yn�dj for � � j � k and all n � �� Those lags actually
depend on the matrix A� One special case is when A is the companion matrix of P �z��

Ac �

�
BBB�

� � � � � �
���

���
� � �

���
� � � � � �

ak ak�� � � � a�

�
CCCA �

Then� the recurrences associated with the successive components of Xn are shifted one unit
apart� dj � j � � for all j� To have them shifted exactly d units apart� i�e�� dj � �j � ��d�
one can just use A � Ad

c � In general� if P �z� is the characteristic polynomial of A� one can
write A � PAcP

�� for some regular matrix P � Then� Xn � AnX� � PAn
cP

��X� for all n�

If the output of the matrix generator is produced by a composition of the form G �
G� �G�� where G� � IFmk � IFm is linear� then the matrix generator is no more general than
the MRG� in the sense that if we dene xn � G��Xn�� then the sequence fxng obeys again
the linear recurrence ���� In other words� any linear combination of elements of Xn in IFm

obeys ���� However� there are other ways of combining the elements of Xn which might lead
to a di�erent recurrence than ���� We now examine two of them� the matrix MLCG� which
uses each component Xn to produce k uniform variates per step� and the digital matrix

MLCG� which uses the digital method on each Xn to produce one uniform variate per step�

��

Suppose that at each step n� each component ofXn is used to produce a uniform variate�

that is� unk�j�� � xn�j�m� This kind of matrix generator has been studied by Grothe ����
��� and A�erbach and Grothe ���� We call it the matrix MLCG� It may prove useful for
implementing parallel generators on parallel processors� One question arise� is the sequence
fung produced by that generator the same as that produced by an MRG � To answer that

question� suppose that gcd�k� �� � �� where � � mk�� is the period of fyng� Then� k has an
inverse d � k�� in ZZ�� i�e�� kd mod � � �� and d can be easily computed via d � k��� mod ��
Assume further that the lags are regularly spaced� d units apart� dj � �j � ��d� Dene
xj � yjd� for j � �� Since gcd�d� �� � �� fxjg is also a linear recurring sequence of period

�� Further� for each n � �� xnk�j�� � ynkd��j��	d � yn��j��	d � xn�j� So� the sequence
fxj� j � kg is the same as the sequence obtained by taking all the components of all the
vectors Xn in successive order� x���� � � � � x��k� x���� � � � � x��k� � � �� Each of those components can
be used to produce a uniform variate� e�g�� as un � xn�m� Note that fxng is not necessarily

a shift of fyng� in general� the �primitive� characteristic polynomials of those two sequences
are di�erent� Further� the above reasoning holds only if the dj�s are equally spaced d � k��

units apart�

Now� suppose that the output at step n is produced by the digital expansion

un �
LX
j��

xn�jm
�j �

LX
j��

yn�djm
�j� ����

where L � k� We call this generator a digital matrix MLCG� Again� let fyng be a sequence
with characteristic polynomial P �z� and assume that the successive shifts between the rst
L components of fXng are all equal� dj � �j � ��d for some positive integer d such that

gcd�d� �� � � �here� d is no longer the inverse of k�� Then� d has an inverse in ZZ�� given by
s � d��� mod �� Again� if we dene xj � yjd� fxjg is a linear recurring sequence of period �

and xns�k�j � ynsd��j��	d � yn��j��	d � xn�j for each n � �� Then� ���� can be rewritten as

un �
LX

j��

yn��j��	dm
�j �

LX
j��

xns�j��m
�j� ����

This is the digital multistep sequence ���� Reciprocally� given a digital multistep sequence
fxng with gcd�s� �� � �� let d � s��� mod � and consider a digital matrix MLCG with
initial state given by x��j � xj�� for each j� Then� the sequence ���� produced by that
digital matrix MLCG is the same as ���� In other words� a digital matrix MLCG� can be

used for implementing ����

���� LAGGED�FIBONACCI AND GFSR GENERATORS

An important special case of the digital matrixMLCG is when m � � and the generator
is implemented using ��
�� this gives the well know Generalized Feedback Shift Register
�GFSR� generator ���� ��� ���� In that case� in ��
�� each Xn is a vector of bits and is

obtained by making a bitwise exclusive�or of the Xn�j �s for which aj �� �� Since only the
rst L bits of each Xn are used� one should keep only those rst L bits� In practice� L is

��

usually the word�size of the machine �e�g�� L � ���� so that each Xn occupies one word of

memory� The state sn � �Xn� � � � �Xn�k��� at step n is a L � k dimensional array of bits�
Practical GFSR generators are often based on a primitive trinomial� P �z� � zk � zk�r � ��
Then� one obtains

Xn � Xn�r 	Xn�k �

where 	 denotes the bitwise exclusive�or�
The fact that a GFSR generator is equivalent to a Tausworthe generator when the

initial state of the GFSR is chosen appropriately �with equally spaced shifts� gives us a good

method for choosing that initial state� select a good Tausworthe generator and initialize the
GFSR in such a way that it is equivalent to the Tausworthe �ll up the array of bits column
by column using the Tausworthe generator�� This approach is from Fushimi ����� Tootill�
Robinson� and Eagle �	�� rst suggested the GFSR implementation of Tausworthe sequences�

Observe that a GFSR generator �with parallel MRG implementation� can also be
viewed as a �bigger� MLCG as follows� The state sn � �Xn� � � � �Xn�k��� at step n is
viewed as a kL�dimensional vector of bits Xn� One has Xn � AXn�� where

A � A
 I �

�
BBB�

� I � � � �
���

���
� � �

���
� � � � � I

akI ak��I � � � a�I

�
CCCA � Xn �

�
BBBB�

Xn

Xn��
���

Xn�k��

�
CCCCA �

I is the L � L identity matrix and
 denotes the tensor product of matrices� We shall

call that a GFSR in expanded matrix form� Of course� the characteristic polynomial of the
kL � kL matrix A is not primitive over IF� and the generator does not reach the maximal
possible period for a generator of that size� which is �kL� �� Its period length is only �k� ��
One could then argue that the GFSR is a waste of memory ���� ���� Ideally� a generator

using kL bits of memory should have a period near �kL� This leads to the following idea�
try to modify slightly the matrix A in such a way that it gets a primitive characteristic
polynomial over IF�� without impairing too much the speed of the GFSR generator� This

is the subject of the next subsection� What we just said concerning GFSR generators also
holds more generally for digital matrix generators over IFm instead of over IF�� for m prime�

Some authors ���� ��� 	�� use the expression GFSR sequence for the recurrence �����
whatever its implementation and �prime� value of m� We prefer to reserve the term GFSR

to denote the parallel MRG implementation� because this is how the so�called GFSRs are
actually implemented in practice� and to emphasize the size of the state space� If we extend
our denition of GFSR to m �� �� then any digital matrix MLCG can be implemented as a
GFSR� The converse is not true� however� For example� if dj � � for all j� then Xn has all

its components equal� for any n� If the GFSR has period mk � � for k
 �� that cannot be
implemented in the form of �����

A �generalization� of the GFSR is the so�called lagged�Fibonacci generator� for which
	 can be replaced by any arithmetic or logical operation� One example is the additive

generator �

�� given by
Xn � �Xn�r �Xn�k� mod m�

�

where m � �L� This is a special case of the MRG� but with a power�of�two modulus� Its

maximal period length� for suitable choices of r and k� is ��k � ���L�� � �k�L��� which is
�L�� times larger than that of a GFSR with the same values of L and k� but falls way short
of �kL� See ���� ��� for more details and specic examples with the operators �� �� and ��
in arithmetic modulo �L�

���� TWISTED GFSR AND LARGE MATRIX GENERATORS

Matsumoto and Kurita ���� have proposed replacing akI in the matrix A of the GFSR
in expanded matrix form by an L� L matrix B of the form

B �

�
BBB�

� � � � � �
���

���
� � �

���

� � � � � �
bL bL�� � � � b�

�
CCCA �

whose characteristic polynomial PB�z� � zL� b�z
L���� � �� bL is such that PB�P �z��ak� is

primitive over IF�� The resulting matrix �A then has a primitive characteristic polynomial of

degree kL over IF�� and the period becomes � � �kL��� For the usual case where the GFSR
is based on a primitive trinomial P �z� � zk � zk�r � �� PB�P �z�� is primitive over IF� if and
only if �i� PB�z� is irreducible and �ii� �P �z� � zk � zk�r� � is primitive over IF�L� where � is
a root of PB�z� over IF�� Matsumoto and Kurita explain how to nd polynomials satisfying

those conditions and call the resulting generators twisted GFSR� or TGFSR� In ����� they
develop an improved variant of TGFSR generators �in terms of statistical behavior�� which
amounts to replacing B by PBP�� for some well chosen regular matrix P � These TGFSR
variants are fast� practically as fast as GFSR generators� and have extremely long period�

They can be viewed as e�cient ways of implementing digital matrix generators of order kL�
Incidentally� the latter can also be implemented as large GFSRs �based on a characteristic
polynomial of order kL��

Of course� one can do more than replacing only akI by a more general matrixB� one can

replace� say� each ajI in A by some more general matrix Bj in such a way that the resulting
matrix �A has a primitive characteristic polynomial� However� there is a compromise to be
made in terms of implementation speed� If the Bj�s do not have a special structure that can

be exploited� the generator will be too slow�

���� ADD�WITH�CARRY AND SUBTRACT�WITH�BORROW GENERATORS

Marsaglia and Zaman ���� propose two types of random number generators� called add�
with�carry �AWC� and subtract�with�borrow �SWB�� which are slight modications of the

lagged�Fibonacci generators with the � and � operations� respectively� The AWC generator
is based on the recurrence

xj � �xj�r � xj�k � cj� mod b� ����

cj�� � I�xj�r � xj�k � cj � b�� ����

��

where b and k
 r are positive integers� cj is called the carry� and I is the indicator function�

whose value is � if its argument is true� and � otherwise� This generator is similar to an
MRG� except for the carry� It is extremely fast� it requires no multiplication and the modulo
operation can be performed by just subtracting b when cj�� � �� The SWB has two variants�
One is based on the recurrence�

xj � �xj�r � xj�k � cj� mod b� ��	�

cj�� � I�xj�r � xj�k � cj � ��� ����

where k
 r and cj is called the borrow � The other one is obtained by exchanging r and k

in ��	�����

To produce the output� one can use L successive values of xj for each un as in the
digital multistep method�

un �
L��X
j��

xLn�jb
j�L� ����

Note that here� the digits of un are lled up from the least signicant to the most signicant
one�

Tezuka and L�Ecuyer �	�� have shown that AWC and SWB generators are essentially
equivalent to MLCGs in the following sense� Let m � bk�br�� for AWC� and m � bk�br��

�depending on the variant� for SWB� Suppose that m is prime and let b�� � bm�� mod m

be the multiplicative inverse of b modulo m� Let a � �b���L mod m � b�m��	L mod m and
consider the MLCG�

yn � ayn�� mod m� wn � yn�m� ����

Then� Tezuka and L�Ecuyer prove that �assuming that y� is chosen appropriately to insure

synchronization�
un � b�LbbLwnc ����

for all n
 k� In other words� un is wn truncated to its rst L fractional digits in base b� In
other words� the sequences fung and fwng are the same� if they have corresponding initial

seeds� up to a precision of b�L� For example� if b � ��� and L � �� then the rst �� bits of
un and wn are the same and for practical purposes� we may safely assume that un � wn� So�
we are back into the MLCG bandwagon�

The maximal period for the AWC or SWB is m � �� which can be attained if a is a

primitive element modulo m� With b around ��� and k around ��� for example� one could
reach a period of approximately ����� Marsaglia and Zaman suggest specic values of the
parameters b� r� and s� most of them yielding extremely large periods� Unfortunately� as

discussed in x���� these generators always have a bad lattice structure and therefore must be
discarded�

��

�� Period Length and Primitive Polynomials

���� PRIME MODULUS

For a prime modulus m� the linear recurring sequence ��� has full period � � mk � � if

and only if its characteristic polynomial P �z� is a primitive polynomial over IFm� So� a rst
step in building a generator based on such a sequence is to nd an appropriate primitive
polynomial� How can we do that � The following are necessary and su�cient conditions for

P �z� to be primitive over IFm �see Knuth �

��� Let r � �mk � ����m� ���

�a� �����k��ak��m��	�q �� � for each prime factor q of m� ��

�b� �xr mod P �z�� � ����k��ak�

�c� �xr�q mod P �z�� has degree
 � for each prime factor q of r� � � q � r�

The most di�cult task in verifying those conditions is usually the factoring of r� unless
r is prime� For that reason� and since testing primality is much easier than factoring� it is
a good idea to choose m and k such that r is prime� For that� k must be odd� L�Ecuyer�
Blouin� and Couture ���� discuss that topic and give some useful factorizations and primitive

polynomials� for m near ���� �
�� and ���� Given m� k� and the factorizations of m� � and
r� it is relatively easy to nd primitive polynomials simply by random search� In fact� there
are exactly

N�m�k� � �mk � ���� � ��q�� � � � ��� ��qh��k

vectors �a�� � � � � ak� � IFk
m that satisfy the conditions� where q�� � � � � qh are the distinct prime

factors of mk � � �see �

��� In the case k � �� a primitive polynomial x � a� means that
a� is a primitive element modulo m� and whenever one such a� has been found� all others

can be found easily� since they are exactly all the integers of the form aj� mod m where j
is relatively prime to m � �� For k
 �� it is often convenient to rst nd a value of ak
which satises condition �a�� then perform a random search for the remaining coe�cients
�a�� � � � � ak���� Lists of primitive polynomials over IF� can be found in ��	�
�� ��� and the

references given there�

���� COMPOSITE MODULUS

When m is not prime� the maximal possible period for the linear recurring sequence

��� typically falls way short of mk � �� For m � pe� p prime and e � �� the upper bound is
�pk � ��pe��� except for p � � and k � �� where it is �e�� ����

�� Eichenauer�Herrmann�
Grothe� and Lehn ���� show how to construct generators whose period reach that upper
bound� For p � � and k � �� see �

�� The case p � � is interesting in terms of e�ciency�

because the modulo operation can be implemented by just �chopping�o�� the higher�order
bits� However� it is costly in terms of period length� For example� if k � � and m � ���� ��
the maximal period length is ����� ���� � � ����� while if m is increased to ���� the longest
possible period length becomes ����������� � ���� That is� approximately ���� times shorter�

��

This is not the only reason why using a prime m is to be recommended� Another

important reason is that for small p� the low order bits do not look random at all� For p � �
and k � �� the i�th least signicant bit of xn has period equal to max��� �i��� ���� ���� If
the period of such a generator is split into �d equal segments� then all segments are identical
except for their d most signicant bits ���� ���� For i � �e�d��
 �� all points �xn� xn�i� lie

on at most max��� �d��� parallel lines ����� For k
 � �still with p � ��� the maximal period
for the d�th least signicant bit is ��k � ���d���

���� NON�MULTIPLICATIVE LCG
S

The MLCG is usually presented in the slightly more general form�

xn � �axn�� � c� mod m� ��
�

where c is a constant� Adding such a constant permits one to reach a period length of m�
Conditions for that are given in Knuth �

�� If m is prime� this has no real interest� Indeed�
this just increases the maximal period by one� and otherwise gives no further signicant

improvement �

�� However� if m is not prime� e�g�� if it is a power of two� then this more
general form really becomes attractive� But it also has many drawbacks� For example� if
m � �e� the period of the i�th least signicant bit of xn is at most �i and the pairs �xn� xn�i��
for i � �e�d� lie in at most max��� �d��� parallel lines �����

One can also add a constant term c to the MRG recurrence ��� or a constant matrix
C to the matrix MLCG ����� However� it can be shown �
	� that any k�th order recurrence
with such a constant term is equivalent to some �k � ���th order MRG with no constant
term� Therefore� a general upper bound on the period length if m � pe is �pk�� � ��pe���

Again� for large e and k� this is much smaller than mk� All of these reasons argue against
the use of power of two moduli�

�� Lattice Structure

���� THE LATTICE STRUCTURE OF MRG
S IN IRt

It is well known that the vectors of successive values produced by a MLCG or MRG�

in any given dimension� have a lattice structure ����

�
	� ���� More precisely� consider the
MRG ���� For any integer t
 �� let

Tt � fun � �un� � � � � un�t��� j n � �� s� � �x�� � � � � xk��� � ZZ
k
mg� ����

the set of all possible overlapping t�tuples of successive values produced by ��� with un �

xn�m� from all possible initial seeds� The set Tt turns out to be the intersection of a lattice
Lt with the t�dimensional unit hypercube I t � ��� ��t� Recall that a d�dimensional lattice in
IRt �for d � t� is a set of the form

L �

��
�V �

dX
j��

zjVj j each zj � ZZ

�	

 �

��

where V�� � � � � Vd � IRt is a set of independent vectors called a basis� The lattice Lt is usually

t�dimensional �otherwise� all the points of Tt are contained in one hyperplane�� A basis for
Lt� as well as for its dual lattice� can be constructed as explained in �

� for k � � and in ����
��� for k � �� For t � k� one obviously has Lt � ZZ

t�m� because �x�� � � � � xt��� can take any
value in ZZtm� and so un can take any value in ZZtm�m � �ZZt�m� I t� For a full period MRG�

the latter also holds even if we limit s� in the denition of Tt to a xed �non�zero� vector of
ZZ

k
m� and then add the zero vector to Tt� because sn runs through all k�dimensional vectors

with components in ZZm �except the zero vector� over the generator�s period� For t
 k� the
set Tt contains only a small fraction of ZZtm�m� That fraction is equal to mk�t�

If the generator does not have full period and if one considers only the cycle that
corresponds to a given initial seed s�� then� in general� the points do not form a lattice�
but are still a subset of the lattice dened above� and typically also generate that same
lattice� There are cases� however� where the points over one cycle generate a sublattice or a

subgrid of Lt� A grid in IRt is a shifted lattice� i�e�� a set of the form V� � L where V� � IRt

and L is a lattice� One should then analyze the appropriate sublattice or subgrid instead
of analyzing Lt �see also ��
�

��� One important example is an MLCG for which m is a

power of two� a mod � � �� and x� is odd� In that case� as observed by Hoaglin and King
�
�� and Atkinson ���� the t�dimensional vectors of successive values form a subgrid of Lt

containing one�fourth of the points� Another important case is when m is a product of J
distinct primes m � m� � � �mJ �see ���� and x	�� Then� in most cases of practical interest

�according to my empirical experience�� the generator has a few long subcycles of length � �
lcm �m� � �� � � � �mJ � ��� plus some shorter subcycles� and the set of points over each of
those long subcycles of length � typically generates the whole lattice Lt�

The fact that the points of Tt belong to a lattice means that they lie on a set of

equidistant parallel hyperplanes� The shorter the distance dt between those hyperplanes�
the better� because this means thinner empty �without points� slices of space� Computer
programs now exist for computing dt in reasonably large dimensions� up to around
� or
more �����

A slightly di�erent way of measuring the �quality� of the lattice is by the Beyer quo�
tient� dened as follows� Geometrically� the lattice Lt �partitions� the space IRt into a
juxtaposition of identical t�dimensional parallelepipeds whose vertices are points of the lat�

tice� and which contain no other lattice points except for their vertices� Those are called the
unit cells of the lattice� The volume of each unit cell� called the determinant of the lattice�
is one over the cardinality of Tt� All the edges connected to a given vertex of a unit cell
form a set of linearly independent vectors which form a lattice basis� Such a basis is called

Minkowski�reduced �MRLB� when the basis vectors are in some sense most orthogonal ����
The Beyer quotient qt is the ratio of the length of the shortest vector over the length of the
longest vector in a MRLB� A ratio qt near one means that the unit cells are more cubic�like
and that the points are more evenly distributed� while a ratio near � means the opposite� In

contrast to dt� qt is a normalized measure �always between � and ��� As a gure of merit to
rank generators� one can take for example the worst�case measure

QT � min
t�T

qt ����

�	

for some �xed� large T � However� qt is much more costly to compute than dt� An algorithm

to compute a MRLB and the Beyer quotient is given in A�erbach and Grothe ���� See also
���� ���� L�Ecuyer� Blouin� and Couture ���� suggest specic MRGs� after a search based on
the criterion Q��� for orders k up to � and prime moduli up to near ���� As observed by
L�Ecuyer �
	�� comparing Beyer quotients makes sense only for generators having the same

number of lattice points in the unit hypercube� A full period MRG has mk such points� i�e��
unit cells of volume m�k� in all dimensions� For t � k� the lattice is a perfect square grid
of size ��m� and the Beyer quotient is �� Increasing m or k gives smaller unit cells� If a
generator G� has smaller Beyer quotient than another generator G�� then G� might still be

better than G� if it has smaller unit cells� In such a situation� as a bottomline criterion� one
can turn back to the distance dt between hyperplanes� If G� has a smaller dt than G� for all
t� then we can say that G� dominates G� in terms of the spectral test� and claim that G�

has a better lattice structure�

The matrix MLCG� which uses all the components of Xn at each iteration� has a
similar lattice structure and can be analyzed in a similar way ��� ���� When the MLCG is
not multiplicative� the lattice is shifted by a constant vector� becoming a grid� The structure

can be analyzed in the same way� since it does not really depend on the additive constant
except for shifting� When Tt is replaced by the set of non�overlapping t�tuples� Lt does not
form a lattice in general ����

The AWC SWB generators described in x��	 are equivalent to linear congruential gen�

erators� and therefore have a lattice structure� In ��
� 	��� it is shown that this structure is
always bad� in all dimensions t
 k� one has dt � ��

p
�� It is also shown that combining

an AWC SWB generator with a LCG still yield an unfavorable lattice structure in large
dimensions� That could explain the statistical anomalies observed empirically in ���� ����

���� EQUIDISTRIBUTION WITH FINITE RESOLUTION AND LATTICE STRUC�

TURE IN THE SPACE OF FORMAL SERIES

Tausworthe and GFSR generators also have a lattice structure� which stems from the

fact that they can be expressed as MLCGs over a space of formal series �see Equation ������
To analyze the meaning of such a lattice structure� we will use the following denitions�

The �t� ��equidissection in base m of the t�dimensional unit hypercube I t is a partition
of I t into mt� cubic cells of equal size� A nite set of points P in I t is said to be �t� ��

equidistributed in base m if each cell of the �t� ��equidissection contains the same number
of points of P � When the value of the base m is clear from the context� we often omit
the expression �in base m�� In practice� the most interesting base is m � �� Clearly� for

P to be �t� ��equidistributed in base m� its cardinality must be a multiple of mt�� In our
applications� it will in fact be a power of mt�� It is evident that �t� ��equidistribution implies
�t�� ���equidistribution for all t� � t and � � � Furthermore� �t� ��equidistribution in base m
is equivalent to �t� ���equidistribution in base m�� Knuth �

� p��

� has a related denition�

when the latter holds� he says that the m��ary sequence is t�distributed�
Consider the set �Tt of all t�tuples of successive formal series obtained from �����

�Tt � f�sn � ��sn� � � � � �sn�t��� j n � �� �s� � �Sg ����

��

where �S is the set of formal series of the form

�S � ff�z��P �z� j f�z� is a polynomial of degree � kg�

The mapping

�s�z� �
�X
j��

cjz
�j ��

�X
j��

cjm
�j�

when applied componentwise� maps �Tt to a nite set of points Pt � I t� These points are in
fact all the t�dimensional vectors of successive values of ����� from all possible initial seeds
�s� � �S�

Pt �
n
�un � ��un� � � � � �un�t��� j n � �� �s� � �S

o
�

We are interested in knowing how well those points are distributed in I t� If Pt is �t� ��
equidistributed� we say that the sequence ���� is �t� ��equidistributed� If L � � the sequence
��� is also �t� ��equidistributed and we say that the generator is �t� ��equidistributed� In the

best case �like for a full period generator�� Pt has cardinality mk� so �t� ��equidistribution
is possible only for � bk�tc� When the sequence is �t� bk�tc��equidistributed for t �
�� � � � � k� we say that it is maximally equidistributed � Some authors also call such a sequence

asymptotically random �	�� 	���
Full period digital multistep generators ��� are all ��� k��equidistributed �for L � k��

because each possible vector sn �except zero� occurs once and only once over the full period�
Tausworthe ���� also showed that they are �bk�sc� s��equidistributed� Tootill� Robinson� and
Eagle �	�� found the following maximally equidistributed Tausworthe generator� P �z� �
z��� � z��� � �� s � ���� and L � ��� In a similar vein� all GFSRs based on primitive
polynomials are �k� ���equidistributed� because their rst bit evolves according to a full
period MRG of order k� But for more than one bit of resolution� the equidistribution

properties of the GFSR depend on the lags dj between the components of Xn� i�e�� on the
initial state s� � �X�� � � � �Xk���� If the initial state is badly chosen� one might not even have
��� ���equidistribution� for example� just take d� � d� � �� Fushimi and Tezuka ���� gave a
necessary and su�cient condition on the initial state for the GFSR generator to be �t� L��

equidistributed for t � bk�Lc� Consider the tL bits �x���� � � � � x��L� � � � � xt����� � � � � xt���L��
The condition is that those bits must be independent in the sense that the tL � k matrix
which expresses them as a linear transformation of �y�� � � � � yk��� � �x���� � � � � xk����� has

�full� rank tL� Fushimi ���� gives a nice initialization procedure for GFSR generators to
satisfy that condition� based on the use of an equivalent Tausworthe generator� Besides
being slow and cumbersome� the GFSR initialization procedures previously available merely
insured ��� L��equidistribution� In fact� the condition for �t� L��equidistribution can be used

as well to verify �t� ��equidistribution for any � L� just pretend that the word size is �
i�e�� replace L by � All of this also generalizes to m �� ��

The set �Tt generates the following lattice over the eld of formal series�

�Lt � �IFm�z�� �Tt � �IFm�z��
t

�
n
g�z��s�z� � �h��z�� � � � � ht�z�� j �s�z� � �Tt and g� hi � IFm�z�

o
�

��

where IFm�z� is the space of polynomials in z with coe�cients in IFm� Let IFm��z���� denote

the space of formal Laurent series of the form �s�z� �
P�

j�h cjz
�j and dene a norm on

the vector space �IFm��z�����t as follows� For each �s � ��s�� � � � � �st� � �IFm��z�����t� where
�si�z� �

P�
j�hi

ci�jz
�j with ci�hi �� �� dene k�sk � max��i�tm�hi � If all ci�j�s are zero� dene

k�sk � k�k � �� Using this norm to dene distances� and assuming that �Lt has dimension t

�which is usually the case�� let B � f�V�� � � � � �Vtg be a set of vectors in �Lt such that �V� is a
shortest vector in �Lt and� for j � �� � � � � t� �Vj is a shortest vector in �Lt among those which
are linearly independent of f�V�� � � � � �Vj��g� Then� it can be shown ��
� that B is a basis for
�Lt� and it is called a reduced basis� So� the lattice can be expressed as

�Lt �

��
�

tX
j��

gj �Vj j gj � IFm�z�

�	

 �

Reduced bases can be computed via Lenstra�s algorithm ����� The values k�V�k� � � � � k�Vtk are

called the successive minima of �Lt� Dene j � � logm k�Vjk and for each integer
 �� let

d�� �
tX

j��

�j � ��� ����

Now� assume that ��� has full period � � mk��� For the case where P �z� is irreducible�

Couture� L�Ecuyer� and Tezuka ��
� have shown that in the �t� ��equidissection in base m�
mk�d��	 cells contain md��	 points of Pt each� while mt��mk�d��	 cells contain no point of Pt�
Therefore� Pt is �t� ��equidistributed if and only if d�� � k�t� �The proofs in ��
� are given

for m � �� but their generalization to any prime m is straightforward�� If one considers only
the main cycle of the generator� i�e�� discards the zero formal series �as done in ��
��� then
the cell with one corner at the origin contains one point less� In fact one always has

tX
j��

j � k�

Then� recalling that � � � � � � t� one can see that d�� � k � t is equivalent to t �
min��j�t j � � Therefore� t gives the resolution of the generator� that is� the maximum
value of for which it is �t� ��equidistributed� In other words� we want the minimum j to

be as large as possible� This is achieved if and only if � � t � �� So� t and � � t act
as respective analogues of the distance dt between hyperplanes and the Beyer quotient qt
dened in x����

For the case where P �z� is reducible with J factors� Couture� L�Ecuyer� and Tezuka

��
� have obtained general results giving a precise description of how the points of Pt are
distributed into the cells of the �t� ��equidissection� For J � � and �� they give explicit
formul! to quickly compute how many cells contain exactly n points� for each integer n�
in terms of the successive minima of di�erent lattices� They show how to construct bases

for those lattices� From that� generators can be found which are �approximately� �t� t��
equidistributed ��
��

��

As we saw in x���� there is an equivalence between Tausworthe generators and GFSR

generators with appropriate parameters and initial states� Therefore� the lattice structure of
such GFSR generators can be analyzed in the same way as for Tausworthe generators� More
general GFSR generators �with unevenly spaced shifts di� and twisted GFSR generators also
have a lattice structure� See Tezuka ��	� 	���

���� NETS AND NIEDERREITER
S FIGURE OF MERIT

A stronger notion than that of �t� ��equidistribution is the notion of net� introduced
by Sobol� �see ������ A �q� k� t��net in base m is a set of mk points in I t such that each

elementary interval E of I t of the form

E �
tY

i��

�	i� 	i � ��m��i

where each 	i and �i are non�negative integers such that 	im
��i � �� and with volumemq�k

�i�e��
Pt

i�� �i � k � q�� contains exactly mq points� In the case� of the �t� ��equidistribution�
we were considering only the cubic elementary intervals E� i�e�� we were imposing that all
�i�s be equal�

Consider a digital multistep sequence ���� Let t
 bk�sc and let 	 be a root of P �z�
in IFk

m� Consider the set of vectors

C �
n
	�i��	s�j�� j � � i � t� � � j � L

o
�

Let � be the largest integer such that � �
Pt

i�� i� � � i � L for each i� and such that

C���� � � � � t� �
n
	�i��	s�j�� j � � i � t� � � j � i

o

is linearly independent in IFk
m� Niederreiter ���� denes the �gure of merit r�t	 � min�L� ��

and proves that for t
 bk�Lc� the mk points of Tt form a �q� k� t��net in base m with

q � k � r�t	� He also proves that the same holds for the digital matrix generator ���� if we
replace C� by

C���� � � � � t� �
n
	i�dj�� j � � i � t� � � j � i

o
�

Note that � � k and r�t	 � min�L� k� always hold� Assuming that we seek low discrepancy
over the full period� the smaller q the better� i�e�� we want r�t	 to be as large as possible� In

the best case� one has r�t	 � k� i�e�� q � �� and each elementary interval of the ��� k� t��net
contains exactly one point� According to Corollary
��� of ����� a ��� k� t��net can only exist
for t � m� �� Therefore� for t
 m� �� one must have r�t	 � k � ��

Unfortunately� nding generators with large r�t	 for large k and t appears di�cult for

the moment� from the computational point of view� Steps in that direction have been made
by Andr"e� Mullen� and Niederreiter ���� For m � �� they have computed a list of primitive
polynomials of degree k � �� for which r��	 � k � � and r�t	 is large for all t � �� Tezuka
and Fushimi �	
� extended those results to a list of polynomials for which r��	 � k and r�t	

is large for t � �� Their associated sequences can also be generated more quickly than those
of ���� with the GFSR implementation�

��

�� Discrepancy and Other Theoretical Measures

The notion of discrepancy has been the subject of many papers and is well treated
in the excellent book of Niederreiter ����� who is undoubtedly the �grand master� of the
subject� Here� we just give it a quick look� For more details� see the many references given

in Niederreiter ��	� ��� ����
Suppose we generate N t�dimensional points un � �un� � � � � un�t���� � � n � N � ��

formed by �overlapping� vectors of t successive values produced by the generator� For any
hyper�rectangular box aligned with the axes� of the form R �

Qt
j���	j� �j�� with � � 	j �

�j � �� let I�R� be the number of points un falling into R� and V �R� �
Qt

j����j � 	j� be
the volume of R� Let R be the set of all such regions R� and

D
�t	
N � max

R�R
jV �R�� I�R��N j�

The latter is called the t�dimensional �extreme� discrepancy for the set of points u�� � � � �uN���

If we impose 	j � � for all j� i�e�� we restrict R to those boxes which have one corner at the

origin� we obtain a variant called the star discrepancy� denoted by D
��t	
N �

Points whose distribution is far from uniform will have high discrepancy� while points
which are too evenly distributed will tend to have a discrepancy that is too low� A well

behaved generator should have its discrepancy in the same order �for large N� as that of a
truly random sequence� which lies between O�N����� and O�N�����log logN������ according
to the law of the iterated logarithm ���� ���� This holds for both the star and extreme

discrepancies� �Here� O�f�n�� denotes the set of functions g such that for some constant c

�� g�n� � cf�n� for all n�� Niederreiter ���� shows that for a full period MLCG �with period
� � m���� for an average multiplier a �average over the set of multipliers which are primitive

modulom�� the discrepancyD�t	
m�� over the full period is inO�m���logm�t log log�m����� For

large m� this is too small� meaning too much regularity� Niederreiter ���� ��� concludes that

for that reason� MLCGs should be discarded altogether� A somewhat di�erent interpretation
�or conclusion� could be that in practice� one should never use more than a tiny fraction of
the period of the MLCG� Because of the lattice structure� it is clear from the outset that
over the full period� the points will be much too evenly distributed� This is even more so

when the Beyer quotient qt is close to �� However� as explained in x���� super�uniformity over
the entire period is reassuring and intuitively good when we use only a tiny fraction of the
period� Bounds on the discrepancy also exist for part of the period ���� and the discrepancy
is then better behaved� Of course� using only a small fraction of the period is not necessarily

foolproof� but at least the argument of the wrong order of magnitude of the discrepancy no
longer stands in that case�

Consider now the digital multistep method ���� The resolution here is m�L� which

means that all un�s are rational with denominator mL� From that� it is easily seen ���� that

D
��t	
N � m�L for all t � � and N � �� Further� for t � k�s and L � s � k� Niederreiter

���� shows that D��t	
N � � � �� � m�L�t for N � � �the period�� Therefore� a necessary

condition for the discrepancy to be in the right order of magnitude is that the resolution
m�L must be small enough for the number of points N that we plan to generate� A too

�

coarse discretization implies a too large discrepancy� If N points are to be used� one should

take m�L much smaller than N����� These recommendations apply in particular to MLCGs
and MRGs �with L � �� and Tausworthe �with m � ��� They also provide justication
for using the digital method even when m is large� For L � s � k and t
 k�s� one has

D
��t	
N � O�rt��m�r�� where r � r�t	 is the gure of merit of the generator dened in x��� �see

������ So� a larger gure of merit suggests a lower discrepancy� This also holds for digital

matrix generators� Further� on the �average� �over primitive polynomials�� for N � mk � �

�the period� and assuming again that L � s � k� one has D
��t	
N � O�N���logN�t�� log logN�

for the digital multistep method and D
��t	
N � O�N���logN�t� for digital matrix generators�

For large N � these discrepancies are too small� Therefore� the same recommendation as for
MLCGs holds here� never use more than a tiny fraction of the period� One question arises
here� since D��t	

N is already too small on the average� and decreases with r�t	� why should we

seek a large gure of merit r�t	 � Again� as explained in x���� having the points u�� � � � �u���

very evenly distributed gives us �heuristically� greater condence that the small fraction that
we use will be random looking� We view the latter fraction of points somewhat like a random
sample from the whole set� Discrepancy bounds for part of the period are given in ���� ����

One major di�culty with discrepancy is that it can be computed exactly only for a few
very special cases �e�g�� for a LCG� for t � � �
��� Otherwise� only bounds on D

�t	
N � or orders

of magnitude� are available ����� Typically� these orders of magnitude are for N equal to the
period length� or are averages over a whole class of generators� Estimating the discrepancy

empirically� e�g�� from a ne grid� does not seem possible for moderate t �say� t �
� and
reasonably large N � Another drawback is that discrepancy depends on the orientation of the
axes� in contrast to the Beyer quotients and distance between hyperplanes� On the other

hand� generators of di�erent types �e�g�� linear vs nonlinear� can be compared in terms of the
order of magnitude of their discrepancies� This cannot be done with the lattice test� Finally�
discrepancy is also interesting and useful because one can obtain error bounds for �Monte

Carlo� numerical integration or random search procedures in terms of D�t	
N � In that context�

the smaller the discrepancy� the better �because the aim is to minimize the numerical error�

not really to imitate i�i�d� U��� �� random variables��
There are other �statistical measures� which we did not discuss here and which can be

computed exactly �or bounds for them can be computed� for specic classes of generators�
That includes computing bounds on the serial correlation �

�� computing the results of the

�run� test applied over the whole sequence of a Tausworthe generator �	��� computing the
nearest pair of points over the whole period� or the minimal number of hyperplanes that
cover all the points� etc�� See �

� for further details�

�� Implementation and E	ciency Considerations

���� LINEAR CONGRUENTIAL AND MRG GENERATORS

Implementing ��� in a portable way� in high level language� for a large prime modulus
m� is tricky in general because of the possible over�ow in the products� If m is representable
as a standard integer on the target computer� there is a reasonably e�cient and portable

��

way of computing ax mod m for � � x � m provided that

a�m mod a� � m� ��	�

See ����
��
	� �	� for the details� In fact� all the multipliers a satisfying this condition turn

out to be of the form a � i or a � bm�ic for i � p
m� In view of ��	�� it may be worthwhile

considering negative multipliers a� it is possible that �a
 � satises the condition ��	�
while a�m �which is equivalent to a� does not� For small a� another approach which is often
faster is to perform the computations in double�precision �oating�point �
��� Techniques

for computing ax mod m in a high�level language for the more general case are studied by
L�Ecuyer and C#ot"e ����� who also give portable codes� A portable implementation of an
MRG based on a characteristic trinomial with coe�cients satisfying ��	� is given in �����

If m � �e where e is the number of bits on the computer word� and if one can use
unsigned integers without over�ow checking� the products modulo m are easy to compute�
just discard the over�ow� This is quick and simple� and is the main reason why power of
two moduli are still used in practice� despite their serious �statistical� drawbacks�

���� TAUSWORTHE	 GFSR	 AND TGFSR

Na$%ve software implementations of the digital multistep sequence ������� are rather slow
in general� before s steps of the recurrence ��� must be performed for each un� However�
very fast implementations are possible in some special cases� Hardware implementations are

also possible via feedback shift registers�
For m � � �the Tausworthe generator�� if one is willing to sacrice memory for speed�

then one can just implement the Tausworthe generator by implementing the equivalent

GFSR generator� as explained in x�������� But wasting that much memory could become a
problem� especially when many parallel generators are required or helpful �see x��� Further�
even if a GFSR is an acceptable option� one is probably better o� with a TGFSR anyway�
See Matsumoto and Kurita ���� ��� for how to implement the TGFSR�

Consider now a Tausworthe generator based on the characteristic trinomial P �z� �
zk � zk�r � �� and which satises �r
 k and � � s � r � k� Dene q � k � r� The
following algorithm quickly computes sn from sn��� Let A and B be bit vectors of size k and
suppose that A initially contains sn�� � �x�n��	s� � � � � x�n��	s�k���� The symbol 	 denotes

the �bitwise� exclusive�or operator�

Algorithm ��
�� B � q�bit left�shift of A�
�� B � A	B�
�� B � �k � s��bit right�shift of B�

� A � s�bit left�shift of A�
�� A � A	B�

To simplify the notation in explaining how the algorithm works� assume �without loss
of generality� that n � �� Initially� A contains �x�� � � � � xk���� After step �� the rst r

��

bits of B contain �x� 	 xq� � � � � xr�� 	 xq�r��� � �xk� � � � � xk�r���� After step
� A contains

xs� � � � � xk�� followed by s zeros� while B contains k � s zeros followed by xk� � � � � xk�s��
�recall that s � r�� Therefore� after step �� A contains �xs� � � � � xs�k���� Then� A can be
viewed as an unsigned integer and multiplied by the normalization constant ��k to produce
un �here� L � k�� If k is not larger than the computer�s word size� this algorithm is fast and

easy to program in any computer language which supports shifting and bitwise exclusive�or
operations� Tezuka and L�Ecuyer �	�� give an example in the C language� A FORTRAN
code implementing a di�erent algorithm� for the case k � s �for which algorithm � does not
work� is given in ���� p������

���� COMPLICATED CHARACTERISTIC POLYNOMIALS OR LARGE MODULI

Linear recurrences whose characteristic polynomials are a trinomial appear to allow
much faster implementations than those based on polynomials with many non�zero coe��

cients� at least from what we saw so far� However� recurrences based on polynomials with
few non�zero coe�cients have important statistical defects ���� �	� ��� ���� One way of
getting around this problem is to combine two or more trinomial�based generators� Some
classes of combined generators are in fact just e�cient ways of implementing a recurrence

whose characteristic polynomial has a large degree and many non�zero coe�cients� This is
the basic idea of the combined Tausworthe generators proposed in Tezuka and L�Ecuyer �	���
Their implementation turns out to be pretty fast� roughly as fast as that of a simple MLCG
with prime modulus �depending on the computers and compilers�� according to Tezuka �	���

Such combined generators are also recommended and studied in Wang and Compagner �	���
In a similar way� some MLCGs with very large moduli can be implemented e�ciently via
the combination of easily implementable MLCGs with small moduli� See x	 for further de�
tails� L�Ecuyer �
�� gives examples of such implementations and explains how to do it in

general� Other e�cient ways of implementing MLCGs with large moduli are through the
AWC and SWB generators discussed in x��	� However� the latter generators always have a
bad structure and must be avoided ���� 	���

���� RETURNING VECTORS OF RANDOM NUMBERS

James �
�� observes that for fast generators� when the generator �procedure� returns
one random number per call� the procedure call itself accounts for a large part of the time
for generating the random number� He then recommends that each procedure call returns a

vector of random numbers� Of course� if the size of the vector is large� this mechanism will
be e�cient only if all �or most� of the random numbers from the vector are used� This could
speed up some simulation applications� but for the majority of applications� the savings
will be negligible� while having to manage such a vector could be somewhat bothersome�

especially to programmers who seek simplicity and elegance in their code� Anderson ���
gives FORTRAN codes to generate vectors of random numbers on vector computers�

��

� Leapfrogging and Generating Numbers on Parallel Processors

There are two major situations which ask for generating �independent� multiple streams
of random numbers in parallel�

�a� To perform a simulation on parallel processors� where each processor must generate its
own random number stream ����

�b� To assign di�erent random number streams to di�erent components of the model�
for example to implement some variance reduction techniques� when performing a
simulation on a single processor ���� ����

Of course� these two situations can also be combined� To generate multiple streams in

parallel� for either situation �a� or �b�� the following approaches can be used�

�i� Use completely di�erent generators for the di�erent streams�

�ii� Use variants of the same generator� e�g�� same modulus but di�erent multipliers�

�iii� Use the same generator� but with di�erent seeds�

Method �iii� is more convenient than �i� and �ii� in terms of management and implemen�
tation� Even when many good parameter sets are available� implementation considerations
must be taken into account when selecting a generator� Often� the implementation of the
selected generator is artfully crafted for speed and portability and some constants depending

on the selected parameters must be precomputed for that purpose �
�� ��� 	��� This tends
to support approach �iii�� Finding millions of good generators is not really a problem for
some classes of generators like the LCG or MRG ���� ���� but not necessarily for all classes
of generators� For example� for the two�component ���bit combined Tausworthe generators

proposed in �	��� there is a limited number of good parameter sets� If many good param�
eter sets are available� one can conceivably maintain a large list of such good parameters
to implement method �ii�� These parameters must be computed beforehand and perhaps
stored in a �permanent� le that would come with the simulation package� This seems more

troublesome than approach �iii�� which does not require storing that much information�
For the case of linear generators� the matrix approach ���� can be viewed as a way of

formulating �iii�� But in terms of speed� it is generally better to implement the corresponding

MRG and run many copies of it in parallel�
Durst ���� suggests using �iii� with random seeds� Another approach is to select �de�

terministically� individual seeds that are far apart in the basic sequence� Typically� those
seeds are evenly spaced and split the period of the generator into disjoint pieces� called sub�

streams� long enough so that none of them could be exhausted in reasonable time� This is
called splitting ����� To generate the �far apart� seeds� for the case of a linear generator� just
use the matrix formulation of the generator� with matrix multiplier A and modulus m� If
Xn is the current seed� then Xn�� � for very large �� can be computed directly as

Xn�� � �A� mod m�Xn mod m�

��

The matrix A� mod m can be precomputed e�ciently by a standard divide�to�conquer al�

gorithm �
	��
At rst sight� splitting looks safer than generating seeds randomly� But one should be

careful� it is a mined ground� The major concern is that of long range correlations� e�g��
between Xn and Xn�� � Xn and Xn��� � and so on� Extremely bad correlations occur� for

example� when � and the modulus m are both powers of two� This is why Durst ���� prefers
random seeds� For further discussion on this and related topics� see ���� ��� ���
	��

Niederreiter ���� ��� proposes di�erent classes of nonlinear vector generators for use
on parallel processors� Those generators appear interesting �at least theoretically�� although

specic �well tested� parameter values and e�cient implementations are not given�
L�Ecuyer and C#ot"e ���� have developed a random number package with two�level

�imbedded� splitting facilities� It is based on the combined generator proposed in L�Ecuyer
�
��� It provides for multiple generators running simultaneously� and each generator has its

sequence of numbers partitioned into many long disjoint substreams� Simple procedure calls
allow the user to make any generator jump ahead or backwards over those substreams� Sim�
ilar packages could also be implemented rather easily using other �perhaps longer�period�

generators�

�� Combined Generators

To increase the period� improve the statistical properties� and perhaps try to get rid

of the lattice structure� di�erent kinds of combined generators have been proposed� See
����
��

�
	� ��� ��� ��� �
� 	�� 	�� 	�� and other references given there� The structure
of the hybrid generator thus obtained is often not well understood� Then� as pointed out

by Ripley ����� using such generators may be a bit like playing ostrich� Theoretical results
in ���� ��� appear to support the view �at rst glance� that combined generators should
have better statistical behavior in general than their individual components� However� as
explained in �
	�� applying those theoretical results to �deterministic� generators is a some�

what shaky reasoning� Combination can conceivably worsen things� Nevertheless� empirical
results strongly support combination ���� ���� Most of the fast and simple generators �e�g��
Tausworthe or MRGs based on primitive trinomials� happen to have statistical defects ����
��� �	� ���� Combining such fast generators could yield an e�cient generator with much

better statistical properties�
Recently some combined generators have been analyzed successfully and turn out to

be equivalent� or approximately equivalent� to MLCGs with large �non�prime� moduli or
to Tausworthe generators with large�degree �reducible� characteristic polynomials� Other

classes of combined generators �like shu�ing� are not �yet� well understood theoretically� See
L�Ecuyer �
	� and the references given there� We will now discuss two classes of combined
generators which have been recently analyzed�

L�Ecuyer �
�� proposed a combination method for MLCGs with distinct prime moduli

�	

m�� � � � �mJ � If xjn denotes the state of generator j at step n� dene the combination�

Zn �

�
� JX
j��

�jxjn

�
A mod m� ����

for some xed integers �j� In �
��� �j � ����j�� and a specic generator are suggested�
Wichmann and Hill �	�� proposed a slightly di�erent combination approach� which is a bit
slower because it requires more divisions�

Un �

�
� JX
j��

�jxjn�mj

�
A mod �� ����

If each individual MLCG has full period mj��� then the period of the latter is always equal
to the least common multiple of m�� �� � � � �mJ � � �
	�� In practice� if the mj�s are distinct
primes slightly smaller than ��� and if the multipliers satisfy ��	�� then the generator is easy

to implement on a ���bit computer and can reach a very large period�
L�Ecuyer and Tezuka ���� have shown that there exists a MLCG with modulus

m �
QJ

j��mj whose lattice structure approximates quite well the behavior of ���� in higher
dimensions� and which is exactly equivalent to ����� This MLCG does not depend on the

�j�s� The equivalence of the Wichmann and Hill generator to a MLCG was already pointed
out by Zeisel �	��� The results of ���� mean that ���� and ���� are almost equivalent� Such
structural properties imply that the combined generators can be viewed as e�cient ways of
implementingMLCGs with very large moduli �with added �noise�� in the case of ������ which

can be analyzed with the Beyer and spectral tests� Numerical and graphical illustrations
are given in ����� These combinations methods can also be generalized to the combination
of MRGs with distinct prime moduli�

For the generator of L�Ecuyer �
��� the lattice approximation is quite good in dimensions

t � �� As shown in ����� components with bad lattice structure can give rise to good combined
generators� and the reverse is also true� Therefore� the selection of a combined generator
should not be made just by selecting components with good lattice structure� as was done in

�
��� but by analyzing the lattice structure of the combined generator itself� Based on that
criterion� better combined generators than the one proposed in �
�� can be found ����� Press
and Teukolsky ���� propose a generator which adds a shu�e to the combined generator of
�
��� That destroys the lattice structure�

Tezuka and L�Ecuyer �	�� combine Tausworthe generators as follows� For each j �
�� � � � � J � consider a Tausworthe generator with primitive characteristic polynomial Pj�z� of
degree kj � with s � sj such that gcd�sj� �kj � �� � �� and whose linear recurring sequence is
fxj�n� n � �g� At step n� the output of generator j is produced by

uj�n �
LX
i��

xj�ns�i��m
�i�

The output of the combined generator is dened as the bitwise exclusive�or of u��n� � � � � uJ�n�

If the polynomials Pj�z� are pairwise relatively prime� then the period of the combined gener�
ator is the least common multiple of the individual periods� i�e�� � � lcm��k���� � � � � �kJ ���

��

�see �	���� Clearly� one should take distinct kj �s and the period � could then be the prod�

uct of the individual periods� In that case� Wang and Compagner �	�� call the sequence
fxn � x��n 	 � � � 	 xJ�n� n � �g an AM�sequence� where AM stands for �approximate
maximum�length�� As shown in �	�� 	��� the combined generator is equivalent to a Taus�
worthe generator with �reducible� characteristic polynomial P �z� � P��z� � � �PJ �z�� The

lattice structure and equidistribution properties of such combined generators are analyzed
in ��
� 	��� Tezuka and L�Ecuyer �	�� suggest three specic combined generators� and give
computer codes� TGFSRs can also be combined in a similar way and this is the subject of
ongoing research�

One very attractive feature of that kind of combination is that even when the individ�
ual Pj�z� have few non�zero coe�cients �e�g�� are trinomials� and bad statistical behavior�
P �z� often has many non�zero coe�cients and the combined generator could be very good�
In other words� this combination approach can be viewed as an e�cient way of implementing

Tausworthe generators with �good� characteristic polynomials� Compagner ���� and Wang
and Compagner �	�� also suggest the same kind of combination� and give supporting argu�
ments� They show that the correlation structure of AM�sequences behaves very nicely in

general� Their empirical investigation also suggests that when the number of non�zero coef�
cients in P �z� is reasonably large� then the gure of merit r�t	 dened in x��� is �usually�
also large�

Marsaglia ���� recommends combining generators of di�erent algebraic structures in�

stead of combining generators within the same class� This is perhaps an interesting �scram�
bling� heuristic� but little theoretical analysis is available for such combinations� In ���� �
��
he and his co�workers propose two specic combined generators of that sort� However� the
generator of ���� has an important defect� as shown in ����� it has a lattice structure with

distance dt between hyperplanes of at least ��
p
� for all t �
��

��� Nonlinear Generators

Linear generators tend to have a too regular structure� and for that reason� many
believe that the way to go is nonlinear ���� �	� ��� ���� We can distinguish the following two

ways of introducing nonlinearity in a generator�

�a� Use a generator with a linear transition function T � but transform the state nonlinearly
to produce the output �G is nonlinear��

�b� Construct a generator with a nonlinear transition function T �

We will discuss one example of �a�� namely the inversive congruential generator� and a

few examples of �b�� A common property of those nonlinear generators is that they do not
produce a lattice structure like the linear ones� Their structure is highly nonlinear� typically�
any t�dimensional hyperplane contains at most t overlapping t�tuples of successive values�
Niederreiter ���� shows that they behave very much like truly random generators with respect

to discrepancy� Therefore� their theoretical properties look quite good� However� specic
well�tested parameter values with fast implementations are currently not available�

��

���� NONLINEAR CONGRUENTIAL GENERATORS OVER IFm

Let S � ZZm� where m is a large integer� and the output function be G�x� � x�m�
Suppose that the transition function has the form

T �x� � f�x� mod m� x � ZZm� ����

This is an instance of case �b�� Suppose now that m is prime and that f is selected so that
the sequence fxng dened by xn � T �xn���� for any x� � ZZm� has �full� period � � m� Then�

there exists a �unique� permutation polynomial P � of degree k � m��� such that P �n� � xn
for all n � ZZm ���� ���� Further� for all t � k� the �smallest� lattice which contains all the
t�dimensional vectors of successive values un � �un� � � � � un�t��� produced by the generator is
the �complete� lattice ZZt�m� In that case� i�e�� when the vectors fung span ZZt�m �over ZZ��

some authors say that the generator passes the t�dimensional lattice test ����� Passing this
test means that the points really do not have a lattice structure� This could be viewed as a
desirable feature� So� the larger is k� the better� We must emphasize� however� that passing

the lattice test does not mean at all that the generator has good statistical properties� The
degree k of the polynomial P here also has to do with the discrepancy� It has been shown
���� ��� that for � � t � k� D�t	

m � O�km�����logm�t�� For k close to m� this is the right
order of magnitude�

���� INVERSIVE CONGRUENTIAL GENERATORS

Eichenauer et al� ���� �
� ��� introduced a class of nonlinear inversive generators which
can be dened as the application of a supplementary step when transforming the xn produced
by an MRG into a value between � and � �and skipping the xn�s which are zero�� Let fxng
be a full period linear recurring sequence ���� with prime m� Let �xi be the i�th non�zero
value xn in that sequence� Dene zn � ��xn���x��n � mod m� where �x��n is the inverse of �xn in
IFm� and let the output be un � zn�m� The inverse �x��n can be computed via a version of

Euclid�s algorithm �

� or via �x��n � xm��n mod m� Both methods to compute the inverse
take time in O�logm� and have similar performance in practice� They are rather slow when
implemented in software� which might make the generator unacceptably slow for certain
applications� Fast hardware implementations are possible� though ����� For prime m� the

maximal possible period for fzng ismk��� Su�cient conditions for it to be attained are given
in ��
� ��� ���� Maximal period generators are easy to nd� A nice property of inversive
congruential generators with prime moduli is that their discrepancy is in the same order of
magnitude as that of truly random numbers ���� ����

For k � � or �� one can also write a recursion directly for zn� For k � �� it is

zn �

�
�a� � a�z

��
n��� mod m if zn�� �� ��

a� if zn�� � ��

In that case� a su�cient condition for maximal period is that P �z� � z� � a�z � a� is a

primitive polynomial over IFm�

��

A slightly di�erent variant is the explicit inversive congruential method� introduced

by Eichenauer�Herrmann ����� Here� xn � an � c� for n � �� where a �� � and c are in
ZZm� zn � x��n � �an � c�m�� mod m� and un � zn�m� The period is � � m and the
permutation polynomial P associated with this generator has degree k � m � �� So� the
generator �passes the lattice test� in all dimensions t � m � �� Niederreiter ���� ��� also

shows that every hyperplane in IRt contains at most t points from the set fu�� � � � �um��g�
and obtains discrepancy bounds�

Inversive congruential generators with power�of�two moduli have also been studied ����
��� �	�� For these generators� non�trivial upper bounds on the discrepancy are available only

in dimension �� Further� the generated points have some regular structures ����� Therefore�
prime moduli appear preferable�

Inversive congruential generators have been the subject of many papers in the last ve
years or so� Eichenauer�Herrmann ���� gives a survey� as well as a few suggested parameters�

These generators would perhaps deserve a more extensive coverage than what is done here�
The present coverage re�ects the relative lack of practical experience of the author with their
use� They certainly deserve further investigation�

���� QUADRATIC CONGRUENTIAL GENERATORS

A special case which has received some attention is the quadratic case� for which f in
���� has the quadratic form f�x� � ax� � bx� c� with a� b� c � ZZm �

� ���� If m is a power
of two� then the generator has full period �� � m� if and only if a is even� �b�a� mod
 � ��

and c is odd �

�� The points produced by that generator turn out to lie on a union of grids�
which can be determined explicitly ����� Bounds on D�t	

m are given in �����

���� OTHER NONLINEAR GENERATORS

Some nonlinear generators have also been proposed by people from the eld of cryp�
tology ��� �
� ���� Blum� Blum� and Shub ��� proposed the following class� known as BBS
generators� Let m � pq be a Blum integer � i�e�� such that p� q are two distinct primes both
congruent to � modulo
� Let x� � x� mod m� where x is a positive integer such that

gcd�x�m� � �� and for n � �� let

xn � x�n�� mod m�

At each step� the generator outputs the last � bits of xn� Suppose that both p and q are
k���bit integers and that � � O�log k�� Under the reasonable assumption that factoring
Blum integers is hard� it has been proved that no polynomial�time �in k� statistical test

can distinguish �in some specic sense� a BBS generator from a truly random one� This
means that for large enough k� the generator should behave very nicely from a statistical
point of view� See ��� �
� for further details� However� L�Ecuyer and Proulx ��
� show
that a software implementation of the BBS generator is much too slow for practical use in

simulation applications� More e�cient generators with the same kind of polynomial�time
statistical �perfectness� have been proposed recently ����� Further investigation is required

��

before assessing their practical competitivity for simulation�

��� Empirical Statistical Testing

An unlimited number of empirical tests can be designed for random number generators�
The null hypothesis is H�� �The sequence is a sample of i�i�d� U��� �� random variables��
and a statistical test tries to nd empirical evidence against H� �usually� against unspecied
alternatives�� Any function of a nite number of U��� �� random variables� whose �sometimes

approximate� distribution under H� is known� can be used as a statistic T which denes a
test for H��

����� MULTILEVEL TESTS

To increase the power� a given test can be replicated N times� on disjoint parts of
the sequence� yielding values T�� � � � � TN of the statistic� The empirical distribution of those
N values can then be compared to the theoretical distribution of T under H�� via stan�

dard univariate goodness�of�t tests� like Kolmogorov�Smirnov �KS�� Anderson�Darling� or
Cramer�von Mises ����� We call this a two�level test�

For example� one can compute the value d of the KS statistic DN � and the descriptive

level �� of the two�level test� dened as

�� � P �DN
 d j H��� ����

Under H�� �� should be U��� ��� A very small value of �� �say� �� � ���� provides evidence
against H�� In case of doubt� the whole procedure can be repeated �independently�� and if
small values of �� are produced consistently� H� should be rejected� which means that the
generator fails the test� If �� is not too small� that improves condence in the generator� It

should be clear� however� that statistical tests never prove that a generator is foolproof�
Here� we did not specify an alternative to H�� So� the power of the test is not really

a well�dened notion� Empirically� however� two�level testing tends to catch up more easily

the defective generators� at least for the current �standard� tests� and this is what we mean
by �increasing the power��

One can also perform a three�level test� replicate the two�level test R times� and
compare the empirical distribution of the R values of �� with the U��� �� distribution� using

again a goodness�of�t test� and yielding a descriptive level ��� Reject if �� is too small�
This can be taken up to fourth level� fth level� and so on� However� one major problem
with higher�level tests is that in most cases� the exact distribution of the rst�level statistic T
underH� is not available� but only an approximation of it is �e�g�� a chi�squared distribution��

Often� that approximation is also the asymptotic distribution as the �rst�level� sample size
increases to innity� Higher�level tests may then detect the lack�of�t of that approximation
long before detecting any problem with the generator� Good generators will then be rejected�
The higher the level� the more this is likely to happen� Perhaps this problem could be

alleviated in some cases by nding better statistics or better approximations� but is usually
hard to eliminate� Similarly� for a three�level �or more� test� if a KS statistic is used at the

�

second level� the N descriptive level values �� will usually be computed using the asymptotic

�as N ��� KS distribution� Again� if N is too small� the test will detect the fact that the
asymptotic is not yet a good enough approximation� So� for higher�level tests� one must take
much larger sample sizes at the lower levels� This quickly becomes time�wise prohibitive�

If higher�level tests are problematic� why not just use one level � One�level tests do

not test the local behavior of generators as well as higher�level tests� Some sequences have
good properties when we take the average over the whole sequence� but not when we look at
very short subsequences� As an illustration� consider the �extreme� example of a generator
producing the values i����� i � �� �� � � � � ��� � �� in that order� A uniformity test over the

whole sequence will give a perfect adjustment� In fact� the adjustment will be too good�
giving what is called super�uniformity ����� On the other hand� uniformity tests over disjoint
shorter subsequences will give terribly bad adjustments� So� one�level tests are not always
appropriate� and two�level tests seem to o�er a good compromise�

����� STANDARD AND MORE STRINGENT TESTS

Knuth �

� describes a set of tests which have been considered for a while as �the stan�
dard tests� for testing random number generators� Arguing that those so�called standard

tests were not su�ciently discriminatory� i�e�� that many �bad� generators passed most of the
tests� Marsaglia ���� proposed a new set of more stringent tests� Indeed� sophisticated ap�
plications like probabilistic computational geometry� probabilistic combinatorial algorithms�
design of statistical tests� and so on� often require generators with excellent high�dimensional

structures� Marsaglia argued that for such classes of applications� simple generators �e�g��
LCG� Tausworthe� GFSR� etc�� were not good enough� and advocated combined generators�
Other statistical tests for random number generators are proposed or discussed in ���� ���

�� ��� ��� ��� ��� and the references given there�

For many interesting statistical tests� the theoretical distribution of the associated
statistic is unfortunately unknown� at least in practically usable form ���� ���� In such
situations� Marsaglia ���� suggests comparing the empirical distribution of a generator to

be tested with that of a �good� generator� But which generator should we use for that �
We get into a vicious circle� because what we want to test is precisely whether the random
number generators are able to reproduce the right distribution function for T � In practice�
though� estimating the theoretical distribution with many di�erent types of �supposedly

good� random number generators could be a reasonable �heuristic� compromise� If the
results agree� it will certainly improve our condence that this is the right distribution�

����� EXAMPLES OF TESTS RESULTS

L�Ecuyer ���� has applied �� �two�level� statistical tests to � popular or recently pro�

posed random number generators� The tests included the poker test� the runs�up test�
the birthday spacings test� OPSO �with four di�erent sets of parameters�� and the nearest
pair test �in dimensions
� �� and 	�� See ���� for more details� The generators were the

rst � listed in Table �� The author also applied the same tests to the MRG dened by

��

xn � ������
���xn�� � ��

��xn��� mod m� un � xn�m� with m � ��� � �� taken from ����

�G	 in the table��

Table �� The generators tested�

G�� MLCG with m � ��� � � and a � ������
G�� MLCG with m � ��� � � and a � ����������
G�� MLCG with m � ��� � � and a � �
�	������
G
� CSD generator of Sherif and Dear �����

G�� Combined generator in Fig� � of L�Ecuyer �
���
G�� Combined Tausworthe generator G� of Tezuka and L�Ecuyer �	���
G�� Twisted GFSR with �r� s� p� � ���� �� ����
G�� Subtract�with�borrow generator with �b� r� s� L� � ���� � ��
�� ��� ���

G	� MRG with m � ��� � �� k � � and a� � �����
���� a� � ��

��� a� � a� � a
 � �

Generators G� and G� are used in various software packages ����
�� and recommended
by some authors ��	�
��� Fishman and Moore ���� recommend G�� G� is proposed by

Matsumoto and Kurita ����� while G� is proposed by Marsaglia and Zaman ���� and further
recommended by James �
��� The results were that besides G�� G�� and G	� all other
generators failed spectacularly at least one of the tests� Moreover� each of G� to G
 failed
spectacularly at least � tests out of ��� In more than half of the �fail� cases� the descriptive

level �� was less than ������ Clearly� these results should be shocking to many simulation
practitioners�

Some of the test results could be explained by looking at the structure of the generator�
For example� as pointed out by Ripley ���� ���� the MLCGs are bound to fail the nearest�

pair test because of their regular lattice structure� the length of the shortest vector in the
Minkowski reduced basis is a lower bound on the distance between points� so that the nearest
pair in a large set of points cannot be as close as it should be statistically� A nearest�pair
test can also be constructed using the norm on the space of formal series dened in x����
Tausworthe and GFSR generators with good equidistribution properties are likely to fail
such tests �see ��	��� Other examples of tests that certain classes of generators are bound
to fail are given in ��	� ���� Results of extensive statistical tests can also be found in �
��

�� ���� In �
��� the authors have applied a battery of tests to �� generators proposed in the
literature� and recommend three generators on the basis of their speed and their performance
in those tests� Two of those generators are LCGs with modulus ���� while the third one is a
combined generator� The two recommended LCGs would certainly fail some of the �� tests

applied in ����� for the reasons explained above�

����� WHICH TESTS ARE THE GOOD ONES �

Statistical tests are far from being clean�cut testing tools� Because any generator has

nite period� almost any good test� if run long enough� will eventually detect regularity and
reject the generator� So� how can we be satised with empirical test results � A reasonable

��

practical view here is to restrict ourselves to tests that we can practically run on a computer�

For example� if a test needs �� million years of CPU time on the world�s fastest computer�
perhaps we do not care much about its eventual results� However� we would like the generator
to pass �with probability close to one� all known tests which can run in� say� less than a few
hours� assuming that the generator�s structure is unknown to the test builder and only the

output values un are observed� But even this is not easy to achieve with e�cient generators�
If the generator is a MLCG� for example� there exist e�cient algorithms which can nd out
the modulus and multiplier only from the output values� and guess the next values �	�
���
From that� it is easy to design a test that the MLCG will fail� Perhaps asking a generator to

pass all such tests is asking too much � Well� that depends on the application� If a generator
fails a given statistical test� it is easy� from that� to construct an application for which the
generator will produce completely wrong results� One trivial example� Suppose you want to
estimate the distribution of the statistic T on which the test is based� If the generator fails

the test� it means that the distribution of T is not correctly estimated�

Acknowledgements

This work has been supported by NSERC�Canada grant & OGP������� and FCAR�
Qu"ebec grant & 	�ER���
� The paper was written while the author was a Visiting Professor�
under the Toshiba Chair� in the Graduate School of Science and Engineering� at Waseda
University� Tokyo� Japan� Most of the text was written in the gardens of various temples

surrounding Kyoto� I wish to thank Raymond Couture� Bennett L� Fox� Makoto Matsumoto�
Harald Niederreiter� and Shu Tezuka for their valuable comments�

References

��� L� A�erbach� The Sub�Lattice Structure of Linear Congruential Random Number Gen�
erators� Manuscripta Math	 �� ��	���
���
���

��� L� A�erbach and H� Grothe� Calculation of Minkowski�Reduced Lattice Bases� Com�
puting �� ��	��� ��	�����

��� L� A�erbach and H� Grothe� The Lattice Structure of Pseudo�Random Vectors Gener�
ated by Matrix Generators� J	 of Computational and Applied Math	 �� ��	��� ��������

�
� L� A�erbach and R� Weilb$acher� The Exact Determination of Rectangle Discrepancy
for Linear Congruential Pseudorandom Numbers� Math	 of Computation ��� ��� ��	�	�

�
����
�

��� D� L� Andr"e� G� L� Mullen� and H� Niederreiter� Figures of Merit for Digital Multistep

Pseudorandom Numbers� Math	 of Computation �� ��		�� �����
��

��� S� L� Anderson� Random Number Generators on Vector Supercomputers and Other

Advanced Architectures� SIAM Review �� ��		�� ��������

��

��� A� C� Atkinson� Tests of Pseudo�Random Numbers� Applied Statistics �� ��	��� ��
�

����

��� L� Blum� M� Blum� and M� Shub� A Simple Unpredictable Pseudo�Random Number

Generator� SIAM J	 Comput	 ��� � ��	��� ��
�����

�	� J� Boyar� Inferring Sequences Produced by a Linear Congruential Generator Missing

Low�Order Bits� Journal of Cryptology � ��	�	� ������
�

���� P� Bratley� B� L� Fox� and L� E� Schrage� A Guide to Simulation� second edition�

Springer�Verlag� New York ��	����

���� M� Brown and H� Solomon� On Combining Pseudorandom Number Generators� Annals

of Statistics � ��	�	� �	���	��

���� B� J� Collings� Compound Random Number Generators� J	 of the American Statistical

Association
�� �	� ��	��� ��������

���� A� Compagner� The Hierarchy of Correlations in Random Binary Sequences� Journal of
Statistical Physics �� ��		�� �����	��

��
� R� Couture� P� L�Ecuyer� and S� Tezuka� On the Distribution of k�Dimensional Vec�
tors for Simple and Combined Tausworthe Sequences� Mathematics of Computation ��
��		�� To appear�

���� R� Couture and P� L�Ecuyer� On the Lattice Structure of Certain Linear Congruential
Sequences Related to AWC SWBGenerators� Mathematics of Computation� To appear�

���� J� Dagpunar� Principles of Random Variate Generation� Oxford University Press� �	���

���� J� W� Dalle Molle� M� J� Hinich� and D� J� Morrice� Higher�Order Cumulant Spectral
Based Statistical Tests of Pseudo Random Variate Generators� Proceedings of the ���

Winter Simulation Conference� IEEE Press ��		�� ��������

���� A� De Matteis and S� Pagnutti� Parallelization of Random Number Generators and
Long�Range Correlations� Numerische Mathematik �� ��	��� �	������

��	� L� Devroye� Non�Uniform Random Variate Generation� Springer�Verlag� New York
��	����

���� E� J� Dudewicz and T� G� Ralley� The Handbook of Random Number Generation and
Testing with TESTRAND Computer Code� American Sciences Press� Columbus� Ohio

��	����

���� M� J� Durst� Using linear congruential generators for parallel random number generation�

Proceedings of the ���� Winter Simulation Conference� IEEE Press ��	�	�
���
���

��

���� J� Eichenauer and J� Lehn� A Nonlinear Congruential Pseudorandom Number Genera�

tor� Statistische Hefte �� ��	��� ��������

���� J� Eichenauer and J� Lehn� On the Structure of Quadratic Congruential Sequences�
Manuscripta Math	 �
 ��	��� ��	��
��

��
� J� Eichenauer� H� Grothe� J� Lehn� and A� Topuzo'glu� A Multiple Recursive Nonlinear
Congruential Pseudorandom Number Generator�Manuscripta Math	 �� ��	��� �����
��

���� J� Eichenauer� J� Lehn� and A� Topuzo'glu� A Nonlinear Congruential Pseudorandom
Number Generator with Power of Two Modulus� Math	 of Computation ��� ��
 ��	���

������	�

���� J� Eichenauer�Herrmann� A Remark on Long�Range Correlations in Multiplicative Con�
gruential Pseudo Random Number Generators� Numerische Mathematik �� ��	�	� ��	�
����

���� J� Eichenauer�Herrmann� Statistical Independence of a New Class of Inversive Congru�
ential Pseudorandom Numbers� Mathematics of Computation �� ��		�� ������
�

���� J� Eichenauer�Herrmann� Inversive Congruential Pseudorandom Numbers� a Tutorial�

International Statistical Reviews �� ��		�� ��������

��	� J� Eichenauer�Herrmann and H� Grothe� A New Inversive Congruential Pseudorandom
Number Generator with Power of Two Modulus� ACM Transactions of Modeling and
Computer Simulation �� � ��		�� �����

���� J� Eichenauer�Herrmann� H� Grothe� and J� Lehn� On the Period Length of Pseudoran�

dom Vector Sequences Generated by Matrix Generators� Math	 of Computation ��� ���
��	�	� �
���
��

���� E� D� Erdmann� Empirical Tests of Binary Keystreams� Master�s thesis� Department of
Mathematics� Royal Holloway and Bedford New College� University of London� �		��

���� A� M� Ferrenberg� D� P� Landau� and Y� J� Wong� Monte Carlo Simulations� Hidden
Errors from �Good� Random NumberGenerators� Physical Review Letters ��� �� ��		��

��������
�

���� G� S� Fishman and L� S� Moore III� An Exhaustive Analysis of Multiplicative Congru�
ential Random Number Generators with Modulus ��� � �� SIAM J	 on Scienti�c and
Statistical Computing �� � ��	��� �
�
��

��
� G� S� Fishman� Multiplicative Congruential Random Number Generators with Modulus
��� An Exhaustive Analysis for � � �� and a Partial Analysis for � �
�� Mathematics

of Computation ��� ��	 �Jan �		�� �����

�

���� M� Fushimi� An Equivalence Relation between Tausworthe and GFSR Sequences and
Applications� Applied Math	 Letters �� � ��	�	� ��������

�	

���� M� Fushimi and S� Tezuka� The k�Distribution of Generalized Feedback Shift Register

Pseudorandom Numbers� Communications of the ACM ��� � ��	��� ��������

���� H� Grothe� Matrix Generators for Pseudo�Random Vectors Generation� Statist	 Hefte

�
 ��	��� ��������

���� H� Grothe� Matrixgeneratoren zur Erzeugung gleichverteilter Pseudozufallsvektoren �in

german�� Dissertation �thesis�� Tech� Hochschule Darmstadt� Germany� �	���

��	� J� R� Heringa� H� W� J� Bl$ote� and A� Compagner� New Primitive Trinomials of

Mersenne�Exponent Degrees for Random�Number Generation� International Journal
of Modern Physics C �� � ��		�� ������
�

�
�� D� C� Hoaglin and M� L� King� A Remark on Algorithm AS 	�� The Spectral Test
for the Evaluation of Congruential Pseudo�random Generators� Applied Statistics ��
��	��� ��������

�
�� F� James� A review of pseudorandom number generators� Computer Physics Communi�
cations� �� ��		�� ��	��

�

�
�� R� Kannan� A� K� Lenstra� and L� Lov"asz� Polynomial Factorization and Nonrandomness
of Bits of Algebraic and Some Transcendental Numbers�Math	 of Computation� ��� ���

��	��� ��������

�
�� Z� A� Karian and E� J� Dudewicz� Modern Statistical� Systems� and GPSS Simulation�

The First Course� Computer Science Press� Freeman� New York� �		��

�

� D� E� Knuth� The Art of Computer Programming � Seminumerical Algorithms� vol� ��

second edition� Addison�Wesley� �	���

�
�� H� Krawczyk� How to Predict Congruential Generators� in Lecture Notes in Computer

Science ��� Advances in Cryptology� Proceedings of Crypto��� � G� Brassard� Ed��
Springer�Verlag� Berlin ��		�� ��������

�
�� Y� Kurita and M� Matsumoto� Primitive t�nomials �t � �� �� over GF ��� whose Degree
is a Mersenne Exponent �

	�� Mathematics of Computation ��� �	
 ��		�� ��������

�
�� A� M� Law and W� D� Kelton� Simulation Modeling and Analysis� Second edition�
McGraw�Hill ��		���

�
�� P� L�Ecuyer� E�cient and Portable Combined Random Number Generators� Communi�
cations of the ACM ��� � ��	��� �
���
	 and ��
� See also the correspondence in the
same journal� ��� � ��	�	� ���	����
�

�
	� P� L�Ecuyer� Random Numbers for Simulation� Communications of the ACM ��� ��
��		�� ���	��

�

���� P� L�Ecuyer� Testing Random Number Generators� Proceedings of the ���
 Winter Sim�

ulation Conference� IEEE Press ��		��� ��������

���� P� L�Ecuyer� F� Blouin� and R� Couture� A Search for Good Multiple Recursive Random

Number Generators� ACM Transactions on Modeling and Computer Simulation �� �
��		�� ���	��

���� P� L�Ecuyer and S� C#ot"e� Implementing A random number package with splitting facil�
ities� ACM Trans	 on Math	 Software �� ��		�� 	������

���� P� L�Ecuyer and R� Couture� An Implementation of the Lattice and Spectral Tests for
Linear Congruential and Multiple Recursive Generators� In preparation�

��
� P� L�Ecuyer and R� Proulx� About Polynomial�Time �Unpredictable� Generators� Pro�
ceedings of the ���� Winter Simulation Conference� IEEE Press ��	�	�
���
���

���� P� L�Ecuyer and S� Tezuka� Structural Properties for Two Classes of Combined Random
Number Generators� Mathematics of Computation ��� �	� ��		�� �����
��

���� A� K� Lenstra� Factoring Multivariate Polynomials over Finite Fields� J	 Comput	 Syst	
Science �� ��	��� �����
��

���� T� G� Lewis and W� H� Payne� Generalized Feedback Shift Register Pseudorandom
Number Algorithm� J	 of the ACM ��� � ��	���
���
���

���� R� Lidl and H� Niederreiter� Introduction to Finite Fields and Their Applications� Cam�
bridge University Press� Cambridge ��	����

��	� J� H� Lindholm� An Analysis of the Pseudo�Randomness Properties of Subsequences of
Long m�Sequences� IEEE Transactions on Information Theory IT���
 ��	��� ��	�
����

���� G� Marsaglia� A Current View of Random Number Generation� Computer Science and

Statistics� Proceedings of the Sixteenth Symposium on the Interface� Elsevier Science
Publ� �North�Holland� ��	��� �����

���� G� Marsaglia and L��H� Tsay� Matrices and the Structure of Random Number Sequences�
Linear Algebra and its Applications �� ��	��� �
������

���� G� Marsaglia and A� Zaman� A New Class of Random Number Generators� The Annals
of Applied Probability � ��		��
���
���

���� G� Marsaglia� B� Narasimhan� and A� Zaman� A Random Number Generator for PC�s�
Computer Physics Communications �� ��		�� �
���
	�

��
� G� Marsaglia� A�� Zaman� and W� W� Tsang� Towards a Universal Random Number
Generator� Stat	 and Prob	 Letters
 ��		�� ����	�

�

���� M� Matsumoto and Y� Kurita� The Fixed Point of an m�sequence and Local Non�

Randomness� technical report ������� Department of Information Science� University of
Tokyo ��	����

���� M� Matsumoto and Y� Kurita� Twisted GFSR Generators� ACM Transactions on Mod�
eling and Computer Simulation �� � ��		�� ��	��	
�

���� M� Matsumoto and Y� Kurita� Well�Tempered TGFSR Generators� Manuscript ��		���

���� U� M� Maurer� A Universal Statistical Test for Random Bit Generators� Journal of

Cryptology � ��		�� �	�����

��	� H� Niederreiter� Quasi�Monte Carlo Methods and Pseudorandom Numbers� Bull	 Amer	

Math	 Soc	
�� � ��	��� 	�����
��

���� H� Niederreiter� The Serial Test for Pseudorandom Numbers Generated by the Linear

Congruential Method� Numer	 Math	 �� ��	���� ������

���� H� Niederreiter� A Pseudorandom Vector Generator Based on Finite Field Arithmetic�
Math	 Japonica �� ��	��� ��	���
�

���� H� Niederreiter� A Statistical Analysis of Generalized Feedback Shift Register Pseudo�
random Number Generators� SIAM J	 Sci	 Stat	 Comput	
 ��	��� ����������

���� H� Niederreiter� The Serial Test for Digital k�Step Pseudorandom Numbers� Mathemat�
ical Journal of Okayama University �� ��	��� 	����	�

��
� H� Niederreiter� Statistical Independence Properties of Pseudorandom Vectors Produced
by Matrix Generators� J	 Comput	 Appl	 Math	 �� ��		�� ��	�����

���� H� Niederreiter� Recent Trends in Random Number and Random Vector Generation�
Annals of Operations Research �� ��		�� �����
��

���� H� Niederreiter� New Methods for Pseudorandom Number and Pseudorandom Vector
Generation� Proceedings of the ���
 Winter Simulation Conference� IEEE Press ��		��
��
���	�

���� H� Niederreiter� Random Number Generation and Quasi�Monte Carlo Methods� SIAM
CBMS�NSF Regional Conference Series in Applied Mathematics� vol� ��� SIAM�

Philadelphia ��		���

���� H� Niederreiter� On a New Class of Pseudorandom Numbers for Simulation Methods�

J	 of Computational and Applied Math	� To appear�

��	� S� K� Park and K� W� Miller� Random Number Generators� Good Ones Are Hard to

Find� Communications of the ACM ��� �� ��	��� ��	�������

�

���� W� H� Press and S� A� Teukolsky� Portable Random Number Generators� Computers in

Physics �� � ��		�� ������
�

���� B� D� Ripley� The Lattice Structure of Pseudo�random Number Generators� Proc	 Roy	

Soc	 London� Series A �
� ��	��� �	����
�

���� B� D� Ripley� Stochastic Simulation� Wiley� New York ��	����

���� B� D� Ripley� Uses and Abuses of Statistical Simulation�Mathematical Programming ��
��	��� ������

��
� B� D� Ripley� Thoughts on Pseudorandom Number Generators� J	 of Computational and
Applied Mathematics �� ��		�� ��������

���� A� W� Schrift and A� Shamir� The Discrete Log is Very Discreet� Proceedings of
STOC��� � ACM Publications ��		��
���
���

���� Y� S� Sherif and R� G� Dear� Development of a New Composite Pseudo�Random Number

Generator� Microelectronics and Reliability �� ��		�� �
������

���� M� S� Stephens� Tests for the Uniform Distribution� in Goodness�of�Fit Techniques�

Edited by R� B� D�Agostino and M� S� Stephens� Marcel Dekker ��	��� ��������

���� R� C� Tausworthe� Random Numbers Generated by Linear Recurrence Modulo Two�

Math	 of Computation �� ��	��� ������	�

��	� S� Tezuka� Lattice Structure of Pseudorandom Sequences From Shift�Register Genera�

tors� Proceedings of the ���� Winter Simulation Conference� IEEE Press ��		�� ����
��	�

�	�� S� Tezuka� A Unied View of Long�Period Random Number Generators� Submitted for
publication ��		���

�	�� S� Tezuka and P� L�Ecuyer� E�cient and Portable Combined Tausworthe Random Num�
ber Generators� ACM Transactions on Modeling and Computer Simulation � ��		��
		�����

�	�� S� Tezuka and P� L�Ecuyer� Analysis of Add�with�Carry and Subtract�with�Borrow Gen�
erators� Proceedings of the ���
 Winter Simulation Conference� IEEE Press ��		��

��

��

�	�� S� Tezuka� P� L�Ecuyer� and R� Couture� On the Lattice Structure of the Add�with�

Carry and Subtract�with�Borrow Random Number Generators� ACM Transactions of
Modeling and Computer Simulation� To appear�

�	
� S� Tezuka and M� Fushimi� Calculation of Fibonacci Polynomials for GFSR Sequences
with Low Discrepancies� Mathematics of Computation �� ��		�� To appear�

�

�	�� J� P� R� Tootill� W� D� Robinson� and A� G� Adams� The Runs up�and�down Performance

of Tausworthe Pseudo�Random Number Generators� J	 of the ACM �
 ��	��� �����		�

�	�� J� P� R� Tootill� W� D� Robinson� and D� J� Eagle� An Asymptotically Random Taus�

worthe Sequence� J	 of the ACM �� ��	���
�	�
���

�	�� D� Wang and A� Compagner� On the Use of Reducible Polynomials as Random Number

Generators� Mathematics of Computation� �� ��		�� ������
�

�	�� B� A� Wichmann and I� D� Hill� An E�cient and Portable Pseudo�random Number

Generator� Applied Statistics �� ��	��� �����	�� See also corrections and remarks in
the same journal by Wichmann and Hill �� ��	�
� ���� McLeod �� ��	��� �	������
Zeisel �� ��	��� �	�

