
Monte Carlo Simulation: IEOR E4703 Fall 2004
c© 2004 by Martin Haugh

Output Analysis and Run-Length Control

1 Output Analysis

Recall the simulation framework we use when we want to estimate θ = E[h(X)] where X ∈ Rn:

− first simulate X1, . . . ,Xn IID and then set

θ̂n =
h(X1) + . . . + h(Xn)

n

− strong Law of Large Numbers says
θ̂n → θ as n →∞

But at this point we don’t know how large n should be so that we can have confidence in θ̂n as an estimator of
θ. Put another way, for a fixed value of n, what can we say about the quality of θ̂n? We will now answer this
question and to simplify our notation we will take Yi := h(Xi).

1.1 Confidence Intervals

One way to answer this question is to use a confidence interval. Suppose then we want to estimate θ and we
have a random vector Y = (Y1, . . . , Yn) whose distribution depends on θ. Then we seek L(Y) and U(Y) such
that

P (L(Y) ≤ θ ≤ U(Y)) = 1− α

where 0 ≤ α ≤ 1 is a pre-specified number. We then say that [L(Y), U(Y)] is a 100(1− α)% confidence
interval for θ.

Note that [L(Y), U(Y)] is a random interval. However, once we replace Y with a sample vector, y, then
[L(y), U(y)] becomes a real interval. We now discuss the Chebyshev Inequality and the Central Limit Theorem,
both of which can be used to construct confidence intervals.

1.1.1 The Chebyshev Inequality

Recall the variance of θ̂n is given by Var(θ̂n) = σ2

n where σ2 := Var(Y). We would guess that a small value of

Var(θ̂n) implies a more accurate estimate of θ and this is indeed confirmed by Chebyshev’s Inequality which
states that

P
(
|θ̂n − θ| ≥ k

)
≤ Var(θ̂n)

k2
. (1)

We can see from (1) that a smaller value of Var(θ̂n) therefore improves our confidence in θ̂n. We could easily
use Chebyshev’s Inequality to construct (how?) confidence intervals for θ but it is generally very conservative.

Exercise 1 Why does Chebyshev’s Inequality generally lead to conservative confidence intervals?

Instead, we will use the Central Limit Theorem to obtain better estimates of P
(
|θ̂n − θ| ≥ k

)
and as a result,

narrower confidence intervals for θ.

Output Analysis and Run-Length Control 2

1.1.2 The Central Limit Theorem

The Central Limit Theorem is among the most important theorems in probability theory and we now state it.

Theorem 1 (Central Limit Theorem)
Suppose Y1, . . . , Yn are IID and E[Y 2

i] < ∞. Then

θ̂n − θ

σ/
√

n
⇒ N(0, 1) as n →∞

where θ̂n =
∑n

i=1 Yi/n , θ := E[Yi] and σ2 := Var(Yi).

Note that we assume nothing about the distribution of the Yi’s other than that E[Y 2
i] < ∞. If n is sufficiently

large in our simulations, then we can use the CLT to construct confidence intervals1 for θ := E[Y]. We now
describe how to do this.

1.2 A 100(1− α)% Confidence Interval for θ

Let z1−α/2 be the the (1− α/2) percentile point of the N(0, 1) distribution so that

P(−z1−α/2 ≤ Z ≤ z1−α/2) = 1− α

where Z ∼ N(0, 1). Suppose now that we have simulated IID samples, Yi, for i = 1, . . . , n, and that we want to
construct a 100(1− α)% CI for θ = E[Y]. That is, we want L(Y) and U(Y) such that

P (L(Y) ≤ θ ≤ U(Y)) = 1− α.

The CLT implies
√

n
(
θ̂n − θ

)
/σ is approximately N(0, 1) for large n so we have

P

(
−z1−α/2 ≤

√
n(θ̂n − θ)

σ
≤ z1−α/2

)
≈ 1− α

⇒ P

(
−z1−α/2

σ√
n
≤ θ̂n − θ ≤ z1−α/2

σ√
n

)
≈ 1− α

⇒ P

(
θ̂n − z1−α/2

σ√
n
≤ θ ≤ θ̂n + z1−α/2

σ√
n

)
≈ 1− α.

Our approximate 100(1− α)% CI for θ is therefore given by

[L(Y), U(Y)] =
[
θ̂n − z1−α/2

σ√
n

, θ̂n + z1−α/2
σ√
n

]
(2)

Recall that θ̂n = (Y1 + . . . + Yn)/n, so L and U are indeed functions of Y. There is still a problem, however, as
we do not usually know σ2. We get around this issue by estimating σ2 with

σ̂2
n =

∑n
i=1(Yi − θ̂n)2

n− 1
.

It is easy to show that σ̂2
n is an unbiased estimator of σ2 and that σ̂2

n → σ2 almost surely as n →∞. So now
we replace σ with σ̂n in (2) to get

[L(Y), U(Y)] =
[
θ̂n − z1−α/2

σ̂n√
n

, θ̂n + z1−α/2
σ̂n√

n

]
(3)

as our approximate 100(1− α)% CI for θ when n is large.

1Recall again that Yi = h(Xi) in our earlier notation.

Output Analysis and Run-Length Control 3

Remark 1 Note that when we obtain sample values of y = (y1, . . . , yn), then [L(y), U(y)] becomes a real
interval. Then we can no longer say (why not?) that

P (θ ∈ [L(y), U(y)]) = 1− α.

Instead, we say that we are 100(1− α)% confident that [L(y), U(y)] contains θ. Furthermore, the smaller the
value of U(y)− L(y), the more confidence we will have in our estimate of θ.

Example 1 (Pricing a European Call Option)

Suppose we want to estimate the price, C, of a call option on a stock whose price process, St, is a GBM(µ, σ).
The relevant data is r = .05, T = 0.5 years, S0 = $100, σ = 0.2 and strike K = $110. Then we know that

C = EQ[e−rT max(ST −K, 0)]

where we can assume that St ∼ GBM(r, σ) the risk-neutral probability measure, Q. That is, we assume
ST = S0 exp

(
(r − σ2/2)T + σZ

)
where Z ∼ N(0, T).

Though we can of course compute C exactly, we can also estimate C using simulation. Suppose we use
n = 10, 000 samples. Then we can estimate a 95% confidence interval for C as follows.

Matlab Code for Estimating the BS Option Price and Confidence Intervals

> S0=100; K=110; T=0.5; r=0.5; sigma=.2;
> n=10000; % n is the number of samples we use
> Z=sqrt(T)*randn(n,1);
> ST = S0*exp((r-(sigma^2)/2)*T + sigma*Z);
> Payoff = exp(-r*T)*max(0,ST-K);
> % Payoff is the vector of X values in our notation
> C_est = mean(Payoff) % Our estimated price

C_est = 15.2658

>> temp = 1.96*std(Payoff)/sqrt(n);
>> CI_95 = [C_est - temp, C_est + temp]

CI_95 = 15.0129 15.5188

1.2.1 Properties of the Confidence Interval

The width of the confidence interval is given by

U − L =
2σ̂nz1−α/2√

n

and so the half-width then is (U − L)/2. The width clearly depends on α, σ̂n and n. However, σ̂n → σ almost
surely as n →∞, and σ is a constant. Therefore, for a fixed α, we need to increase n if we are to decrease the
width of the confidence interval. Indeed, since U − L ∝ 1√

n
, we can see for example that we would need to

increase n by a factor of four in order to decrease the width of the confidence interval by only a factor of two.

Output Analysis and Run-Length Control 4

2 Run-Length Control

Up to this point we have selected n in advance and then computed the approximate CI. The width of the CI is
then a measure of the error in our estimate. Now we will do the reverse by first choosing some error criterion
that we want our estimate to satisfy, and then choosing n so that this criterion is satisfied.

There are two types of error that we will consider:

1. Absolute error, which is given by Ea := |θn − θ| and

2. Relative error, which is given by Er :=
∣∣ θn−θ

θ

∣∣.

Now we know that θ̂n → θ as n →∞ so that Ea and Er both → 0 as n →∞. (If θ = 0 then Er is not
defined.) However, in practice n 6= ∞ and so the errors will be non-zero. We specify the following error
criterion:

Error Criterion: Given 0 ≤ α ≤ 1 and ε ≥ 0, we want P(E ≤ ε) = 1− α. E is the error type we have
specified, i.e., relative or absolute.

The goal then is to choose n so that the error criterion is approximately satisfied and this is easily done.

Suppose, for example, that we want to control absolute error, Ea. Then, as we saw earlier,

P

(
θn − z1−α/2

σ√
n
≤ θ ≤ θn + z1−α/2

σ√
n

)
≈ 1− α.

This then implies P
(
|θ̂n − θ| ≤ z1−α/2

σ√
n

)
≈ 1− α, so in terms of Ea we have

P

(
Ea ≤ z1−α/2

σ√
n

)
≈ 1− α.

If we then want P (Ea ≤ ε) ≈ 1− α, it clearly suffices to choose n such that

n =
σ2z2

1−α/2

ε2
.

If we are working with relative error, then exactly the same type of computation implies that

P (Er ≤ ε) ≈ 1− α if

n =
σ2z2

1−α/2

θ2ε2
.

There are still some problems, however:

1. When we are controlling Er, we need to know σ and θ in advance.

2. When we are controlling Ea, we need to know σ in advance.

Of course we do not usually know σ or θ in advance. In fact, θ is what we are trying to estimate! There are two
methods we can use to overcome this problem: the two-stage method and the sequential method, both of which
we will now describe.

Output Analysis and Run-Length Control 5

2.1 The Two Stage Procedure

Suppose we want to satisfy the condition P(Ea ≤ ε) = 1− α so that we are trying to control the absolute error.
Then we saw earlier that we would like to set

n =
σ2z2

1−α/2

ε2
.

Unfortunately, we don’t know σ2 but we can solve this problem by first doing a pilot simulation to estimate it.
The idea is to to do a small number, p, of initial runs to estimate σ2. We then use our estimate, σ̂2, to compute
an estimate, n̂, of n. Finally, we repeat the simulation, but now we use n̂ runs. We have the following algorithm.

Two-Stage Monte Carlo Simulation for Estimating E[h(X)]

/∗Do pilot simulation first ∗/
for i = 1 to p

generate Xi

end for
set θ̂ =

∑
h(Xi)/p

set σ̂2 =
∑

(h(Xi)− θ̂)2/(p− 1)

set n =
σ̂2z2

1−α/2

ε2

/∗Now do main simulation ∗/
for i = 1 to n

generate Xi

end for
set θ̂n =

∑
h(Xi)/n

set σ̂2
n =

∑
(h(Xi)− θ̂n)2/(n− 1)

set 100(1− α) % CI =
[
θ̂n − z1−α/2

σ̂n√
n

, θ̂n + z1−α/2
σ̂n√

n

]

For this method to work, it is important that θ̂ and σ̂2 be sufficiently good estimates of θ and σ2. Therefore, it
is important to make p sufficiently large. In practice, we usually take p ≥ 50. We can use an analogous
two-stage procedure if we want to control the relative error and have P(Er ≤ ε) = 1− α.

Example 2 (Pricing a European Call Option Revisited)

Recall Example 1 where we estimated the price of a call option and computed an approximate 95% CI for the
price. Suppose we now want to control the absolute error so that

P(Ea ≤ .05) = 1− α.

Note that this is equivalent to saying that we want our 100(1− α)% CI to have width less than or equal to
2× 5 = 10 cents. Let us use the two stage simulation method to choose n, using p = 100 and α = .05.

Output Analysis and Run-Length Control 6

Matlab Code for Estimating the BS Option Price

> S0=100; K=110; T=0.5; r=0.5; sigma=.2;
> p=100;
> % p is the number of samples we use for the pilot simulation

> Z=sqrt(T)*randn(p,1);
> ST = S0*exp((r-(sigma^2)/2)*T + sigma*Z);
> Payoff = exp(-r*T)*max(0,ST-K);
> % Payoff is the vector of h(X) values in our notation

> n = (std(Payoff)^2 * (1.96^2)) / (.05^2)

n = 191719
> n = ceil(n);
> % End of pilot survey. Now start main simulation

> Z=sqrt(T)*randn(n,1);
> ST = S0*exp((r-(sigma^2)/2)*T + sigma*Z);
> Payoff = exp(-r*T)*max(0,ST-K);
> C_est = mean(Payoff) % Our estimated price

C_est = 15.2372

> epsilon = 1.96*std(Payoff)/sqrt(n);
> CI_95 = [C_est - epsilon, C_est + epsilon]

CI_95 = 15.1794 15.2950

Observe that the width of the approximate 95% CI is indeed approximately 10 cents!

Output Analysis and Run-Length Control 7

Example 3 (Portfolio Evaluation Revisited)

Recall our earlier portfolio evaluation example. We would like to estimate θ := P(L) = E[IL] where L is the
event that WT /W0 ≤ .9. Suppose we would like to compute an approximate 95% CI for θ with a half-width
equal to .01. Then, using a pilot study with p = 100, we can do this as follows.

A Matlab Function for Estimating P(WT /W0 ≤ .9)

function[CI] = portfolio_evaluation_pilot(p,rho)

% This function estimates the probability that wealth of the portfolio
% falls by more than 10%. We construct an approx. 95% CI for this
% probability that has half-width approx. equal to .001

mua=.15; mub=.12; siga=.2; sigb=.17; T=1;
S0a=100; S0b=120; na=100; nb=100; za=1.96; epsilon = .001;
W0 = na*S0a + nb*S0b;
Sigma = [siga^2 siga*sigb*rho; siga*sigb*rho sigb^2];

% First do the pilot simulation
B=randn(2,p); C=chol(Sigma); V=C’*B;

STa = S0a *exp((mua - (siga^2)/2)*T + sqrt(T)*V(1,:));
STb = S0b *exp((mub - (sigb^2)/2)*T + sqrt(T)*V(2,:));

WT = na*STa + nb*STb; L = [WT/W0 < .95];
n = ceil((std(L)^2 * (za^2)) / (epsilon^2))

% Now do the main simulation

B=randn(2,n);

STa = S0a *exp((mua - (siga^2)/2)*T + sqrt(T)*V(1,:));
STb = S0b *exp((mub - (sigb^2)/2)*T + sqrt(T)*V(2,:));

WT = na*STa + nb*STb; theta = mean(WT/W0 < .95);
L = [WT/W0 < .9]; epsilon = za*std(L)/sqrt(n);
CI = [theta - epsilon, theta + epsilon];

Output Analysis and Run-Length Control 8

2.2 The Sequential Procedure

Suppose again that we wish to satisfy the condition P(Ea ≤ ε) = 1− α. Then we saw earlier that we would like
to set

n =
σ2z2

1−α/2

ε2
.

In contrast to the pilot procedure, we do not precompute n during the sequential procedure. Instead, we
continue to generate samples until

σ̂nz1−α/2√
n

≤ ε

where σ̂n is again the estimate of σ based upon the first n samples. It is important that n be sufficiently large
so that θ̂n and σ̂2

n, are sufficiently good estimates of θ and σ2, respectively. As a result, we typically insist that
n ≥ 50 before we stop. Approximate confidence intervals are then computed as usual.

Question: Have we allowed any biases to creep in here?

We have the following algorithm:

Sequential Monte Carlo Simulation for Estimating E[h(X)]

set check = 0, n = 1
while (check = 0)

generate Xn

set θ̂n =
∑

h(Xi)/n

set σ̂2
n =

∑
(h(Xi)− θ̂n)2/(n− 1)

if (n ≥ p) and
(

σ̂nz1−α/2√
n

≤ ε

)

check = 1
else

n = n + 1
end if

end while
set 100(1− α) % CI =

[
θ̂n − z1−α/2

σ̂n√
n

, θ̂n + z1−α/2
σ̂n√

n

]

In practice we do not need to store every value, h(Xi) for i = 1, . . . , n , in order to update θ̂n and σ̂n. Indeed,

we can update θ̂n and σ̂n efficiently by observing that

θ̂n = θ̂n−1 +
h(Xn)− θ̂n−1

n
and

σ̂2
n =

(
n− 2
n− 1

)
σ̂2

n−1 + n
(
θ̂n − θ̂n−1

)2

.

Remark 2 If we want to control the relative error and have P(Er ≤ ε) = 1− α, then we would simulate
samples until

σ̂n(z1−α/2)

θ̂n
√

n
≤ ε.

Output Analysis and Run-Length Control 9

Example 4 (Pricing a European Call Option Once More)

We now price the same call option as before, but this time using the sequential approach.

A Matlab Function for Estimating P(WT /W0 ≤ .9)

function[CI] = Eurocall_sequential(p,epsilon)

% This function uses the sequential algorithm for estimating a 95% CI for
% the price of a European call option. At least p runs are made.

S0=100; K=110; T=0.5; r=0.5; sigma=.2; za=1.96;
old_theta = 0; sig_square = 0; i=1; check=0;
con1 = S0*exp((r-(sigma^2)/2)*T);
con2=exp(-r*T);

while (check == 0)

S = con1*exp(sigma*sqrt(T)*randn);
Payoff = con2*max(0,S-K);
new_theta = old_theta + (Payoff - old_theta)/i;
if (i > 1)

sig_square = sig_square*(i-2)/(i-1) + i*(new_theta - old_theta)^2;
end;
if ((i >= p) & (za*sqrt(sig_square/i) < epsilon))

check = 1;
else

i = i+1;
old_theta=new_theta;

end;
end;

CI = [new_theta - za*sqrt(sig_square/i), new_theta + za*sqrt(sig_square/i)];

Remark 3 When using Matlab, it is best to avoid loops as much as possible as they tend to decrease the
computational speed, sometimes significantly. Instead, it is better to vectorise where possible, and indeed this is
what we have been doing in most of the Matlab examples so far.

