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Real–time Simulation

Preview

In this chapter, we shall discuss the special requirements of real–time sim-
ulation, i.e., of simulation runs that keep abreast of the passing of real
time, and that can accommodate driving functions (input signals) that are
generated outside the computer and that are read in by means of analog
to digital (A/D) converters.

Until now, computing speed has always been a soft constraint — slow
simulation meant expensive simulation, but now, it becomes a very hard
constraint. Simulation becomes a race against time. If we cannot complete
the computations associated with one integration step before the real–time
clock has advanced by h time units, where h is the current step size of the
integration algorithm, the simulation is out of sync, and we just lost the
race.

Until now, we always tried to make simulation more comfortable for the
user. For example, we introduced step–size controlled algorithms so that the
user wouldn’t have to worry any more about whether or not the numerical
integration meets his or her accuracy requirements. The algorithm would
do so on its own. In the context of real–time simulation, we may not be
able to afford all this comfort any longer. We may have to throw many
of the more advanced features of simulation over board in the interest of
saving time, but of course, this means that we have to understand even
better ourselves how simulation works in reality.

10.1 Introduction

Several very important applications of simulation require real-time perfor-
mance.

A flight simulator for training purposes is useless if it cannot produce
a reflection of the performance of the real aircraft or helicopter or space
craft in real time. The trainee uses the simulator because learning often
is synonymous with making mistakes . . . and mistakes may be too costly
when working with the real system.

Model Reference Adaptive Controllers (MRACs) make use of a model of
an idealized plant, the reference plant, trying to make the real plant behave
as similar as possible to the reference plant [10.34]. However, this requires
that the reference plant model be simulated in real time in parallel with
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the real plant, both being driven simultaneously by the same input signals.
A watchdog monitor [10.3, 10.2, 10.47] of a nuclear power station reasons

about the sanity of the plant. It has some knowledge of how the plant is
supposed to operate, and looks out for significant discrepancies between
expected and observed plant behavior. To this end, the watchdog moni-
tor maintains a model of the power plant that it runs in parallel with the
real plant, comparing its outputs to the measurement data extracted from
the real plant. The watchdog monitor thus contains a real–time simula-
tion of a model of the correctly working power plant. Once it discovers a
significant aberration in real plant behavior, it kicks off a fault discrimi-
nator program that, again in real time, tries to narrow down the source
of the fault, i.e., seeks to determine, which of the subsystems of the real
plant is malfunctioning. It maintains real-time simulations of abstractions
of models of all subsystems that permit it to localize errors to a particular
subsystem. Once this has been accomplished, a fault isolation program is
kicked off that invokes a real–time simulation of a more refined model of
the faulty subsystem including models of faulty behavior with the aim of
identifying the kind of error that is most likely to have occurred within the
faulty subsystem [10.11, 10.12, 10.45].

Conceptually, the implementation of real–time simulation software is
straightforward. It contains only four new components:

1. The real–time clock is responsible for the synchronization of real time
and simulated time. The real–time clock is programmed to send a
trigger impulse once every h time units of real time, where h is the
current step size of the integration algorithm, and the simulation
program is equipped with a busy waiting mechanism that is launched
as soon as all computations associated with the current step have been
completed, and that checks for arrival of the next trigger signal. The
new step will not begin until the trigger signal has been received.

2. The analog to digital (A/D) converters are read at the beginning
of each integration step to update the values of all external driving
functions. This corresponds effectively to a sample and hold (S/H)
mechanism. The inputs are updated once at the beginning of every
integration step and are then kept constant during the entire step.

3. The digital to analog (D/A) converters are set at the end of each in-
tegration step, i.e., the newest output information is put out through
the D/A converters for inspection by the user, or for driving real
hardware (for so–called hardware–in–the–loop simulations.

4. External events are time events that are generated outside the sim-
ulation. External events are used for asynchronous communication
with the simulation program, e.g. for the modification of parameter
values, or for handling asynchronous readout requests, or for commu-
nication between several asynchronously running computer programs
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either on the same or different computers. External events are usually
postponed to the end of the current step and replace a portion of the
busy waiting period.

Figure 10.1 illustrates the different tasks that take place during the ex-
ecution of an integration step.

t

Real-time clock synchronization impulses
(real-time interrupts)

tn+1tn

A
/D

 C
o

n
ve

rs
io

n

Numerical
computations D

/A
 C

o
n

ve
rs

io
n

E
xt

e
rn

a
l e

ve
n

ts

B
u
sy

 w
a
iti

n
g

FIGURE 10.1. Task scheduling within integration step.

Once the message from the real–time clock has arrived indicating that
the real time has advanced to time tk, the simulation program first reads all
the A/D converters to update the values of all input functions to the cur-
rent time. It then performs the actual numerical computations associated
with the step, calling upon the numerical integration routine and the rou-
tine that implements the state–space model. Once this is accomplished, the
results are written out to the D/A converters. At this time, the “regular”
business associated with the current step are over. The algorithm now con-
sults the “mailbox” in which external events that may have arrived in the
meantime are stored, and handles those. Once this has been accomplished,
the algorithm has nothing more left to do and enters a “busy waiting” loop
in which it repetitively checks the mailbox for arrival of the next message
from the real–time clock.

The interprocessor and intertask communication mechanisms can actu-
ally be implemented in many different ways. In some cases, it may be
desirable to use the waiting time of the processor for background tasks,
rather than waste it in a busy waiting loop. In that case, it is not suffi-
cient for the real–time clock to send a message to the simulation program.
Instead, it must use the interrupt mechanism of the processor on which
the simulation is running to interrupt whatever other task the processor is
currently working on.

The difficulties of real–time simulation are not of a conceptual nature.
They have to do with keeping track of real time. How can we guarantee
that all that needs to be accomplished during the integration step can be
completed prior to the arrival of the next trigger impulse?
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In the previous chapters of this book, we introduced more and more bells
and whistles that would help us in being able to guarantee the correctness
of the simulation results obtained, but all these additional tools were ac-
companied by some run–time overhead, and in many cases, the amount
of time needed to bring these algorithms to completion was not fixed. For
example, if we decide to use an implicit integration algorithm, how can
we know beforehand how many iterations will be needed to guarantee a
prescribed tolerance of the results? However, if we do not limit the number
of iterations available to the algorithm, how can we possibly know for sure
that the step will be completed before the arrival of the next trigger im-
pulse from the real–time clock? Iteration on state events is a great thing.
Yet, can we afford it under real–time conditions? What happens if we do
not iterate? Can we still know something about the accuracy of the results
obtained? These are the questions that will be discussed in the current
chapter.

10.2 The Race Against Time

There are two questions that we can ask ourselves in the context of racing
against real time: (i) How can we guarantee that all computations necessary
to end the current integration step in time are indeed completed before the
next trigger impulse from the real–time clock arrives? (ii) What happens
if we don’t meet the schedule? Let me first address the second question
since it is somewhat easier to deal with.

There are basically four things that we can do if we don’t meet the
schedule. We can:

1. increase the step size, h, in order to make more time for the tasks
that need to be accomplished,

2. make the function evaluation more efficient, i.e., optimize the program
that represents our state–space model,

3. improve the speed of the integration algorithm, e.g. by reducing the
number of function evaluations necessary during one step, and finally

4. buy ourselves a faster computer.

The last solution may sound like a last resort, but in these times of cheap
hardware and expensive software and manpower, it may actually often be
the wisest thing to do.

The first solution is interesting. Until now, the step size was always
bounded from the top due to accuracy and stability constraints. Now sud-
denly, the step size is also bounded from the bottom. We cannot reduce
the step size to a value smaller than the total real time needed to perform
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all the computations associated with simulating the model across one step
plus the real time needed for dealing with the administration of the simu-
lation during that step. If it happens that the lower bound is larger than
the upper, then we are in real trouble.

The second solution is one that has, over the years, been most actively
pursued by Granino Korn, who wrote a large number of articles on the issue
of how to obtain “cheap” (in the sense of fast) approximations for all kind
of functions. He also treated this topic in several of his books [10.26, 10.27].

Many engineering models, such as models used in flight simulators or
models of thermal power plants are full of two– and three–dimensional
tables representing static characteristics that have been deduced by mea-
surements and for which no explicit formulae are known. The need to in-
terpolate in large three–dimensional tables is a nightmare for designers of
real–time simulation software, since these interpolations can be very time
consuming, and since the time needed to find the right entries in the ta-
ble between which to interpolate is not even constant, but depends on
the numerical values of the current arguments. Recent advances in neu-
ral network technology make it now possible to design feedforward neural
networks trained e.g. through accelerated backpropagation algorithms that
approximate two– and three–dimensional static functions with arbitrary
precision. The training of these networks is slow, but this can be done off–
line. Once trained, neural networks are very efficient at run time, providing
for very fast multidimensional function evaluation capabilities. Also in this
arena, it was Granino Korn who did pioneering work in combining fast
neural network technology with high–speed simulation capabilities [10.28].

Finally, the most prominent researchers who dealt (and are still dealing)
with the third solution are Jon Smith [10.43] and Bob Howe [10.22, 10.32,
10.33]. Since this approach deals with the numerical integration algorithms
themselves, it is most relevant to this textbook, and therefore, we shall talk
more about this approach in the current chapter.

Yet, before studying the way of improving the speed of the algorithms,
we shall analyze the different methods in order to focus only on those that
show suitable features for real–time simulation.

10.3 Suitable Numerical Integration Methods

In real–time simulation, it is not sufficient to obtain a good approximation
of the values of the state variables. These approximations are in fact useless,
if they arrive too late. We need to make sure that all of the computations
associated with a single integration step are completed within the allowed
time slot.

To this end, the total number of calculations performed by a single inte-
gration step must be bounded, and all of the iterative processes should be
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cut after a fixed number of iterations. It is evident that this will affect the
accuracy of the algorithms, but it is better to obtain a solution with some
remaining error, than not be able to obtain it at all within the allowed time
[10.18].

Taking into account these considerations, the following analysis tries to
examine the different features of the methods introduced in previous chap-
ters of this book in order to discuss their pros and cons in the context of
real–time simulation. The analysis is primarily based on Schiela’s diploma
thesis [10.40].

• Multi–step methods. Multi–step methods use information from the
previous steps to compute a high–order approximation of the next
step. This idea is based on the assumption that the differential equa-
tion is smooth, since the approximation uses a polynomial function.
Unfortunately, many real–time simulations receive input signals from
the real world that are not very smooth. Therefore, multi–step meth-
ods may give inaccurate results in such cases.

On the other hand, multi–step methods reduce the number of function
evaluations per step, which is a crucial factor in the real–time context.
For this reason alone, and in spite of the fact that some accuracy may
be sacrificed in this way, explicit linear multi–step methods, such
as Adams–Bashforth, and among them especially those of low order
of approximation accuracy, are widely used in real–time simulation
[10.23].

• Explicit single–step methods. These methods are compatible with the
requirements mentioned earlier. Their computational effort is rela-
tively low and constant. The number of calculations per step can be
easily estimated. Furthermore, the methods can deal fairly well with
discontinuous input signals, since they do not use information from
the past. Thus, for non–stiff ordinary differential equations, explicit
single–step methods may constitute the best choice.

However as we already know, these methods have problems with stiff
systems. For mildly stiff problems, one remedy is to use integration
step sizes that are a fraction of the sample interval, but then the
efficiency decays with increasing stiffness.

A different strategy for stiff systems is to modify the model so that
the stiffness decreases. In some cases, the fast dynamics do not signif-
icantly influence the overall solution, and under such circumstances,
the fast modes can be removed from the model. However, this is not
generally the case for stiff systems, and it is always a questionable
tactic to change the model in order to get it simulated.

• Implicit single–step methods. As we know, implicit methods require
solving a system of nonlinear equations at each step, which implies
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the use of iterative methods, such as Newton iteration. Therefore,
the computational effort for each step cannot be estimated reliably,
as it depends on the (theoretically unbounded) number of iterations.
Hence implicit methods are not suitable for the purpose of real–time
simulation. Nevertheless, algorithms based on implicit methods can
be used in real–time simulation, provided that the number of itera-
tions is kept bounded to a fixed value.

However, we must also take into account that, by limiting the number
of iterations, we modify the stability domain of these methods.

• High–order methods . In most real–time applications, the sampling
intervals are small compared to the time scales of interest, and the
required accuracy is usually rather low. One important reason for us-
ing small sampling intervals is to be able to accommodate real–time
input. Input signals must be sampled frequently, since they cannot be
reliably interpolated. Taking into account that reducing the amount
of calculations at each step is a crucial factor, high–order algorithms
will not be suitable for real–time simulation, except under very par-
ticular circumstances. It is therefore rare to find real–time simulations
that make use of integration methods of orders of approximation ac-
curacy greater than two or three.

• Variable step methods. In real–time simulations, we do not have the
luxury to be able to change the step size, as it is synchronized with the
sampling rate and severely restricted by the real–time specifications
of the problem. The best thing that we can do for “controlling” the
integration error is to estimate it and log these estimates, so that the
quality of the results obtained can at least be judged a–posteriori.

The numerical integration error can be estimated on–line, by com-
paring the actual simulation with another real–time simulation using
a bigger step size. This idea was proposed by Bob Howe [10.23], mak-
ing use of interpolation techniques to obtain the values of the control
run at the sampling times of the actual simulation.

After analyzing all of these features, only low–order explicit methods seem
well suited for real–time simulation.

In absence of stiffness, discontinuities, or badly nonlinear implicit equa-
tions, those methods work properly.

It can happen that the system dynamics are fast compared with the
computer clock frequency. In such a case, there is little that we can do
except try to optimize the way, in which the calculations are made, or buy
ourselves a faster computer.

Leaving high–bandwidth applications aside, real–time simulation of non–
stiff smooth systems does not call for any special treatment from a simu-
lation methodology point of view.
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Unfortunately, many systems in engineering applications are in fact stiff
and, as we already know, explicit methods show poor performance in their
integration.

We are unable to solve this problem without using implicit principles
but, for the reasons explained above, we must avoid iterative solutions.

These considerations lead us to semi–implicit or linearly implicit meth-
ods and –in a further step– to multi–rate integration.

10.4 Linearly Implicit Methods

Linearly implicit or semi–implicit methods exploit the fact that implicit
methods applied to linear systems do not require a theoretically unbounded
number of iterations. Indeed, the resulting implicit equations can be solved
by means of matrix inversion.

A widely used linearly–implicit method is given by the semi–implicit
Euler formula [10.40, 10.38]:

xk+1 = xk + h · [f(xk, tk) + Jxk,tk
· (xk+1 − xk)] (10.1)

where

Jxk,tk
=

∂f
∂x

∣∣∣∣
xk,tk

(10.2)

is the Jacobian matrix evaluated at (xk, tk).
Notice that

Jxk,tk
· (xk+1 − xk) ≈ f(xk+1, tk+1) − f(xk, tk) (10.3)

and therefore:

f(xk, tk) + Jxk,tk
· (xk+1 − xk) ≈ f(xk+1, tk+1) (10.4)

Thus, the linearly implicit Euler approximates the implicit Euler method.
Moreover, in the linear case:

ẋ = A · x (10.5)

we have:

xk+1 = xk + h · [A · xk + Jxk,tk
· (xk+1 − xk)] = xk + h ·A · xk+1 (10.6)

which exactly coincides with Backward Euler. This implies that the sta-
bility domain of the linearly implicit Euler method also coincides with the
stability domain of Backward Euler.

Equation (10.1) can be rewritten as:

(I − h · Jxk,tk
) · xk+1 = (I − h · Jxk,tk

) · xk + h · f(xk, tk) (10.7)
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which shows that xk+1 can be obtained by solving a linear system of equa-
tions.

The value of xk+1 can also be obtained as:

xk+1 = xk + h · (I − h · Jxk,tk
)−1 · f(xk, tk) (10.8)

The formula given by Eq.(10.8) is similar to Forward Euler, but differs in
the presence of the term (I − h · Jxk,tk

)−1.
¿From a computational point of view, that term implies that the algo-

rithm has to calculate the Jacobian at each step and then either solve a
linear equation system or invert a matrix.

Despite the fact that those calculations may turn out to be quite expen-
sive, the computational effort is predictable, which makes the method well
suited for real–time simulation.

Taking into account that the stability domain coincides with that of
Backward Euler, this method results appropriate for the simulation of stiff
and differential algebraic problems. Low–order linearly implicit methods
may indeed often be the best choice for real–time simulation. However,
they share one drawback with implicit methods: if the size of the prob-
lem is large, then the solution of the resulting linear equation system is
computationally expensive.

Due to this fact, many different techniques were proposed that optimize
how and how often the Jacobian is being evaluated and the linear equation
system is being solved [10.19].

We shall not discuss those techniques here for two reasons. First, many
of these techniques are designed to make the numerical integration faster
on average. We are not interested in such approaches in the context of
real–time simulation, because we must ensure that the algorithm converges
always within the allotted time. Second, the statement that the stability
domain of the linearly implicit Euler algorithm is the same as that of Back-
ward Euler is only true if the exact Jacobian is being used in every step.
For example, if we were to approximate the Jacobian by the zero matrix,
the method would have the stability domain of Forward Euler.

Many of the implicit algorithms make use of a so–called modified Newton
iteration. In one variant of that approach, the underlying Hessian matrix
is being approximated by a diagonal matrix to make its inversion cheap
and painless. This can be done. The price to be paid for this luxury is
that the Newton iteration will converge more slowly, i.e., we have to spend
more iteration steps, while each individual iteration step is now cheaper.
Whether or not this pays off, depends on the application at hand.

Some authors proposed to apply this technique in the case of semi–
implicit algorithms as well by approximating the Jacobian through its di-
agonal elements. We do not recommend this approach. In most cases, this
will be the kiss of death, as the stability domain of the method using a di-
agonal approximation of the Jacobian will most likely loop in the left–half
λ · h plane, i.e., the method will no longer be stiffly stable.
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Other authors proposed to carefully look at the structure of the Jaco-
bian, and at least zero out some of the smallest non–vanishing elements in
it. This technique is called sparsing [10.40, 10.38], as it makes the Jaco-
bian more sparse, thereby enabling a cheaper linear system solution using
either numerical or symbolic sparse matrix techniques. It was shown that
sparsing can indeed reduce the computational effort needed to complete
the calculations of a single integration step by a significant amount. Yet,
the technique must be applied cautiously, as it doesn’t take much for the
stiffly stable nature of the algorithms to be lost in the process. It thus
may generally pay off to work with an accurate computation of the exact
Jacobian in each step.

Having said that, we are of course free in how we compute the exact Ja-
cobian, and which technique we use for solving the resulting linear equation
system. The Jacobian can either be computed symbolically, leaving it up to
the model compiler to find the appropriate expressions by symbolic (alge-
braic) differentiation, or it can be approximated numerically. Furthermore,
Jacobian matrices are usually sparse, because not every state derivative
depends on every state variable. Thus, we can use either numerical sparse
matrix algorithms in solving the resulting linear system, or we can use one
of the two symbolic sparse sparse matrix techniques introduced earlier in
this book, i.e., tearing [10.17] or relaxation [10.35].

The improvements achieved by those techniques allow some large stiff
systems to be simulated in real time using semi–implicit algorithms. How-
ever, there are still larger and more complicated systems, in which these
ideas are not enough to win the race against time.

Fortunately, stiffness in large systems is often connected to the presence
of some identifiable slow and fast sub–models. In those cases, we can use
that information to our advantage by splitting the system and applying
different step sizes or even different integration algorithms to the different
parts. These ideas lead to the concepts of multi–rate and mixed–mode
integration.

Finally, we should mention that several higher–order semi–implicit ver-
sions of both multi–step [10.6] and Runge–Kutta [10.1, 10.46] methods
have been reported in the literature. We shall not explore these algorithms
further, since their principles are similar to those of the linearly implicit Eu-
ler method. However, we shall derive one of these methods in a homework
problem.

Least suitable among all of the linearly implicit stiffly stable algorithms
for the task at hand are those algorithms that are F–stable, in particular
the trapezoidal rule and its one–legged twin, the implicit midpoint rule. The
reason for this assertion is the following. Since we cannot use a variable–
step algorithm, we are bound to end up with a numerical error in each
integration step that is caused by the fixed step size and that is essentially
uncontrollable. It is thus recommended to use an algorithm with some
additional artificial damping to prevent error accumulation [10.18].
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10.5 Multi–rate Integration

There are many cases, in which the stiffness is due to the presence of a
sub–system with very fast dynamics compared to the rest of the system.
Typical examples of this can be found in multi–domain physical systems,
since the components of different physical domains usually involve distinct
time constants.

For example, if we wish to study the thermal properties of an integrated
circuit package, we shall recognize that the electrical time constants of the
device are faster in comparison with the thermal time constants by several
orders of magnitude. Yet, we cannot ignore the fast time constants, since
they are the cause of the heating. In some cases, such as switching power
converters, the heating of the device grows with the frequency of switching,
i.e., while no switching takes place, the thermal effects are minimal [10.41].

Let us introduce the idea with the following example. Figure 10.2 shows
a lumped model of a transmission line fed by a Van–der–Pol oscillator (this
example is a variant of an example offered in [10.36]).
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FIGURE 10.2. Van–der–Pol oscillator and transmission line.

We shall assume that the nonlinear resistor of the oscillator circuit sat-
isfies the law:

iR = k · u3
R − uR (10.9)

Then the system can be described by the following set of state equations:

diL
dt

=
1
L

uC (10.10a)

duC

dt
=

1
C

(uC − k · u3
C − iL − i1) (10.10b)

di1
dt

=
1
L

uC − R

L
i1 − 1

L
u1 (10.10c)

du1

dt
=

1
C

i1 − 1
C

i2 (10.10d)

di2
dt

=
1
L

u1 − R

L
i2 − 1

L
u2 (10.10e)

du2

dt
=

1
C

i2 − 1
C

i3 (10.10f)

...
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din
dt

=
1
L

un−1 − R

L
in − 1

L
un (10.10g)

dun

dt
=

1
C

in (10.10h)

Here, uC and iL are the voltage and current of the capacitor and inductance
in the oscillator. Similarly, uj and ij are the voltage and current of the
capacitors and inductances at the jth stage of the transmission line.

Let us assume that the transmission line has 5 stages (i.e., n = 5), and
the parameters are L = 10 mH, C = 1 mF, R = 10Ω and k = 0.04.

If we wish to simulate the system using the Forward Euler method, we
need to use a step size no greater than h = 10−4 seconds. Otherwise, the
oscillator output (uC) is computed with an error that is totally unaccept-
able.

However, using the input signal generated by the oscillator, the trans-
mission line alone can be simulated with a step size that is 10 times bigger.

Thus, we decided to split the system into two subsystems, the oscillator
circuit and the transmission line, using two different step sizes: 10−4 seconds
for the former, and 10−3 seconds for the latter.

In that way, we integrate the fast but small (2nd–order) sub–system using
a small step size, whereas we integrate the slow and large (10th–order) sub–
system using a larger step size.

As a consequence, during each millisecond of real time, the computer
has to evaluate ten times the two scalar functions corresponding to the two
first state equations, whereas it only needs to evaluate once the remaining
ten functions. Thus, the number of floating–point operations is reduced by
about a factor of four compared with a regular simulation using a single
step size throughout.

The simulation results are shown in Figs.10.3–10.4.
We can generalize this procedure to systems of the form:

ẋf (t) = ff (xf ,xs, t) (10.11a)
ẋs(t) = fs(xf ,xs, t) (10.11b)

where the sub–indexes, f and s, stand for “fast” and “slow,” respectively.
Then, the use of the multi–rate version of Forward Euler with inlining

results in a set of difference equations of the form:

xf (ti + (j + 1) · h) = xf (ti + j · h) + h · ff (xf (ti + j · h),
xs(ti + j · h), ti + j · h) (10.12a)

xs(ti + k · h) = xs(ti) + h · fs(xf (ti),xs(ti), ti) (10.12b)

where k is the (integer) ratio of the two step sizes, j = 0 . . . k − 1, and
h = ti+1 − ti is the step–size of the slow sub–system.

Equations (10.12a–b) do not specify, how xs(ti + j · h) is being calcu-
lated, since the variables of the slow sub–system are not evaluated at the
intermediate time instants.
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FIGURE 10.3. Van–der–Pol oscillator voltage.

In our example, we chose xs(ti + j · h) = xs(ti), i.e., we used the last
calculated value. A more accurate solution might involve using some form
of extrapolation technique.

This last problem is known as the interfacing problem [10.30]. It is re-
lated to the way, in which the fast and slow sub–systems are interconnected
with each other.

In our case, we used the Forward Euler method. Similar approaches have
been reported in the literature based on the 2nd–order explicit Adams–
Bashforth technique [10.24], including also some improvements for parallel
implementation.

In spite of the improvement achieved in this case using multi–rate in-
tegration, we must not forget that the example we analyzed was not very
demanding, since the speed of the fast sub–system is not much higher than
that of the slow sub–system. We already know that explicit algorithms
won’t work in more strongly stiff systems.

In those cases, as previously discussed, semi–implicit methods may be a
better choice in the real–time context. However, we know that in large sys-
tems, those methods have a drawback, as they need to invert a potentially
very large matrix.

A solution that combines both ideas, multi–rate and semi–implicit in-
tegration, consists in splitting the system into a fast and a slow part,
while applying a semi–implicit method to the fast sub–system, whereas the
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FIGURE 10.4. Transmission line output voltage.

slow sub–system is being simulated using an explicit integration algorithm.
These types of schemes are referred to in the literature as mixed–mode
integration algorithms.

We shall discuss mixed–mode integration in due course, but let us first
pursue another avenue.

10.6 Inline Integration

Figure 10.5 shows the same circuit as Fig. 10.2 with the inclusion of an
additional RC load at the end of the transmission line.
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LineOscillator

Cl

Rl

Load

FIGURE 10.5. Van–der–Pol oscillator and transmission line.
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The state equations are similar to the previous case, but now we have:

diL
dt

=
1
L

uC (10.13a)

duC

dt
=

1
C

(uC − k · u3
C − iL − i1) (10.13b)

di1
dt

=
1
L

uC − R

L
i1 − 1

L
u1 (10.13c)

du1

dt
=

1
C

i1 − 1
C

i2 (10.13d)

di2
dt

=
1
L

u1 − R

L
i2 − 1

L
u2 (10.13e)

du2

dt
=

1
C

i2 − 1
C

i3 (10.13f)

...
din
dt

=
1
L

un−1 − R

L
in − 1

L
un (10.13g)

dun

dt
=

1
C

in − 1
Rl · C (un − ul) (10.13h)

dul

dt
=

1
Rl · Cl

(un − ul) (10.13i)

Let us assume that the load parameters are Rl = 1 kΩ and Cl = 1 nF.
Since the load resistor is much bigger than the line resistors, the newly

introduced term in Eq.(10.13h) won’t influence the dynamics of the trans-
mission line significantly, and we can expect the sub–system (10.13a–h) to
exhibit a similar behavior to the one of System (10.10).

However, the last state equation, Eq.(10.13i), introduces a fast pole. The
position of this pole is approximately located at:

λl ≈ − 1
Rl · Cl

= −106 sec−1 (10.14)

on the negative real axis of the complex λ–plane.
This means that we would have to reduce the step size by about a factor

of 1000 with respect to the previous example, in order to obtain a numeri-
cally stable result.

Unfortunately, such a solution is completely unacceptable in the context
of a real–time simulation.

A first alternative might be to replace the Forward Euler algorithm by
the semi–implicit Euler method studied earlier in this chapter. However,
this is a system of order 13, and, leaving superstitions aside, we may not
have the luxury of inverting a 13× 13 matrix at each step.

A second alternative might be to inline the Backward Euler algorithm
[10.16] and apply the tearing method to the resulting set of difference equa-
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tions. Let us rewrite the model using the inling approach.

iL = pre(iL) +
h

L
uC (10.15a)

uC = pre(uC) +
h

C
(uC − k · u3

C − iL − i1) (10.15b)

i1 = pre(i1) +
h

L
uC − Rh

L
i1 − h

L
u1 (10.15c)

u1 = pre(u1) +
h

C
i1 − h

C
i2 (10.15d)

i2 = pre(i2) +
h

L
u1 − Rh

L
i2 − h

L
u2 (10.15e)

u2 = pre(u2) +
h

C
i2 − h

C
i3 (10.15f)

...

in = pre(in) +
h

L
un−1 − Rh

L
in − h

L
un (10.15g)

un = pre(un) +
h

C
in − h

Rl · C (un − ul) (10.15h)

ul = pre(ul) +
h

Rl · Cl
(un − ul) (10.15i)

The causalized structure digraph is shown in Fig. 10.6.
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FIGURE 10.6. Causal structure diagram of electrical circuit.

Inlining did help indeed. We got away with six tearing variables. Instead
of having to invert a 13 × 13 matrix in every step, we now must invert a
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6× 6 matrix. Since even the best linear sparse matrix solver grows at least
quadratically with the size of the system in terms of its computational
complexity, the savings were quite dramatic. The computations just got
faster by about a factor of four.

Although inline integration had been developed for general simulation
problems, it turns out that this method has become a quite powerful ally
in dealing with real–time simulation as well [10.15].

But what, if the simulation is still too slow? What if the transmission line
consists of 50 segments, instead of only 5 of them? Mixed–mode integration
may be the answer to our needs.

10.7 Mixed–mode Integration

A more careful look at the system shows that there is no strong interaction
between the subsystems of Eqs.(10.13a–h) and Eq.(10.13i). In fact, the fast
dynamics can be explained by looking at the last equation alone.

Thus, it might be reasonable to use Backward Euler (or semi–implicit
Euler) only in the last equation.

To this end, we inlined the equations once more, this time using the
explicit Forward Euler algorithm everywhere except for the last equation,
where we still used the implicit Backward Euler method.

The resulting inlined difference equation system no can be written as
follows:

iL = pre(iL) +
h

L
pre(uC) (10.16a)

uC = pre(uC) +
h

C
= [pre(uC) − k · pre(uC)3 − pre(iL)

−pre(i1)] (10.16b)

i1 = pre(i1) +
h

L
pre(uC) − Rh

L
pre(i1) − h

L
pre(u1) (10.16c)

u1 = pre(u1) +
h

C
pre(i1) − h

C
pre(i2) (10.16d)

i2 = pre(i2) +
h

L
pre(u1) − Rh

L
pre(i2) − h

L
pre(u2) (10.16e)

u2 = pre(u2) +
h

C
pre(i2) − h

C
pre(i3) (10.16f)

...

in = pre(in) +
h

L
pre(un−1) − Rh

L
pre(in) − h

L
pre(un) (10.16g)

un = pre(un) +
h

C
pre(in) − h

Rl · C [pre(un) − pre(ul)] (10.16h)
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ul = pre(ul) +
h

Rl · Cl
(un − ul) (10.16i)

All equations are now explicit, except for the very last equation, Eq.(10.16i),
which is implicit in the variable ul. Furthermore, Eq.(10.16i) can only be
computed after un(t) has been evaluated first from Eq.(10.16h). Thus, the
size of the Jacobian is now 1 × 1.

We simulated the system using the same approach as before, i.e., we
applied a step size of 10−4 seconds to the two oscillator equation, whereas
we used a step size of 10−3 seconds on all of the other equations, including
the implicit load equation. The simulation results are shown in Figure 10.7.
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FIGURE 10.7. Load output voltage.

In more general terms, given a system like Eqs.(10.11a–b), the Backward–
Forward Euler Mixed–Mode integration scheme is given by the formula:

xs(tk+1) = xs(tk) + h · fs(xf (tk),xs(tk), tk) (10.17a)
xf (tk+1) = xf (tk) + h · ff (xf (tk+1),xs(tk+1), tk+1) (10.17b)

Thus, the algorithm starts by computing explicitly the value of xs(tk+1).
It then uses this value to evaluate xf (tk+1) either implicitly or in a semi–
implicit fashion.

Mixed–mode integration as presented in this section was first introduced
by Krebs [10.29] for an entirely different purpose, namely to resolve the



10.8 Discontinuous Systems 497

problem of conditional index changes once and for all in a systematic and
algorithmic fashion.

The technique was rediscovered independently by Schiela [10.39] for the
purpose of speeding up real–time simulation. Schiela proposed the use of
linearization and eigenvalue analysis to discern, which of the integrators
should be inlined using Forward Euler, and which should be inlined using
Backward Euler, i.e., for determining the slow and fast sub–systems.

The advantage of solving the implicit equation only for the components
xf (tk+1) can turn out to be very important in systems, such as the one
presented here, where the length of vector xf is considerably smaller than
that of xs.

In our (rather academic) example, the reduction in the number of calcula-
tions is huge. In more realistic applications, the literature reports speed–up
factors of 4 to 16 [10.39].

Mixed–mode versions of higher order Runge–Kutta methods and ap-
proaches also combine mixed–mode and multi–rate integration techniques
have also been reported in the literature [10.42].

In fact, we used a mixture of multi–rate and mixed–mode integration in
our example, as we used a ten times smaller step size of 10−4 seconds for
the integration of the two oscillator equations.

Both multi–rate integration and mixed–mode integration assume that
there indeed exist two distinct and discernable sub–systems. This may not
always be the case. For example, the real–time simulation of a distributed
parameter system described by a parabolic PDE, such as for the purpose of
optimal control of a space heating system, does not share this property. The
eigenvalues are simply spread out. Also, if a system is highly nonlinear, the
concept of looking at eigenvalues by itself become dubious, as eigenvalues
can only be defined for the linearized system. In a sufficiently nonlinear
system, the eigenvalues of the linearized system move around as a function
of time, which again may prevent us from subdividing the system into two
distinct and time–invariant sub–systems, one fast, the other slow.

10.8 Discontinuous Systems

Real–time simulation of discontinuous models is highly problematic, as
state events happen asynchronously. Event handling invariably causes over-
head that needs to be accounted for. Thus, if until now, it may have been
acceptable to have the computations associated with the simulation of a
single step occupy somewhere around 80% of the allotted time, we can no
longer do so if the model to be simulated is discontinuous. In the case of dis-
continuous models being simulated in real time, it is prudent to dimension
the computer system such that regular steps occupy no more than about
20% of the allotted time. This will grant us the additional time needed to
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handle no more than one state event per step.
State–event handling in real–time simulation is simplified, when compar-

ing it to the techniques introduced in the previous chapter, by two factors:

1. As we are using low–order integration techniques, we can also use
low–order event localization algorithms.

2. Since we use much smaller step sizes, the precise localization of state
events becomes less critical, and there shouldn’t occur as often mul-
tiple state events within a single integration step.

Since we must control the total amount of computations performed within
an integration step, iterative techniques for localizing state events are out.
We must rely on interpolation alone.

Yet, as we are using low–order integration techniques, the former itera-
tive algorithms can now be employed as interpolators. For example, if we
integrate by inlining a first–order accurate algorithm, i.e., either Forward
Euler or Backward Euler [10.16], we can use a single step of Regula Falsi
to locate the event as accurately as we can hope to accomplish with such
a crude integration algorithm. If we decide to inline the third–order accu-
rate Radau–IIA algorithm [10.5, 10.7], a single step of cubic interpolation
will localize the discontinuity as accurately as can be done using such an
integration method.

Of course, it may be possible to reduce the residual on the zero–crossing
function further by iteration, but this does not necessarily imply that we
would thereby locate the event more accurately, as already the previous
integration steps are contaminated by numerical errors.

Let us discuss, how event handling may proceed. We start out by per-
forming a regular integration step, advancing the simulation from time tn
to time tn+1. At the end of the step, we discover that a zero crossing has
taken place. We interpolate to the next event time, tnext. Since we don’t
have dense output [10.13] available, as this would be too expensive to
compute in real time, we shall have to repeat the last integration step to
advance the entire state vector from time tn to time tnext. We then perform
the actions associated with the event, and compute a new consistent ini-
tial state. Starting from that new initial state, we perform another partial
state advancing the state vector from time tnext to time tn+1. The solution
obtained in this way can then be pushed out through the D/A–converters
and communicated back to whatever hardware needs it.

As no iteration takes place, the amount of work, i.e., the total number of
floating–point operations needed, can be estimated accurately. Assuming
that only one state event is allowed to occur within a single integration
step, we can thus calculate, how much extra time we need to allot, in order
to handle single state events within an integration step adequately.

Unfortunately, the extra amount of work for event handling is non–
negligible. We perform three integration steps instead of only one, and
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we have to accommodate the additional computations needed to process
the event actions themselves. Thus, the total effort grows by about a factor
of four. This is the reason, why we wrote earlier that the allowed resource
utilization for regular integration steps needs to drop from about 80% to
about 20%.

10.9 Simulation Architecture

We haven’t yet discussed, how the simulation engine is physically connected
to the hardware. Although it would be possible to connect directly the out-
put signals of the sensor units with the input of the A/D–converters, which
form part of the simulation engine, and the outputs of the D/A–converters,
also integrated with the simulation engine, with the input signals of the ac-
tuator units, this is hardly ever done in today’s world.

Instead, commercial converters have their own computer chips built in,
that perform the necessary computations and store the digital signals in
mailboxes. Thus, an A/D–converter is really a converter together with a
built–in zero–order hold (ZOH) unit. Once the analog signal has been con-
verted, it is available for whichever process needs it, until it is overridden by
the next sample–and–hold (S/H) cycle. A D/A–converter doesn’t take its
data from the simulation directly, but instead, takes it out of its own mail-
box. Even the sensor and actuator units contain their own hardware–built
sample–and–hold equipment.

Handshaking mechanisms are needed to prevent the simulator from re-
placing the data in the mailbox of the D/A–converter, while the converter
tries to read out the data from its own mailbox. Similarly, handshaking
mechanisms are needed to prevent the simulator from reading the data
from the mailbox of the A/D–converter, while these data are in the pro-
cess of being updated by the converter.

A possible physical configuration of a hardware–in–the–loop (HIL) sim-
ulation is shown in Fig. 10.8.

Protocols have been designed to ensure that these handshaking mech-
anisms always work correctly. To this end, the High–Level Architecture
(HLA) standard was created in the U.S. [10.44], whereas Europe devel-
oped its own standard with CORBA [10.37].

Consequently, Fig. 10.1 needs to be modified. The time needed for the
A/D–convertions and D/A–conversions are no longer part of the compu-
tational load associated with advancing the simulation by one time step,
as these activities are performed in parallel by separate units. Instead, we
must include the time needed for the read and write requests from and to
the mailboxes across the architecture.

Since the total time needed for computing all activities associated with
a single integration step must be known, both HLA and CORBA offer
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FIGURE 10.8. Physical configuration of HIL simulation.

mechanisms for specifying the maximum allowed latency in answering re-
quests for information transfer across the architecture using the established
communication channels and protocols.

10.10 Overruns

Overruns are defined as situations, where, in spite of our best efforts, the
simulation engine is unable to perform all of the required computations in
time to advance its state to the next clock time, before the real–time clock
interrupt is received.

This may happen, because it cannot be guaranteed that no more than
one state event will ever occur within a single integration step. As all events
must be processed, it can happen that the simulation falls behind. Most
real–time simulations specify the maximum percentage of overruns as e.g.
1% or 2%.

What happens, when the simulation falls behind? Thanks to the buffers
implemented in the form of the mailboxes, the hardware will hardly notice
it. It simply receives the same actuator values for a second time in a row.

For the simulation software, the situation may be worse, because it may
need to know, what time it is. Thus, the following procedure is recom-
mended in the case of an overrun. If the next real–time interrupt arrives,
before the computations have been completed, the subsequent integration
step is doubled in length to catch up with real time. In this way, we allow
one integration step to be computed less accurately once in a while, in
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order to stay synchronous with the real–time clock.

10.11 Summary

In this chapter, we have attempted to paint, using a fairly wide brush, a
picture of some of the requirements associated with real–time simulation
of physical systems. It’s a difficult problem to cope with, as the informa-
tion available on this topic is widely scattered in the literature and hardly
available in a concise and consistent fashion.

Just like in the case of the distributed parameter systems, we do not
claim that we have been able to create here a body of knowledge that is
exhaustive by any standard. We do not claim that you, the reader, will
be able to successfully build a real–time simulator after having read this
chapter.

Naturally, as this book concerns itself primarily with topics surrounding
the numerical integration of ODE and DAE systems, we have focused our
emphasis on issues related to the special demands of real–time simulation
on the integration algorithms.

We only just mentioned the available literature on simulation speed–up
by means of efficient function generation [10.21, 10.28], and we didn’t talk
at all about the use of special–purpose simulation hardware, a fashionable
topic in the 1960’s to 1980’s. These systems have largely been overcome by
events, as conventional digital hardware became faster and faster.

We barely scratched the surface of issues concerning the simulation archi-
tecture. There is a substantial body of knowledge available on this subject,
although it concerns itself more with discrete event simulation in general,
than with physical system simulation.

We didn’t even mentioned the topic of distributed real–time simulation
[10.8, 10.31], where the execution speed of the real–time simulation is in-
creased by distributing the computations necessary to complete an integra-
tion step over multiple computers communicating with each other across
the simulation architecture.

Notice that even Fig. 10.8 does not reflect the full real–time architec-
ture needed to perform distributed simulation experiments. Both HLA
and CORBA were developed to support distributed processing. Whereas
CORBA was designed primarily for instrumentation, HLA has a strong
emphasis on distributed simulation. In Fig. 10.8, the simulation is still “in
charge” of the overall operations. All other units are essentially subservient
to the simulation.

If we allow the simulation to be distributed over multiple processors
working in parallel on a demanding simulation task, this approach won’t
work any longer. Figure 10.9 shows a once more enhanced architecture that
supports distributed simulation.
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Figure 10.9 depicts the overall HLA architecture [10.9, 10.10] for dis-
tributed simulation. Here, the former bus controller is replaced by the Real-
time Infrastructure (RTI) [10.20], a distributed operating system that co-
ordinates the activities of the various participants in the simulation. Each
participant is responsible for finishing its assigned tasks within the allotted
time slot and for returning the results in a timely fashion to the RTI.

¿From the perspective of the architecture, there is essentially no differ-
ence between simulators and life players, i.e., hardware–in–the–loop. Pas-
sive observers were added as an additional type of participants. Since pas-
sive observers never return any data to the architecture, it is not essential
that they operate in a time–synchronous fashion. They can complete their
tasks on an “as–fast–as–possible” basis.
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10.14 Homework Problems

[H10.1] Semi–implicit Trapezoidal Rule

Derive a semi–implicit version of the trapezoidal rule

x(tk+1) = x(tk) +
h

2
[f(x(tk), tk) + f(x(tk+1), tk+1)] (H10.1a)

Hint: Approximate f(x(tk+1), tk+1) using the ideas developed in Section
10.4.

Show that the stability domain of the method coincides with that of
the fully–implicit trapezoidal rule (i.e., show that also the semi–implicit
trapezoidal rule is F–stable).

[H10.2] Pendulum

Using the semi–implicit trapezoidal formula, simulate a pendulum motion
that can be described by the state–space model:

ẋ1 = x2

ẋ2 = − sin(x1) − b · x2

assuming that the friction parameter is b = 0.02.
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Start from the initial condition x0 = (0.5 0.5)T using a step size of
h = 0.5, and simulate until tf = 500 time units.

Repeat the experiment using the fully–implicit trapezoidal rule.
Compare the results as well as the number of floating–point operations

required for the two simulations.

[H10.3] Frictionless Pendulum

Repeat problem H10.2 with b = 0 (i.e., without friction).
Compare the results obtained with the two integration methods. Explain

the differences.

[H10.4] Hydraulic Motor

We wish to simulate a position control system involving a hydraulic motor.
Figure H10.4a shows the schematic of a hydraulic motor with two chambers
and a set of flows.

FIGURE H10.4a. Hydraulic motor schematic.

The physics behind the hydraulic motor model are explained in the com-
panion book [10.4].
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Due to the compressibility of the fluid, the change in the pressures of
the two chambers is proportional to the flow balance in and out of these
chambers:

ṗ1 = c1 · (qL1 − qi − qe1 − qind) (H10.4a)
ṗ2 = c1 · (qind + qi − qe2 − qL2) (H10.4b)

where c1 = 5.857× 1013 kg m−4 sec−2 is the inverse of the compressibility
constant.

There exist several laminar leakage flows in this model. The flow qi is
the internal leakage flow between the two chambers:

qi = ci · pL = ci · (p1 − p2) (H10.4c)

where pL is the load pressure of the motor, and ci = 0.737×10−13 kg−1 m4 sec
is the internal leakage coefficient. The flows qe1 and qe2 are external leakage
flows:

qe1 = ce · (p1 − p0) (H10.4d)
qe2 = ce · (p2 − p0) (H10.4e)

where p0 = 1.0132 × 105 N m−2 is the ambient air pressure, and ce =
0.737 × 10−12 kg−1 m4 sec is the external leakage coefficient.

The load pressure, pL, causes a mechanical torque, τm, on the motor
block, which makes the motor spin, ωm, and move forward. Thereby an
induced flow, qind, is generated. In the process, some of the hydraulic power,
pL · qind, is converted into mechanical power, τm · ωm. The equations of
transformation can be written as:

τm = ψm · pL (H10.4f)
qind = ψm · ωm (H10.4g)

where ψm = 0.575 × 10−5 m3.
On the mechanical side, the motor experiences inertia and friction. New-

ton’s law can be formulated as follows:

Jm · ω̇m = τm − ρm · ωm (H10.4h)

where Jm = 0.08 kg m2 is the inertia of the motor block, and ρm =
1.5 kg m2 sec−1 is the friction constant of the motor.

The load flows, qL1 and qL2, in and out of the hydraulic motor are con-
trolled by the four–way servo valve shown in Fig. H10.4b.

The tongue position, x, is normalized such that, x = 1 corresponds to the
orifices of the valve being entirely open. In the central position, x = 0, all
four orifices are 5% open, i.e., the servo valve has an underlap of x0 = 0.05.

The flows through the orifices are turbulent. Consequently, they observe
a square–root law, as shown in Fig. H10.4c.
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FIGURE H10.4b. Four–way servo valve schematic.
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FIGURE H10.4c. Square–root law of turbulent flows of a liquid substance through
a narrow orifice.

Thus, each of the four turbulent flows, q1 . . . q4, satisfies an equation of
the type:

q = k · Δx · sign(Δp) ·
√
|Δp| (H10.4i)

where k = 0.248 × 10−6 kg−1/2 m7/2, Δx is the relative opening of the
orifice, i.e. Δx = x0 ± x limited between zero and one, and Δp is the
pressure drop across the orifice. ps = 0.137×108 N m−2 is the line pressure



10.14 Homework Problems 511

of the hydraulic motor.
¿From Fig. H10.4b, we conclude that:

qL1 = q1 − q2 (H10.4j)
qL2 = q3 − q4 (H10.4k)

The tongue of the valve is moved by the servo, an electro–mechanical
device, depicted in Fig. H10.4d.

ρs

ks

is
Rs

Ls

u

x

FIGURE H10.4d. Servo schematic.

On the electrical side, the applied voltage, u, causes a current, is to flow
through a coil. The coil exhibits a resistance, Rs, and an inductance, Ls.
Thus:

u = Rs · is + Ls · dis
dt

+ uind (H10.4l)

where Rs = 1.25× 10−5 Ω, and Ls = 10−9 H are the normalized resistance
and inductance of the coil. The current is causes a force, Fs, in the tongue,
which makes the tongue move. The velocity of the tongue, v, causes an
induced voltage, uind on the electrical side. In the process, some of the
electrical power, uind · is, is converted to mechanical power, Fs · v. The
equations of transformation are:

Fs = ψs · is (H10.4m)
uind = ψs · v (H10.4n)

where ψs = 0.005 Volts m−1 sec = 0.005 N Amps−1.
On the mechanical side, the motion of the tongue is opposed by a spring

and a damper. Thus, Newton’s law can be formulated as follows:

ms · v̇ = Fs − ks · x − ρs · v (H10.4o)

where ms = 0.01 kg is the normalized mass, ks = 400 N m−1 is the nor-
malized spring constant, and ρs = 2 N m−1 sec is the normalized damper
coefficient.
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FIGURE H10.4e. Hydraulic motor position control scheme.

The overall position control system is depicted in Fig. H10.4e.
We apply a step of θset = 1 rad, and want to observe the step response

θm as a function of time. The limiter block limits the control signal, u to
±1. It has also built in a gain factor of kl = 0.5.

This is a 7th–order model with the state vector:

x = (θm, ωm, p1, p2, x, v, is)T (H10.4p)

We simulate the model until tf = 0.5 sec. You can set the initial values
of all state variables equal to zero, except for the two pressures, p1 and
p2, which you should set initially both equal to the arithmetic mean value
between the line pressure, ps, and the ambient air pressure, p0.

As we wish to prepare this model for real–time simulation, we choose to
simulate the model using a fixed–step FE algorithm.

Determine experimentally the largest step size, hmax, for which the sim-
ulation remains numerically stable. Reduce the step size until the solution
is sufficiently accurate. As a criterion for accuracy, we shall compare so-
lutions θm(t) found once with the step size h and once with the step size
h/2. When the two solutions no longer vary by more than 0.1%:

err = max
∀t

(|θm(t)[h] − θm(t)[h/2]|) ≤ 0.001 (H10.4q)

we consider the solution sufficiently accurate. Find hacc, the step size that
produces an accurate solution, and plot the output variable, θm as a func-
tion of time.

[H10.5] Algebraic Differentiation

For the hydraulic motor of Hw.[H10.4], compute symbolically the Jacobian
of the model. Determine its eigenvalues for the initial state, and explain,
on the basis of these eigenvalues, the largest step size, hmax found experi-
mentally in Hw.[H10.4].

What can you conclude about the eigenvalue distribution?
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[H10.6] Multi–rate Integration

We shall once more consider the hydraulic motor problem of Hw.[H10.4].
We noticed in Hw.[H10.5] that the electrical time constant of the servo
valve is faster than the mechanical and hydraulic time constants by several
orders of magnitude.

If the step size is indeed dictated by accuracy considerations, we may
simply be out of luck. Yet, we may not really require an accuracy of 0.1%.
Let us assume that an accuracy of 1% is acceptable. In that case, the step
size is limited by the numerical stability rather than by accuracy consider-
ations.

We now wish to implement a multi–rate integration scheme. We keep the
step size of the electrical time constant at the maximum level determined
earlier, hmax, and we increase the step sizes of the other six integrators by
making them multiples of hmax.

We shall use the single–rate simulation as a reference solution. Determine
experimentally, how many time less frequently you may sample the other six
integrators, until the multi–rate solution starts differing from the reference
solution by more than 1%.

[H10.7] Mixed–mode Integration

We wish to look at the hydraulic motor problem of Hw.[H10.4] once again.
This time, we shall replace the FE algorithm of the electrical inductor by
the semi–implicit version of the BE algorithm.

Using the same technique proposed earlier to compare the solution com-
puted for step size h with that computed for step size h/2, determine the
largest step size, hacc, using a mixed–mode integration approach that will
offer an accuracy of 1%.

[H10.8] Deep–sea Oil Drilling

We wish to study a deep–sea oil drilling operation. Figure H10.8a shows a
deep–sea oil drilling platform with a pipe hanging from it.

The problem was taken from Eitelberg’s Ph.D. dissertation [10.14]. The
pipe has a length of � = 5 km. It has a diameter of φ = 0.5 m. The pipe
experiences forces from the sea. The inputs, u(z), represent the forces per
meter of exposed pipe at a given depth, z.

In accordance with [10.14], the displacement of the pipe, x(t, z), can be
modeled as follows:

∂2x

∂t2
=2 · μF · vF

μ
· ∂2x

∂z∂t
− β1

μ
· ∂x

∂t
− α

μ
· ∂4x

∂z4
+
(

γ(z) − μf · v2
F

2μ

)
· ∂2x

∂z2

− μ̄R · g
μ

· ∂x

∂z
+

1
μ
· u(z) (H10.8a)
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FIGURE H10.8a. Deep–sea oil drilling platform with pipe.

with the abbreviations:

γ(z) =
g

μ
· (mL − μ̄R · (� − z)) (H10.8b)

μ = μR + μF (H10.8c)

where μR = 173 kg m−1 is the specific mass of the pipe, μ̄R = 150 kg m−1

is a reduced specific mass of the pipe, μF = 180 kg m−1 is the specific mass
of the oil in the pipe, α = 142 × 106 kg m3 sec−2 is the torsion stiffness,
β1 = 20 kg m−1 sec−1 is the damping coefficient, vF = 5 m sec−1 is the
velocity of the oil in the pipe, and mL = 104 kg is the mass of the weight
at the lower end of the pipe.

The boundary conditions can be specified as follows:

x

∣∣∣∣
z=0

= 0 (H10.8d)

∂2x

∂z2

∣∣∣∣
z=0

= 0 (H10.8e)

∂2x

∂z2

∣∣∣∣
z=�

= 0 (H10.8f)

∂2x

∂t2

∣∣∣∣
z=�

=
α

mL
· ∂3x

∂z3
− g · ∂x

∂z
+

1
mL

· uL (H10.8g)

where uL is the force tugging at the weight.
We shall convert this hyperbolic partial differential equation to a set

of ordinary differential equations using the Method–of–Lines approach. To
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this end, we shall cut the pipe into 50 segments of Δx = 100 m length each.
Thus, we end up with 100 first–order differential equations.

We shall use 4th–order accurate central differences for the first spatial
derivatives, 5th–order accurate central differences for the second spatial
derivatives, and 5th–order accurate central differences for the fourth spatial
derivatives. Towards the boundary, we shall need to use 4th–order accurate
biased formulae for the spatial derivatives.

For the second boundary condition at the lower end, we shall use 4th–
order accurate biased formulae for the first and third spatial derivatives.

Why did we choose such high–order formulae? We really didn’t have any
choice. The fourth spatial derivative cannot be discretized, unless we use at
least a formula that is 4th–order accurate. Since we use central differences,
we get one additional order of accuracy for free. Since we have to use high–
order for the discretization of the fourth spatial derivative, we might just as
well do the same with the lower–order spatial derivatives, as we get these
approximations for free.

Find the Jacobian of the resulting ODE system, and plot its eigenvalues
in the complex λ–plane.

[H10.9] Inline Integration

We shall once more consider the oil–drilling operation of Hw.[H10.8]. Since
we now know that the eigenvalues are spread up and down, a little to
the left of the imaginary axis, we choose the F–stable trapezoidal rule for
integration.

Inline the trapezoidal rule, and determine a suitable set of tearing vari-
ables. How many tearing variables do you need?

[H10.10] Inline Integration

We shall once more consider the oil–drilling operation of Hw.[H10.8]. this
time around, rather than simulating the model using the trapezoidal rule of
Hw.[H10.9], we shall inline the Newmark integration algorithm, introduced
in Chapter 5 of this book:

vk+1 = vk + h · [(1 − γ) · ak + γ · ak+1] (H10.10a)

xk+1 = xk + h · vk +
h2

2
· [(1 − 2β) · ak + 2β · ak+1] (H10.10b)

where xk, vk, and ak are approximations to the positions, velocities, and
accelerations at time step k. We shall implement the method with the
parameter values β = 1/4, and γ = 1/2.

How many tearing variables do you need now?
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10.15 Projects

[P10.1] Helicopter Control

According to Kailath [10.25], the flight of a helicopter near hover conditions
can be described by the linear model:

ẋ =

⎛
⎝−0.02 −1.4 9.8
−0.01 −0.4 0

0 1 0

⎞
⎠ · x +

⎛
⎝0.9

6.3
0

⎞
⎠ · u

y =
(
1 0 0

) · x (P10.1a)

where x1 is the horizontal velocity, x2 is the pitch rate, and x3 is the pitch
angle. The input, u, is the rotor tilt angle. The eigenvalues of the helicopter
model are located at λ1 = −0.6565, and λ2,3 = 0.1183 ± 0.3678 · j. Thus,
the uncontrolled helicopter is unstable.

We wish to design a stabilizing controller using output feedback and a
full–order Luenberger observer [10.25]. The control structure is shown in
Fig. P10.1a.
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FIGURE P10.1a. Output feedback with full–order Luenberger observer.

The controller works as follows. We can stabilize the helicopter easily by
a full state feedback. We can place the poles of the controlled helicopter at
λ1,2 = −1± j and λ3 = −2 by multiplying the state vector x from the left
with the vector k′ = (0.0627, 0.4706, 1). The controller gains can be easily
computed using any one of a number of pole placement algorithms [10.25].

Unfortunately, we don’t have the full state available, as only the output
variable, y, is being measured. Thus, we run a model of the helicopter in
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parallel, producing the output, ŷ. We can obtain a stabilization of the ob-
serving model by subtracting the observed output, ŷ, from the true output,
y, and then multiplying that error signal with a vector h, which generates
a set of signals that are then fed back to the summing point of the observer
model. We can place the observer poles at λ1,2 = −2 ± 2 · j and λ3 = −4
by choosing h = (7.58, 2.2695, 2.4644)T .

Since we don’t have a helicopter to play around with, we shall create a
model of the helicopter that we simulate using a fixed–step RK4 algorithm.
We shall implement that model on a computer reading the input signal,
u, from an input port, and putting out the output, y, through an output
port.

We implement the controller including the observer model on a second
computer using an inlined version of the BE algorithm for the observer
states. This model reads in the output, y, as input from an input port,
and puts out the output, u, through an output port. The second input, r,
is implemented in the form of an asynchronous time event, i.e., r remains
constant until the user of the system decides to set a new value.

Both computers operate on the same real–time clock. The step size is set
such that neither computer experiences overruns.

Real control engineers would go two steps further. They would reduce
the order of the observer as much as possible. In the given system, we
could get away with a second–order observer. They would then convert the
resulting analog controller to an equivalent digital controller designed in the
z–domain. We shall not do any of this, as this book is about simulation,
and not about control.

We wish to implement the real–time simulation in MATLAB using the
HLA architecture. To this end, several hurdles will have to be taken first.
The real–time input and output ports are implemented using MATLAB’s
Instrument Control Toolbox, which can communicate with the outside world
using a number of different protocols, including TCP/IP.

Yet, this won’t solve all of our problems yet. Since MATLAB runs on
general–purpose operating systems, such as MS/Windows or Linux, the
execution speed of a MATLAB code cannot be guaranteed. None of these
operating systems were designed for real–time applications.

However, MATLAB programs (M–files) can be translated to real–time
executable C–code using MathWork’s Real-Time Workshop. This code can
then be ported over to a dedicated real–time system using MathWork’s
xPC Target software.

You will need a third computer to implement an HLA kernel that imple-
ments the basic RTI functionality and that can communicate with MAT-
LAB’s Instrument Control Toolbox.
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10.16 Research

[R10.1] Real–time Simulation of Hyperbolic PDEs

We have looked in Hw.[H10.8] at a hyperbolic differential equation that we
wished to simulate in real time. It didn’t look good at all.

In Chapter 6 of this book, we have learnt that many researchers prefer
explicit ODE solvers for dealing with hyperbolic PDEs. However, the FE
algorithm won’t cut the pie, because it will take incredibly small time steps
to capture the eigenvalues close to the imaginary axis inside the stability
region of the algorithm. Thus, we would need to use either an AB3 or an
RK4 algorithm, which may still be the cheapest solution to the problem.

Multi–rate integration is out of the question, because all of the eigen-
values have similar real parts. For the same reason, also the mixed–mode
integration won’t work.

We tried inline integration of implicit F–stable algorithms instead, but
weren’t exactly successful with this approach either. The problem is that
we need large numbers of tearing variables, i.e., the Hessian matrix in the
Newton iteration is still unacceptably large.

This leads to an open research question: Can integration algorithms be
found that are either F–stable of stiffly stable that would allow us to get
away with a much smaller number of tearing variables?

Each explicit integrator breaks some loops, thereby reducing the size of
the remaining Hessian matrix. Can we selectively turn some of the inte-
grators into explicit integrators, while preserving the overall F–stable or
stiffly–stable nature of the algorithm? Could we, for example, find an algo-
rithm that is F–stable or stiffly–stable that integrates all of the velocities,
vk, using an explicit algorithm, while all positions, xk, are being integrated
using an implicit algorithm?

Eitelberg, in his dissertation, went a different route. First, he used non–
equidistantly spaced intervals in his discretization scheme, making the in-
tervals more narrow, where the pipe is bent the most, in order to reduce
the number of segments needed for a sufficiently accurate representation of
the pipe. He then used fifth–order accurate splines for the interpolation. In
this way, Eitelberg ended up with a 40th–order model instead of a 100th–
order model. Second, Eitelberg then studied systematic model reduction al-
gorithms to find different models of lower orders that would still represent
the most interesting solution, x(z = �), accurately enough. In this way, he
was able to reduce the order of the pipe model for control purposes down
from forty to eight.




