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Discrete Event Simulation

Preview

This chapter explores a new way of approximating differential equations,
replacing the time discretization by a quantization of the state variables.
We shall see that this idea will lead us to discrete event systems in terms
of the DEVS formalism instead of difference equations, as in the previous
approximations.

Thus, before formulating the numerical methods derived from this ap-
proach, we shall introduce the basic definitions of DEVS. This methodol-
ogy, as a general discrete event systems modeling and simulation formalism,
will provide us the tools to describe and translate into computer programs
the routines that implement a new family of methods for the numerical
integration of continuous systems.

Further, the chapter explores the principles of quantization–based ap-
proximations of ordinary differential equations and their representation as
DEVS simulation models.

Finally, we shall briefly introduce the QSS method in preparation for the
next chapter, where we shall study this numerical method in more detail.

11.1 Introduction

In previous chapters, we studied many different methods for the simulation
of continuous systems. In spite of their differences: explicit vs. implicit
methods, fixed–step vs. variable–step, fixed–order vs. variable–order, all of
these algorithms had something fundamental in common: given time tk+1,
a polynomial extrapolation is performed for the purpose of determining the
values of all state variables at that time instant.

In this chapter, we shall pursue an entirely different idea. Rather than
asking ourselves, what value a particular state variable assumes at any given
point in time, we shall ask the question, at what time the state variable
will deviate from its current value by more than ΔQ. Hence we wish to
find the smallest time step, h, such that x(tk + h) = x(tk) ± ΔQ.

Evidently, such an integration algorithm will naturally be a variable–
step method. During time periods, when the state variable changes its
value slowly, the algorithm will compute using large step sizes, whereas it
will use small step sizes, whenever the state variable exhibits a large either
positive or negative gradient.
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It should be remarked that, when x is a state vector, the resulting value of
h will be different for each component of x. Then, we have two possibilities:
we can either choose the smallest of these values as the next central step
size, h, or we can use different values of hi for different components of the
state vector, xi, leading to an asynchronous simulation, in which each state
variable possesses its own simulation time.

The former of these two alternatives can be combined with any of the
previously introduced integration algorithms. It simply represents a novel
way of performing step–size control. It is an interesting concept, but shall
not be pursued further in this chapter, as it doesn’t really introduce any
new challenges.

The latter idea looks much more revolutionary. At first glance, the re-
sulting methods would consist in a sort of combination of multi–rate and
variable–step algorithms.

Up to this point, all of the methods we saw can be described by difference
equations. Such a representation makes no sense in a method, in which each
component evolves following its own values of hi.

A first consequence of this remark has to do with linearity. Given a linear
time–invariant system:

ẋ = A · x (11.1)

numerical integration using any of the previously introduced integration
methods leads to a linear difference equation:

xk+1 = F · xk (11.2)

If we allow each component to follow its own step size, we not only lose
the representation as a difference equation, but we also sacrifice linearity.
Consequently, we can no longer hope to be able to draw a stability domain,
as we have gotten accustomed to throughout this book.

¿From a system–theoretic point of view, we can say that all of the meth-
ods that we have looked at until now discretize time. In other words, the
resulting simulation codes (i.e., the models executed by the simulation pro-
gram) are always discrete–time systems. When we talk about discrete–time
systems, we refer to systems that change their states synchronously in time.

Our proposed approach produces algorithms that are entirely different,
as they operate in a completely asynchronous fashion. New problems arise
that shall have to be dealt with. We shall need to discuss both stability
and accuracy of these algorithms in a new light, as our previously used
techniques break down in the context of these algorithms. Also, we shall
need to discuss synchronization mechanisms, a problem that we had not
encountered so far. As most state equations depend on more than one state
variable, the values of which are now known at different time points, we
shall need to analyze, how we can synchronize the state variables for the
purpose of computing state equations under controlled accuracy conditions.
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Yet, these new algorithms not only cause new difficulties. They also offer
important simplifications and potential savings.

A first simplification relates to the handling of state events. As we men-
tioned in Chapter 9, the integration method must evaluate the discontinu-
ous states at event times. Since those event times usually do not coincide
with the discrete time instants prescribed by the integration method, we
had to modify the method to hit the events with a given accuracy. This
requirement implied adding iteration techniques that not only complicated
the algorithms but also increased the number of computations per elapsed
simulation time. Moreover in the context of real–time simulation, we may
not be able to afford those iterations without losing the race against time.
We shall learn that the newly proposed algorithms do not call for the itera-
tion of state events, and therefore, may be better suited for the simulation
of discontinuous systems, especially in the context of real–time simulation.

Another potential simplification results in the case of large systems of
ODEs, as they arise when discretizing hyperbolic partial differential equa-
tions using the method–of–lines approach. Hyperbolic PDEs frequently lead
to shock waves that travel through space with time. Consequently at any
point in time, the gradients of these waves will be steep at some point in
space, whereas they are flat in all other regions. Using a synchronous inte-
gration algorithm, the step size of all states will have to be adjusted to the
steepest gradient, so that small step sizes will have to be used on all dif-
ferential equations at all times. In contrast, the newly proposed algorithms
will enable us to use large step sizes on most state variables most of the
time.

11.2 Space Discretization: A Simple Example

Returning to our idea of designing integration methods, in which the steps
are ruled by changes in states rather than in time, we shall introduce an
example that shows some of the basic principles of these integration tech-
niques.

Consider the first order system:

ẋa(t) = −xa(t) + 10 · ε(t − 1.76) (11.3a)

where ε(t) represents the unit step function, i.e., ε(t−1.76) describes a unit
step taking place at t = 1.76.

We shall consider the initial condition

xa(t0 = 0) = 10 (11.3b)

If we try to simulate this model using a fixed–step method with a step
size of h = 0.1, which would be appropriated in accordance with the rate,
at which the single state variable changes its value, the time step would
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occur at an instant of time that does not coincide with the discrete time
instants prescribed by the integration algorithm.

Let us now consider what happens with the following continuous–time
system:

ẋ(t) = −floor[x(t)] + 10 · ε(t − 1.76) (11.4a)

or:

ẋ(t) = −q(t) + 10 · ε(t − 1.76) (11.4b)

where q(t) � floor[x(t)] denotes the integer part of the positive real–valued
variable x(t).

Although the system defined by Eq.(11.4) is nonlinear and does not sat-
isfy the analytical properties that we like (it is highly discontinuous), it can
be easily solved.

When 0 < t < 1/9, we have q(t) = 9 and ẋ(t) = −9. During this
interval, x(t) decreases linearly from 10.0 to 9.0. Then, during the interval
1/9 < t < 1/9 + 1/8, we have q(t) = 8 and ẋ(t) = −8. During this time
interval, x(t) decreases linearly from 9.0 to 8.0.

Continuing with this analysis, we find that x(t) reaches a value of 3.0 at
time t = 1.329. If no time event were to occur, x(t) would reach a value
of 2.0 at time t = 1.829. However at time t = 1.76, when x = 2.138, the
input changes, and from that moment on, we have ẋ(t) = 8. The variable
x(t) increases its value again linearly with time, until it reaches a value of
3.0 at time t = 1.8678.

The real–valued x(t) variable continues to grow, until the system reaches
x(t) = q(t) = 10, at which time the derivative ẋ(t) becomes zero, and the
system will not change its state any longer.

Figure 11.1 shows the trajectories of x(t) and q(t).
We completed this simulation using 17 steps and, ignoring the round–off

problems, we obtained the exact solution of Eq.(11.4). All computations
required to obtain this solution were trivial, because the state derivative
remains constant in between event times, which enabled us to compute the
real–valued variable x(t) analytically.

The solution x(t) and the solution of our original system of Eq.(11.3),
xa(t), are compared in Fig.11.2.

The solutions of the original and the quantized system are definitely re-
lated to each other. By replacing the state variable x(t) by q(t) = floor[x(t)]
on the right hand side of a first–order differential equation, we found an
explicit method to simulate the quantized model.

The question naturally arises, whether we might not be able to generalize
this approach to nth–order systems by quantizing all state variables on the
right hand side of all state equations. Unfortunately, we are not ready to
answer this question yet. To this end, we shall first need to explore the
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FIGURE 11.1. Variable trajectories of the system of Eq.(11.4).
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FIGURE 11.2. State trajectories of the systems of Eq.(11.3) and Eq.(11.4).

discrete nature of the system of Eq.(11.4) and introduce some tools for its
representation and simulation.



524 Chapter 11. Discrete Event Simulation

11.3 Discrete Event Systems and DEVS

The simulation of a differential equation system using any of the methods
we studied in previous chapters led us to a set of difference equations of
the form:

x(tk+1) = f(x(tk), tk) (11.5)

where the difference tk+1 − tk can be either constant or variable, and the
function f can be explicitly or implicitly defined. As a consequence, the
simulation program contained an iterative code that advances the time
in accordance with the next step size. In other words, those simulation
methods produce discrete–time models of simulation.

The system of Eq.(11.4) can be viewed as a simulation model, because
it can be exactly simulated with only 17 steps. However, it does not fit the
format of Eq.(11.5). The problem here is the asynchronous way, in which
it deals with the input change at time t = 1.76.

Evidently, we are confronted with a system that is discrete in some way,
which however belongs to a different class than the systems characterized
as discrete–time systems. As we shall see soon, our new approximation can
be represented by a discrete event system.

Many popular discrete event formalisms have been defined that some of
our readers may already be familiar with. These include the state automata,
Petri nets, event graphs, and state charts. However, none of these represen-
tations is suitable for dealing with our system in a general situation. These
graphical languages are limited to systems with a finite number of states.
Fortunately, there has been found a more general discrete event system
formalism, called DEVS, that offers the support that we were looking for.

DEVS, which stands for Discrete EVent System specification [11.14,
11.11], was introduced by Bernard Zeigler in the mid seventies. DEVS
allows to represent all systems, whose input/output behavior can be de-
scribed by sequences of events under the condition that the state undergoes
a finite number of changes within any finite interval of time.

In our context, an event is the representation of an instantaneous change
in some part of a system. It can be characterized by a value and a time of
occurrence. The value can be a number, a vector, a word, or in general, an
element of a given set.

The trajectory defined by a sequence of events assumes the value φ (or
No Event) for all time instants except for those, when there are events. In
those instants, the trajectory takes the value corresponding to the event.
Figure 11.3 shows an event trajectory that takes the value x2 at time t1,
then the value x3 at time t2, etc.

A DEVS model processes an input event trajectory and, according to
that trajectory and its own initial conditions, provokes an output event
trajectory. This input/output behavior is depicted in Fig.11.4.
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FIGURE 11.3. An event trajectory.
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FIGURE 11.4. Input/output behavior of a DEVS model.

The behavior of a DEVS model is expressed in a way that is quite com-
mon in automata theory. This kind of representation consists in enumerat-
ing some sets and functions that define the system dynamics in accordance
with certain rules. Since the rules are always the same in a given formalism,
they are not mentioned in each model.

Following this idea, an atomic DEVS model is defined by the following
structure:

M = (X, Y, S, δint, δext, λ, ta)

where:

• X is the set of input event values, i.e., the set of all possible values
that an input event can assume;

• Y is the set of output event values;

• S is the set of state values;

• δint, δext, λ and ta are functions that define the system dynamics.

Figure 11.5 illustrates the behavior of a DEVS model.
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FIGURE 11.5. Trajectories in a DEVS model.

Each possible state s (s ∈ S) has an associated time advance calculated
by the time advance function ta(s) (ta(s) : S → R

+
0 ). The time advance is

a non–negative real number, determining how long the system remains in
a given state in absence of input events.

Thus, if the state adopts the value s1 at time t1, after ta(s1) units of
time (i.e., at time t1 + ta(s1)), the system performs an internal transition,
taking it to a new state s2. The new state is calculated as s2 = δint(s1).
Function δint (δint : S → S) is called the internal transition function.

When the state changes its value from s1 to s2, an output event is pro-
duced with the value y1 = λ(s1). Function λ (λ : S → Y ) is called the
output function. In this way, the functions ta, δint and λ define the au-
tonomous behavior of a DEVS model.

When an input event arrives, the state changes instantaneously. The new
state value depends not only on the value of the input event, but also on
the previous state value and the elapsed time since the last transition. If
the system assumes the state value s2 at time t2, and subsequently, an
input event arrives at time t2 + e < ta(s2) with value x1, the new state
is calculated as s3 = δext(s2, e, x1). In this case, we say that the system
performs an external transition. Function δext (δext : S × R

+
0 × X → S) is

called the external transition function. No output event is produced during
an external transition.
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Let us consider the following simple example: A system receives positive
numbers in an asynchronous way. After it received a number x, it generates
an output event with the number x/2 after 3 ·x time units. A DEVS model
that correctly represents this behavior is the following:

M1 = (X, Y, S, δint, δext, λ, ta), where
X = Y = S = R

+

δint(s) = ∞
δext(s, e, x) = x

λ(s) = s/2
ta(s) = 3 · s

Observe that the state can assume a time advance equal to ∞. When this
occurs, we say that the system is in a passive state, since it will no longer
change its state, unless and until it receives an input event.

Let us analyze what happens with the model M1 when it receives an
input event trajectory. Consider for instance that input events occur at
times t = 1, t = 3, and t = 10 with the values 2, 1, and 5, respectively.
Suppose that initially we have t = 0, s = ∞ and e = 0. Then, the following
behavior would be observed:

time t = 0:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

time t = 1−:
s = ∞
e = 1

time t = 1:
s = δext(s, e, x) = δext(∞, 1, 2) = 2

time t = 1+:
s = 2
e = 0
ta(s) = ta(2) = 6

time t = 3−:
s = 2
e = 2

time t = 3:
s = δext(s, e, x) = δext(2, 2, 1) = 1

time t = 3+:
s = 1
e = 0
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ta(s) = ta(1) = 3

time t = 6:

output event with value λ(s) = λ(1) = 0.5
s = δint(s) = δint(1) = ∞

time t = 6+:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

time t = 10−:
s = ∞
e = 4

time t = 10:
s = δext(s, e, x) = δext(∞, 4, 5) = 5

time t = 10+:
s = 5
e = 0
ta(s) = ta(5) = 15

time t = 25:

output event with value λ(s) = λ(5) = 2.5
s = δint(s) = δint(5) = ∞

time t = 25+:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

According to the above model, when a new state arrives through an
input event before the previous state has expired, the system assumes the
new state value and forgets the previous one. In the above example, this
happens at time t = 3. A different scenario might require that arriving
input events are to be ignored, while the system is busy. This modified
behavior can be generated using the following DEVS model:

M2 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R

+

S = R
+ × R

+
0

δint(s) = δint(z, σ) = (∞,∞)
δext(s, e, x) = δext(z, σ, e, x) = s̃

λ(s) = λ(z, σ) = z/2
ta(s) = ta(z, σ) = σ

where:
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s̃ =
{

(x, 3 · x) if z = ∞
(z, σ − e) otherwise

In this new model, we included the variable σ in the state s. People working
routinely with DEVS almost always introduce the variable σ, set equal to
the time advance, as this generally facilitates the modeling task.

11.4 Coupled DEVS Models

As mentioned before, DEVS is a general formalism that can be used to de-
scribe highly complex systems. However, the representation of a complex
system based only on transition and time advance functions is rather diffi-
cult. The reason is that in those functions we have to imagine and describe
all possible situations in the system.

Complex systems can usually be thought of as the coupling of simpler
systems. Through the coupling, the output events of some subsystems are
converted to input events of other subsystems. The DEVS methodology
guarantees that the coupling of atomic DEVS models defines new DEVS
models, i.e., DEVS is closed under coupling. For this reason, complex sys-
tems can be represented by DEVS in a hierarchical fashion [11.11].

There are two different ways, in which DEVS models may be coupled.
The first approach is the most general one. It uses translation functions
between subsystems. The second approach is based on the use of input and
output ports. We shall use the latter approach, since it is simpler and more
adequate in the context of continuous system simulation.

The use of ports requires adding to the input and output events a new
number, word, or symbol, representing the port, through which the event
is arriving. It suffices to enumerate the connections describing the cou-
plings between different systems. An internal connection involves an input
and an output port belonging to subsystems. However in the context of
hierarchical coupling, there also exist connections from the output ports
of subsystems to the output ports of the system. These are called external
output connections. There also exist connections from the input ports of
the systems to input ports of subsystems. These are referred to as external
input connections.

Figure 11.6 shows a coupled DEVS model N that is the result of coupling
the models Ma and Mb. There, the output port 1 of Ma is connected to
the input port 0 of Mb. This connection can be represented by the pair
[(Ma, 1), (Mb, 0)]. Other connections are [(Mb, 0), (Ma, 0)], [(N, 0), (Ma, 0)],
[(Mb, 0), (N, 1)], etc. According to the closure property of DEVS, the model
N can itself be used in exactly the same way, as an atomic DEVS model
would be used, and it can be coupled with other atomic and/or coupled
models.
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FIGURE 11.6. Coupled DEVS model.

Note that the input and output ports are numbered using integer num-
bers starting from 0. The DEVS methodology allows using any word to
identify a port. However in the context of this book, we shall always use
integer numbers starting from 0, because we shall work with a software tool
that defines the ports in this fashion [11.7].

Consider for example a system that calculates a static function f(u0, u1),
where u0 and u1 are real–valued piecewise constant trajectories generated
by other subsystems. We can represent piecewise constant trajectories by
sequences of events, if we relate each event to a change in the trajectory
value. Using this idea, we can build the following atomic DEVS model:

M3 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N0

S = R
2 × R

+
0

δint(s) = δint(u0, u1, σ) = (u0, u1,∞)
δext(s, e, x) = δext(u0, u1, σ, e, xv, p) = s̃

λ(s) = λ(u0, u1, σ) = (f(u0, u1), 0)
ta(s) = ta(u0, u1, σ) = σ

where:

s̃ =
{

(xv, u1, 0) if p = 0
(u0, xv, 0) otherwise

Here, each input and output event includes an integer number, indicating
the corresponding input or output port. In the input events (cf. the defi-
nition of s̃ in function δext), the port p can be either 0 or 1. In the output
events (cf. function λ), the output port is always 0.

Now, if we want to represent another system that calculates the func-
tion f [f(u0, u1), u2], we must couple two models of the M3 class with a
connection from the output port of the first subsystem to the input port
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0 of the second subsystem. The system output must be taken from the
second model. Thus, calling the subsystems A and B, respectively, and
the overall system N , the connections can be expressed as: [(A, 0), (B, 0)],
[(N, 0), (A, 0)], [(N, 1), (A, 1)], [(N, 2), (B, 1)], and [(B, 0), (N, 0)].

The DEVS methodology uses a formal structure for representing coupled
DEVS models with ports. The structure includes the subsystems, the con-
nections, the system input and output sets, and a tie–breaking function to
govern the occurrence of simultaneous events. The connections are divided
into three sets: one set composed by the connections between subsystems
(internal connections), another set that contains the connections from the
system to the subsystems (external input connections), and a final set that
lists the connections from the subsystems to the system (external output
connections).

The use of the aforementioned tie–breaking function can be avoided with
Parallel–DEVS, which is an extension of the DEVS formalism that allows
dealing with simultaneous events.

We shall not develop these latter concepts, neither the coupled DEVS
formal structure nor the parallel–DEVS formalism, any further, since our
aim is not the introduction of the complete DEVS methodology here. We
are only interested in using DEVS as a tool for continuous system simu-
lation. For a more complete coverage of DEVS methodology, we refer the
reader to Zeigler’s book [11.11].

11.5 Simulation of DEVS Models

One of the most important features of DEVS is that very complex models
can be simulated in an easy and efficient manner.

DEVS models can be simulated with a simple ad–hoc program written
in any language. In fact, the simulation of a DEVS model is not much more
complicated than that of a discrete–time model.

A basic algorithm that may be used for the simulation of a coupled DEVS
model can be described by the following steps:

(a). Identify the atomic model that, according to its time advance and
elapsed time, is the next to perform an internal transition. Call the
system d∗, and let tn be the time of the aforementioned transition.

(b). Advance the simulation clock t to t = tn, and execute the internal
transition function of model d∗.

(c). Propagate the output event produced by d∗ to all atomic models
connected to it through its output ports, while executing the cor-
responding external transition functions. Then, return to step (a)
above.
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One of the simplest ways for implementing these steps is by writing a pro-
gram with a hierarchical structure equivalent to the hierarchical structure
of the model to be simulated. This is the method developed in [11.11],
where a routine called DEVS–simulator is associated with each atomic
DEVS model, and a different routine called DEVS–coordinator is related to
each coupled DEVS model. At the top of the hierarchy, there is a routine
called DEVS–root–coordinator that manages the global simulation time.
Figure 11.7 illustrates this simulation technique for a coupled DEVS model:

atomic1 atomic2 atomic3

coupled1

coupled2

simulator1 simulator2

simulator3coordinator1

coordinator2

root − coordinator

FIGURE 11.7. Hierarchical model and simulation scheme.

The simulators and coordinators of consecutive layers communicate with
each other through messages. The coordinators send messages to their chil-
dren, triggering the execution of their transition functions. When a simu-
lator goes through a transition, it calculates its next state and, when the
transition is internal, sends the output value to its parent coordinator. The
simulator state coincides with its associated atomic DEVS model state.

When a coordinator executes a transition function, it sends messages
to some of its children, triggering the execution of their own transition
functions. When an output event produced by one of its children has to be
propagated outside the coupled model, the coordinator sends a message to
its own parent coordinator, carrying the output value.

Each simulator or coordinator has a local variable tni
, indicating the

time instant, when its next internal transition is scheduled to occur. In a
simulator, the value of that variable is calculated using the time advance
function of the corresponding atomic model. In a coordinator, it is calcu-
lated as the minimum tni

of its children. Thus, the tni
of the coordinator

at the root of the tree is the time instant, at which the next event of the
entire system will occur. The root coordinator is responsible for advancing
the global time t to that value.

At the beginning of the simulation, a message of initialization is sent
from the root to the leaves of the tree structure.

The following pseudo–code corresponds to a simulator associated with
a generic atomic model. There, the i–message, ∗–message, and x–message
represent the initialization, internal transition, and input message, respec-
tively. These messages are sent from a parent to its children. Similarly, the
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y–message is an output message, sent from a child to its parent.

DEVS–simulator
variables:

tl // time of last event
tn // time of next event

s // state of the DEVS atomic model
e // elapsed time in the actual state
y = (y.value, y.port) // current output of the DEVS atomic model

when i–message (i, t) is received at time t
tl = t − e
tn = tl + ta(s)

when ∗–message (∗, t) is received at time t
y = λ(s)

send y–message (y, t) to parent coordinator
s = δint(s)
tl = t
tn = t + ta(s)

when x–message (x, t) is received at time t
e = t − tl
s = δext(s, e, x)
tl = t
tn = t + ta(s)

end DEVS–simulator

The routine corresponding to a coordinator can be written as follows:

DEVS–coordinator
variables:

tl // time of last event
tn // time of next event
y = (y.value, y.port) // current output of the DEVS coordinator
D // list of children
IC // list of connections of the form [(di, portx), (dj , porty)]
EIC // list of connections of the form [(N, portx), (dj , porty)]
EOC // list of connections of the form [(di, portx), (N, porty)]

when i–message (i, t) is received at time t
send i–message (i, t) to all children
d∗ = arg[mind∈D(d.tn)]
tl = t
tn = d∗.tn

when ∗–message (∗, t) is received at time t
send ∗–message (∗, t) to d∗
d∗ = arg[mind∈D(d.tn)]
tl = t
tn = d∗.tn

when x–message ((x.value, x.port), t) is received at time t
(v, p) = (x.value, x.port)
for each connection [(N, p), (d, q)]

send x–message ((v, q),t) to child d
d∗ = arg[mind∈D(d.tn)]
tl = t
tn = d∗.tn
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when y–message ((y.value, y.port),t) is received from d∗
if a connection [(d∗, y.port), (N, q)] exists

send y–message ((y.value, q),t) to parent coordinator
for each connection [(d∗, y.port), (d, q)]

send x–message ((y.value, q),t) to child d
end DEVS–coordinator

Finally, the root coordinator executes the following routine:

DEVS–root–coordinator
variables:

t // global simulation time
d // child (coordinator or simulator)

t = t0
send i–message (i,t) to d
t = d.tn
loop

send ∗–message (∗,t) to d
t = d.tn

until end of simulation
end DEVS–root–coordinator

There are many other possibilities for implementing a simulation engine
for DEVS models. The main problem with the routines outlined is that,
due to their hierarchical structure, we may observe a significant traffic
of messages passing from higher to lower layers of the architecture. All of
these messages and their corresponding computational time can be avoided
if a flat simulation structure is being used. Hierarchical DEVS simulation
architectures can be converted to flat DEVS simulation architectures fairly
easily [11.4]. In fact, most of the software tools mentioned before implement
the simulation based on a flat code.

Although the implementation of the pseudo code shown above is fairly
straightforward, practical models are usually composed of many subsys-
tems, and therefore, ad–hoc programming of all of these models may be-
come very time–consuming.

In recent years, a number of different software tools for the simulation
of DEVS models have been developed. Some of these tools offer software
libraries, graphical user interfaces, and a variety of other facilities that are
designed to support the user in the modeling task.

A number of software packages for DEVS simulation have been placed
in the public domain, including DEVS–Java [11.13], DEVSim++ [11.5],
DEVS–C++ [11.1], CD++ [11.10], and JDEVS [11.2].

In this book, we shall focus on PowerDEVS [11.7, 11.8, 11.9], a software
that –in spite of being a general–purpose DEVS simulator– is a software
environment that was specifically conceived for facilitating the simulation
of continuous systems.

As we already mentioned, this textbook is not geared towards a general
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course on DEVS, and we do not expect the reader to become an expert on
DEVS. Our aim is to provide enough information about DEVS, such that a
PowerDEVS user will understand enough of the underlying principles to be
able to make use of PowerDEVS as a tool for continuous system simulation.

PowerDEVS is a tool that was designed with many different kinds of
users in mind, ranging from mere beginners, who don’t know anything
about either DEVS or C++ programming, to experts in both domains.

PowerDEVS offers a convenient graphical user interface that permits
creating coupled DEVS models using the typical drag and drop tools. A
number of DEVS atomic model definitions have been predefined and stored
in a PowerDEVS model library.

Atomic models can be easily created and modified using an atomic model
editor, where the user has to define the transition, output, and time advance
functions using C++ syntax.

11.6 DEVS and Continuous System Simulation

In the first example of section 11.4, we saw that piecewise constant trajecto-
ries can be represented by sequences of events. This simple idea constitutes
the basis for the use of DEVS in the simulation of continuous systems.

In that example, we also showed that a DEVS model can represent the
behavior of a static function with piecewise constant input trajectories.
The problem is that the continuous system trajectories are usually far from
being piecewise constant. However, we can alter the system, such that it
exhibits these kinds of trajectories. In fact, that is what we did to the
system of Eq.(11.3), where we used the floor function to convert it to the
system of Eq.(11.4).

We can split Eq.(11.4) in the following way:

ẋ(t) = dx(t) (11.6a)
q(t) = floor[x(t)] (11.6b)

and:

dx(t) = −q(t) + u(t) (11.7)

where u(t) = 10 · ε(t − 1.76).
We can represent this system using the block diagram of Fig.11.8.
As we mentioned before, the subsystem of Eq.(11.7) –being a static

function– can be represented by the DEVS model M3 presented in Sec-
tion 11.4.

The subsystem of Eq.(11.6) is a dynamic system having a piecewise con-
stant input trajectory dx(t) and a piecewise constant output trajectory
q(t). We can represent it exactly using the following DEVS model:
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q(t)u(t) x(t)dx(t) ∫

FIGURE 11.8. Block diagram representation of Eqs.(11.6–11.7).

M4 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 × Z × R

+
0

δint(s) = δint(x, dx, q, σ) = (x + σ · dx, dx, q + sign(dx),
1

|dx| )
δext(s, e, x) = δext(x, dx, q, σ, e, xv, p) = (x + e · dx, xv, q, σ̃)
λ(s) = λ(x, dx, q, σ) = (q + sign(dx), 0)
ta(s) = ta(x, dx, q, σ) = σ

where:

σ̃ =

⎧⎪⎪⎨
⎪⎪⎩

q + 1 − x
xv

if xv > 0
q − x
xv

if xv < 0

∞ otherwise

Now, if we want to simulate the system of Eqs.(11.6–11.7) using Pow-
erDEVS, we can translate the generic DEVS atomic models, M3 and M4,
into corresponding PowerDEVS atomic models.

A PowerDEVS atomic model corresponding to M3 looks, in the atomic
model editor, as follows:

ATOMIC MODEL STATIC1
State Variables and Parameters:

float u[2],sigma; //states
float y; //output
float inf ; //parameters

Init Function:
inf = 1e10;
u[0] = 0;
u[1] = 0;
sigma = inf ;
y = 0;
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Time Advance Function:
return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float xv;
xv = *(float*)(x.value);
u[x.port] = xv;
sigma = 0;

Output Function:
y = u[0] − u[1];
return Event(&y,0);

The conversion of the DEVS model M3 to the corresponding PowerDEVS
model STATIC1 is straightforward.

Similarly, the DEVS model M4 can be represented in PowerDEVS as
follows:

ATOMIC MODEL NHINTEGRATOR

State Variables and Parameters:
float X, dX, q, sigma; //states
//we use capital X because x is reserved
float y; //output
float inf ; //parameters

Init Function:
va list parameters;
va start(parameters, t);
X = va arg(parameters, double);
dX = 0;
q =floor(X);
inf = 1e10;
sigma = 0;
y = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
X = X + sigma ∗ dX;
if (dX > 0) {

sigma = 1/dX;
q = q + 1;
}

else {
if (dX < 0) {

sigma = −1/dX;
q = q − 1;



538 Chapter 11. Discrete Event Simulation

}
else {

sigma = inf ;

};
};

External Transition Function:
float xv;
xv = *(float*)(x.value);
X = X + dX ∗ e;
if (xv > 0) {

sigma = (q + 1 − X)/xv;
}

else {
if (xv < 0) {

sigma = (q − X)/xv;
}

else {
sigma = inf ;

};
};
dX = xv;

Output Function:
if (dX == 0) {y = q;} else {y = q + dX/fabs(dX);};
return Event(&y,0);

Again, the translation was fairly direct. However, we added a few new
items to the init function. The first two lines are automatically included by
the atomic model editor, when a new model is being edited. They declare
a variable parameters, where the graphical user interface puts the model
parameters. In our case, we defined the initial condition in variable X as a
parameter. The third line in the init function just takes the first parameter
of the block and places it in X.

Then in the graphical user interface, we can just double click on the
block and change the value of that parameter (i.e., we can change the
initial condition without changing the atomic model definition).

The other change with respect to model M4 is also related to the inclusion
of initial conditions. At the beginning of the simulation, we force the model
to provoke an event, so that the initial value of the corresponding quantized
variable q becomes known to the rest of the system. We shall write more
about this topic in the next chapter.

The coupled PowerDEVS model generated using the graphical model
editor is shown in Fig.11.9.

In that model, beside from the atomic models STATIC1 and NHINTE-
GRATOR, we included three more blocks: a STEP block that produces
an event with value 10 at time t = 1.76, and two additional models that
save and display the simulation results. These last two models are being
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Step1
Static1 NHIntegrator

iss2disk1

Scope1

∫

∫

FIGURE 11.9. Coupled PowerDEVS model of Eqs.(11.6–11.7).

included with the standard PowerDEVS library.
Using the PowerDEVS model of Fig.11.9, we obtained the data plotted

in Fig.11.1. The plot of that figure was generated by MATLAB, using the
data saved in an appropriate format on a file by the PowerDEVS block
iss2dsk.

The subsystem of Eq.(11.6) corresponds to the integrator together with
the staircase block in the block diagram of Fig.11.8. It is equivalent to
DEVS model M4, represented by the NHINTEGRATOR model in Pow-
erDEVS.

This is, what Zeigler called the quantized integrator [11.12, 11.11]. There,
the function floor acts as a quantization function. A quantization function
maps real–valued numbers onto a discrete set of real values.

A system that relates its input and output by any type of quantization
function shall henceforth be called a quantizer. Thus, our staircase block is
a particular case of a quantizer with uniform quantization.

A quantized integrator is an integrator concatenated with a quantizer
that may employ either a uniform or a non–uniform quantization scheme.

Similarly, model M3 models a static function with its input vector in R
2.

The corresponding STATIC1 PowerDEVS model implements a particular
case of such a static function, namely the function: f(u0, u1) = u0 − u1.
A DEVS model for generic static functions with their input vector in R

n

can easily be built and programmed in PowerDEVS (cf. Hw.[H11.4] for the
general linear case).

In the same way, we can obtain a DEVS model representation of general
quantized integrators that can be employed, whenever their input trajec-
tories are piecewise constant, and it is also evident that we can build a
generic DEVS model of an arbitrary static function, as long as its input
trajectories are piecewise constant.

Thus, if we have a general time–invariant system1:

1We shall use xa to denote the state variables of the original system, so that xa(t) is
the analytical solution.
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ẋa1 = f1(xa1 , xa2 , · · · , xan
, u1, · · · , um)

ẋa2 = f2(xa1 , xa2 , · · · , xan
, u1, · · · , um)

...
ẋan

= fn(xa1 , xa2 , · · · , xan
, u1, · · · , um)

(11.8)

with piecewise constant input functions uj(t), we can transform it into:

ẋ1 = f1(q1, q2, · · · , qn, u1, · · · , um)
ẋ2 = f2(q1, q2, · · · , qn, u1, · · · , um)

...
ẋn = fn(q1, q2, · · · , qn, u1, · · · , um)

(11.9)

where qi(t) is related to xi(t) by some quantization function.
The variables qi are called quantized variables. This system of equations

can be represented by the block diagram of Fig.11.10, where q and u are the
vectors formed by the quantized variables and input variables, respectively.

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

FIGURE 11.10. Block diagram representation of Eq.(11.9).

Each subsystem in Fig.11.10 can be represented by a DEVS model ex-
actly, since all of the subsystems are composed either by a static function or
by a quantized integrator. These DEVS models can then be coupled, and,
due to the aforementioned closure under coupling property, the coupled
system also forms a DEVS model.

Thus, when a system is modified by adding quantizers to the outputs
of all integrators, the resulting system is equivalent to a coupled DEVS
model that can be simulated, assuming that all of the input functions are
piecewise constant as well.
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This idea formed the first approximation to a discrete event–based method
for continuous system simulation. With this method, we can simulate ex-
actly –ignoring round–off errors– the system of Eq.(11.9), which seems to
be a reasonable approximation to that of Eq.(11.8), while avoiding any
kind of time discretization. The time discretization was replaced by the
quantization of the state variables.

Unfortunately, there is a problem with the legitimacy of the resulting
DEVS model. A DEVS model is said to be legitimate if it cannot perform
an infinite number of transitions in a finite interval of time [11.11].

Although it can be easily verified that the subsystems in Fig.11.10 are
legitimate, the legitimacy property is not closed under coupling.

In fact, this simulation method will lead to illegitimate DEVS models
in most cases. The simulation of an illegitimate DEVS model gets stuck,
when the number of state transitions per time unit grows to infinity.

The reason for the illegitimacy of the DEVS model is related to the
solution of Eq.(11.9). There, the trajectories of qi(t) are not necessarily
piecewise constant. Sometimes, they can exhibit an infinite number of state
changes within a finite time interval, which produces an infinite number of
events in the corresponding DEVS model. Due to this problem, we cannot
claim that the use of a simple quantization in the state variables constitutes
a general method for the simulation of continuous systems.

We can observe this problem in the system of Eqs.(11.6–11.7) by changing
the input function to u(t) = 10.5 · ε(t − 1.76). The trajectories until time
t = 1.76 are exactly the same as those shown in Fig.11.1. Once the step
has been applied, the trajectory starts growing a bit faster than shown
in Fig.11.1. When x(t) = q(t) = 10, the state derivative doesn’t become
zero, however. Instead, the trajectory continues to grow with a slope of
ẋ(t) = 0.5. Then after 2 more time units, we obtain x(t) = q(t) = 11. At
this point in time, the slope becomes negative. x(t) now decreases with
a slope of ẋ(t) = −0.5. Thus, q(t) immediately returns to 10, the state
derivative becomes again positive, and x(t) starts growing again. We obtain
a cyclic behavior with infinite frequency.

This anomalous and annoying behavior can also be observed in the re-
sulting DEVS model. When the DEVS model corresponding to the in-
tegrator performs an internal transition, it produces an output event that
represents the change in q(t). This event is propagated through the internal
feed-back loop (cf. Figs. 11.8–11.9), and produces a new external transition
in the integrator that changes the time advance to zero. Consequently, the
integrator undergoes another internal transition, and the cycle continues
forever.

The reader may wonder why we introduced a method that only works in
a very few cases. Yet, we had a very good reason for doing so. It turns out
that, by adding only a small and very simple modification to the method, a
general simulation method can indeed be designed that is based on the pre-
viously introduced simulation approach, yet avoids the illegitimacy prob-
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lem that has plagued us so far. This new method is called quantized state
systems method (QSS method for short) [11.6], and we shall dedicate the
final part of this chapter to introducing this new simulation algorithm.
The study of its theoretical and practical properties as well as some of its
extensions shall be left to the next and final chapter of this book.

11.7 Quantized State Systems

If we try to analyze the infinitely fast oscillations in the system of Eqs.(11.6–
11.7), we can see that they are caused by the changes in q(t). An infinites-
imally small variation in x(t) can produce, due to the quantization, a sig-
nificant oscillation with an infinitely fast frequency in q(t).

A possible solution might consist in adding some delay after a change in
q(t) to avoid those infinitely fast oscillations. However, adding such delays
is equivalent, in some way, to introducing time discretization. During the
delays, we lose control over the simulation, and we have to deal with the
problems associated with discrete–time algorithms once again.

A different solution is based on the use of hysteresis in the quantization. If
we add hysteresis to the relationship between x(t) and q(t), the oscillations
in q(t) can only be produced by large oscillations in x(t) that cannot occur
instantaneously, as long as the state derivatives remain finite.

Therefore, before introducing the QSS method formally, we shall define
the concept of a hysteretic quantization function.

Let Q = {Q0, Q1, ..., Qr} be a set of real numbers, where Qk−1 < Qk

with 1 ≤ k ≤ r. Let Ω be the set of piecewise continuous real–valued
trajectories, and let x ∈ Ω be a continuous trajectory. Let b be a mapping
b : Ω → Ω, and let q = b(x), where the trajectory q satisfies:

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

Qm if t = t0
Qk+1 if x(t) = Qk+1 ∧ q(t−) = Qk ∧ k < r
Qk−1 if x(t) = Qk − ε ∧ q(t−) = Qk ∧ k > 0
q(t−) otherwise

(11.10)

and:

m =

⎧⎨
⎩

0 if x(t0) < Q0

r if x(t0) ≥ Qr

j if Qj ≤ x(t0) < Qj+1

Then, the map b is a hysteretic quantization function.
The discrete values Qi are called quantization levels, and the distance

Qk+1−Qk is defined as the quantum, which is usually constant. The width
of the hysteresis window is ε. The values Q0 and Qr are the lower and upper
saturation values. Figure 11.11 shows a typical quantization function with
uniform quantization intervals.
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q(t)
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FIGURE 11.11. Quantization function with hysteresis.

Now, we are ready to define the QSS method:

Given a system such as that of Eq.(11.8), the QSS method
transforms the system to a system similar to that of Eq.(11.9),
where the variables xi(t) and qi(t) are related by hysteretic
quantization functions. The resulting system is called a quan-
tized state system (QSS).

In [11.6], it is shown that the quantized and state variable trajectories of
Eq.(11.9) are always piecewise constant and piecewise linear, respectively.
Hence a QSS can be simulated exactly by a legitimate DEVS model.

A legitimate DEVS model can be built as the coupling of subsystems
corresponding to static functions and hysteretic quantized integrators.

The hysteretic quantized integrators are quantized integrators, where
the simple memoryless quantization functions have been replaced by hys-
teretic quantization functions. This is equivalent to replacing Eq.(11.6b)
by Eq.(11.10) in the system of Eq.(11.6).

With this modification, the hysteretic quantized integrator constituted
by Eq.(11.6a) and Eq.(11.10) can be represented by the DEVS model:

M5 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 × Z × R

+
0

δint(s) = δint(x, dx, k, σ) = (x + σ · dx, dx, k + sign(dx), σ1)
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δext(s, e, xu) = δext(x, dx, k, σ, e, xv, p) = (x + e · dx, xv, k, σ2)
λ(s) = λ(x, dx, k, σ) = (Qk+sign(dx), 0)
ta(s) = ta(x, dx, k, σ) = σ

where:

σ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qk+2 − (x + σ · dx)
dx

if dx > 0

(x + σ · dx) − (Qk−1 − ε)
|dx| if dx < 0

∞ if dx = 0

and:

σ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qk+1 − (x + e · dx)
xv

if xv > 0

(x + e · dx) − (Qk − ε)
|xv| if xv < 0

∞ if xv = 0

The QSS method then consists in choosing the quantization levels (Q0,
Q1, . . . , Qr) and the hysteresis width ε to be used in each state variable.
This choice automatically defines DEVS models of the M5 class for each
resulting hysteretic quantized integrator. Representing the static functions
f1, . . . , fn with different DEVS models similar to M3 and coupling them,
the system of Eq.(11.9) can be exactly simulated (ignoring round–off prob-
lems). As mentioned above, the resulting coupled DEVS model is legiti-
mate, and the simulation will consume a finite amount of time.

Figure 11.12 shows the block diagram representation of a generic QSS.

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

FIGURE 11.12. Block diagram representation of a QSS.
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The hysteretic quantized integrator M5 can be implemented in Pow-
erDEVS as follows:

ATOMIC MODEL HINTEGRATOR
State Variables and Parameters:

float X, dX, q, sigma; //states
float y; //output
float epsilon, inf ; //parameters

Init Function:
va list parameters;
va start(parameters, t);
dq = va arg(parameters, double);
epsilon = va arg(parameters, double);
X = va arg(parameters, double);
dX = 0;
q =floor(X/dq) ∗ dq;
inf = 1e10;
sigma = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
X = X + sigma ∗ dX;
if (dX > 0) {

sigma = dq/dX;
q = q + dq;
}

else {
if (dX < 0) {

sigma = −dq/dX;
q = q − dq;
}

else {
sigma = inf ;

};
};

External Transition Function:
float xv;
xv = *(float*)(x.value);
X = X + dX ∗ e;
if (xv > 0) {

sigma = (q + dq − X)/xv;
}

else {
if (xv < 0) {

sigma = (q − epsilon − X)/xv;
}

else {
sigma = inf ;

};
};
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dX = xv;

Output Function:

if (dX == 0) {y = q;} else {y = q + dq ∗ dX/fabs(dX);};
return Event(&y,0);

Here we changed some things with respect to model M5. In this model,
we used a uniform quantum ΔQ, and we replaced variable k (the index of
the quantization levels) by q (the quantized variable).

It has now become clear how the QSS method can be applied to sys-
tems such as those of Eq.(11.8). We only have to build a block diagram in
PowerDEVS using atomic models such as HINTEGRATOR and STATIC1.

However, we must not forget that the result that we obtain is the solution
of Eq.(11.9). Thus, the accuracy of the simulation will be connected to the
similarity between this system and the original system of Eq.(11.8).

Taking into account that the only difference between both systems is the
presence of the quantization functions, we expect that the error depends
on the size of the quantization intervals. As we shall explain in the next
chapter, this is indeed the case, and this dependence will provide us with
a rule for choosing the quantization levels and the hysteresis width.

Let us illustrate the method by means of a simple example. Consider the
second order system:

ẋa1(t) = xa2(t)
ẋa2(t) = 1 − xa1(t) − xa2(t)

(11.11)

with initial conditions:

xa1(0) = 0, xa2(0) = 0 (11.12)

We shall use a uniform quantum Qk+1 −Qk = ΔQ = 0.05 and a hysteresis
width of ε = 0.05 for both state variables.

Thus, the resulting quantized state system:

ẋ1(t) = q2(t)
ẋ2(t) = 1 − q1(t) − q2(t)

(11.13)

can be simulated using a coupled DEVS model, composed by two atomic
models of the M5 class, corresponding to the quantized integrators, and two
atomic models similar to M3 that calculate the static functions f1(q1, q2) =
q2 and f2(q1, q2) = 1− q1 − q2. Figure 11.13 represents the coupled system.

Observe that, due to the fact that function f1 does not depend on vari-
able q1, there is a connection that is not necessary. Moreover, taking into
account that f1(q1, q2) = q2 the subsystem F1 can be replaced by a direct
connection from QI2 to QI1. These simplifications can reduce considerably
the computational cost of the implementation.
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QI1
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∫

∫

FIGURE 11.13. Block diagram representation of Eq.(11.13).
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FIGURE 11.14. PowerDEVS model.

In fact, when drawing the PowerDEVS block diagram, we automatically
make these simplifications (cf. Fig.11.14).

In the PowerDEVS model of Fig.11.14, there appears a new atomic block
that calculates a weighted sum. The reader should be able to imagine,
what this block does, and what the hidden DEVS model may look like (cf.
Hw.[H11.4]).

The simulation results are shown in Fig.11.15. The first simulation was
completed using 30 internal transitions at each quantized integrator, which
gives a total of 60 steps. We can see in Fig.11.15 the piecewise linear tra-
jectories of x1(t) and x2(t), as well as the piecewise constant trajectories
of q1(t) and q2(t).

The presence of the hysteresis can be easily noticed where the slope of a
state variable changes its sign. Near those points, we can observe different
values of q for the same value of x.

The simplifications we mentioned in the connections can be applied to
general systems, where few of the static functions do depend on all of the
state variables. In this way, the QSS method can exploit the structural
properties of the system to reduce the computational burden. When the
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FIGURE 11.15. Trajectories of the system of Eq.(11.13).

system is sparse, QSS simulations are particularly efficient, since each step
involves calculations at few integrators only.

Discrete–time algorithms can also exploit sparsity properties. However,
these techniques require specific sparse matrix algorithms to do so. In the
QSS method, the exploitation of sparsity is an intrinsic property.

11.8 Summary

In this chapter, we studied the basic principles of discrete event simulation
under the DEVS formalism and their applications to continuous systems
simulation.

We introduced the concept of state variable quantization and, based on
this concept, we showed how to build a DEVS model that exactly rep-
resents the dynamics of general time–invariant continuous systems with
quantization in their state variables. We saw that the use of simple memo-
ryless quantization can produce illegitimacy in the DEVS model. We then
demonstrated that the use of hysteretic quantization solves this problem.
Making use of these techniques, we introduced the QSS method that allows
the simulation of general time–invariant continuous system.

In the next chapter, we shall show and discuss the main theoretical prop-
erties and practical applications of the QSS method and its extensions. For
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now, it suffices to mention that the DSS method and its extension provide
efficient simulations of discontinuous systems and sparse problems, and
that these techniques are of particular interest in the context of real–time
simulation.

We might mention further that quantization–based methods are not the
only possible discrete event approaches to continuous system simulation. A
different idea is based on the event representation of trajectories and the
definition of GDEVS [11.3]. However, this solution–based approximation
requires the knowledge of the continuous system response to some particu-
lar input trajectories, which is not available in most cases. For this reason,
GDEVS does not constitute a general continuous simulation method.

For this reason, we shall not introduce GDEVS in this book. Yet, it
should be acknowledged that some of the ideas behind GDEVS were used
in the design of the second–order accurate QSS2 method that shall be
introduced in the next chapter.

Finally, the reader might notice that this chapter does not offer a broad
basis of references and bibliographic pointers. The reason for this is simply
that discrete event simulation of continuous systems is a fairly recently de-
veloped topic. In fact, the first references that we know of are from the late
nineties. This implies that these methods are not yet completely developed
and optimized, which makes them a fertile field for research.
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11.11 Homework Problems

[H11.1] Achilles and the Tortoise

Consider the second order system:

ẋa1 = −0.5 · xa1 + 1.5 · xa2

ẋa2 = −xa1

(H11.1a)

Apply the memoryless quantization function:

qi = 2 · floor(
xi − 1

2
) + 1 (H11.1b)

to both state variables, and study the solutions of the quantized system:

ẋ1 = −0.5 · q1 + 1.5 · q2

ẋ2 = −q1
(H11.1c)

from the initial condition xa1 = 0, xa2 = 2.

(a). Show that the simulation time cannot advance more than 5 seconds.

(b). Draw the state–space trajectory x1(t) vs. x2(t).

[H11.2] DEVS Behavior

Using the DEVS model M2, repeat the simulation by hand that was per-
formed with model M1 on page 527. Use the same input trajectory and
compare the evolution obtained with the evolution of M1.

[H11.3] DEVS Demultiplexer

The use of ports in DEVS gives rise to a difficulty. After an internal transi-
tion took place, a model with ports produces an event that carries a value
at one specific output port. This is a limitation, because it is not difficult
to imagine a situation, in which the event value contains a vector, and each
component should be sent to a different sub–model.

This problem does not appear in the general definition of DEVS (coupling
without ports). However, even when using ports, the problem can be solved
with the addition of a DEVS model that demultiplexes events.

A DEVS demultiplexer receives input events carrying a vector value
through its input port, decomposes the vector into individual scalar values,
and sends those out immediately through different output ports.

Build a DEVS demultiplexer that receives events with values in R
k. After

receiving an event, the model should send k events through its k output
ports, carrying the corresponding scalar component values.
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[H11.4] Linear Static Function

Obtain a DEVS atomic model of a static function fi : R
n → R defined as

f(u0, u1, · · · , un−1) =
n−1∑
k=0

ak · uk (H11.4a)

where a0, · · · , an−1 are known constants.
Then, program the model in PowerDEVS so that the constants and the

number of inputs are parameters.
Hint: You will have to limit the number of inputs to a fixed number (10

for instance).

[H11.5] DEVS Delay Function

Consider a function that represents a fixed delay time T ,

f(u(t)) = u(t − T ) (H11.5a)

Consider the input u(t) to be piecewise constant, and obtain a DEVS model
of this function.

Create a PowerDEVS block of this function, where the delay time T is
a parameter.

Hint: Assume that the number of state changes in u(t) during a time
period of T is limited to a fixed number (1000 for instance).

[H11.6] Achilles and the Tortoise Revisited

Modify the PowerDEVS atomic model NHINTEGRATOR of page 537, so
that the quantizer satisfies Eq.(H11.1b). Then, use this new atomic model,
and build the block diagram corresponding to Eq.(H11.1a). Verify by sim-
ulation the prediction made in Hw.[H11.1].

We suggest using a final simulation time such as 4.999 for example.

[H11.7] Varying Quantum and Hysteresis

Obtain the exact solution of the system of Eq.(11.11), and then repeat the
QSS simulation using the following quantization and hysteresis:

(a). ΔQ1 = ΔQ2 = ε = 0.01

(b). ΔQ1 = Δq2 = ε = 0.05

(c). ΔQ1 = Δq2 = ε = 0.1

(d). ΔQ1 = ΔQ2 = ε = 1

Compare the results, and use them to hypothesize about the effects of
the quantization and hysteresis on error and stability.
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11.12 Projects

[P11.1] Grouping Models in the QSS Method

The division between quantized integrators and static functions in build-
ing the coupled DEVS model that implements the QSS method simplifies
considerably the atomic models.

However, this division is not necessary. Indeed, we already mentioned
that DEVS is closed under coupling, and therefore, it must be possible
to define a unique atomic DEVS model that simulates the entire system.
In this way, the number of events is reduced (we do not have to transmit
events between components), and the computational efficiency is improved.

Of course, finding this atomic DEVS model may be quite difficult, and
even if we find it, we might lose the possibility of implementing the simu-
lation in a parallel fashion.

An intermediate solution for the QSS method, that probably represents
the best compromise, consists in grouping each quantized integrator with
the static function that calculates its derivative. In this way, the number
of events is reduced to less than the one half.

Using this idea, propose an atomic DEVS model that represents simulta-
neously a static function and a quantized integrator. Program that model
in PowerDEVS, and couple two of these models to simulate the system of
Eq.(11.11).

Compare the total number of internal and external transitions performed
by this coupled DEVS model with that obtained by simulating the model
composed of separate quantized integrators and static functions. Compare
also the execution time of the two simulations.

Repeat the experiment with other models, and try to determine, under
which conditions the grouping of models yields noticeable advantages.

Conclude on the convenience of using grouped models, taking into ac-
count the trade–off between simplicity and execution time.

[P11.2] DEVS and Multi–Rate Integration

Build a PowerDEVS model of a forward Euler integrator, i.e., a model
that receives input events with scalar values fk and produces scalar output
values:

xk+1 = xk + h · fk (P11.2a)

where the step–size h is a parameter.
Invoke that model multiple times together with the static function model

to simulate some higher–order differential equation models using the FE
method in PowerDEVS.

Then, using different values of h for different integrators, perform some
multi–rate integration experiments.



554 Chapter 11. Discrete Event Simulation

We suggest that you reproduce the example of Section 10.5, given by
Eq.(10.10).

Study the possibility of building integrators corresponding to higher–
order algorithms (RK, AB, etc.).

Conclude about the advantages and disadvantages of using DEVS in the
context of discrete–time integration algorithms.




