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ABSTRACT

During the more than fifty years that Monte Carlo simulation
experiments have been performed on digital computers, a
wide variety of myths and common errors have evolved.
We discuss some of them, with a focus on probabilistic and
statistical issues.

1 INTRODUCTION

Of the many meanings and purposes of simulation, we
consider only that of the 1940’s Manhattan Project: on
a digital computer, perform a sampling experiment on a
given model with the purpose of obtaining a statistical point
estimate of a performance measure whose value is unknown.
We refer to such experiments as Monte Carlo Simulation
and include dynamic (in time) models as well as static.

We discuss various myths and common errors asso-
ciated with Monte Carlo simulation experiments. Myths
cause needless extra effort or expense; errors cause need-
less degradation in the distribution of θ̂ , typically measured
with bias, standard deviation, or root mean squared error.
Some are fact; many are opinion. Some are well known;
many are little known, at least among the general prac-
titioner community. No references are given because the
best, or even a good, reference for each myth and error
often is not obvious or sometimes is too embarrassing.

The discussion begins with a world view in Section 1.1
and a list of error sources in Section 1.2. Specific myths and
errors follow in Section 2. Due to a page limit, discussion
of each myth and error is, with only a few exceptions,
restricted to a single paragraph.

1.1 A World View

Our discussion uses a world view, some vocabulary, and
(just a bit of) notation that evolved from Barry Nelson’s
Ph.D. dissertation in the early 1980s. Let θ denote the
performance measure’s unknown value and let θ̂ denote
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the point estimator of θ ; in general both are vectors, with
each component corresponding to an aspect of performance
deemed interesting by the simulation practitioner.

The experiment can be illustrated as

G → U → X → Y → θ̂ .

Each of the four arrows is a deterministic function, with
the randomness generator G used to create a set of random
numbers U , which is used to generate a set of input data X ,
which is used to compute a set of output data Y , which is
used to compute the point estimator θ̂ . With few exceptions
in practice, G is a pseudorandom-number generator with
associated seed value(s) and U contains random variables
with values between zero and one that are assumed to be
uniformly and independently distributed. Neither G nor
U contain information about the model; many simulation
languages, for example, have a default choice of random-
number generator that can be used for all applications.

The model, which is given, is composed of two parts.
The input model, corresponding to the arrow between U
and X , is the given probability model for the (possibly
dependent) random variables in X ; observed values of the
input data are referred to as the random variates. The logic
model, corresponding to the arrow between X and Y , is the
given relationship between the input data and the output data.
The output data in Y are from an unknown probability model
for which the unknown performance measure θ is a property.
Typically the output data are identically distributed; often
the output data are not independent.

In what sense is Y ’s probability model, and in turn
θ , unknown? Although the input-model and logic-model
functions are given, the transformation from random num-
bers to input data to output data can be so complicated that
the probability model of the output data is unknown in the
sense that it cannot be determined easily. In general, there
is no reason to expect that there is an easier way to express
the output-data probability model than to state the input
model and the logic model. Therefore, as in inferential
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statistics in general, the performance measure θ is used to
summarize the output-data probability model.

Simulation and experimentation that do not fit into
this world view lie outside the boundaries of this paper.
In particular, we don’t consider other important types of
simulation, such as training simulators, virtual reality, or
numerical solution of differential equations, which undoubt-
edly have their own myths and common errors. We also
don’t include experimentation in general, although some
of our comments apply to inferential-statistics experiments
with real-world (that is, not computer generated) data.

Why discuss the world view of simulation experiments
in a paper about myth and errors? First, of course, is
to introduce some notation and terminology that simplify
the discussion of specific myths and common errors below.
More generally, though, many of the errors and some of the
misperceptions underlying myths are avoided when practi-
tioners have a clear world view in mind as they perform
simulation experiments.

1.2 Sources of Analysis Error

Suppose that a practitioner has a specified a model (that
is, both an input model and a logic model) and therefore a
performance measure θ whose value is to be estimated via a
simulation experiment. This is a big supposition, of course,
but one that underlies all of probability modeling. If the
given model does not correspond well to the real world, then
the value of θ will not have a useful real-world interpretation.
Some modeling error is unavoidable for complex problems,
whether performed analytically, numerically, or via Monte
Carlo experimentation.

(Aside. All three are analysis methods. There is no
such thing as a “simulation model”. Any probability model
can be analyzed in any of the three ways, or in a com-
bination of the three ways, although certainly sometimes
the practitioner knows that Monte Carlo simulation will
be the analysis method. When the model is specified us-
ing software designed for simulation analysis, the phrase
“simulation model” becomes natural, even if imprecise.)

Other than modeling error, all error is analysis error,
the difference between θ and the point estimator θ̂ (again,
regardless of the method of analysis). While abstracting a
model from the real world is very much an art, with many
ways to err as well as to be correct, analysis of the model
is more of a science, and therefore easier, both to teach
and to do. Analysis is also easier because the degree of
success is so easily measured by θ − θ̂ . Finally, analysis
is easier because there are only five sources of error. We
briefly discuss each source.

1. Coding error. The code wrong, in commercial
software or the practitioner’s specification of the
model. Sometimes called verification error (anal-
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ogous to modeling error being called validation
error).

2. Numerical error. Computer arithmetic is not real-
number arithmetic; computers can store only a
finite set of numbers. Examples include numbers
close to zero being denser than numbers close to
one, floating-point comparisons being suspect be-
cause of rounding, and combinatorial calculations
overflowing.

3. Random-number error. Pseudorandom numbers
are not truly random numbers. As computers
become faster, sample sizes become larger, and
sensitivity to random-number error increases.

4. Random-variate error. Methods to generate random
variates are sometimes approximations. For exam-
ple, the reasonably good standard normal inverse
transformation x = (u0.135 − (1 − u)0.135)/0.1975
truncates at about five standard deviations from the
mean.

5. Sampling error. Monte Carlo simulation analy-
sis is fundamentally a statistical-inference method;
therefore, sampling error is unavoidable. Sampling
error is typically measured by standard error, the
standard deviation of the point estimator, which is
often inversely proportional to the square root of
the sample size.

In addition to modeling error and these five kinds of
analysis error, there are many possible practical implemen-
tation errors (such as failure to involve decision makers,
inadequate documentation, and budget variances). These
are not errors of experimentation, however, so we do not
discuss them here.

2 MYTHS AND COMMON ERRORS

In the next ten subsections, we discuss various myths and
common errors. Inclusion is based on the author’s experi-
ence in teaching, research, and consulting; others certainly
have their own favorites. Except for the careful choice of
subsection titles, the organization into ten subsections is
arbitrary.

2.1 Simulation as a Last Resort

Maybe the greatest myth about Monte Carlo simulation,
perpetuated even within some textbooks, is that simulation
is a method of last resort. The argument is that simula-
tion requires extensive effort and provides minimal insight.
Certainly examples of needless, or needlessly detailed, sim-
ulation experiments are easy to find; a back-of-the-envelope
calculation often can provide substantial insight with little
effort. A well-trained probabilist with a complex, but nicely
structured, model is a wonder to behold.
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Many practitioners’ backgrounds and many models’
structures, however, do not lend themselves to any analysis
other than Monte Carlo experimentation. In addition, the
availability of easy-to-use modeling software with automatic
animation of Monte Carlo output data dramatically changes
the effort/insight tradeoff. Further, many well-trained prob-
abilists first simulate, at least mentally, a problem to ensure
that the problem is well defined. Monte Carlo simulation is
also useful to a well-trained probabilist as a quick method
to disprove a conjecture or to verify complicated analyses;
the simulation process forces attention to model details that
can be missed with pencil and paper.

2.2 Input Modeling

Common errors abound in input modeling, the process
of determining the probability model for the input data.
The input model is based on “what-if” conjectures, expert
opinions, or real-world data.

Maybe the most common error is to ignore the physics
of the system to be modeled. Modeling a service time with
a normal distribution, for example, ignores the physical fact
that a service time cannot be negative. Although the modeler
might rationalize that zero is many standard deviations below
the mean, later experimentation might use a different normal
distribution for which the probability of being less than zero
is non-negligible.

A second error is to ignore statistical dependencies,
either within a random vector or through time. Most com-
mercial simulation software provides no support to a prac-
titioner who wishes to include dependence within an input
model. Assuming that processing times are independent,
both at different servers for the same part or at the same
server for different parts, is common; more reasonable might
be a random vector in the former case and a time series in
the latter case.

A third error is to use only classical distributions,
those named functional forms that are typically included in
distribution-fitting software. The problem is that many of
these distribution families provide very similar probability
models, but almost all have unimodal or U-shaped den-
sity functions. An application requiring multiple modes re-
quires a mixture of such distributions, but little commercial-
software support exists to support mixture models.

A fourth error is rejecting an adequate model because it
fails a lack-of-fit test. In a world with some huge real-world
data sets, the power of such tests is quite high. Similarly,
small data sets lead to low power, but failure to reject does
not imply that the input model is adequate. Much better to
check visual fit and conformance with physical properties.
We elaborate on the shortcomings of hypothesis testing in
Section 2.6.

A myth is that maximum-likelihood estimation (MLE)
should be used to fit distributions to data. The myth arises
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from MLE’s wonderful limiting properties. For huge data
sets, where the limiting properties are relevant, the com-
putational hassles of MLE estimation can be substantial,
including both large computation time and numerical prob-
lems. Often method-of-moments estimators, for example,
are easier to compute with only minimal, if any, loss of
statistical information. Also arguing against MLE is that it
requires the user to choose a family of distributions before
fitting begins; the optimal limiting properties assume that
the choice is correct.

2.3 Methods for Random Variates

Random-variate generation is the conversion of U(0,1) ran-
dom numbers into observations from the input model. Most
classical distribution families have several fast, exact meth-
ods, many of which can be found on the internet as public-
domain algorithms. There are four fundamental ideas in
random-variate generation: the inverse cumulative distribu-
tion function, acceptance-rejection, composition, and special
properties.

The most-common error in commercial simulation soft-
ware is the failure to use the inverse transformation. Despite
providing multiple random-number streams, non-inverse
routines continue to be used. Although non-inverse rou-
tines are sometimes faster and easier to code than numerical
inverse routines, their use destroys the variance-reduction
purpose of the multiple random-number streams. Although
common random numbers will work when distributions are
unchanged, other correlation-induction techniques, such as
antithetic variates and external control variates, will not.

A myth is that the alias method is a particularly good
method for generating discrete random variables when the
number of positive-probability values is finite, say k. The
alias method, which provides a random variate with one
U(0,1) random number and two “if” statements, is indeed fast
and the idea (an application of composition) is creative. The
set-up, unfortunately, is not simple, involving identifying
k − 1 two-point distributions. Simpler, requiring about the
same memory, and almost as fast is using index tables to
implement the inverse transformation.

2.4 U(0,1) Random Numbers

The discussion in this subsection assumes the usual sit-
uation: Pseudo-random number generators implementing
linear-congruential logic in positive integer (or equivalent)
arithmetic, converting to the U(0,1) interval by dividing by
the largest relevant integer.

The leading error is probably incorrect implementation.
Various computer-dependent numerical problems can occur,
with a leading problem being a compiler that defines an
integer with too-few bits.
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A second error is choosing a bad generator. The most-
famous example is RANDU, Fortran code distributed for use
with IBM 360 computers in the IBM Scientific Subroutine
Package. Because RANDU, like many generators, is only
a few lines of code, its half-life is long. A recurring bad-
generator idea involves implementations that are based on
floating-point logic, sometimes with references to chaotic
behavior; floating-point logic is computer dependent and
chaotic behavior doesn’t imply the desirable properties of
a random-number generator.

A myth is that statistical analysis is inappropriate for
simulation output data because there is nothing random in a
Monte Carlo simulation experiment; digital computers are
deterministic. This reasoning is false, however, because
there is indeed a truly random component. The choice of
random-number generator and the choice of initial seed(s)
is a decision made by humans. This choice is made without
regard to the model to be analyzed (although the choice
might be a default). Therefore, although all later logic is
indeed deterministic, the output data are the result of true
randomness.

A second myth is that the initial integer, the random-
number seed, should be odd. The origin of the myth is that
one kind of linear-congruential generator, now little used,
partitions the integers into four equal-size sets, two of odd
integers and two of even integers. One of the two sets of
even integers contains zero, the only value that causes the
generator to degenerate. Choosing an odd integer ensures
that such a generator does not degenerate. Unless using
such a generator, even seeds are fine.

A third myth is that a separate stream of random numbers
should be used for each “kind” of random process. For
example, arrivals would use stream 1 and service times
at server i would use stream i + 1. Commercial software
commonly provides multiple streams, but the only purpose of
multiple streams is to support correlation-induction schemes
(e.g., common random numbers, antithetic variates, and
external control variates) for reducing the variance of the
point estimator. The myth is that separate streams are needed
to provide independence between random variates. If the
random-number generator is good, however, independence
occurs automatically, using only one stream. In fact, using
multiple streams raises the (small) concern of using the
same random number for two different purposes. Using one
stream is best unless variance-reduction is to be attempted.

A third myth is that one should search for a good
seed. This myth borders on being an error, in that if one
somehow defines and finds a favorite seed, a source of true
randomness disappears. At worst, the definition of “good”
could be used to obtain a desired bias in the point estimator.
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2.5 Logic Modeling

The single dominate error in logic modeling is excessive
detail. With the impressive success of commercial soft-
ware to simplify the process of expressing the logic model,
and with animation increasingly used to “sell” the model,
the temptation to include visible but unimportant details
mounts. Sometimes the inclusion of such details results
from poorly defined experiment objectives. Sometimes the
model is written to be ready for unspecified future use.
The tendency to include logic-model detail provides an in-
teresting comparison to the tendency to omit details (e.g.,
dependence, time non-homogeneity) in input models.

2.6 Analysis of Output Data

Recall that the purpose of Monte Carlo simulation, by def-
inition, is to estimate the value of a performance measure
θ , which is composed of properties (e.g., mean, standard
deviation, quantile, or correlation) of the output data’s un-
known distribution. We assume that the output data, denoted
here by Y1, Y2, . . . , Yn , are identically distributed but not
necessarily independent. For simplicity we assume that the
sample size n is a constant (although in many simulation
experiments it is a random variable.)

Analysis of the output data comprises two activities.
First, point estimation is based on the function of the output
data that provides the estimator θ̂ . Second, sampling-error
estimation is based on the function of the output data that
provides the estimator of the quality of θ̂ . Sampling error
is often measured by the standard error, the standard de-
viation of θ̂ , or its square, var(θ̂ ). The standard error is
reported directly or used to compute other measures, such
as confidence intervals.

Under this definition of output analysis, in which the
output data are assumed to be identically distributed, warm-
ing up a steady-state simulation by discarding initial data
is not part of output analysis. Because of this distinction,
which is only a matter of semantics, we discuss the initial-
transient problem in the subsections “Ill-Posed Problems”
and “New Experiment”.

A common myth is that the point estimator should
depend upon the dependencies among the output data. In
fact, such dependencies should be ignored. Whatever point
estimator is appropriate for independent and identically
distributed (iid) data should be used for simulation output
data. For example, a probability should be estimated by
the fraction of times the event occurs, a mean should be
estimated by the sample average, and a variance should be
estimated by a sample variance.

An associated common error is to assume that the
quality of the point estimator does not depend upon the
dependencies among the output data. The standard error
of θ̂ can differ by orders of magnitude depending upon
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the dependencies, which are typically measured by the
correlations corr(Yi , Y j ). Substantial research is devoted to
estimating the standard error for steady-state output data,
especially when θ is a mean. Assuming that the output data
are independent is a serious error, because correlations are
often positive, which leads to underestimating the standard
error, which leads the practitioner to conclude that the point
estimator is more precise than it is.

A second, and maybe more-common, error is to ignore
sampling error. Here we refer to the practitioner who
blindly assumes that essentially θ = θ̂ . (A practitioner
who knows that the sampling error is negligible or knows
the approximate value of the standard error from similar
experiments is not ignoring standard error.)

A third error is to use bootstrapping, jackknifing, and
other computationally intensive methods to estimate the stan-
dard error of θ̂ for simulation output data. These methods
are fine for real-world data, where the budget for collecting
additional data is separate from the computational budget.
In simulation experiments, however, computation spent es-
timating standard error could be spent increasing the sample
size, and the thereby decreasing the standard error. Batching
provides a default O(n) standard-error estimation method.

A fourth error is to estimate standard-error with a batch-
ing method with very few or very many degrees of free-
dom. Very few degrees of freedom correspond to a large
standard-error-estimator variance; in many contexts high
variance corresponds to low bias, but here high variance
causes negative bias (because of the square-root required to
convert the variance estimate to a standard-error estimate).
Very many degrees of freedom corresponds to small vari-
ance, but at a cost of bias arising from violating analysis
assumptions.

A myth is that batches need to be (essentially) inde-
pendent to obtain a good standard-error estimator. In fact,
a class of estimators with good statistical properties uses
overlapping batches, with adjacent batch statistics asymp-
totically having correlation one. That independence is not
needed follows because variance estimators are averages (of
squared differences), averages are sums, and the expected
value of a sum is the sum of expected values.

A fifth error is to estimate θ when its value is infinity.
The error arises out of a fundamental weakness of Monte
Carlo simulation: it provides a finite estimate regardless
of whether θ is finite. A classic example is the gambling
game underlying the St. Petersburg Paradox. Specifically,
I will pay you 2X dollars, where X is the number of coin
flips until the coin lands with head up. (The paradox is that
although the minimum payoff is 2 dollars and the expected
value is infinite, few people will pay more than 5 dollars to
play.) Relevant to us here is that Monte Carlo simulation
is unable to tell a practitioner that θ = ∞.

A sixth, similar, error is to analyze output data when
its value is undefined. The distribution of the ratio of two
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independent standard normal random variables is Cauchy,
which is symmetric about zero with heavy tails. Although
the mean is undefined, a Monte Carlo simulation experiment
will provide a finite answer, except in the unlikely case that
the denominator is computationally zero for one or more
trials. Even when stated as the ratio of two normal random
variables, the practitioner can be mislead. More subtle is
the same problem when posed as a spinning radar whose
expected intercept point is to be estimated.

A seventh, similar, error is to analyze output data as if
they are identically distributed when they are not. A classic
example is a non-stable queueing system, with arrivals
overwhelming service capacity, for which no steady state
exists and queues grow without bound. In an interesting
example, a Ph.D. student estimated the steady-state effect
of having workers move tools to desired locations whenever
the system was stopped due to breakdown. Careful attention
was paid to the experiment’s design and deletion of initial
data. The Monte Carlo output data indicated that moving
tools improved performance. In fact, there was no steady-
state improvement, because the system was an irreducible
Markov process and therefore steady-state behavior was
independent of the initial state. The correct conclusion was
that moving the tools improved system performance for a
long time, and therefore was worthwhile, despite the effect
not lasting forever.

Hypothesis testing—hoping to reject a null hypothe-
sis in favor of an alternative hypothesis—is considered by
many people to be a fundamental topic for analyzing simu-
lation output data. We provide five reasons why hypothesis
testing is, with few exceptions, inappropriate for analyzing
simulation output data.

Reason 1: Confusion between statistical significance
and practical significance. The simulation experiment can
produce statistically significant conclusions because a large
sample size n, and therefore large power, is available by
simply running the computer longer. Rejecting a null hy-
pothesis with a p value close to zero or one is not evidence
that the null hypothesis is far from false. Rather, it is evi-
dence that the computer was run long enough to conclude
with substantial confidence that the null hypothesis is not
true.

Reason 2: The simple null hypothesis is known to be
false before the experiment is run. In medical experimen-
tation, for example, it is possible that a novel treatment and
a placebo treatment have the same effect, which would be
the null hypothesis; the mysteries inside the human body
are not well understood. In simulation experimentation the
practitioner has built the model; there are no mysteries in-
side the two systems being compared. If the null hypothesis
is known to be false before analyzing the data, then there is
not need to ask the data for help in concluding whether the
null hypothesis is false. Most of ANOVA is inappropriate
for simulation analysis.
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Reason 3: The choice of α, the probability of rejecting
the null hypothesis given the that the null hypothesis is true,
is usually arbitrary. But if α is arbitrary, the conclusion is
arbitrary. This error, or course, applies to most contexts,
not only to simulation analysis.

Reason 4: The tendency to interpret the p value as the
probability that the null hypothesis is true. In fact, the p
value is the probability of no event. First, p is a random
variable, so at best it only could estimate the probability of
an event. Second, if indeed the null hypothesis is true, p
has a U(0, 1) distribution, so it would be a poor estimator.

Reason 5: Cascading tests of hypotheses. For example,
failing to reject normality the practitioner tests for indepen-
dence with a test that assumes normality; failing to reject
independence, the practitioner tests for equality of means
with a test that assumes normality and independence. Such
procedures are frail structures, as is obvious by their depen-
dence upon arbitrary choices of α and n. Whether the next
step in the cascade is appropriate depends upon the purpose
of the next step, yet the previous step’s logic (typically) does
not consider the logic of the next step. This error maybe is
better categorized as a myth because it is widespread and
because there is little real-world evidence that the severity
of the error is great. Because simulation experiments often
have large sample sizes, the more common error is proba-
bly too much power forcing a practitioner to conclude that
continuing down the cascade is inappropriate.

2.7 Tactical Issues

An issue is tactical if it concerns how to exercise the model
to obtain the output data. We focus on the sample-size
decision.

A myth is that the practitioner needs a faster computer.
Point-estimator standard error is, with only a few exceptions,
O(n−1/2). Therefore, requesting one additional significant
digit in θ̂ requires increasing the sample size by a factor of
100. A computer that is faster by a factor of ten accomplishes
little.

An error is to seek a point-estimator standard error
that is far below the modeling error. As sample size goes
to infinity the standard error goes to zero, but analysis
precision that exceeds modeling precision is wasted, and
maybe misleading, effort. Cutting the sample size by a
factor of ten is often more appropriate than asking for a
faster computer.

A second error is to seek point-estimator standard error
smaller than needed for the purpose of the experiment. For
example, thesis students regularly run week-long simula-
tion experiments using all available computing, despite the
purpose of simply identifying the best of a small set.

A second myth is that sample size is related to the
real-world system’s expected lifetime. For example, a prac-
titioner might object to a steady-state fifty-year observation
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of a semiconductor fab. Such an objection is valid, of
course, if a steady-state analysis is inappropriate. If, how-
ever, the definition of θ is based on steady-state behavior
then running for fifty (or fifty thousand) years is valid.

2.8 Ill-Posed Research Problems

Research in simulation methodology results in underlying
theory and methods, typically algorithms that solve a com-
monly encountered problem. We discuss here some ill-posed
problems.

First, the initial-transient problem is well known, funda-
mental to estimating steady-state performance. Because the
model’s initial state cannot be chosen from the steady-state
distribution, Y1, Y2, . . . , Yd∗ are not from the steady-state
distribution; in many models the value of d∗ must be quite
large to ensure that the data are, practically, steady state.
The issue is that a point estimator based on initial-transient
data will be biased. The classic solution is to warm up
the simulation experiment by discarding some initial data
Y1, . . . , Yd . The ill-posed problem is to determine a good
value of d .

The initial-transient problem is ill posed because almost
without exception authors providing methods for determin-
ing d do not state the nature of a good solution. The problem
revolves around bias in the point estimator, but choosing
d to minimize bias would set d = n − 1 if θ is a mean.
A reasonable objective would be to minimize the mean
squared error (mse) of the point estimator. No method has
been proposed to minimize mse, probably because estimat-
ing bias is difficult if not impossible. Because the problem
is ill posed, algorithmic methods remain heuristic, continue
to be produced, and continue (often) to fail.

Second, a confidence interval is the goal set by many re-
searchers in estimating sampling error. Confidence intervals
are widely studied in first-year probability and statistics, so
the goal seems reasonable. Researchers regularly suggest
algorithms for computing confidence intervals.

The confidence-interval problem is ill posed because
with only few exceptions authors providing methods for
computing confidence intervals do not pursue an objective.
Nominally, the stated—and defining— objective is that the
interval should cover θ with confidence 1 − α, where α is
the probability that θ is not included. In batching methods,
blindingly pursuing this objective leads to one degree of
freedom, with corresponding confidence-intervals lengths
with large mean and variance. Procedures with such long,
unstable intervals are generally considered to be bad, despite
their good coverage probability. Sometimes a researcher
will claim that a procedure works well because the coverage
probability is greater than 1 − α, but if greater coverage
probability is the goal and interval length is unimportant,
then the best interval is (−∞,∞), a trivial unacceptable
solution.
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Fundamentally, developing confidence-interval proce-
dures is a multiple-objective problem. Procedures are de-
veloped and the objectives estimated for various scenarios,
with the result usually being ambiguous because of the mul-
tiple objectives. A well-posed formulation might involve
determining an efficient frontier of solutions.

For several reasons, there is little need to pose the
confidence-interval problem well. First, as with hypothesis
testing, the choice of α is usually arbitrary. Second, there is
insufficient room for commercial software to report lower
bound, upper bound, and point estimator for each θ , because
there are often tens or hundreds of performance measures.
Third, practitioners (in general, not just simulation) widely
misunderstand the meaning of a confidence interval, wanting
to conclude that the probability that θ lies within the observed
interval is 1 − α.

An alternative to the ill-posed confidence-interval prob-
lem is to pose the problem as minimizing the mse of the
estimated standard error. Such a problem has no magic
parameter such as α, requires little room to report, and is
difficult to misunderstand. (Some practitioners might not
understand the estimated standard error, but they will not
misunderstand it.)

2.9 Optimization

Simulation optimization is searching for an optimal design
given only the ability to perform a simulation experiment at
any design point, a performance measure to optimize, and a
feasible region, which might involve the design parameters
or other performance measures. Because the simulation at
any design point has a finite sample size, the algorithm has
available only point estimates of the various performance
measures, as well as associated standard errors. Prospective
algorithms mimic deterministic algorithms by examining
one design point at a time; retrospective algorithms search
many design points using common random numbers before
moving to new random numbers.

An error, common to much published research, is to
assume that “observation” is a well defined term. In simple
distribution-sampling experiments, the natural definition is
the vector of values returned from a single trial, for example
in a reliability simulation, a zero or one indicating whether
the system failed or worked. One could, of course, define
one observation to be the average of five, or ten, single-
trial observations. Similarly, in a steady-state simulation
experiment, an observation is completely arbitrary, possibly
corresponding to an hour, a shift, a day, a year, or a century.
Algorithm performance can differ dramatically based upon
the definition of “observation”.

A second error is to assume that the point estimator
should have the same standard error, or be based on the
same number of observations, throughout a prospective
algorithm’s progress through design points. A bit of thought
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shows that small sample sizes are appropriate when far from
the optimal solution, whereas large sample sizes are required
when near the optimal solution. Similarly, retrospective
algorithms should be based on monotonically increasing
sample sizes.

A myth is that a limit theorem (guaranteeing con-
vergence in some sense) implies good, or even adequate,
performance. Certainly having a limit theorem is better than
not having one, but sometimes ideas for algorithm improve-
ments are discarded because the resulting logic complication
would destroy the convergence proof.

The converse myth is that a method without a conver-
gence proof is not useful. Various versions of the Nelder-
Mead algorithm provide counter examples.

2.10 New Experiment

We take as the original experiment any experiment—
input model, logic model, sampling procedure, and point
estimator—that the practitioner creates to estimate a
performance-measure value θ . We take as the new exper-
iment any other experiment whose purpose is to estimate
θ ; any or all of the four experimental components might
differ from the original experiment.

The purpose of substituting a new experiment for the
original experiment is efficiency, which has three compo-
nents: (1) human effort, (2) computer effort, and (3) quality
of the point-estimator distribution. This substitution is usu-
ally referred to as variance-reduction (but there is no “V”
in the word “simulation”).

The first error, which is minor because it is only a
terminology issue, is confusion about which variance is
being reduced. The variance is that of (each component
of) the point estimator. For example, a variance of the
output-data distribution, which is a function of the input
and logic model, is a possible performance measure, not a
measure of experiment efficiency.

The second error is to think that variance reduction
has been achieved because the standard-error estimate from
the new experiment is smaller than that from the original
experiment. This error arises when the practitioner assumes
that the estimated standard error is essentially equal to the
true standard error.

The third error, the most important, is to mistakenly
substitute an experiment whose performance measure is
not θ . Such a substitution occurs, for example, when a
practitioner mistakenly changes the input model to use only
mean values; the new experiment then has a biased, zero-
variance point estimator.

The fourth error, also quite important, is the chance
that the new experiment is incorrect because of implemen-
tation error. Typically the new experiment is more complex
than the original experiment, which is usually based on
simply mimicking real-world behavior. For example, con-
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trol variates involve more-complicated point estimation and
stratified sampling involves more-complicated sampling.

A myth, widespread among thesis students but not
among real-world practitioners, is that a sophisticated ex-
periment is more desirable than a simple experiment. Re-
ducing point-estimator variance by increasing sample size
should be the first-thought strategy.
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