
12

Quantization–based Integration

Preview

This chapter focuses on the Quantized State Systems (QSS) method and its
extensions. After a brief explanation concerning the connections between
this discrete event method and perturbation theory, the main theoreti-
cal properties of the method, i.e., convergence, stability, and error control
properties, are presented.

The reader is then introduced to some practical aspects of the method
related to the choice of quantum and hysteresis, the incorporation of input
signals, as well as output interpolation.

In spite of the theoretical and practical advantages that the QSS method
offers, the method has a serious drawback, as it is only first–order accu-
rate. For this reason, a second–order accurate quantization–based method
is subsequently presented that conserves the main theoretical properties
that characterize the QSS method.

Further, we shall focus on the use of both quantization–based methods in
the simulation of DAEs and discontinuous systems, where we shall observe
some interesting advantages that these methods have over the classical
discrete–time methods.

Finally, and following the discussion of a real–time implementation of
these methods, some drawbacks and open problems of the proposed method-
ology shall be discussed with particular emphasis given to the simulation
of stiff system.

12.1 Introduction

In Chapter 2, we introduced two basic properties of numerical methods:
the approximation accuracy and the numerical stability. If we want to rely
on the simulation results generated by a method, we must know something
about these properties in the context of the application at hand.

The conventional tools for the analysis of numerical stability are based
on the discrete–time systems theory. The basic idea is to obtain the differ-
ence equations corresponding to a given method applied to a linear time–
invariant autonomous system, and then to relate the eigenvalues of the F–
matrix of the transformed discrete–time system to those of the A–matrix
of the original continuous–time system.

This technique, that we have applied throughout this book to the analysis

556 Chapter 12. Quantization–based Integration

of discrete–time methods, cannot be extended to the QSS method, because
the resulting simulation model is a discrete event system that does not
possess an F–matrix.

Since linear stability theory is such a convenient tool, we might be in-
clined to attempt tackling this problem by looking for a discrete event
systems theory that would support this kind of stability analysis. In fact,
there exists a nice mathematical theory based on the use of max–plus alge-
bra that permits expressing some discrete event systems through difference
equations in the context of that algebra [12.1]. This theory also arrives at
stability results based on the study of eigenvalues and is completely analo-
gous to the discrete–time systems theory. However, it can only be applied
to systems described by Petri nets, and unfortunately, the QSS method
produces DEVS models that do not have Petri net equivalents.

A different approach to studying the QSS dynamics might be to compare
directly the results obtained when simulating the original continuous–time
model of Eq.(11.8) with those obtained when simulating its QSS approxi-
mation of Eq.(11.9).

Let us rewrite these two representations using vector notation. The orig-
inal continuous system may be written as follows:

ẋa(t) = f(xa(t),u(t)) (12.1)

and the resulting quantized state system can be written as:

ẋ(t) = f(q(t),u(t)) (12.2)

where x(t) and q(t) are componentwise related by hysteretic quantization
functions.

Let us define Δx(t) = q(t) − x(t). Then, Eq.(12.2) can be rewritten as:

ẋ(t) = f(x(t) + Δx(t),u(t)) (12.3)

and now, the simulation model of Eq.(12.2) can be interpreted as a per-
turbed representation of the original system of Eq.(12.1).

Hysteretic quantization functions have a fundamental property. If two
variables qi(t) and xi(t) are related by a hysteretic quantization function,
such as that of Eq.(11.10), then:

Q0 < xi(t) < Qr ⇒ |qi(t) − xi(t)| ≤ max(ΔQ, ε) (12.4)

where ΔQ = max(Qj+1 − Qj), 0 ≤ j ≤ r − 1, is the largest quantum.
The property given by Eq.(12.4) implies that each component of the

perturbation Δx is bounded by the corresponding hysteresis width and
quantum size. Thus, the accuracy and stability analysis can be based on
the effects of a bounded perturbation.

In Chapter 2, we mentioned that there exists a theory that allows study-
ing the numerical stability of nonlinear systems. We shunned away from

12.1 Introduction 557

pursuing that theory any further, because the mathematical apparatus re-
quired to do so is quite formidable.

Unfortunately, we now have no choice but to go down that route, because
the QSS representation even of a linear system is in fact nonlinear. Luckily,
we shall see that many of the problems associated with general contractivity
theory disappear in the special case of a QSS, because we can reduce the
nonlinearity of the quantization to the special case of a linear perturbation,
and perturbation analysis can be applied even to nonlinear systems quite
easily. Furthermore, when the QSS method is applied to a linear system, it
will also be possible to establish a global error bound, and the problem of
approximation accuracy can then be dealt with not only locally, but even
globally.

Despite these advantages, a new problem appears in the QSS method.
Let us illustrate this problem by means of the following example. Consider
the first–order system:

ẋa(t) = −xa(t) + 9.5 (12.5)

with the initial condition xa(0) = 0.
The results of a simulation using the QSS method with a quantum of

ΔQ = 1 and a hysteresis width of ε = 1 are shown in Fig.12.1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
Solution of Eq.(12.5)

Time

x
a
(t

),
x
(t

)

Analytical

QSS

FIGURE 12.1. QSS simulation of Eq.(12.5).

Although the system of Eq.(12.5) is asymptotically stable, the QSS sim-

558 Chapter 12. Quantization–based Integration

ulation ends in a limit cycle. The equilibrium point x̄ = 9.5 is no longer
a stable equilibrium point in the resulting QSS, and we cannot claim that
stability, in the sense of Lyapunov, is conserved by the method.

However, the QSS solution never deviates far from the exact solution,
and it finishes with an oscillation around the equilibrium point. Taking
into account that our goal was to just simulate the system and obtain
some meaningful trajectories, this result is not bad.

The trajectory found by the QSS method is called ultimately bounded
[12.8]. In general, the quantization based methods cannot ensure stability in
accordance with the classical definition. Hence we shall talk, in the context
of QSS simulations, about stability in terms of ultimate boundedness of
the solutions obtained.

12.2 Convergence, Accuracy, and Stability in QSS

When a time–invariant system, such as that of Eq.(12.1), is simulated using
the QSS method, we obtain an exact simulation, ignoring the roundoff
problems, of the perturbed system of Eq.(12.3). Then, as it was mentioned
above, the theoretical properties can be studied based on the effects of
perturbation.

The first property proven in the context of the QSS method was that of
convergence [12.10]. The analysis shows that the solutions of Eq.(12.3) ap-
proach those of Eq.(12.1) when the largest quantum, ΔQ, and the hysteresis
width, ε, are chosen sufficiently small. The importance of this property lies
in the fact that an arbitrarily small simulation error can be achieved, when
a sufficiently small quantization is being used.

A sufficient condition that ensures that the trajectories of the system
of Eq.(12.3) converge to the trajectories of Eq.(12.1) is that the function
f(x(t),u(t)) is locally Lipschitz1. Hence the convergence of the QSS method
is a property satisfied by nonlinear systems in general.

Although convergence constitutes an important theoretical property, it
does not offer any quantitative information about the relationship between
the quantum and the error, and it does not establish any condition for the
stability domain.

The stability properties of the QSS method were studied in [12.10] by
finding a Lyapunov function for the perturbed system. The analysis shows
that, when the system of Eq.(12.1) has an asymptotically stable equilibrium
point, for any arbitrarily small region around that equilibrium point, a
quantization can be found, so that the solutions of Eq.(12.2) finish inside
that region. Moreover, an algorithm can be derived from this analysis that

1In a nutshell, this means that the function f must not escape to infinity within the
range of interest.

12.2 Convergence, Accuracy, and Stability in QSS 559

allows calculating the appropriate quantum.
A sufficient condition for ensuring stability is that the function f be

continuous and continuously differentiable. Hence the stability condition is
a bit stronger than the convergence condition.

Thus, the QSS method offers tools, that can be applied to nonlinear sys-
tems, for choosing a quantum that ensures that the steady–state simulation
error is smaller than a desired bound. Although this result represents an
important advantage over the classical discrete–time methods, where stabil-
ity is usually studied in the context of linear time–invariant (LTI) systems
only, the algorithm is quite involved and requires the use of a Lyapunov
function of Eq.(12.1) that cannot be easily derived in general cases. Thus,
the importance of this stability analysis is, as before, more of a theoretical
than a practical nature, and we shall refrain from delving into details about
it.

Like in discrete–time methods, the most interesting qualities of QSS come
from the analysis of its application to LTI systems. The main result of that
analysis, performed in [12.13], states that the error in the QSS simulation
of an asymptotically stable LTI system is always bounded. The error bound,
which can be calculated from the quantum and some geometrical properties
of the system, does not depend either on the initial condition or on the input
trajectory and remains constant during the simulation.

Before explaining this fundamental property in more detail, we shall need
to introduce some new notation, in order to be able to express the relation-
ships between quanta and error bounds in terms of compact formulae.

We shall use the symbol | · | to denote the componentwise module of
a vector or matrix. For instance, if G is a j × k matrix with complex
components g1,1, . . . , gj,k, then |G| is also a j × k matrix with the real
positive components |g1,1|, . . . , |gj,k|.

Similarly, we shall use the symbol “≤” to perform a componentwise com-
parison between real–valued vectors of equal length. Thus, the expression
x ≤ y states that x1 ≤ y1, . . . , xn ≤ yn.

With these definitions, let xa(t) be a solution of the LTI system:

ẋa(t) = A · xa(t) + B · u(t) (12.6)

Let x(t) be the solution, starting from the same initial condition, of its
associated QSS:

ẋ(t) = A · q(t) + B · u(t) (12.7)

which can be written as:

ẋ(t) = A · [x(t) + Δx(t)] + B · u(t) (12.8)

Let us define the error e(t) � x(t)−xa(t). By subtracting Eq.(12.6) eval-
uated at xa(t) from Eq.(12.8) evaluated at x(t), we find that e(t) satisfies
the equation:

560 Chapter 12. Quantization–based Integration

ė(t) = A · [e(t) + Δx(t)] (12.9)

with e(t0) = 0 since both trajectories, xa(t) and x(t), start out from iden-
tical initial conditions.

Let us start analyzing the simple scalar case:

ė(t) = a · [e(t) + Δx(t)] (12.10)

For reasons that the reader will soon understand, we shall assume that a,
e, and Δx belong to C. We shall furthermore request Re{a} to be negative.

We shall also ask that |Δx| ≤ w, with w being some positive constant.
e(t) can be written in polar notation as:

e(t) = ρ(t) · ejθ(t) (12.11)

where ρ(t) = |e(t)|.
Then, Eq.(12.10) becomes:

ρ̇(t) · ejθ(t) + ρ(t) · ejθ(t) · j · θ̇(t) = a · [ρ(t) · ejθ(t) + Δx(t)] (12.12)

or:

ρ̇(t) + ρ(t) · j · θ̇(t) = a · [ρ(t) + Δx(t) · e−jθ(t)] (12.13)

Let us take now only the real part of the last equation:

ρ̇(t) = Re{a} · ρ(t) + Re{a · Δx(t) · e−jθ(t)}
≤ Re{a} · ρ(t) + |a| · |Δx(t)|

≤ Re{a} ·
[
ρ(t) −

∣∣∣∣ a

Re{a}
∣∣∣∣ · w

]
(12.14)

Then, as Re{a} is negative and ρ(0) = 0, it will always be true that:

|e(t)| = ρ(t) ≤
∣∣∣∣ a

Re{a}
∣∣∣∣ · w (12.15)

since, when ρ reaches the upper limit, its derivative becomes negative (or
zero).

Before proceeding to the most general situation, we shall apply this last
result to the diagonal case. Let the A–matrix in Eq.(12.9) be a diagonal
matrix with complex diagonal elements ai,i with negative real parts. We
shall also assume that:

|Δx(t)| ≤ w (12.16)

Repeating the scalar analysis for each component of e(t), we find that:

12.2 Convergence, Accuracy, and Stability in QSS 561

|e| ≤ |Re{A}−1 · A| ·w (12.17)

Now, let us return once more to Eq.(12.9), this time assuming that the
A–matrix be Hurwitz and diagonalizable, i.e., that the original system is
asymptotically stable and can be decoupled.

Let us assume that the quantum and hysteresis were adjusted such that:

|Δx| = |q − x| ≤ ΔQ (12.18)

where each element of vector ΔQ contains the larger of the corresponding
quantum and hysteresis width.

Let Λ be a diagonal eigenvalue matrix of A, and let V be a corresponding
right eigenvector matrix. The matrix V is sometimes also referred to as a
right modal matrix. Then:

A = V · Λ · V−1 (12.19)

is the spectral decomposition of the A–matrix.
We introduce the variable transformation:

z(t) = V−1 · e(t) (12.20)

Using the new variable z, Eq.(12.9) can be rewritten as follows:

V · ż(t) = A · [V · z(t) + Δx(t)] (12.21)

and then:

ż(t) = V−1 · A · [V · z(t) + Δx(t)] (12.22)

= Λ · [z(t) + V−1 · Δx(t)] (12.23)

¿From Eq.(12.18), it results that:

|V−1 · Δx| ≤ |V−1| · ΔQ (12.24)

Taking into account that the Λ–matrix is diagonal, it turns out that
Eq.(12.23) is the diagonal case that we analyzed before, and consequently
from Eq.(12.17), it results that:

|z(t)| ≤ |Re{Λ}−1 · Λ| · |V−1| · ΔQ (12.25)

and therefore:

|e(t)| ≤ |V| · |z(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ (12.26)

Thus, we can conclude that:

562 Chapter 12. Quantization–based Integration

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ (12.27)

Inequality Eq.(12.27) has strong theoretical and practical implications.
It can be easily seen that the error bound is proportional to the quantum

and, for any quantum adopted, the error is always bounded.
It is also important to notice that the inequality of Eq.(12.27) is an

analytical expression for the global error bound. Discrete–time methods
lack similar formulae. The fact that Eq.(12.27) is independent of initial
conditions and input trajectories promises additional important theoretical
and practical advantages.

In some way, the QSS method offers an intrinsic error control without
requiring the use of adaptation rules. Indeed:

The QSS method is always stable without using implicit formu-
lae at all.

The importance of this statement cannot be stressed enough. It revolu-
tionizes the field of numerical ODE (and DAE) solution.

12.3 Choosing Quantum and Hysteresis Width

The QSS method requires the choice of an adequate quantum and hysteresis
width. Although we mentioned that the error is, at least for LTI systems,
always bounded, an appropriate quantization must be chosen in order to
obtain decent simulation results.

The inequality of Eq.(12.27) can be used for quantization design. Given
a desired error bound, it is not difficult to find an appropriate value of
ΔQ that satisfies that inequality. Let us illustrate this design in a simple
example. Consider the system:

ẋa1 = xa2

ẋa2 = −xa1 − xa2 + u(t) (12.28)

A set of matrices of eigenvalues and eigenvectors (calculated with MAT-
LAB) are:

Λ =
(−0.5 + 0.866j 0

0 −0.5 − 0.866j

)
and:

V =
(

0.6124 − 0.3536j 0.6124 + 0.3536j
0.7071j −0.7071j

)
Then:

T � |V| · |Re{Λ}−1 · Λ| · |V−1| =
(

2.3094 2.3094
2.3094 2.3094

)
(12.29)

12.3 Choosing Quantum and Hysteresis Width 563

Let us consider that the goal is to simulate Eq.(12.28) for an arbitrary
initial condition and input trajectory with an error less than or equal to
0.1 in each variable. Then, a quantum:

ΔQ =
(

0.05/2.3094
0.05/2.3094

)
=
(

0.0217
0.0217

)
(12.30)

is sufficiently small to ensure that the error cannot exceed the given bound.
Although the inequality of Eq.(12.27) can be used to compute an upper

bound for the error as a function of the quantum and the hysteresis width,
the measure will often turn out to be quite conservative.

In fact, using quantum and hysteresis width equal to 0.05 in each vari-
able of the system of Eq.(12.28) and applying u(t) = 1, we arrive at the
simulation results shown in Fig.11.15. The predicted error bound is 0.23094
in each variable. However, the maximum error obtained in that simulation
is considerably smaller than this bound.

Except in specific applications, where we would need to ensure a cer-
tain error bound, we do not want to calculate eigenvectors and eigenvalues
before performing the simulation. A practical rule to avoid this is to use
a quantum proportional to the estimated amplitude of each variable tra-
jectory (assuming that we know in advance the order of magnitude of the
values reached by each state variable).

The reader may have already noticed that, in all of the examples dis-
cussed so far, the hysteresis width was chosen to be equal to the quantum
size. However, we did not provide any rationale for that choice.

The problem of hysteresis width selection is discussed in [12.11]. The
conclusion is that it should be chosen equal to the quantum. The reason is
that, in this way, the presence of hysteresis does not modify the error bound
(cf. Eq.(12.4)), while the final oscillation frequency is being minimized.

The reduction of the oscillation frequency is due to the fact that the
minimum time between successive changes in a quantized variable qi is
proportional to the inverse of the hysteresis (assuming that the quantum is
greater or equal than the hysteresis width), as has been shown in [12.10].

Let us illustrate this idea with the simulation of the first–order system
of Eq.(12.5), using a quantum equal to 1 and different hysteresis values.

Figure 12.2 shows the simulation results with a hysteresis width of ε = 1,
ε = 0.6, and ε = 0.1, respectively. In all three cases, the maximum error is
bounded by the same value. In theory, the bound is equal to 1, but in the
simulations, we can observe that the maximum error is always 0.5.

However, the steady–state oscillation frequency increases as the hystere-
sis width becomes smaller. In fact, that frequency can be calculated as:

f =
1
2ε

Then, it is clear that by choosing the hysteresis width equal to the quan-
tum, the frequency is minimized without increasing the error. Reducing the

564 Chapter 12. Quantization–based Integration

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

Solutions of (12.5)

Time

φ
(t

),
x
(t

)

Analytical
ε = 1ε = 0.6

ε = 0.1

FIGURE 12.2. Simulation of Eq.(12.5) with different hysteresis values.

steady–state oscillation frequency reduces in the number of steps performed
by the algorithm, and consequently reduces the computational cost.

12.4 Input Signals in the QSS Method

In the previous chapter, we mentioned that the QSS method allows the
simulation of time–invariant systems with piecewise constant input signals.
However, we did not say how these signals can be incorporated into the
simulation model.

In the DEVS simulation model, each event represents a change in a
piecewise constant trajectory. Consequently, input trajectories can be in-
corporated as sequences of events.

Looking at the block diagram of Fig.11.12, the input signals u(t) seem to
come from the external world, and it is not clear, where the corresponding
sequences of events should be generated.

In the context of a DEVS simulation, all events must emanate from an
atomic DEVS model. Hence a new DEVS model class must be created that
generates those sequences of events. The input function models must then
be coupled with the rest of the system for the purpose of simulation.

Suppose that we have a piecewise constant input signal u(t) that assumes
the values v1, v2, . . . , vj , . . . at times t1, t2, . . . , tj , . . . , respectively. A

12.4 Input Signals in the QSS Method 565

DEVS model that produces events in accordance with this input signal can
be specified as follows:

M6 = (X, Y, S, δint, δext, λ, ta), where
X = ∅
Y = R × N

S = N × R
+
0

δint(s) = δint(j, σ) = (j + 1, tj+1 − tj)
λ(s) = λ(j, σ) = (vj , 0)
ta(s) = ta(j, σ) = σ

Notice that, in this model, the external transition function δext is not
defined, as it it will never be called, since the model is not designed to ever
receive input events.

A particular case of model M6 in PowerDEVS is the step function model
that we invoked from within the models of Fig.11.9 and Fig.11.14.

ATOMIC MODEL STEP1
State Variables and Parameters:

float sigma;
int j; //states
float y; //output
float T [3], v[3], inf ; //parameters

Init Function:
va list parameters;
va start(parameters, t);
inf = 1e10;
T [0] = 0;
T [1] = va arg(parameters, double);
T [2] = inf ;
v[0] = va arg(parameters, double);
v[1] = va arg(parameters, double);
sigma = 0;
j = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
sigma = T [j + 1] − T [j];
j = j + 1;

Output Function:
y = v[j];
return Event(&y,0);

The parameters defined in the graphical block of this DEVS model are

566 Chapter 12. Quantization–based Integration

the step time, the initial value of the output trajectory, and the final value
after the step.

An interesting advantage of the QSS method is that it deals with input
trajectory changes in an asynchronous way. The event indicating a change
in the signal is always processed at the correct instant of time, producing
instantaneous changes in the slopes of the state variable trajectories that
are directly affected.

This is an intrinsic characteristic of the method, and it is obtained with-
out modifying the DEVS models corresponding to the quantized integrators
and the static functions. In contrast, discrete–time methods require a spe-
cial treatment in order to perform a step at the exact moment when an
input change is supposed to occur. We shall revisit to this issue once more
later in this chapter, demonstrating the advantages of the QSS method in
the context of simulating discontinuous systems.

Up to this point, only piecewise constant input trajectories have been
considered. In most applications, the input signals take on more general
forms. However, these can be approximated by piecewise constant trajec-
tories with the addition of quantization functions, and thus, they can be
represented by DEVS models.

For example, the DEVS model M7, shown below, generates an event
trajectory that approximates a sine function with angular frequency ω and
amplitude A using a quantum Δu.

M7 = (X, Y, S, δint, δext, λ, ta), where
X = ∅
Y = R × N

S = R × R
+
0

δint(s) = δint(τ, σ) = (τ̃ , σ̃)
λ(s) = λ(τ, σ) = (A · sin(ωτ), 1)
ta(s) = ta(τ, σ) = σ

with:

σ̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin[sin(ωτ) + Δu/A]
ω − τ if (sin(ωτ) + Δu/A ≤ 1 ∧ cos(ωτ) > 0)

∨ sin(ωτ) − Δu < −1

π · sign(τ) − arcsin[sin(ωτ) − Δu/A]
ω − τ otherwise

and:

τ̃ =
{

τ + σ̃ if ω(τ + σ̃) < π

τ + σ̃ − 2π
ω otherwise

12.4 Input Signals in the QSS Method 567

The DEVS model M7 can be encoded in PowerDEVS as follows:

ATOMIC MODEL SINUS
State Variables and Parameters:

float tau, sigma; //states
float y; //output

float A, w, phi, du, pi; //parameters

Init Function:
va list parameters;
va start(parameters, t);
pi = 2 ∗ asin(1);
A = va arg(parameters, double);
w = va arg(parameters, double)∗2 ∗ pi;
phi = va arg(parameters, double);
du = va arg(parameters, double);
sigma = 0;
tau = phi/w;

Time Advance Function:
return sigma;

Internal Transition Function:
if (((sin(w ∗ tau) + du/A <= 1) && (cos(w ∗ tau) > 0)) || (sin(w ∗ tau) − du/A < −1)) {

sigma = asin(sin(w ∗ tau) + du/A)/w − tau;
}
else {

if (tau > 0) {
sigma = (pi − asin(sin(w ∗ tau) − du/A))/w − tau;

}
else {

sigma = (−pi − asin(sin(w ∗ tau) − du/A))/w − tau;
};

};
tau = tau + sigma;
if (tau ∗ w >= pi){tau = tau − 2 ∗ pi/w; };

Output Function:
y = A ∗ sin(w ∗ tau);;
return Event(&y,0);

The trajectory generated by this model with parameters A = 2.001,
ω = 0.5, and Δu = 0.2 is shown in Fig.12.3.

A piecewise constant trajectory could also be obtained using a constant
time step. However, the previously advocated approximation is better in
QSS, since the quantization in the values ensures that the distance between
the continuous signal an the piecewise constant signal is always less than
the quantum. This fact can be easily noticed in Fig.12.3. In contrast, the
maximum error would have depended on the relationship between the time
step and the signal frequency, had a constant time step been used.

The input signal quantization introduces a new error to the simulation.

568 Chapter 12. Quantization–based Integration

0 0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Quantized Sine

Time

si
n(

t)

FIGURE 12.3. Piecewise constant sine trajectory.

In the particular case of LTI systems, the presence of the input quantization
error transforms Eq.(12.27) into:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ

+|V| · |Re{Λ}−1 · V−1 · B| ·Δu (12.31)

where Δu is the vector with the quanta adopted in the input signals. This
formula can be derived following the approach developed in [12.18] (cf.
Hw.[H12.2]).

12.5 Startup and Output Interpolation

The QSS method startup consists in assigning appropriate initial conditions
to the atomic DEVS models that perform the simulation.

The quantized integrator state can be written as s = (x, dx, k, σ) (cf.
model M5 on page 543), where x is the state variable, dx is its derivative, k
is the index corresponding to the quantized variable qk, and σ is the time
advance.

It is clear that we must choose x = xi(t0) and k such that Qk ≤ xi(t0) ≤
Qk+1. Finally, appropriate values of dx and σ can be found from the cor-
responding state equation fi(q,u).

12.5 Startup and Output Interpolation 569

Yet, there is a much simpler solution. If we choose σ = 0, all quan-
tized integrators will perform internal transitions at the beginning of the
simulation and send their initial values to the static functions.

Then, the models associated with the static functions, fi, will calculate
their output values, producing output events instantaneously. These out-
put events will carry the values of the state derivatives. After that, the
quantized integrators will receive the correct values of dx, and they will
calculate the corresponding σ in the external transition.

However, this behavior will only be observed if the quantized integrators
receive the input events, arriving from the static functions, after they per-
formed their own internal transitions. The problem is that, after the first
quantized integrator performs its transition, not only the other quantized
integrators but also some static models will have their σ set equal to 0, be-
cause they undergo an external transition due to the quantized integrator
output event.

Thus, it is necessary to establish priorities between the components, in
order to ensure that, when some models schedule their next transition for
the same instant of time, the quantized integrators are those that perform
it first. This can be easily accomplished using the tie–breaking function
Select mentioned in Section 11.4.

These considerations also solve the problem of the initial conditions of
the static model. They can be arbitrarily chosen, since the static models
will receive input events arriving from the quantized integrators at the
beginning of the simulation, and then their external transition functions
will set the appropriate states.

Finally, the input signal generator models must start with their σ set
equal to 0, and the rest of the states must be chosen such that the first
output event corresponds to the initial value of the input signal.

In PowerDEVS, we treat these problems in the init function. The prior-
ities between subsystems can be easily chosen from the Edit menu in the
model editor.

Yet, there is another solution that avoids the need of priorities: We can
check the external transition function of the quantized integrators for the
condition σ = 0. If that condition is true, this means that an internal
transition is going to occur. Thus, we can just leave σ = 0 in that case,
and this solves the initialization problems without using priorities.

When it comes to output interpolation, we already know that the state
trajectories in QSS assume particular forms: They are piecewise linear and
continuous.

Hence if we know the values adopted by variable xi at all event times, we
can interpolate using straight–line segments, in order to obtain the exact
solution of Eq.(12.2). In fact, to do that, we only require the values after
external transitions, because the slope does not change during internal
transitions.

Consequently, the problem of output interpolation has a straightforward

570 Chapter 12. Quantization–based Integration

solution in the QSS method.
It is important to remember that Eq.(12.27) and Eq.(12.31) are valid

for all values of time t. Thus, we can ensure that the interpolated values
remain inside their theoretical error bound, which is an interesting and
unusual characteristic for a simulation method.

12.6 Second–order QSS

As we saw along this chapter, the QSS method exhibits strong theoretical
and practical properties that make the method attractive for use in the
simulation of continuous systems. Unfortunately, the method is only first–
order accurate, and therefore, the simulation results obtained with this
method cannot be very accurate.

The inequality of Eq.(12.27) states that the error bound grows linearly
with the quantum. Thus, if we want to reduce the error bound by a cer-
tain amount, we have to reduce the quantum in the same proportion. The
problem is that also the time interval between successive events, i.e., the
time advance σ in the DEVS model, is proportional to the quantum (cf.
model M5 on page 543). Consequently, the error reduction results in a
proportional increment in the number of computations.

To improve the situation, a second–order accurate QSS method was pro-
posed in [12.13]. This new approximation, called second–order quantized
state systems method, or QSS2 method in short, exhibits similar stability,
convergence, and accuracy properties as the previously introduced QSS
method.

The basic idea behind this second–order accurate method is the use of
first–order quantizers, replacing the simple hysteretic quantizers that were
used in the design of the QSS method.

A hysteretic quantizer with equal quantum and hysteresis width can
be viewed as a system producing a piecewise constant output trajectory
that only changes when the difference between output and input reaches a
certain threshold level, i.e., the quantum.

Following this idea, a first–order quantizer has been defined as a system
that produces a piecewise linear output trajectory having discontinuities
only, when its difference with the input reaches the quantum. This behavior
is illustrated in Fig.12.4.

Formally, we say that the trajectories xi(t) and qi(t) are related by a
first–order quantization function, if they satisfy:

qi(t) =
{

xi(t) if t = t0 ∨ |qi(t−) − xi(t−)| = ΔQ
qi(tj) + mj · (t − tj) otherwise

(12.32)
with the sequence t0, . . . , tj , . . . defined as:

12.6 Second–order QSS 571

First Order Quantizer

ΔQ

Input

Output

FIGURE 12.4. Input and output trajectories of a first–order quantizer.

tj+1 = min(t), ∀t > tj ∧ |xi(tj) + mj · (t − tj) − xi(t)| = ΔQ

and the slopes:

m0 = 0; mj = ẋi(t−j), j = 1, . . . , k, . . .

The QSS2 method then simulates a system like that of Eq.(12.2), where
the components of q(t) and x(t) are related componentwise by first–order
quantization functions. As a consequence, the quantized variable trajecto-
ries qi(t) are piecewise linear.

In QSS, we had to add hysteresis in order to ensure that the trajectories
become piecewise constant avoiding illegitimacy. The reader may wonder
why we did not need to add hysteresis here. The reason is that hysteresis is
implicitly present in the definition of the first–order quantization function.
Indeed, the absolute value in Eq.(12.32) expresses that hysteretic behavior.

Remember that, in QSS, not only the quantized variables, but also the
state derivatives are piecewise constant. In this way, we were able to affirm
that the state variables have piecewise linear trajectories, and we exploited
this features in building the DEVS model.

Unfortunately, we cannot find this kind of particular trajectories in QSS2.
Although the quantized variables are piecewise linear, this does not mean
that the state derivatives are piecewise linear as well, even if all inputs
possess piecewise linear trajectories. The reason is that a nonlinear func-
tion, fi, applied to a set of piecewise linear trajectories does not necessarily
result in a trajectory that is piecewise linear.

572 Chapter 12. Quantization–based Integration

Thus, we shall be able to simulate QSS2 approximations to LTI systems
only. Of course,, the QSS2 method can be applied to general nonlinear
systems as well, but in this case, the simulation results will not coincide
exactly with the solutions of Eq.(12.2).

In the linear case, however, provided that the input trajectories are piece-
wise linear, the state derivatives turn out to be piecewise linear as well, and
then, the state variables assume continuous piecewise parabolic trajecto-
ries.

Using these facts, we can proceed following the same lines of thought that
we used in QSS in order to build the DEVS model, i.e., we can split the
model into quantized integrators and static functions. But now, the atomic
models are quite different from before, since they must calculate and take
into account not only the values but also the slopes of the trajectories.
Moreover, the events will have to carry both value and slope information.

The quantized integrators in QSS2 will be formed by an integrator and a
first–order quantizer. We shall call them second–order quantized integrators.
The reason for this name is that they calculate the state trajectories using
their first and second derivatives (i.e., state derivative values and their
slopes).

In order to obtain a DEVS model of a second–order quantized integrator,
we shall suppose that a state derivative is described, in a certain interval
[tk, tk+1], by:

ẋ(t) = dx(tk) + mdx
(tk) · (t − tk) (12.33)

where dx(tk) is the state derivative at time tk, and mdx
(tk) is the cor-

responding linear slope. The slope of the state derivative , mdx
, will, in

general, be different from the slope of the quantized state variable, mq.
Then, the state variable trajectory can be written as:

x(t) = x(tk) + dx(tk) · (t − tk) +
mdx

(tk)
2

· (t − tk)2 (12.34)

If tk is an instant, at which a change occurs in the quantized variable,
i.e., tk is the time instant of an internal transition, then q(tk) will have the
same value and slope as x(tk):

q(t) = x(tk) + dx(tk) · (t − tk) (12.35)

and then, the time instant at which x(t) and q(t) differ from each other by
ΔQ can be calculated as:

t = tk +

√
2 · ΔQ

|mdx
(tk)| (12.36)

If tk is another instant in time, i.e., the time of an external transition,
the time instant, at which |q(t) − x(t)| = ΔQ must be recalculated. Now,
the quantized trajectory can be written as:

12.6 Second–order QSS 573

q(t) = q(tk) + mq(tk) · (t − tk) (12.37)

and then, we have to calculate the value of t, at which |q(t)− x(t)| = ΔQ,
by finding the roots of the corresponding quadratic polynomial.

A DEVS model that can represent the behavior of a second–order quan-
tized integrator is presented below:

M8 = (X, S, Y, δint, δext, λ, ta), where:
X = R

2 × N

S = R
5 × R

+
0

Y = R
2 × N

δint(dx,mdx
, x, q,mq, σ) = (dx + mdx

· σ, mdx
, q̃, q̃, dx + mdx

· σ, σ1)
δext(dx,mdx

, x, q,mq, σ, e, xv,mxv
, p) = (xv,mxv

, x̃, q + mq · e, mq, σ2)
λ(dx,mdx

, x, q,mq, σ) = (q̃, dx + mdx
· σ, 0)

ta(dx,mdx
, x, q,mq, σ) = σ

where:

q̃ = x + dx · σ +
mdx

2
· σ2; x̃ = x + dx · e +

mdx

2
· e2

σ1 =

⎧⎨
⎩
√

2 · ΔQ
|mdx

| if mdx
�= 0

∞ otherwise
(12.38)

and σ2 can be calculated as the smallest positive solution of:

|x̃ + xv · σ2 +
mxv

2
· σ2

2 − (q + mq · e + mq · σ2)| = ΔQ (12.39)

The model M8 represents a second–order quantized integrator with piece-
wise linear input trajectories exactly.

Equation (12.38) and Eq.(12.39) calculate the time advance, that is, the
time instant at which the distance between the piecewise parabolic state
trajectory x(t) and the piecewise linear quantized trajectory q(t) reaches
the quantum ΔQ.

The corresponding PowerDEVS atomic model can be coded as follows:

ATOMIC MODEL QSS2INT
State Variables and Parameters:

float dx, mdx, X, q, mq, sigma; //states
float y[2]; //output
float inf, dq; //parameters

Init Function:

574 Chapter 12. Quantization–based Integration

va list parameters;
va start(parameters, t);
dq = va arg(parameters, double);

X = va arg(parameters, double);
inf = 1e10;
q = X;

dx = 0;
mdx = 0;
mq = 0;
sigma = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
X = X + dx ∗ sigma + mdx/2 ∗ sigma ∗ sigma;
q = X;
dx = dx + mdx ∗ sigma;
mq = dx;
if (mdx == 0) {

sigma = inf ;
}
else

sigma = sqrt(2 ∗ dq/fabs(mdx));
};

External Transition Function:
float ∗xv;
float a, b, c, s;

xv = (float∗)(x.value);
X = X + dx ∗ e + mdx/2 ∗ e ∗ e;
dx = xv[0]; //input value
mdx = xv[1]; //input slope
if (sigma ! = 0) {

q = q + mq ∗ e;
a = mdx/2;
b = dx − mq;
c = X − q + dq;
sigma = inf ;
if (a == 0) {

if (b ! = 0) {
s = −c/b;
if (s > 0) {sigma = s;};
c = X − q − dq;
s = −c/b;
if ((s > 0) && (s < sigma)) {sigma = s;};

};
}
else {

s = (−b + sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if (s > 0) {sigma = s;};
s = (−b − sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if ((s > 0) && (s < sigma)) {sigma = s;};
c = X − q − dq;

12.6 Second–order QSS 575

s = (−b + sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if ((s > 0) && (s < sigma)) {sigma = s;};
s = (−b − sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if ((s > 0) && (s < sigma)) {sigma = s;};

};
};

Output Function:
y[0] = X + dx ∗ sigma + mdx/2 ∗ sigma ∗ sigma;
y[1] = u + mdx ∗ sigma;
return Event(&y[0], 0);

In a QSS2 simulation, we represent the integrators with models of the
M8 class, instead of using those of the M5 class.

For representing static functions, we used models of the M3 class in
the QSS method. However, the M3 model does not take into account the
slopes. Thus, the representation of static functions in QSS2 requires using
a different DEVS model as well.

Each component fj of a static vector function f(q,u) receives the piece-
wise linear trajectories of the quantized states and input variables.

Let us define v � [q;u]. Each component of v has a piecewise linear
trajectory:

vj(t) = vj(tk) + mvj
(tk) · (t − tk)

Then, the output of the static function can be written as:

ẋi(t) = fi(v(t)) = fi(v1(tk)+mv1(tk) ·(t−tk), . . . , vl(tk)+mvl
(tk) ·(t−tk))

where l � n + m is the number of components of v(t).
Defining mv � [mv1 , . . . , mvl

]T , the last equation can be rewritten as:

ẋi(t) = fi(v(t)) = fi(v(tk) + mv(tk) · (t − tk))

which can be developed into a Taylor series as follows:

ẋi(t) = fi(v(t)) = fi(v(tk))+
(

∂fj

∂v
(v(tk))

)T

·mv(tk)·(t−tk)+. . . (12.40)

Then, a piecewise linear approximation of the output can be obtained
by truncating the Taylor series after the first two terms of Eq.(12.40).

In the linear time–invariant case, we have f(v(t)) = A · v(t), and there-
fore: fi(v(t)) = ai

T · v(t) where ai ∈ R
l. Then:

ẋi(t) = ai
T · v(tk) + ai

T · mv(tk) · (t − tk)

which means that the output value and its slope are obtained as linear
combinations of the input values and their slopes, respectively.

576 Chapter 12. Quantization–based Integration

The construction of the corresponding DEVS model is left to the reader
(cf. Hw.[H12.4]).

The nonlinear case is a bit more complicated. The expression of Eq.(12.40)
requires the knowledge of the partial derivatives of function fi evaluated at
the successive values of the quantized state and input variables. In a gen-
eral case, we may not have a closed–form expression for these derivatives,
in which case we shall need to approximate them numerically.

A DEVS model that follows this idea, representing a static nonlinear
function fi(v) = f(v1, . . . , vl) and taking into account input and output
values and their slopes can be coded as follows :

M9 = (X, S, Y, δint, δext, λ, ta), where:
X = R

2 × N

S = R
3l × R

+
0

Y = R
2 × N

δint(v,mv, c, σ) = (v,mv, c,∞)
δext(v,mv, c, σ, e, xv,mxv

, p) = (ṽ, m̃v, c̃, 0)
λ(v,mv, c, σ) = (fi(v),mf , 0)
ta(v,mv, c, σ) = σ

where v = (v1, . . . , vl)T and ṽ = (ṽ1, . . . , ṽl)T are input values. Similarly,
mv = (mv1 , . . . , mvl

)T and m̃v = (m̃v1 , . . . , m̃vl
)T represent the corre-

sponding input slopes.
The coefficients c = (c1, . . . , cl)T and c̃ = (c̃1, . . . , c̃l)T estimate the par-

tial derivatives ∂fi

∂vj
that are used to calculate the output slope in accordance

with:

mf =
n∑

j=1

cj · mvj

When the system undergoes an external transition, the components of
ṽ, m̃v, and c̃ are calculated using the equations:

ṽj =
{

xv if p + 1 = j
vj + mvj

· e otherwise

m̃vj
=
{

mxv
if p + 1 = j

mvj
otherwise

c̃j =

⎧⎨
⎩

fi(v + mv · e) − fi(ṽ)
vj + mvj

· e − ṽj
if p + 1 = j ∧ vj + mvj

· e − ṽj �= 0

cj otherwise
(12.41)

12.6 Second–order QSS 577

where p denotes the port number, i.e., determines, which of the inputs is
currently undergoing an external transition.

If function fi(v) is linear, this DEVS model represents the behavior of
the system exactly, assuming that the components of v are piecewise linear.
However, as we already mentioned, there exists a much simpler and more
efficient solution in that case, since the coefficients cj are constant and
coincide with the entries ai,j of matrix A (cf. Hw.[H12.4]).

The PowerDEVS model for this general nonlinear static function can
then be specified as follows:

ATOMIC MODEL STFUNCTION2
State Variables and Parameters:

float sigma, v[10], mv[10], c[10]; //states
float y[2]; //output
float inf ;
int l;

Init Function:
va list parameters;
va start(parameters, t);
l = va arg(parameters, double);
inf = 1e10;
sigma = inf ;
for (int i = 0; i < l; i + +) {

v[i] = 0;
mv[i] = 0;

};
Time Advance Function:

return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float ∗xv;
float fv, vaux;
xv = (float∗)(x.value);
for (int i = 0; i < l; i + +) {

v[i] = v[i] + mv[i] ∗ e;
};
fv = fj(v);//put your function here
vaux = v[x.port];
v[x.port] = xv[0];
mv[x.port] = xv[1];
y[0] = fj(v); //put your function here
if (vaux ! = v[x.port]) {

c[x.port] = (fv − y[0])/(vaux − v[x.port]);
};
y[1] = 0;
for (int i = 0; i < l; i + +) {

y[1] = y[1] + mv[i] ∗ c[i];
};

578 Chapter 12. Quantization–based Integration

sigma = 0;

Output Function:

return Event(&y[0], 0);

The only problem with the PowerDEVS model proposed above is that a
new atomic model must be introduced for each distinct function fj . How-
ever, this problem has already been solved in PowerDEVS by introducing a
function that parses algebraic expressions. Thus, the corresponding nonlin-
ear function block included in the Continuous library of PowerDEVS, offers
a parameter consisting in a string that contains the algebraic expression
describing the function. That expression, just like any other parameter, can
be modified by double clicking on the block.

There are also some particular nonlinear functions, for which the partial
derivatives can be calculated analytically and the coefficients cj do not have
to be computed using Eq.(12.41). Some examples of such functions are the
sin() function, the multiplier, and the (·)2 block included in the Continuous
library (cf. Hw.[H12.5]).

By coupling DEVS models of the M8 and M9 classes in the same way
as we did in Fig.11.12, we can use the QSS2 method to simulate any
time–invariant ODE system. Using PowerDEVS, we can simulate any time–
invariant ODE system using the QSS2 method by building the block di-
agram from QSS2INT models, used in place of the quantized hysteretic
integrators, and from STFUNCTION2 blocks, used instead of the static
functions introduced earlier.

We already mentioned that the QSS2 method shares the main properties
of QSS. The reasons behind this assertion can be easily explained. Two
variables, xi(t) and qi(t), that are related by a first–order quantization
function satisfy:

|qi(t) − xi(t)| ≤ ΔQi ∀t (12.42)

This inequality is just a particular case of Eq.(12.4) with a constant quan-
tum equal to the hysteresis width. The QSS properties were derived using
this inequality, which implies that the method only introduces a bounded
perturbation in a system that can be represented in the form of Eq.(12.3).
Taking into account that this representation is also valid for QSS2, we con-
clude that the QSS2 method satisfies the same convergence, stability, and
accuracy properties as QSS.

However in nonlinear systems, the QSS2 definition does not coincide
exactly with the DEVS simulation. Thus, our analysis only ensures in a
strict sense that those properties hold true in the simulation of LTI systems.
Although there are many good reasons that allow us to conjecture that the
convergence and stability properties would hold true in the simulation of
nonlinear systems as well, there has not yet been found a formal proof of
this conjecture.

12.6 Second–order QSS 579

As far as the error bound is concerned, the inequalities of Eq.(12.27) and
Eq.(12.31) hold true for the QSS2 method, since they were derived for LTI
systems. Thus, if we use the same quantum in QSS and QSS2, we obtain
the same error bound in both cases.

This last remark gives rise to a question: Where is the advantage of using
the QSS2 method, if it offers the same error bound as the QSS method?

This question can be answered by Eq.(12.38) and Fig.12.4.
On the one hand in QSS, the time advance is proportional to the quantum

and to the error. In QSS2 however, it is proportional to the square root
of the quantum, as Eq.(12.38) shows. For this reason, we can reduce the
quantum without obtaining a proportional increment in the number of
calculations, when using the QSS2 method.

This fact can be clearly observed in Fig.12.4, where the use of a sim-
ple hysteretic quantizer instead of a first–order quantizer with the same
quantum would have resulted in a much larger number of events.

On the other hand, each transition in the QSS2 method involves more
computations than in QSS. Thus, if we are not interested in obtaining
simulation results that are highly accurate, the QSS method may turn out
to be more efficient.

All these facts are discussed in more detail in [12.13], where an ex-
perimental comparison between the execution times of both methods was
presented, illustrating the characteristics of the two methods as outlined in
the above paragraph.

Beside from the theoretical properties that were derived from perturba-
tion analysis, we saw that the QSS method also exhibits practical advan-
tages related to the incorporation of input signals and the exploitation of
sparsity. Let us discuss then what happens with these practical issues in
the QSS2 method.

The sparsity exploitation is straightforward. We conserve the same sim-
ulation structure as in QSS, and each transition only involves calculation
at the integrators and static functions that are directly connected to the
integrator that undergoes the transition.

When it comes to input signals, we have now further advantages. We not
only ensure that changes are being processed as soon as they occur, but we
are furthermore able to correctly represent piecewise linear instead of just
piecewise constant input trajectories.

Let us illustrate these advantages in the following example, taken from
[12.13].

The circuit of Fig.12.5 represents an RLC transmission line. A similar
model had already been introduced in Chapter 10 of this book.

This model can be used to study the performance of integrated circuits
transmitting data at a very fast rate. Although the wires are only a few
centimeters long, the high frequency of the transmitted signal requires that
the delays introduced by the wires must not be ignored, and transmission
line theory must be applied.

580 Chapter 12. Quantization–based Integration

RRR LLL

CCCVin
Vout

FIGURE 12.5. RLC transmission line.

Transmission lines are described as systems of partial differential equa-
tions. However, they can be approximated by lumped models, where the
distributed effects of capacity, inductance, and resistance are approximated
by a cascade of single capacitors, inductors, and resistors, as Fig.12.5 shows.
In order to constitute a good approximation, the RLC model must be
formed by several sections. As a consequence of this, the resulting model
is a linear time–invariant system of ordinary differential equations with a
sparse system matrix.

In [12.6], an example composed by five sections of an RLC circuit is in-
troduced. The resistance, inductance, and capacitance values used in [12.6]
can be considered realistic parameter values. The model obtained is a 10th–
order linear time–invariant system with the following system matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−R/L −1/L 0 0 0 0 0 0 0 0
1/C 0 −1/C 0 0 0 0 0 0 0
0 1/L −R/L −1/L 0 0 0 0 0 0
0 0 1/C 0 −1/C 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 1/C 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A typical input trajectory for these digital systems is a trapezoidal wave,
representing the “0” and “1” levels, as well as the rising and falling edges.
Since a trapezoidal wave is a piecewise linear trajectory, we can generate
it exactly using the following DEVS model:

M10 = (X, S, Y, δint, δext, λ, ta), where:
X = ∅
S = N × R

+
0

Y = R
2 × N

δint(k, σ) = (k̃, Tk̃)
λ(k, σ) = (uk̃,muk̃

, 1)
ta(k, σ) = σ

where k̃ = (k + 1 mod 4) is the next cycle index, which has 4 phases:
The low state (index 0), the rising edge (1), the high state (2), and the

12.6 Second–order QSS 581

falling edge (3). The duration of each phase is given by the corresponding
Tk value.

During the low state, the output is u0, and during the high state, it is
u2. During these two phases, the slopes, mu0 and mu2 , are zero. During
the rising edge, we have u1 = u0, and the slope is mu1 = (u2 − u0)/T1.
Similarly, during the falling edge, we have u3 = u2 and mu3 = (u0−u2)/T3.

The DEVS generator representing the input trajectory produces only
four events in each cycle. This is an important advantage, since the pres-
ence of the input wave only adds a few extra calculations. Moreover, since
the representation is exact, it does not introduce any error, i.e., we can
estimate the error bound using the inequality of Eq.(12.27) instead of that
of Eq.(12.31).

We performed the simulation using the parameter values R = 80 Ω,
C = 0.2 pF , and L = 20 nH. These parameter values correspond to a trans-
mission line of one centimeter length divided into five sections, where the
line resistance, capacitance, and inductance values are 400 Ω/cm, 1 pF/cm,
and 100 nH/cm, respectively.

The trapezoidal input has rising and falling times of T1 = T3 = 10 psec,
whereas the durations of the low and high states are T0 = T2 = 1 nsec.
The low and high levels are 0 V and 2.5 V , respectively.

The quantization adopted was Δv = 4 mV for the state variables rep-
resenting voltages, and Δi = 10 μA for the state variables representing
currents. This quantization, in accordance with Eq.(12.27), ensures that
the maximum error is smaller than 250 mV in the variable Vout.

The input and output trajectories are shown in Fig.12.6.

0 0.5 1 1.5 2 2.5 3

x 10
−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

QSS2 Simulation

Time

V
in

(t
),

V
o
u

t
(t

)

Vout

Vin

FIGURE 12.6. QSS2 simulation results in an RLC transmission line.

582 Chapter 12. Quantization–based Integration

The simulation required a total of 2536 steps (between 198 and 319
internal transitions at each integrator) to obtain the first 3.2 nsec of the
system trajectories.

The experiment was repeated using a 100 times smaller quantization,
which ensures a maximum error on the output voltage, Vout, of 2.5 mV .
This new simulation was performed consuming a total of 26.883 internal
transitions. Here we can see the effects of the second–order approxima-
tion: when reducing the quantum by a factor of 100, the number of events
grows only by a factor of 10, i.e., it grows inverse to the square root of the
quantum.

We also compared the trajectories of both simulations, and the difference
in Vout was always less than 14.5 mV . The conclusion is that the error
in the first simulation was less than 17 mV , in spite of the theoretical
bound of 250 mV . The error bound formula given by Eq.(12.27) often
produces highly conservative results, especially when it is applied to high
order systems.

Although the number of steps in the simulations is big, it is important
to remember that each step only involves scalar calculations at three inte-
grators, the integrator that undergoes the internal transition, and the two
integrators that are directly connected to its output. This is due to the
sparsity of the A–matrix.

12.7 Algebraic Loops in QSS Methods

The circuit of Fig.12.7 can be modeled by the block diagram of Fig.12.8.
The bold lines in this block diagram indicate the presence of an algebraic
loop.

L

R1

R2

C

+−

FIGURE 12.7. RLC circuit.

This algebraic loop expresses the algebraic restriction:

12.7 Algebraic Loops in QSS Methods 583

1
L

1
R1

R2

1
C

∫∫−

−

iC

iCiL

uC

u0 uL

FIGURE 12.8. Block diagram representation of the RLC circuit.

iC = iL +
1

R1
(u0 − uC − R2 · iC) (12.43)

We can implement the QSS method by transforming the integrators into
DEVS models, e.g. of the M5 class (quantized hysteretic integrators), and
the static functions into their DEVS equivalent representation (DEVS mod-
els such as M3). Then, we can couple these DEVS models according to the
coupling scheme of Fig.12.8. In fact, that is precisely what we did to con-
vert the system of Eq.(12.1) into the DEVS representation of Eq.(12.2) (cf.
Fig.11.12).

As you were taught in the companion book on Continuous System Mod-
eling [12.2], block diagrams are not necessarily the most convenient tool
for modeling physical systems, but they are in use widely, and some of the
most popular continuous system simulation tools, in particular SIMULINK
[12.3], are built on this modeling paradigm. Hence also the graphical user
interface of PowerDEVS was built around block diagrams.

Although the block by block translation from a block diagram represen-
tation of a continuous system to its corresponding DEVS model may result
in inefficient simulation code from the point of view of computational cost,
it is a very simple procedure that does not require any kind of symbolic
manipulations. Thus, if we do not want to perform the translation manu-
ally, and if we do not have another automatic tool, such as Dymola [12.4],
available for generating a set of equations, like those of Eq.(12.1), from a
higher–level graphical representation of the system to be simulated, the
block by block translation may be the most convenient way for applying a
QSS method to the simulation of a continuous–time system.

However, if we apply this procedure to the block diagram of Fig.12.8,
we encounter a problem. Due to the algebraic loop, the resulting DEVS
model will turn out to be illegitimate. When an event arrives at the loop,
it propagates forever through the static functions around the algebraic loop.

As we do not want to drastically alter the block diagram or the atomic
model definitions, we tackle the problem by adding a new loop–breaking

584 Chapter 12. Quantization–based Integration

block anywhere in the loop. For example, we can place the loop–breaking
DEVS model in front of the R2 gain element, as Fig.12.9 shows.

1
L

1
R1

R2

1
C

∫∫−

−

iC

iCiL

uC

u0 uL

ĩC
LB

FIGURE 12.9. Addition of a loop-breaking model to the block diagram of
Fig.12.8.

Now, Eq.(12.43) becomes:

iC = iL +
1

R1
(u0 − uC − R2 · ĩC) (12.44)

where ĩC is the output value of the loop–breaking block.
Since this block is inside the loop, whenever it sends an event with a value

ĩC out through its output port, it immediately (in terms of simulation time)
receives an event with value iC , calculated using Eq.(12.44), back through
its input port.

If we want Eq.(12.44) to be equivalent to Eq.(12.43), we need to ensure
that ĩC is equal to iC . In other words, the value received by the loop–
breaking model must be the same that it previously sent out.

Thus, the loop–breaking block could operate as follows: it sends ĩC out
and receives iC back. If the two signals differ from each other, it tries with
a different ĩC . Otherwise, the loop–breaking block becomes passive and
doesn’t send out any further events, until a new external event, caused by
a transition of an integrator or an input function, arrives at the loop.

This technique should solve our problem. Notice that the proposed tech-
nique corresponds closely to the tearing method introduced in Chapter 7 of
this book. iC is a tearing variable. The user will need to introduce enough
tearing variables (loop–breaking blocks) to break all algebraic loops in the
system.

So far, we have not explained, how the value of ĩC is to be calculated.
Yet, before providing an answer to this question, we need to reformulate
our problem in a more general framework.

Let us call z the variable sent by the loop–breaking model. Then, when
it sends an event with value z1, it immediately receives a new event with
value h(z1) calculated by the static functions.

12.7 Algebraic Loops in QSS Methods 585

Thus, the model should calculate a new value for z, let us call it z2, that
should satisfy:

h(z2) − z2 � g(z2) ≈ 0 (12.45)

If g(z2) remains too large, the process must be repeated by sending a new
value z3.

Clearly, zi+1 must be calculated following some algorithm to find the
solution of g(z) = 0. Taking into account that the loop–breaking block
does not know the expression, and hence the derivative, of g(z), a good
alternative to Newton iteration is the use of the secant method.

Using this approach, zi+1 can be calculated as:

zi+1 =
zi−1 · g(zi) − zi · g(zi−1)

g(zi) − g(zi−1)
(12.46)

and since g(zi) = h(zi) − zi, we obtain:

zi+1 =
zi−1 · h(zi) − zi · h(zi−1)

h(zi) − h(zi−1) + zi−1 − zi
(12.47)

Based on these ideas, the loop–breaking DEVS model can be represented
as follows:

M11 = (X, Y, S, δint, δext, λ, ta), where
X = R × N

Y = R × N

S = R
3 × R

+
0

δext(s, e, x) = δext(z1, z2, h1, σ, e, xv, p) = s̃

δint(s) = δint(z1, z2, h1, σ) = (z1, z2, h1,∞)
λ(s) = λ(z1, z2, h1, σ) = (z2, 1)
ta(s) = ta(z1, z2, h1, σ) = σ

where:

s̃ =
{

(z1, z2, h1,∞) if |xv − z2| < tol
(z2, z̃, xv, 0) otherwise

with:

z̃ =
z1 · xv − z2 · h1

xv − h1 + z1 − z2
(12.48)

The parameter tol represents the largest absolute error that we allow
between z and h. Equation (12.48) is the result of applying the secant
method to approximate g(z) = 0, where g(z) is defined in accordance with
Eq.(12.45). We can change the iteration algorithm by modifying Eq.(12.48).

586 Chapter 12. Quantization–based Integration

A corresponding PowerDEVS model can be coded as follows:

ATOMIC MODEL LOOP-BREAK1

State Variables and Parameters:
float z1, z2, h1, sigma; //states
float y; //output
float tol, inf ;

Init Function:
va list parameters;
va start(parameters, t);
tol = va arg(parameters, double);
inf = 1e10;
sigma = inf ;

z1 = 0;
z2 = 0;
h1 = 0;

y = 0;
Time Advance Function:

return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float xv;
xv =*(float*)(x.value);
if (fabs(xv − z2) < tol) {

sigma = inf ;
}
else{

z3 = z2;
if ((z1 == 0) && (z2 == 0)){

z2 = xv; //initial guess
}
else {

z2 = (z1 ∗ xv − z2 ∗ h1)/(xv − h1 + z1 − z2);
};
z1 = z3;
h1 = xv;

sigma = 0;

};

Output Function:
y = z2;
return Event(&y, 0);

For the circuit example of Fig.12.7, we built a coupled DEVS model in
accordance with Fig.12.9 and simulated it during 30 seconds using the QSS
algorithm. We used the parameter values R1 = R2 = L = C = 1, and u0

was chosen as a unit step. The quantum and hysteresis adopted were 0.01
in both state variables, and the error tolerance tol was chosen equal to
0.001.

12.7 Algebraic Loops in QSS Methods 587

The simulation, the results of which are shown in Fig.12.10, was com-
pleted after 118 and 72 internal transitions at each quantized integrator
and a total of 377 iterations at the loop–breaking DEVS model.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

QSS Simulation

Time

u
C

(t
),

i L
(t

)

uC

iL

FIGURE 12.10. QSS simulation of the RLC circuit using a loop–breaking DEVS.

In this case, due to the linearity of the system, the secant method arrives
at the exact solution of g(z) = 0 after only two iterations. This explains
why the total number of iterations at the loop–breaking model was twice
the total number of steps at both quantized integrators.

In a more general nonlinear case, more iterations per transition would
probably be needed, and we would have to discuss the convergence criteria
associated with the chosen iteration method.

An interesting observation is that the effect of the error in the calculation
of iC can be seen as an additional perturbation. If we can ensure that this
error remains bounded, the perturbation is also bounded and can be seen
as something equivalent to having a bigger quantum that only affects the
error bound but does not modify the stability properties.

¿From the discussion in this section, the reader might reach the conclu-
sion that the QSS methods deal with algebraic loops in the same, or at
least a very similar, way as the discrete–time methods introduced in earlier
chapters. However, such a conclusion would be totally wrong.

Almost all of the discrete–time methods presented earlier in this book are
centralized integration schemes that require the iteration of all algebraic
loops during every integration step, or even more accurately, during each
function evaluation.

In contrast, the QSS methods operate in a completely asynchronous fash-
ion. An algebraic loop will only be iterated upon when it gets triggered by

588 Chapter 12. Quantization–based Integration

a transition occurring either in a quantized integrator or in an input func-
tion. Due to the inherent sparsity property of large–scale physical systems,
plenty of transitions may take place in a larger model that do not affect
any of the algebraic loops at all. These transitions can proceed without
ever triggering an iteration on any of the loops.

Notice further that the discussion, presented in this section, focused on
the QSS method, rather than the QSS2 method. In the QSS2 method, each
loop variable carries with it a slope variable. Thus, the loop–breaking block
will need to iterate on two variables simultaneously: the tearing variable,
z, and its associated slope variable, mz.

12.8 DAE Simulation with QSS Methods

In the previous section, we worked with a particular DAE system. We saw
that, by adding a loop–breaking block, we can still use the QSS simulation
method in the presence of an algebraic loop.

Although this technique can be easily implemented, it does not constitute
a general solution yet. Moreover, the method may turn out to be fairy
inefficient, since the iteration process involves a traffic of events across all
blocks that constitute the loop.

This section is aimed at introducing a more general case and a more
efficient solution. As usual, we shall start by analyzing an example.

Figure 12.11 shows the transmission line model of Fig.12.5, modified by
the addition of a load.

RRR LLL

CCCVin

Rp

Rlvz

Line Load

FIGURE 12.11. RLC transmission line with surge voltage protection.

The load is composed of a resistor Rl, possibly representing the gate
of some electronic component, and a surge protection circuit formed by
a Zener diode and a resistor Rp. The Zener diode satisfies the following
nonlinear relationship between its voltage and its current:

iz =
I0

1 − (vz/vbr)m
(12.49)

where m, vbr, and I0 are parameters, the values of which depend on the
physical characteristics of the device.

12.8 DAE Simulation with QSS Methods 589

If the transmission line is divided into five sections, as we did earlier, the
following equations are obtained:

di1
dt

= 1
L · vin − R

L · i1 − 1
L · u1

du1
dt

= 1
C · i1 − 1

C · i2
di2
dt

= 1
L · u1 − R

L · i2 − 1
L · u2

du2
dt

= 1
C · i2 − 1

C · i3
...

di5
dt

= 1
L · u4 − R

L · i5 − 1
L · u5

du5
dt

= 1
C · i5 − 1

RpC
· (u5 − vz)

(12.50)

Here, the state variables, uj and ij , represent the voltage and current in
the capacitors and inductors of the transmission line, respectively, and the
output voltage, vz, is an algebraic variable that satisfies the equation:

1
Rp

· u5 −
(

1
Rp

+
1
Rl

)
· vz − I0

1 − (vz/vbr)m
= 0 (12.51)

Thus, we are confronted with a DAE that cannot be converted into an
ODE by symbolic manipulation, and the simulation using any discrete–
time method will have to iterate on Eq.(12.51) during each step, in order
to solve for the unknown variable vz.

If we want to apply the QSS method to the system defined by Eq.(12.50)
and Eq.(12.51), we can try to proceed as before, replacing the state vari-
ables ij and uj by their quantized versions.

In order to be able to use our standard notation, we define x2j−1 � ij
and x2j � uj for j = 1, . . . , 5. As before, we shall refer to the quantized
version of variable xj as qj .

Then, the use of QSS transforms Eq.(12.50) to:

dx1
dt

= 1
L · vin − R

L · q1 − 1
L · q2

dx2
dt

= 1
C · q1 − 1

C · q3

dx3
dt

= 1
L · q2 − R

L · q3 − 1
L · q4

dx4
dt

= 1
C · q3 − 1

C · q5

...
dx9
dt

= 1
L · q8 − R

L · q9 − 1
L · q10

dx10
dt

= 1
C · q9 − 1

RpC
· (q10 − vz)

(12.52)

and the implicit part of the system, i.e., Eq.(12.51), turns into:

590 Chapter 12. Quantization–based Integration

1
Rp

· q10 −
(

1
Rp

+
1
Rl

)
· vz − I0

1 − (vz/vbr)m
= 0 (12.53)

Notice that Eq.(12.52) looks like a quantized state system, except for
the presence of vz. However, the variable vz is algebraically coupled to q10.
Thus, each time that q10 undergoes a transition, we iterate on Eq.(12.53)
to find the new value of vz, and then use that value in Eq.(12.52), however
and contrary to the previously proposed solution involving a loop–breaking
block, this iteration occurs entirely within a single DEVS model, and there-
fore doesn’t involve events being passed around between different blocks in
a loop.

We can build a block diagram corresponding to Eq.(12.52) and Eq.(12.53)
as follows:

• We start by representing system Eq.(12.52) with quantized integra-
tors and static functions, treating vz as if it were an external input.

• We then add a new atomic block that computes vz as a function of
q10. Consequently, this block has q10 as an input and vz as an output.

The latter block will be in charge of iteration to determine a new value
of vz, each time q10 changes. Ignoring round–off errors and assuming that
the iteration block computes the value of vz correctly, the resulting coupled
DEVS model will exactly simulate the system defined by Eq.(12.52) and
Eq.(12.53).

Notice that the iteration block is only activated by a change in q10. In
all other steps, i.e., when either one of the other nine quantized variables
changes, or when the input changes, no iteration has to be performed, and
the QSS models acts like in the case of an explicit ODE model. Clearly, QSS
is still able to exploit the sparsity inherent in DAE models of large–scale
physical systems.

Our original system, defined by Eq.(12.50) and Eq.(12.51), is a particular
case of the implicit model introduced in Chapter 8:

f(x, ẋ,u, t) = 0 (12.54)

In that chapter, we studied methods for simulating this model without
transforming it to explicit ODE form first.

Let us check whether we can apply similar ideas to the situation of a
QSS simulation involving algebraic loops.

For simplicity, we shall only considering the time–invariant case, although
the explicit inclusion of time is not problematic, especially in the context
of performing a QSS2 simulation.

We can rewrite Eq.(12.54) as follows:

f̃(ẋa,xa,u) = 0 (12.55)

12.8 DAE Simulation with QSS Methods 591

As before, we call the state vector of the original system xa to distinguish
it from the quantized state vector.

Proceeding as we did before, we can modify Eq.(12.55) as follows:

f̃(ẋ,q,u) = 0 (12.56)

where x(t) and q(t) are related componentwise by hysteretic quantization
functions.

Now, we can apply Newton iteration to Eq.(12.56) to solve for ẋ. We shall
assume that the perturbation index of Eq.(12.56) is 1. Otherwise, we shall
apply the Pantelides algorithm first, in order to reduce the perturbation
index of the DAE system to 1.

Once we have obtained numerical values for the state derivatives, they
can be sent to the quantized integrators that perform the rest of the job,
i.e., calculate the quantized variable trajectories. Each time a quantized
variable changes, a new iteration process must be performed in order to
recalculate ẋ.

However in our previous example, we only needed to iterate, when q10

changed. For some reason, we lost the capability of exploiting sparsity in
the compact notation of Eq.(12.56).

As we still want to be able to exploit sparsity, we need to rewrite Eq.(12.55)
as follows:

ẋa = f(xa,u, za) (12.57a)
0 = g(xar ,ur, za) (12.57b)

where za is a vector of tearing variables with dimension equal to or less than
n. The vectors xar and ur are reduced versions of xa and u, respectively.

A straightforward –but useless– way of transforming the system repre-
sented by Eq.(12.55) into the system of Eq.(12.57) is by defining za � ẋa,
which yields xar = xa, ur = u, and g = f − za.

However in many cases, as in the case of the transmission line example,
the dimensions of xar and ur can be effectively reduced.

Equation (12.57b) expresses the fact that some state and input variables
may not act directly on the algebraic loops.

Then, the use of the QSS methods transforms Eq.(12.57) into:

ẋ = f(q,u, z) (12.58a)
0 = g(qr,ur, z) (12.58b)

and now, an iteration will only be performed, when components of either
qr or ur change.

The use of QSS and QSS2 methods with DAE systems is quite similar.
In order to simplify the derivation, we shall only consider the first–order
method for now. We shall add remarks relating to the QSS2 method later.

592 Chapter 12. Quantization–based Integration

When Eq.(12.58b) defines the value of z, we can see that the system
of Eq.(12.58) defines something that behaves like a QSS. In fact, we can
easily prove that the state and quantized variable trajectories correspond to
a QSS (i.e., they are piecewise linear and piecewise constant, respectively).
Moreover, the auxiliary variables z are also piecewise constant.

What still needs to be explained now is how an implicitly defined QSS
can be translated into a DEVS model.

It is clear that Eq.(12.58a) can be represented by quantized integrators
and static functions, as we did in Chapter 11. The only difference here is the
presence of the auxiliary variables z, acting as inputs just like u. However,
whereas the inputs u arrive from signal generators of the M6 or M7 class,
the auxiliary variables must be calculated by solving the constraints of
Eq.(12.58b).

Thus, a new DEVS model must be created. This DEVS model receives
events with the values of either qr or ur, and calculates a new value of z
in return that it then sends out through its output port.

A DEVS model that solves a general implicit equation, such as:

g(v, z) = g(v1, . . . , vm, z1, . . . , zk) = 0 (12.59)

can be written as follows:

M12 = (X, Y, S, δint, δext, λ, ta), where
X = R × N

Y = R
k × N

S = R
m+k × R

+
0

δext(s, e, x) = δext(v, z, σ, e, xv, p) = (ṽ,h(ṽ, z), 0)
δint(s) = δint(v, z, σ) = (v, z,∞)
λ(s) = λ(v, z, σ) = (z, 1)
ta(s) = ta(v, z, σ) = σ

where:

ṽ = (ṽ1, . . . , ṽm)T ; ṽi =
{

xv if p = i
vi otherwise

and the function h(ṽ, z) returns the result of applying a Newton iteration
or some other type of iteration to find the solution of Eq.(12.59) using an
initial value z.

When the size of z (i.e., k) is greater than 1, the output events of model
M12 contain a vector. Thus, they cannot be sent to static functions such as
M3. However, we can use a DEVS demultiplexer (cf. Hw.[H11.3]), in order
to tackle this problem.

12.8 DAE Simulation with QSS Methods 593

q(t)

q(t)

u(t)

z(t)

x1

xn

f1

fn

q1

qn

qr(t)

ur(t)

...

∫

∫

Iteration

FIGURE 12.12. Coupling scheme for the QSS simulation of Eq.(12.57).

Figure 12.12 shows the new coupling scheme with the addition of a new
DEVS model that calculates z.

When it comes to the QSS2 method, the same ideas can be applied, and
analogous DEVS models to M12 can be built. The only difficulty is that now
the trajectory slopes must be taken into account. This is not a problem in
linear systems, but it becomes a bit more complicated in nonlinear systems,
where estimations of the partial derivatives should be used. However, this
problem has already been solved, and a DEVS model replacing M12 for the
QSS2 method is provided in [12.14].

PowerDEVS also offers a nonlinear implicit model that solves a constraint
of the form g(v, z) = 0, calculating both the value and slope of z. The
symbolic expression g is a string parameter that can be modified by double
clicking on the implicit model icon.

We are now ready to return to the transmission line example. Using the
ideas expressed above, we modified the simulation of page 581 by adding a
PowerDEVS model like the one introduced in the previous paragraph that
solves Eq.(12.51), taking into account the slope.

Letting Rl = 100 MΩ, I0 = 0.1 μA, vbr = 2.5 V , and m = 4 with-
out modifying the remaining parameters, we obtained the results shown in
Fig.12.13.

The first 3.2ns of the simulation were completed after 2640 steps (be-
tween 200 and 316 steps at each integrator). The implicit model performed
a total of 485 iterations using the secant method. The reason for this is
that the quantized integrator that calculates u5 only performed 200 inter-

594 Chapter 12. Quantization–based Integration

0 0.5 1 1.5 2 2.5 3

x 10
−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

QSS2 Simulation

Time

u
5
(t

),
v z

(t
)

u5

vz

FIGURE 12.13. QSS2 simulation results in an RLC transmission line with surge
protection.

nal transitions, and therefore, the implicit model received only 200 external
events. The secant method needed between two and three iterations to find
the solution of Eq.(12.51) with the required tolerance of tol = 1 × 10−8,
which explains the fact that the total number of iterations was 485.

The advantages of the QSS2 method are evident in this example. In a
discrete–time algorithm, the secant method would have been invoked at
every integration step, whereas the QSS2 only called it after changes in u5,
i.e., about once every 13 steps. Thus, the presence of the implicit equation
only adds a few calculations that do not affect significantly the total number
of computations.

Returning once more to the issue of higher–index DAEs, we already
mentioned that such DAEs can be simulated by reducing their perturba-
tion index to index 1 first using the Pantelides algorithm, introduced in
Chapter 7 of this book, and then applying the QSS approach, presented
in this section, to the resulting index–1 DAE system. However, this may
not be the only way to tackling higher–index DAE problems using a QSS
method. An alternate solution was proposed in [12.9]. There, it is shown
that applying the QSS method to a higher–index DAE results in a model
that switches between two (or more) ODE systems. Thus, the simulation
can be performed applying the same principles that rule the simulation of
variable structure systems.

12.9 Discontinuity Handling 595

We shall not explore this idea any further here, since it was developed
in the context of bond graph modeling only. Although we believe that
this technique may also be applicable to general DAE systems, such a
generalization would require more research.

12.9 Discontinuity Handling

In Chapter 9, we studied the simulation of discontinuous systems using
discrete–time approaches. We remarked that numerical ODE solvers are
based on Taylor–Series expansions, and therefore, their trajectories are ap-
proximated by polynomials or rational functions. Since neither of these
functions exhibit discontinuities, the solvers will invariably be in trouble,
when asked to integrate across discontinuous functions.

However, the same restriction does not hold in the case of the QSS and
QSS2 methods. Here, the discontinuities in the input and quantized variable
trajectories are in fact responsible for time advance. Simulation steps are
only being calculated, when discontinuities are found in those trajectories.

Using discrete–time methods, the time instances of discontinuities had
to be determined precisely, as we were unable to integrate across discon-
tinuities accurately. Consequently, the primary difficulties in dealing with
discontinuous functions using discrete–time methods are related to accu-
rately detecting the time of occurrence of a discontinuity, and to designing
suitable integration step–size control algorithms around them.

Two different kinds of discontinuities were distinguished in our analysis:
time events, that could be scheduled ahead of time, as their time of occur-
rence was known in advance, and state events, that were specified indirectly
by means of some threshold crossing function, which required the use of an
iteration algorithm (a root solver algorithm) for locating them accurately
in time.

As we shall discover soon, all of these problems disappear with the use
of QSS and QSS2 methods.

The simulation of hybrid systems using QSS and QSS2 was studied in
[12.15] and, as the reader may already have anticipated, the most impor-
tant advantages of the discrete event approximations to continuous system
simulation are to be found in these kinds of applications.

Let us begin by analyzing a simple example. The inverter circuit shown
in Fig.12.14 is a device typically used to power electrical machines that are
being operated off the grid.

The set of switches can assume two different positions. In the first po-
sition, switches 1 and 4 are closed, and consequently, the load receives a
positive voltage. In the second position, switches 2 and 3 are closed, and
the load sees a negative voltage accordingly.

The system can be represented by the following differential equation:

596 Chapter 12. Quantization–based Integration

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

FIGURE 12.14. DC–AC full bridge inverter circuit.

diL
dt

= −R

L
· iL + Vin · sw(t) (12.60)

where sw assumes a value of either +1 or −1, depending on the position
that the four switches are operating in.

A typical way of controlling the switches in order to obtain an approxi-
mately sinusoidal current at he load is by using a pulse width modulation
(PWM) strategy.

The PWM signal is obtained by comparing a triangular wave, the so–
called carrier, with a modulating sinusoidal reference signal. The sign of
the voltage to be applied, +Vin or −Vin, and thereby the corresponding
switch position, is determined by the sign of the difference between these
two signals. Figure 12.15 illustrates this concept.

The difference between the carrier and modulation signal could be used
as a zero–crossing function of a state–event description for the control strat-
egy. However, since both the carrier signal and the modulating signal are
simple static functions, the time of the next intersection between these two
signals can easily be computed ahead of time, allowing an implementation
of the PWM control strategy by means of time events.

The system can be thought of as the coupling of a continuous submodel,
described by Eq.(12.60), and a discrete submodel that manages a sequence
of time events for determining the correct value of sw.

The discrete submodel can easily be represented as a DEVS model. It is
a simple DEVS generator model of the M6 class, introduced on page 565.
The output alternates between +1 and −1, and the time elapse between
commutations can be numerically computed ahead of time.

The continuous submodel can be approximated, using either the QSS or
the QSS2 method, by transforming Eq.(12.60) to:

diL
dt

= −R

L
· qiL

+ Vin · sw(t) (12.61)

where qiL
is the quantized state associated with variable iL.

12.9 Discontinuity Handling 597

Vin

−Vin

FIGURE 12.15. Pulse width modulation.

If we consider the last equation only, and if nobody tells us that sw(t)
originates at a discrete submodel, we could think that Eq.(12.61) corre-
sponds to the QSS or QSS2 approximation of a continuous model with an
input trajectory sw(t).

Indeed, the QSS methods effectively treat sw(t) as an input without
regard for where that signal originates. Since the changes in sw are treated
asynchronously, the QSS integration has no problems with accommodating
this signal.

Thus, ignoring round–off errors, and assuming that the DEVS model
generating sw(t) works properly, the system of Eq.(12.61) will be simulated
exactly.

Moreover, as Eq.(12.60) is linear and sw(t) is piecewise constant, i.e., we
can use the exact input trajectory, we can apply Eq.(12.27) to calculate
the global error bound. Consequently, the error of iL is bounded by the
quantum used.

To corroborate these remarks, we simulated the system with the QSS2
method using PowerDEVS.

We first built a new block to provoke the correct sequence sw. To this
end, we assumed that the triangular carrier has a frequency of 1.6 kHz,
and that the modulating sinusoidal signal has the same amplitude, but a
frequency of 50 Hz.

Thus, the number of events per modulating cycle is 2 · 1600/50 = 64,
which is sufficient for producing a fairly smooth sinusoidal current.

The PowerDEVS model is shown in Fig.12.16.
Employing the parameter values R = 0.6 Ω, L = 100 mH, and Vin =

300 V , the simulation starting from iL = 0 and using a quantization of

598 Chapter 12. Quantization–based Integration

+K

PWM
Signal1 WSum1 Integrator1 Scope1

∫

FIGURE 12.16. PowerDEVS model of the inverter circuit.

ΔiL = 0.01 A produced the results shown in Figs.12.17–12.18.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.17. Load current with pulse width modulation.

The final time of the simulation chosen was 1 sec, and thus, the number
of simulated cycles was 50. The discrete system underwent a total of 3200
changes in the switch positions, i.e., 3200 time events took place.

In spite of this large number of time events, the simulation was completed
after only 3100 internal transitions at the second order quantized integrator.
Thus, the total number of simulation steps was 3100 + 3200 = 6300.

As mentioned before, the error is bounded by the quantum. The tra-
jectories depicted in Figs.12.17–12.18 have an error that is no larger than
0.01 A at any instant of time, corresponding to roughly 0.1% of the oscil-
lation amplitude.

The simulation of the same system with discrete–time methods, even
using the most appropriate event handling techniques, requires many more
integration steps, and there is little that we can say about the global error
bound.

This example shows that time events are treated in a very natural way
by QSS methods. The only new thing that we had to do is to express
the discrete subsystem as a DEVS model and connect its output to the

12.9 Discontinuity Handling 599

0.6 0.61 0.62 0.63 0.64 0.65 0.66

−10

−5

0

5

10

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.18. Steady–state behavior of load current.

continuous submodel.
Let us now discuss what happens in the presence of state events. To this

end, we shall modify our previous example.
Due to failures (a short circuit in the load for instance) or during tran-

sients, the load current of the circuit in Fig.12.14 might take on values that
are too large and thus could damage the components. To prevent this from
happening, such circuits are usually protected.

A simple and cheap surge protection scheme consists in measuring the
load current and, when it surpasses the allowed value, to close switches
2 and 4, so that the voltage applied to the load becomes 0. Then, when
the current has returned to a level below the maximum allowed value, the
circuit resumes its normal operation.

Applying this strategy to our example converts Eq.(12.60) to:

diL
dt

= −R

L
· iL + Vin · s̃w(t) (12.62)

where:

s̃w(t) =
{

sw(t) if iL(t) < iM
0 otherwise (12.63)

and iM is the maximum allowed current.
In a real application, we should add hysteresis to the protection, and we

should also prevent the condition iL < −iM . However, as this examples is
introduced for illustrative purposes only, we shall limit our discussion to
the simplified version.

Variable s̃w depends on the value of the state iL. As the value of iL cannot
be computed analytically, the surge protection logic must be implemented

600 Chapter 12. Quantization–based Integration

by means of state events. A state event occurs in the model, whenever
iL = iM .

As we saw in Chapter 9, discrete–time algorithms must iterate to find
the exact moment when iL = iM . We shall see that there is no need for
iterating on state events, when employing a QSS method.

We can proceed as we did earlier, i.e., we change Eq.(12.62) to:

diL
dt

= −R

L
· qiL

+ Vin · s̃w(t) (12.64)

and build a DEVS model of the discrete subsystem that calculates s̃w(t).
Since s̃w(t) depends on iL, the discrete subsystem must receive from the

continuous subsystem information concerning the value of iL(t).
At this point, we have two choices: we can either use the quantized

variable qiL
instead of iL in Eq.(12.63), or we can use the true state variable.

¿From a formal point of view, using iL appears as the correct choice.
Indeed, this is the idea followed in [12.15].

However from a practical point of view, it is much simpler to use qiL
.

Although we can obtain the successive values of the state variables (we al-
ready studied the problem of output interpolation), the quantized variables
are directly seen at the output of the quantized integrators.

Moreover, the state and quantized variables never differ from each other
by more than the quantum ΔQ. Thus, the replacement will not introduce
a large error in general. If iM is a hard limit, it would suffice to modify the
state condition to iL = iM − ΔQ to ensure that the current iL will never
surpass the value of iM .

Thus, for the moment, we shall use qiL
instead of iL for the discrete

subsystem. We shall revisit this issue later on in the chapter.
The discrete subsystem can be formed by two atomic models. The first

block generates sw(t) as before (the block PWM signal of Fig.12.16), and
the second block sends events out with either the value sw or 0 depending
on the value of qiL

. This second block, in order to decide the value to be sent
out, must receive the previously calculated value of sw and the successive
values of qiL

through its input ports.
If we are using the first–order accurate QSS method, qiL

is piecewise con-
stant. Provided that a quantization level equal to iM exists, the detection
of the condition qiL

= iM is straightforward.
If such a level does not exists, we will not be able to detect the exact con-

dition, since it will never occur. However, we can easily detect the crossings,
because, when they occur, we have that qiL

(tk−) < iM and qiL
(tk) > iM .

Thus, the time of occurrence of the state event can be computed exactly.
In the case of the QSS2 method, the trajectory qiL

will be piecewise
linear. Thus, we can easily compute the precise instant in time, when qiL

crosses iM , by solving a linear equation. The time to the next crossing can
be exactly calculated as:

12.9 Discontinuity Handling 601

σ =
{

(qiL
− iM)/mq if mq �= 0 and (qiL

− iM)/mq > 0
∞ otherwise (12.65)

However, as qiL
is discontinuous (cf. Fig.12.4), it can happen that qiL

jumps
over the event condition, and we detect a situation where qiL

(tk−) < iM
and qiL

(tk) > iM . In this case, the time of occurrence of the crossing can
again be detected exactly.

PowerDEVS offers several blocks that detect and handle discontinuities
in accordance with these concepts. For our example, we used a Switch
block, that predicts the intersection of a piecewise parabolic trajectory
with a given fixed threshold value. Then, when this trajectory, entering the
block through the second input port, is greater than the threshold value,
the output sends out the trajectory received through the first input port.
Otherwise, it sends out the trajectory received through the third input
port.

The PowerDEVS model of the circuit with the surge protection is shown
in Fig.12.19. A Delay block was added, modeling the fact that the switches
don’t react instantaneously.

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

FIGURE 12.19. PowerDEVS model of inverter circuit with surge protection.

Had we not included the delay, the resulting model would have been
illegitimate. The reason is that when the condition iL = iM occurs, s̃w

is set to 0, and consequently, the slope in iL becomes negative. Thus, s̃w

changes to 1 again, and a cyclic behavior is obtained without time advance.
As mentioned earlier in this chapter, the illegitimacy issue could also

have been avoided by adding hysteretic behavior to the crossing condition.
Such an approach might in fact be preferable to the delay solution, but the
solution with the delay block suffices for illustrating, how PowerDEVS can
deal with state events.

We simulated the model with the QSS2 method using the same pa-
rameters as before, while letting iM = 11 A, and choosing a delay of
ΔT = 1 × 10−6 sec.

As in the previous example, the PWM block generated 3200 time events,
but the switch now sent out 3288 events to the continuous subsystem. At

602 Chapter 12. Quantization–based Integration

least 88 state events must consequently have occurred during the simula-
tion. The quantized integrator now performed 3188 steps.

Figures 12.20–12.21 display the simulation results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.20. Load current with surge protection.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−10

−5

0

5

10

15

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.21. Initial behavior of load current with surge protection.

In this new situation, we cannot say anything about the global error
bound. In the previous example, we knew that sw(t) was exactly generated.
But now, s̃w(t) depends on iL, which is not known exactly.

12.9 Discontinuity Handling 603

As mentioned above, we could have used iL instead of qiL
for the de-

tection of the state events. However, the prediction is a bit more involved,
since we must now solve a quadratic equation in Eq.(12.65). Moreover, in
order to obtain the successive values of iL, we need to look at the derivative
of this signal and reintegrate it.

Thus, depending on the application, we can choose using either the con-
tinuous states or the quantized state variables for the detection of state
events. Using the quantized state variables is more efficient computation-
ally, but using the continuous states offers more accurate simulation results.

After these introductory examples, we are now ready to analyze a more
general case.

We shall assume that the continuous subsystem can be represented by a
set of DAEs, as specified below:

ẋa(t) = f(xa(t),u(t), za(t),ma(t)) (12.66a)
0 = g(xar(t),ur(t), za(t),ma(t)) (12.66b)

where ma(t) is a piecewise constant trajectory emanating at the discrete
subsystem that defines the different operational modes of the system (this
was the role of sw and s̃w in our first and second example, respectively).
Thus for each value of ma(t), there is a different DAE representing the
system dynamics.

As we did in the previous section, we shall assume that the implicit
equation, Eq.(12.66b), has a solution for each value of ma(t), which implies
that the system of Eq.(12.66) does not exhibit conditional index changes.

Independently of the way in which ma(t) is being calculated, the sub-
model corresponding to the continuous part can be built as before, consid-
ering ma(t) as an input.

Then, the QSS and QSS2 methods will transform Eq.(12.66) to:

ẋ(t) = f(q(t),u(t), z(t),m(t)) (12.67a)
0 = g(qr(t),ur(t), z(t),m(t)) (12.67b)

with the same definitions that we used in Eq.(12.58). Consequently, the
simulation scheme for the continuous subsystem will be identical to the one
shown in Fig.12.12, but now, m(t) must also be calculated and included
with the input u(t).

The way, in which m(t) is calculated, is determined by the discrete sub-
system.

One of the most important features of DEVS is its capability for repre-
senting any kind of discrete system. Taking into account that the continu-
ous subsystem has been approximated by a DEVS model, it is only natural
to also represent the discrete subsystem by another DEVS model. Then,

604 Chapter 12. Quantization–based Integration

both DEVS models can be directly coupled building a single coupled DEVS
model that approximates the entire system.

The DEVS model of the discrete subsystem will provoke events that
carry the successive values of m(t).

Taking into account the asynchronous fashion, in which the static func-
tions and quantized integrators work, the events arriving from the discrete
subsystem will be processed by the continuous subsystem as soon as they
arrive, without a need of modifying anything in the QSS or QSS2 methods.
Efficient event handling is an intrinsic characteristic of the QSS methods.

In the presence of state events, the discrete subsystem needs to detect
the occurrence of such events by monitoring zero–crossing functions that
are functions of inputs and state variables.

Here, the QSS and QSS2 methods have an even bigger advantage over
discrete–time methods: input and state trajectories are known functions of
time in a local context. They are either piecewise constant, or piecewise
linear, or piecewise quadratic functions of time. For this reason, the time
of occurrence of a state event that is about to take place can be calculated
analytically, which makes it unnecessary to iterate on state events.

The only thing that has to be done is to provide those trajectories to the
discrete subsystem, so that it can detect the occurrence of state events and
calculate the trajectory m(t), which it then passes on to the continuous
subsystem. The continuous subsystem performs the state event handling
in accordance with the changes in m(t), as if these were mere time events.

The continuous state trajectories, x(t), are not directly available at the
output of the quantized integrators. Only the quantized states, q(t), are
generated by the quantized integrators. However, the state derivative func-
tions are available. These can be integrated to obtain x(t). This is further-
more a very simple task that does not require much computational effort at
all, since the state derivative trajectories are piecewise constant or piece-
wise linear (in QSS2), and obtaining their integrals only takes one or two
simple calculations with the coefficients of the corresponding polynomials.

An alternative –and simpler– solution, which was the solution chosen
in the introductory examples of this section, consists in using the quan-
tized states instead of the continuous state variables in the discrete part.
However, we may increase the error by doing so.

Using these ideas, the simulation model of a hybrid system, such as that
of Eq.(12.66), using the QSS or QSS2 method will be a coupled DEVS with
the structure shown in Fig.12.22.

Here the discrete part is a DEVS model that receives the events repre-
senting changes in the input trajectories and the quantized state variables.
Alternatively to the quantized state variables, we could provide the state
derivative signals to the discrete subsystem.

As state events can be detected before they occur, and since the discrete
subsystem can set its time advance to that moment, ensuring the correct
treatment of the corresponding event, there is no need for iterations or

12.9 Discontinuity Handling 605

q(t)

q(t)

u

z(t)

x1

xn

f1

fn

q1

qn

qrur

...

∫

∫

m(t)

m(t)

Discrete

Implicit

FIGURE 12.22. Coupling scheme for the QSS simulation of discontinuous sys-
tems.

back–stepping, in order to hit the event instants accurately. This is a very
important advantage in the context of real–time simulation, as we shall
discuss shortly.

In the following example, we shall see some further advantages of apply-
ing the QSS methods to the simulation of discontinuous systems.

A typical textbook example of a discontinuous system containing state
events is the bouncing ball problem. We shall consider the case, where the
ball moves in two directions, x and y, bouncing down a stairway. Thus, the
bouncing condition depends on the two variables, x and y.

We postulate that the ball experiences air friction, which we shall assume
linear for simplicity (in physics textbooks, air friction is usually assumed
quadratic in the velocity), and we declare that, when the ball reaches the
floor, it shall behave like a spring–damper system.

A corresponding differential equation model for the bouncing ball prob-
lem can be formulated as follows:

ẋ = vx (12.68a)

v̇x = −ba

m
· vx (12.68b)

606 Chapter 12. Quantization–based Integration

ẏ = vy (12.68c)

v̇y = −g − ba

m
· vy − sw(t) · (b

m
· vx +

k

m
· (y − yf (t))) (12.68d)

where m is the mass of the ball, ba is the air friction constant, g is the
gravitational constant, b is the damping constant, k is the spring constant,
and:

sw(t) =
{

1 when yf (t) � h − floor(x) > y(t)
0 otherwise, i.e., while the ball is in the air

(12.69)

The function yf (t) = h−floor(x) calculates the height of the floor at any
given horizontal position, x, where h is the height of the first step. We are
considering steps of 1 m by 1 m, which correspond more to the dimensions
of the steps on an Egyptian pyramid, than those of a modern–day stairway.

State events are being produced when x and y satisfy the condition:

y = h − floor(x)

or when x = floor(x).
We decided to simulate the system using the QSS2 method. However this

time around, we decided, not to use the quantized state variables for state
event detection. Instead, we shall provide the derivatives of x and y, i.e.,
variables vx and vy to the discrete subsystem and re–integrate them.

The right hand side of Eq.(12.68), i.e., the continuous subsystem, de-
pends only on the three variables vx, vy, and y. Consequently, the quantized
state variable corresponding to x does not appear at all in the quantized
system. Hence the quantized integrator that calculates it can be omitted.

Figure 12.23 shows the PowerDEVS model of the system. Here, the in-
tegrators to the left calculate vy and y, whereas the integrator to the right
computes vx.

+K

+K+K

WSum1

WSum2

WSum3Integ1 Integ2 Integ3

Scope1

Constant1

Multiplier1 Discrete

∫∫∫

FIGURE 12.23. PowerDEVS bouncing ball model.

12.9 Discontinuity Handling 607

The discrete subsystem has been encapsulated. Figure 12.24 shows the
complete discrete submodel.

+K

+K

0

0

1

1

WSum3

WSum4

Integrator1

Integrator2
Pure

Pure

Quantizer2

Constant1

Constant2

Constant3

Switch1sw

vx

vy

floor
height

∫

∫

FIGURE 12.24. PowerDEVS bouncing ball model (discrete subsystem).

The discrete submodel contains two Pure Integrator blocks. These blocks
compute exactly the integral of piecewise linear trajectories.

When one of these blocks receives an event with value dx(tk) and lin-
ear slope mdx

(tk), it immediately sends out an event with value x(tk) =
x(tk−1) + mx(tk−1) · (tk − tk−1) + px(tk−1) · (tk − tk−1)2, where the linear
slope, mx, is computed as mx(tk) = dx(tk), and the quadratic slope, px,
assumes a value of px(tk) = mdx

(tk)/2. Then, it waits until a new input
event arrives.

Thus, the trajectories calculated by these blocks are piecewise parabolic
and continuous. In our example, they compute the state trajectories of x(t)
and y(t).

The trajectory x(t) is then sent to a Quantizer block that calculates
floor(x) in order to evaluate the height of the floor. This is a block provided
by the Hybrid library of PowerDEVS.

We already encountered the Switch block once before in this section. In
the given model, its second input port receives the values of y(t) − yf (t),
and predicts, when this signal crosses the threshold of 0 in either direction,
in order to detect the next floor contact or floor separation event.

For the simulation, we used the parameter values k = 100, 000 N/m,
b = 30 kg/s, ba = 0.1 kg/s, and m = 1 kg. To simplify the logistics of
the simulation (quite significantly, to tell the truth!), the ball is assumed
to be infinitely small. Thus, the spring–damper system represents in fact
the elasticity of the floor, rather than that of the bouncing ball.

A quantum of 0.01 m/s was chosen for the quantized integrators that
calculate vx and vy, whereas a quantum of 0.0001 m was chosen for the
quantized integrator that calculates y. The initial conditions were x(0) =
0.575 m, vx(0) = 0.5 m/s, y(0) = 10.5 m and vy = 0 m/s. We simulated

608 Chapter 12. Quantization–based Integration

the system across 10 seconds of simulated time.
Figure 12.25 shows the simulation results for this system.

0.5 1 1.5 2 2.5 3 3.5
6.5

7

7.5

8

8.5

9

9.5

10

10.5

QSS2 Simulation

x(t)

y
(t

),
10

-i
nt

(x
(t

))

FIGURE 12.25. Ball bouncing down some stairs.

The integrator that calculates vx required five steps, the integrator that
calculates vy required 518 steps, and the integrator that calculates y re-
quired 2413 steps. Hence the Quantizer block received only five external
events. It detected four crossings by integer values, as the ball advanced
four steps downward. Consequently, the routine that predicts crossings by
solving a quadratic polynomial was invoked only nine times.

Similarly, the Switch block received 522 events through its second port,
518 of which originated at the quantized integrator of vy, whereas the
remaining four originated at the Quantizer block. It detected a total of 20
crossings, as each bounce results in two separate events, a floor contact
event, and a floor separation event.

Notice that the second bounce was produced near the border of a step.
Here, discrete–time methods will experience problems. Figure 12.26 details
the result of simulating this system using a variable–step Runge–Kutta
method (ode45 of MATLAB) with two different accuracy settings.

Using a sufficiently large tolerance value, the method skips the event.
Since the time elapse between subsequent function evaluations is larger
than the zone, in which the event condition is triggered, the algorithm
does not recognize that it has passed through that zone.

An example of this problem was given in [12.5], where the authors
proposed a solution based on decreasing the step size as the system ap-
proximates the discontinuity condition. In Chapter 9 of this book, we had
proposed another solution involving the use of the derivative of the zero–
crossing function as an additional (dummy) zero–crossing function.

12.10 Real–time Simulation 609

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

Event Skipping

x(t)

y
(t

),
10

−
in

t(
x
(t

))
small steps

big steps

FIGURE 12.26. Event skipping in discrete–time algorithms.

In the QSS methods, this problem disappears. Provided that we use the
continuous states instead of the quantized state variables for detecting the
discontinuities, as we did in this example, it is impossible for QSS methods
to skip short–living state events as discrete–time methods do.

12.10 Real–time Simulation

In Chapter 10, we studied, which algorithms were suitable in the context of
real–time simulation. We concluded that fixed–step algorithms were neces-
sary, and we only accepted explicit or semi–implicit methods. In the latter
case, we tried furthermore to reduce the size of the matrix to be inverted
using mixed–mode integration techniques. Thus at a first glance, QSS and
QSS2 don’t seem to fit the bill very well, since these are clearly variable–
step algorithms.

We offered two reasons for discarding variable–step methods. The first
reason was that we were not able to spend time discarding values and
repeating steps, when we did not like the error obtained. The second reason
was that the inputs and outputs of most real–time applications occur at
fixed time intervals, which constitutes another good point in favor of fixed–
step algorithms.

However, none of these reasons apply to quantization–based methods,
since they never discard values, since they accept input changes at any
point in time, and since their states are known at any instant of time also.
QSS methods conveniently solve the dense output problem that we had
encountered in Chapter 9 of this book.

We furthermore mentioned in Chapter 10 that real–time simulation of

610 Chapter 12. Quantization–based Integration

discontinuous models is highly problematic, since it forces us to spend time
detecting and handling events, i.e., we are back facing the same problems
that had convinced us to discard variable–step algorithms.

Taking into account the way, in which QSS methods deal with disconti-
nuities, quantization–based algorithms appear to be a very good choice for
handling discontinuities in real time.

Moreover, not all variables have to be calculated at the same rate. We
can let each variable update itself at the rate that it wants. We only need
to ensure that the overall simulation clock proceeds faster than real time.

Let us illustrate these ideas with an example. The PWM strategy in-
troduced in Fig.12.15 can be used to synthesize more general signals than
sinusoidal functions. Another typical application of pulse width modulation
is the control of DC motors. Since it is difficult and expensive to generate
a variable continuous voltage with high power output, the desired power
signal is replaced by a switching signal, in which the duration of the on
state is proportional to the desired voltage. The comparison of the desired
voltage with a fast triangular waveform permits achieving such behavior.

Figure 12.27 shows the block diagram of a control system based on this
technique. The controller compares the speed ω(t) with the input reference,
and calculates the desired input voltage of the motor, uref . This value is
then compared to a triangular waveform, obtaining the actual input voltage
ua that oscillates between two values.

Control Motor
ω(t)ωref(t) uref ua

FIGURE 12.27. PWM controlled DC motor.

A real–time simulation of this kind of model may be needed in order
to detect the presence of failures in the physical system that the model
represents. As in the example of a watchdog monitor for a nuclear power
station, mentioned in Chapter 10, the simulation output can be compared
to the physical system output, and when the two signals differ significantly
one from another, we can conclude that something went wrong with the
system.

The simulation of this system requires accurate event detection. The
moment, at which the triangular wave crosses the value given by uref ,
determines the actual voltage applied to the motor. A small error in the
calculation of this time instant leads to a significant change in the output

12.10 Real–time Simulation 611

waveform.
An additional problem is that the triangular wave operates at a high

frequency, and therefore, state events occur with a high rate. Thus, the
efficient treatment of discontinuities becomes crucial.

The motor can be represented by a second order model of the form:

dia
dt

=
1
La

· (ua(t) − Ra · ia − km · ω)

dω

dt
=

1
J
· (km · ia − b · ω − τ(t))

where La = 3 mH is the armature inductance, Ra = 50 mΩ is the armature
resistance, J = 15 kg · m2 is the inertia, b = 0.005 kg · m2/s is the friction
coefficient, and km = 6.785 V · s is the electro–motorical force (EMF)
constant of the motor. These parameter values correspond to those of a
real system.

The inputs are the armature voltage, ua(t), and the torque load, τ(t),
respectively. In the given example, ua(t) switches between +500 V and
−500 V depending on the PWM control law. A torque step of 2500 N · m
is applied after 3 seconds of simulation.

For the PWM law, we consider a triangular waveform of 1 kHz frequency
with an amplitude of 1.1 V . This triangular wave is compared to the error
signal, saturated at a value of 1 V . The control is using a proportional law,
i.e., uref is proportional to the error ωref (t) − ω(t).

The angular velocity reference signal, ωref (t) is a ramp signal that in-
creases from 0 to 60 rad/sec in 2 seconds.

As a first step, we performed an off–line simulation using the PowerDEVS
model of Fig.12.28.

+K +K +K
WSum1

WSum2 WSum3Integrator1 Integrator2

To
Disk1

Constant1

Constant2

Saturation1

Triangular1

Step1

Switchtraj1
Ramp1

∫∫

FIGURE 12.28. PowerDEVS model of the PWM controlled DC motor.

A simulation across 5 seconds of simulated time took about 0.63 seconds

612 Chapter 12. Quantization–based Integration

of real time on a 950 Mhz computer running under Windows XP. This
allows to predict that we may be able to simulate the system in real time.
We used QSS2 with a quantum of 0.01 for both state variables, which
produced 1952 and 43,263 steps in the integrators corresponding to the
angular velocity and current, respectively. An additional 10,000 events were
caused by the triangular wave generator, and another 10,000 events were
provoked by the switch. The saturation block also produced 398 events,
which led to a total of 65,613 steps.

Before proceeding to the real time experiment, we need to discuss the
real time requirements of the input and output signals. We shall assume
that the angular velocity, ω(t), needs to be measured once each 10 msec,
and that it suffices to provide the model with updated values of the input
signal, ωref (t), at the same rate.

Thus, we added sample and hold blocks that provoke events every 10 msec
to both the input and output signals.

In principle, it would not have been necessary to provide clocked events
for the inputs and outputs, as DEVS models require input values only, when
a change occurs in the input pattern, and as they are able to compute dense
outputs on their own, as all trajectories are known signals in a local context.
For the given input signal, it would thus have sufficed to provide a single
event at the time, when the ramp goes into saturation. However, it may
be convenient to operate with clocked input and output signals in a real
time environment, as this allows to synchronize model inputs with signals,
whose trajectories are not known in advance, and as it allows to hook the
output trajectories of the real–time simulation to equipment that does not
know anything about DEVS models.

One way to simulate this system in real time is to synchronize the entire
simulation with a physical clock, so that each event is performed at a time
that is as close as possible to the physical clock. We can do this directly with
PowerDEVS, since it has the option of running a simulation synchronized
with a physical clock.

However, this is unnecessary in our case. We only need to ensure that
the values at the exits of the sample and hold blocks are sent out at the
correct time instants. In other words, we only need synchronization once
each 10 msec. Of course, in order to achieve this, we need to finish all
calculations corresponding to each period of 10 msec, before that time
window ends.

To obtain this behavior, we just added two new identical blocks called
Clock wait that send out an event, as soon as they receive one in terms of
simulated time, but contain an internal busy waiting loop that waits with
sending out the event, until the physical clock has advanced to the value
shown by the simulation clock. In this way, the synchronization routines
are only invoked, when and where they are needed.

Figure 12.29 shows the modified PowerDEVS model that can be used for
real–time simulation.

12.10 Real–time Simulation 613

+K +K +K
WSum1

WSum2 WSum3Integrator1 Integrator2

To
Disk1

Constant1

Constant2

Saturation1

Triangular1

Step1

Switchtraj1

Ramp1 Sample

Sample
hold1

hold2
Clock

Clock
wait1

wait2

∫∫

FIGURE 12.29. PowerDEVS model of the PWM controlled DC motor (RT).

The Clock wait block has been implemented using the following code in
PowerDEVS:

ATOMIC MODEL CLOCK WAIT
State Variables and Parameters:

float sigma;
void ∗xv; //states
void ∗y; //output
float itime;

Init Function:
inf = 1e10;
itime = 1.0 ∗ clock()/CLOCKS PER SEC;
sigma = inf ;

Time Advance Function:
return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float actime;
xv = x.value;
actime = 1.0 ∗ clock()/CLOCKS PER SEC − itime;
while (actime < t) {

actime = 1.0 ∗ clock()/CLOCKS PER SEC − itime;
}
sigma = 0;

Output Function:
y = xv;
return Event(y, 0);

We simulated this new model, and saved the output data with both, the
physical and the simulated time. All events at the outputs of the Clock

614 Chapter 12. Quantization–based Integration

wait blocks were sent at the right physical time instants. The error was of
the order of the accuracy of the physical clock access that the gcc compiler
running under Windows permits. This means that the calculations were
indeed performed on time.

The simulation results are shown in Figs.12.30–12.31.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

QSS Simulation

Time

ω
(t

)

FIGURE 12.30. Simulation output of the DC motor.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
57

57.5

58

58.5

59

59.5

60

QSS Simulation

Time

ω
(t

)

FIGURE 12.31. Simulation output of the DC motor (detail).

In this case, the most important advantage of using QSS2 is related to
the efficient treatment of discontinuities. The off–line simulation of this

12.11 Open Problems in Quantization–based Methods 615

system with any of MATLAB’s integration methods requires more than
20 seconds of real time under identical operating conditions, which makes
a real–time simulation impossible.

There is another advantage connected to the fact that the system vari-
ables are not updated simultaneously. For example in our simulation, ω(t)
was only updated 1953 times. Unless we use a very sophisticated multi–rate
algorithm, any discrete–time method would calculate ω(t) at least 20,000
times, as there are 20,000 events in the system. Thus, we would have to
perform all calculations corresponding to each step in a period shorter than
0.25 msec.

In the QSS2 case, this period becomes about 10 times longer. It is true
that we might have more calculations between two steps in ω. However, it
is much easier to perform 1000 calculations in 10 msec, than performing
100 calculations in 1 msec.

Of course, the same idea of synchronizing only when and where it is
necessary can also be used in the discrete–time case. However, this is not
as easy in the case of the QSS2 method. Moreover, when we are forced
to change the step size because of the presence of discontinuities, time
synchronization becomes rather tricky, as we discussed in Chapter 10.

12.11 Open Problems in Quantization–based
Methods

As we had mentioned in the previous chapter, the discrete event simulation
of continuous systems is a newly developing area of research.

Despite the theoretical and practical advantages that we showed along
this chapter, there are still many important problems that should be solved,
before it can be claimed that quantization–based approaches represent a
good choice for the simulation of general continuous systems.

The most important problem is probably related to the solution of stiff
systems. Let us introduce the issue by means of a simple example. We shall
consider the second–order ODE system given by:

ẋ1 = 100 · x2

ẋ2 = −100 · x1 − 10, 001 · x2 + u(t) (12.70)

The eigenvalues of this linear system are located at λ1 = −1 and λ2 =
−10, 000, which means that this system, in spite of its simplicity, is stiff.

We simulated the system across 10 seconds of simulated time using the
QSS method with quantum sizes of 1 × 10−2 for x1, and 1 × 10−4 for x2.
According to Eq.(12.27), this quantization ensures that the error in x1 is
bounded by 0.01, whereas the error in x2 is bounded by 0.0003.

The initial conditions were both set equal to zero, and the input was
chosen as a step function, u(t) = 100 · ε(t). The simulation was completed

616 Chapter 12. Quantization–based Integration

after 100 internal transitions in the quantized integrator that calculates x1,
and after 200 internal transitions in the quantized integrator that calculates
x2. The trajectory of the quantized state q2 is shown in Figs.12.32–12.33.

0 1 2 3 4 5 6 7 8 9 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

QSS Simulation

Time

q 2
(t

)

FIGURE 12.32. QSS simulation of the system of Eq.(12.70).

0 2 4 6

x 10
−4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

QSS Simulation

Time

q 2
(t

)

FIGURE 12.33. QSS simulation of the system of Eq.(12.70), startup period.

The stiffness of this system becomes evident, when we compare the time
scale of Fig.12.32 with that of Fig.12.33. In this example, the performance
of the QSS method is truly amazing. The method was able to adjust the
step size in a very natural way, and performed the overall simulation in
a surprisingly small number of integration steps. The number of transi-

12.11 Open Problems in Quantization–based Methods 617

tions performed can be calculated here by dividing the amplitude of the
trajectory by the quantum.

Looking at this result, we may think that the QSS technique is a won-
derful method for solving stiff systems: it is an explicit method that allows
simulating a stiff system much faster and more efficiently than the most
complex implicit variable–step algorithms that we have met throughout
this book.

This idea seems coherent with the fact that the QSS method is always
“stable.” A simulation method that good must surely turn the entire ex-
isting vault of theories concerning numerical ODE solutions upside down.
Armies of applied mathematicians will have to rebuild from scratch the
foundations of their trade.

Yet, we must not forget the meaning that we have given to the term “sta-
ble.” The QSS method does not ensure asymptotic stability of a solution,
but only its boundedness, and, unfortunately, this can become a problem
when dealing with stiff systems.

To illustrate our point, let us check what happens if we introduce a small
modification to the previously discussed example. We changed the input
step function from u(t) = 100 · ε(t) to u(t) = 99.5 · ε(t), and repeated the
simulation.

In the first five seconds of simulated time, the quantized integrator that
calculates x1 performed 100 internal transitions, i.e., the number stayed
approximately the same as before, but the quantized integrator that cal-
culates x2 underwent a total of 25, 057 transitions! The trajectory of q2 is
shown in Figs.12.34–12.35.

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10
x 10

−3 QSS Simulation

Time

q 2
(t

)

FIGURE 12.34. QSS simulation of the system of Eq.(12.70) with u = 99.5.

The results of this simulation are very similar to those obtained earlier.

618 Chapter 12. Quantization–based Integration

0 0.005 0.01 0.015 0.02 0.025 0.03
8.8

9

9.2

9.4

9.6

9.8

10
x 10

−3 QSS Simulation

Time

q 2
(t

)

FIGURE 12.35. Details of the initial phase of Fig.12.34.

The error, in agreement with the theory, remains bounded, but the number
of calculations is huge.

The reason is the appearance of ultra–fast oscillations in x2 that ru-
ined our triumph of having found an explicit, efficient, stable, and reliable
method for dealing with stiff system. If those oscillations were not present,
we could have calculated the number of transitions by dividing the trajec-
tory amplitude by the quantum. However, this is not possible here.

Although these oscillations may have come as a surprise, they are in fact
already familiar to us. Indeed, they are no different from the oscillations
that we encountered in Fig.12.1 on page 557. There, the oscillations did not
pose a problem, since their period was not much shorter than the settling
time of the system.

Unfortunately, the oscillation frequency is related to the eigenfrequencies
of the system, i.e., the location of its eigenvalues, which is bad news indeed.

How can we solve this problem? We do not have a final answer to this
question yet.

An interesting trick that works in many cases is based on the use of
concepts borrowed from the design of implicit ODE solvers. We have learnt
very early on in this book that stiff systems require implicit algorithms for
their solution. Whereas the FE algorithm:

xk+1 = xk + h · ẋk

was unsuccessful in dealing with stiff systems, the implicit BE algorithm:

xk+1 = xk + h · ẋk+1

could deal with them successfully. The difference between these two algo-

12.11 Open Problems in Quantization–based Methods 619

rithms consists in the time instant, at which the state derivative is being
considered in computing the next state.

We may be able to use the same idea in the design of an Implicit Quan-
tized State System (IQSS) method. If only we knew, what the next state
and the next input would be, we could compute the next state derivative:

ẋik+1 = fi(qk+1,uk+1) (12.71)

and then we could determine the next quantized state, qik+1 , together with
the time of occurrence of the next internal transition by making use of that
future state derivative.

Explicit integration algorithms are loop breakers, whereas implicit al-
gorithms are not. We saw this already in Chapter 7 in the discussion of
the classical DAE solvers. Implicit algorithms invariably led to much larger
algebraic loops.

The same observation is true for QSS methods as well. Until now, we
were able to deal with the static functions independently of the hysteretic
quantized integrators, because the integrators are breaking the algebraic
loops. This is no longer the case, when we are looking at IQSS methods.

Yet, the problem may not be as bad as it looks. There are two points in
our favor:

1. Although we don’t know the value of the next quantized state, qik+1 ,
there are only two possible values that this state can assume: qik+1 =
qik

± ΔQ.

2. Looking at the integrator that is going to transition next, we only
need to consider the future state of that integrator, as all other inte-
grators still carry their previous value.

Given an nth–order system, we require an algorithm that can decide,
which of the n integrators is going to transition next. Once we know this,
we no longer need to iterate over n variables simultaneously. It then suffices
to iterate over a single variable. Furthermore, “iteration” may be a rather
fancy word for what needs to be done, since the future state can only
assume one of two values.

The following algorithm could be used:

1. Given any state qi = Q, where Q is the current value of the state qi.

2. We replace Q by Q + ΔQ in the corresponding state equation: ẋi =
fi(q,u), assuming that the state variable xi is about to increase.

3. We check, whether ẋi is positive. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is negative, the assumption
made was incorrect.

620 Chapter 12. Quantization–based Integration

4. We now replace Q by Q − ΔQ in the corresponding state equation:
ẋi = fi(q,u), assuming that the state variable xi is about to decrease.

5. We check, whether ẋi is negative. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is positive, the assumption
made was incorrect.

6. If one of the two assumptions turns out to be correct, whereas the
other is incorrect, we know the next transition time for this state
variable. If neither of the assumptions is correct, or if both are correct,
we assume that the state isn’t going to change on its own, and set
the corresponding σ value to ∞.

7. We repeat the same algorithm for all integrators. The shortest tk+1 is
the time of the next internal transition, and the corresponding state
variable is the one that is going to transition next.

The algorithm is clearly more expensive than the explicit QSS algorithm,
and it is more centralized. After each event, we need to recompute the
time advance functions of all quantized integrators, and determine the one
integrator that will transition next.

Notice that we should also have considered future values of the inputs
in the calculation of the state derivative functions. However, the input
values do not affect stability, and since our primary aim was to improve
the stability behavior, i.e., get rid of the high–frequency oscillations, it may
not be necessary to take future input values into account.

A much cheaper, and fully decentralized, version of this algorithm can
also be proposed. In this new approach, we only look at the integrator that
is undergoing an internal transition now, and compute its next value and
time advance in the following way:

1. Let qi = Q be a quantized state that is currently going through an
internal transition.

2. We replace Q by Q + ΔQ in the corresponding state equation: ẋi =
fi(q,u), assuming that the state variable xi is about to increase.

3. We check, whether ẋi is positive. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is negative, the assumption
made was incorrect.

4. We now replace Q by Q − ΔQ in the corresponding state equation:
ẋi = fi(q,u), assuming that the state variable xi is about to decrease.

5. We check, whether ẋi is negative. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is positive, the assumption
made was incorrect.

12.11 Open Problems in Quantization–based Methods 621

6. If one of the two assumptions turns out to be correct, whereas the
other is incorrect, we know the next state value and the next internal
transition time for this state variable. If neither of the assumptions
is correct, or if both are correct, we assume that the state isn’t going
to change on its own, and set the corresponding σ value to ∞.

The cheap version of the IQSS algorithm is hardly more expensive than
the explicit QSS method, yet it may improve the stability behavior of the
method.

A remark here is that the quantized integrators have to be able to eval-
uate fi, which means that we should no longer separate the quantized
integrators from the static functions that calculate the derivatives.

Although the resulting atomic models are more complex, since they com-
bine the features of a quantized integrator and a static function, the sim-
ulation becomes more efficient, since the number of events is reduced to
less than one half, as we no longer have to transmit events from the static
functions to the quantized integrators and from the quantized integrators
back to the static functions that compute their own derivatives.

We implemented this idea for the above example, and repeated the sim-
ulation with u(t) = 99.5 · ε(t). The number of transitions was now approxi-
mately the same as when using the QSS method with u(t) = 100 · ε(t), i.e.,
the high–frequency oscillations have indeed disappeared.

However, we have not yet been able to prove that this approach works
for all stiff systems, i.e., constitutes an efficient solution for stiff systems in
general.

Furthermore, it may not be entirely trivial to generalize this technique
to higher–order IQSS methods, as the number of combinations of states
and slopes to be checked grows, and the search for consistent assumptions
becomes quite a bit more involved.

Thus, in spite of the fact that we have been able to find an attractive and
efficient quantization–based method for dealing with the above example, we
cannot claim that the same approach will always work, and therefore, we
consider that the problem is still open.

Another open problem in these methods has to do with the choice of the
quantization. Although we mentioned algorithms and showed formulae for
choosing the quantum in accordance with the desired error, this is not a
completely satisfactory solution.

Except in applications, where we need to ensure a fixed error bound,
which justifies performing a precise analysis prior to running the simulation,
nobody wants to calculate a Lyapunov function or compute the eigenvalue
and eigenvector matrices of a system to determine the quantum to be used.

An interesting idea would consist in developing quantum adaptation algo-
rithms similar in concept to the step–size control algorithms of the variable–
step discrete–time methods. Yet, there is no published research yet relating
to this topic.

622 Chapter 12. Quantization–based Integration

Another possibility might be to employ a logarithmic quantization scheme,
so that the quantum becomes larger, when the variables assume bigger val-
ues. In that way, we might expect the algorithm to control the relative
error, instead of the absolute error.

There are many other open problems that will probably be solved soon.
We can easily imagine methods of orders greater than two, enjoying the
same properties as QSS and QSS2, but reducing considerably the error
bounds. A third–order accurate method (QSS3) has already been proposed
and implemented in PowerDEVS [12.16, 12.17]. However, QSS3 is still not
fully functional, as the currently implemented version does not work yet
for general nonlinear blocks, and is not yet able to solve DAEs.

The use of high–order methods will also help with the choice of the quan-
tum, since it will allow us to adopt a conservatively small quantum without
a significant increase in the number of calculations. If we use a method of
order five, for instance, the use of a quantum 1000 times smaller than the
appropriate quantum would only increase the number of calculations by
about a factor of four.

Another idea, mentioned in [12.13], is to apply QSS and QSS2 to the
simulation of PDEs to exploit the natural sparsity of the resulting ODEs
after applying the method of lines. In fact, we did something similar already
in the transmission line examples.

The block diagrams of these ODEs have a very particular form, whereby
a basic structure is repeated along the different spatial sections. Since we
approximate each section by a DEVS model, we obtain in the process a
sort of cellular automaton. Gabriel Wainer defined a particular formalism
for describing cellular DEVS models, called Cell–DEVS [12.20], and he
then combined it with QSS for the simulation of PDEs [12.21]. Similar
approaches can also be found in [12.7] and [12.19].

Unfortunately, we saw that the method–of–lines approximation of PDEs
of the parabolic type invariably leads to stiff ODEs. Thus, the problem
of an efficient QSS simulation of stiff systems must be solved, in order to
arrive at a general discrete event method for the simulation of distributed
parameter systems.

Finally, another problem that has been treated recently is the application
of QSS methods to marginally stable systems [12.12]. There, it was proven
that, in the presence of purely imaginary eigenvalues, the error bound grows
linearly with time and also depends linearly on the quantum.

Moreover, some simulation examples have shown that not only the error,
but also the amplitude of the oscillations grows linearly with time, and
hence the simulation becomes unstable.

However, as we saw, the use of QSS methods is equivalent to introduc-
ing a bounded perturbation. If that perturbation were not correlated with
the state evolution, the presence of purely imaginary eigenvalues would not
cause any problem. In fact, the response of a marginally stable system to
a signal that does not contain spectral components at the resonance fre-

12.12 Summary 623

quency is not unstable. Unfortunately, the presence of hysteresis introduces
a large perturbation at the resonance frequency.

Thus, a modification of the quantized integrators, that attempts to elim-
inate these perturbation components, was proposed. Although the idea
noticeably improves the results, a slowly increasing unstable term still re-
mains.

Again, the usage of an IQSS algorithm might help solve this problem.

12.12 Summary

This chapter introduced the main theoretical and practical issues related
to a new family of numerical methods.

Based on the idea of replacing time discretization by state quantization,
two new ODE solvers, QSS and QSS2, were developed that exhibit theo-
retical properties, which differ noticeably from those of the classic discrete–
time methods. The existence of a global error bound that can be explicitly
calculated is probably the most interesting feature in this context.

The asynchronous nature of these methods and the knowledge of the
state trajectories at any instant of time permits dealing with discontinuous
systems in a very efficient fashion. In the presence of state and/or time
events that occur with a frequency of the same order as the eigenfrequencies
of the system, QSS and QSS2 can reduce significantly the simulation time
with respect to conventional algorithms.

Further advantages can be observed in the simulation of DAE systems,
and in the way of dealing with input signals.

In spite of all this, QSS and QSS2 exhibit a major drawback in the pres-
ence of stiff systems due to the frequent appearance of fast oscillations, but
we should not be discouraged by these findings. First attempts at tackling
the problem by introducing modified QSS algorithms that are implicit algo-
rithm, and yet, don’t require true iterations, led to very promising results.

To us, discrete event integration methods constitute one of the most
exciting recent developments in the field of numerical ODE solutions. There
are still lots of open problems that can constitute subjects of research for
future MS theses and PhD dissertations, which should be good news for
aspiring young applied mathematicians in search of a research topic.

QSS methods may look exotic and unfamiliar at a first glance, yet it is
always the departure to new shores and unexplored lands that ultimately
reaps the most benefit. It is the unknown and unexplored that keeps science
alive.

624 Chapter 12. Quantization–based Integration

12.13 References

[12.1] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre
Quadrat. Synchronization and Linearity: An Algebra for Discrete

Event Systems. John Wiley & Sons, 1992. 485p.

[12.2] François E. Cellier. Continuous System Modeling. Springer–Verlag,
New York, 1991. 755p.

[12.3] James B. Dabney and Thomas L. Harman. Masterink SIMULINK
4. Prentice Hall, Upper Saddle River, N.J., 2001.

[12.4] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den, 2004.

[12.5] Joel M. Esposito, R. Vijay Kumar, and George J. Pappas. Accurate
Event Detection for Simulating Hybrid Systems. In Proceedings of
the 4th International Workshop on Hybrid Systems: Computation and
Control, volume 2034 of Lecture Notes in Computer Science, pages
204–217. Springer–Verlag, London, 2001.

[12.6] Yehea I. Ismail, Eby G. Friedman, and José Luis Neves. Figures of
Merit to Characterize the Importance of On-chip Inductance. IEEE
Trans. on VLSI, 7(4):442–449, 1999.

[12.7] Rajanikanth Jammalamadaka. Activity Characterization of Spatial
Models: Application to Discrete Event Solution of Partial Differential
Equations. Master’s thesis, The University of Arizona, 2003.

[12.8] Hassan K. Khalil. Nonlinear Systems. Prentice–Hall, Upper Saddle
River, N.J., 3rd edition, 2002. 750p.

[12.9] Ernesto Kofman and Sergio Junco. Quantized Bond Graphs: An
Approach for Discrete Event Simulation of Physical Systems. In Pro-
ceedings International Conference on Bond Graph Modeling and Sim-
ulation, volume 33 of Simulation Series, pages 369–374. Society for
Modeling and Simulation International, 2001.

[12.10] Ernesto Kofman and Sergio Junco. Quantized State Systems: A
DEVS Approach for Continuous System Simulation. Transactions of
SCS, 18(3):123–132, 2001.

[12.11] Ernesto Kofman, Jong Sik Lee, and Bernard Zeigler. DEVS Rep-
resentation of Differential Equation Systems: Review of Recent Ad-
vances. In Proceedings European Simulation Symposium, pages 591–
595, Marseille, France, 2001. Society for Modeling and Simulation In-
ternational.

12.14 Bibliography 625

[12.12] Ernesto Kofman and Bernard Zeigler. DEVS Simulation of
Marginally Stable Systems. In Proceedings of IMACS 2005, Paris,
France, July 2005.

[12.13] Ernesto Kofman. A Second Order Approximation for DEVS Sim-
ulation of Continuous Systems. Simulation, 78(2):76–89, 2002.

[12.14] Ernesto Kofman. Quantization–based Simulation of Differential
Algebraic Equation Systems. Simulation, 79(7):363–376, 2003.

[12.15] Ernesto Kofman. Discrete Event Simulation of Hybrid Systems.
SIAM Journal on Scientific Computing, 25(5):1771–1797, 2004.

[12.16] Ernesto Kofman. A Third Order Discrete Event Simulation Method
for Continuous System Simulation. Part I: Theory. In Proceedings of
RPIC’05, Ŕıo Cuarto, Argentina, 2005.

[12.17] Ernesto Kofman. A Third Order Discrete Event Simulation Method
for Continuous System Simulation. Part II: Applications. In Proceed-
ings of RPIC’05, Ŕıo Cuarto, Argentina, 2005.

[12.18] Ernesto Kofman. Non–Conservative Ultimate Bound Estimation
in LTI Perturbed Systems. Automatica, 41(10):1835–1838, 2005.

[12.19] James J. Nutaro, Bernard P. Zeigler, Rajanikanth Jammalamadaka,
and Salil Akerkar. Discrete Event Solution of Gas Dynamics within
the DEVS Framework. In Proceedings of International Conference on
Computational Science, volume 2660 of Lecture Notes in Computer
Science, pages 319–328, Melbourne, Australia, 2003. Springer–Verlag,
Berlin.

[12.20] Gabriel Wainer and Norbert Giambiasi. Application of the Cell–
DEVS Paradigm for Cell Spaces Modeling and Simulation. Simula-
tion, 76(1):22–39, 2001.

[12.21] Gabriel Wainer. Performance Analysis of Continuous Cell–DEVS
Models. In Proceedings 18th European Simulation Multiconference,
Magdeburg, Germany, 2004.

12.14 Bibliography

[B12.1] Norbert Giambiasi, Bruno Escude, and Sumit Ghosh. GDEVS:
A Generalized Discrete Event Specification for Accurate Modeling of
Dynamic Systems. Transactions of SCS, 17(3):120–134, 2000.

[B12.2] Ernesto Kofman. Discrete Event Simulation and Control of Con-
tinuous Systems. PhD thesis, Universidad Nacional de Rosario,
Rosario, Argentina, 2003.

626 Chapter 12. Quantization–based Integration

[B12.3] Herbert Praehofer. System Theoretic Foundations for Combined
Discrete–Continuous System Simulation. PhD thesis, Johannes Kepler
University, Linz, Austria, 1991.

[B12.4] Bernard Zeigler and Jong Sik Lee. Theory of Quantized Systems:
Formal Basis for DEVS/HLA Distributed Simulation Environment. In
SPIE AeroSense’98 Proceedings: Enabling Technology for Simulation
Science (II), volume 3369, pages 49–58, Orlando, Florida, 1998.

12.15 Homework Problems

[H12.1] Error Bound in LTI Systems

Given the following LTI system:

ẋa1 = xa2

ẋa2 = −2 · xa1 − 3 · xa2

with initial conditions, xa1(0) = xa2(0) = 1.

1. Find the analytical solution, xa1(t) and xa2(t).

2. Obtain an approximate solution, x1(t) and x2(t), with the QSS tech-
nique, using a uniform quantization in both variables of ΔQ = ε =
0.05.

3. Draw the error trajectories, ei(t) = xi(t)−xai
(t), and compare them

with the error bound given by Eq.(12.27).

[H12.2] Input Quantization Error

Prove the validity of Eq.(12.31).

[H12.3] Approximate Input Signals

Build DEVS models that generate events representing piecewise constant
trajectories that approximate the following signals:

1. A ramp

2. A pulse

3. A square wave

4. A saw-tooth signal

5. A trapezoidal wave

Develop also corresponding PowerDEVS models, and try them out with
some simple systems.

12.15 Homework Problems 627

[H12.4] QSS2 Linear Static Function

Obtain a DEVS model for a linear static function:

fi(z) =
l∑

j=1

ai,j · zj (H12.4a)

that takes into account values and slopes.
Implement the model in PowerDEVS, and try it out, together with the

second–order quantized integrator, to simulate the system of Eq.(11.11).

[H12.5] QSS2 Nonlinear Static Functions

Obtain DEVS models and the corresponding PowerDEVS models of the
following static functions for QSS2:

1. fa(v) = vn, with n being an integer parameter.

2. fb(v) = ev.

3. fc(v) = cos(2π · f · v +φ), where f and φ are real–valued parameters.

4. fd(v1, v2) = v1 · v2

Exploit the fact that you can analytically calculate the partial derivatives
of these functions.

[H12.6] Input Signals in QSS2

Repeat problem H12.3 by building signal generators for the QSS2 method,
now considering piecewise linear trajectories.

[H12.7] Approximate Sinusoidal for QSS2

Propose a DEVS model that generates a piecewise linear approximation to
a sinusoidal wave.

Can you obtain a solution similar to that of model M7 provided on
page 566? Explain the differences.

[H12.8] QSS2 Loop–breaking Block

Obtain a loop–breaking DEVS model for the QSS2 method analogous to
M11. Implement it in PowerDEVS, and simulate the circuit of Fig.12.7
using the QSS2 method.

[H12.9] Hybrid DAE Simulation

The circuit of Fig.H12.9a represents a modification of the example pre-
sented in Fig.12.14. Here, a resistor, Rp, and a nonlinear component were
included to limit the voltage of the load resistor, R.

628 Chapter 12. Quantization–based Integration

Vin

Rp

R

L
+

−

Sw1

Sw2

Sw3

Sw4

FIGURE H12.9a. DC–AC inverter with surge protection.

We shall assume that the nonlinear component is characterized by a
varistor–like voltage–current relationship:

i(t) = k · u(t)α (H12.9a)

Under this assumption, the equation describing the system dynamics
becomes a nonlinear DAE:

diL
dt

=
1
L

· (−Rp · iL − u + sw · Vin) (H12.9b)

where u must satisfy the nonlinear equation:

iL − k · uα − u

R
= 0 (H12.9c)

Simulate this system in PowerDEVS using the QSS2 method. Use the
same parameters as in the example of Fig.12.14, choosing in addition Rp =
0.01 Ω, k = 5−7 mho, and α = 7.

Do you notice any further advantage of using quantization–based inte-
gration techniques in this example?

12.16 Projects

[P12.1] Pulse on a Transmission Line

Consider the transmission line model of Fig.12.5. It is composed of five
sections of RLC circuits.

The goal of this project is to study the effects of varying the number of
sections on the computational cost of the simulation.

To this end, a short pulse input will be considered. A pulse with a dura-
tion of 2 × 10−10 sec may be appropriate.

Then, the idea is to start with a transmission line circuit consisting of a
single section, and then to gradually increase the number of sections until
at least 20.

12.17 Research 629

In each case, measure the total number of transitions and the simulation
time, and try to find a law that relates the computational cost to the
number of sections.

Then, repeat the same experiment with longer pulses, and with periodic
waves, such as the trapezoidal wave used a few times in the chapter.

If you find any difference in the relationship between the computational
cost and the number of segments for any of the new inputs, try to explain
the reason for this difference.

[P12.2] Logarithmic Quantization

Obtain a DEVS model of a logarithmically quantized integrator for the
QSS and the QSS2 methods. To this end, use a quantum proportional to
the state variable value. You will also need to define a minimum value for
the quantum, as otherwise, you might obtain illegitimate behavior.

Once you have built the corresponding PowerDEVS models, take some of
the examples presented in this chapter, and simulate them using the newly
developed logarithmically quantized integrators. Study the advantages and
disadvantages of this new approach.

Using logarithmic quantization, can you still guarantee stability as we
did before?

Study the problems related to stability and global error bound from a
theoretical point of view. Start with a first–order linear system, and then
try to extend the analysis, if at all possible, to the general LTI case.

12.17 Research

[R12.1] Integration of PDEs

The use of the method of lines in PDEs produces a system of sparse ODEs
or DAEs. As we saw, the QSS and QSS2 methods exploit sparsity in a very
efficient fashion.

Study the advantages and disadvantages of using the quantization–based
integration methods together with the method of lines for the simulation
of PDEs. Hyperbolic PDEs may be of particular interest in this context.
Do not forget to take into account the particular problems of shock waves
and discontinuous PDEs.

[R12.2] QSS simulation of Stiff Systems

Investigate the possibility of introducing modifications to the QSS method,
in order to improve their ability for dealing with stiff systems.

You can use the remarks of Section 12.11 as a starting point.

