
Chap fer Eight 
TABLE METHODS FOR 
CONTINUOUS RANDOM VARIATES 

I 

i 

1. COMPOSITION VERSUS REJECTION. 
We have lllustrated how algorlthms can be sped up If we are wllllng to  com- 

pute certaln constants beforehand. For example, when a dlscrete random varlate 
1s generated by the lnverslon method, I t  pays to compute and store the lndlvldual 
probabllltles p n  beforehand. Thls lnformatlon can speed up sequentlal search, or 
could be used In the method of gulde tables. For contlnuous random varlates, the 
same remalns true. Because we know many ultra fast  dlscrete random varlate 
generatlon methods, but very few f a s t  contlnuous random varlate generatlon 
technlques, there 1s a more presslng need for acceleratlon ln the contlnuous case. 
Globally speaklng, dlscretlzlng the problem speeds generatlon. 

We can for example cut up the graph of f lnto pleces, and use the composl- 
tlon method. Chooslng a plece Is a dlscrete random varlate generatlon problem. 
Generatlng a contlnuous random varlate for an lndlvldual plece 1s usually slmple 
because of the shape of the plece whlch 1s selected by us. There are only a few 
drawbacks: flrst of all, we need to know the areas of the pleces. Typlcally, thls 1s 
equlvalent to knowlng the dlstrlbutlon functlon. Very often, as wlth the normal 
denslty for example, the dlstrlbutlon functlon must be computed as the lntegral 
of the denslty, whlch In our model 1s an lnflnlte tlme operatlon. In partlcular, the 
composltlon method can hardly be made automatlc because of thls. Secondly, we 
observe that there usually are several nonrectangular pleces, whlch are commonly 
handled vla the reJectlon method. Rectangular pleces are of course most con- 
venlent slnce we can Just return a properly translated and scaled unlform random 
varlate. For thls reason, the total area of the nonrectangular pleces should be 
kept as small as posslble. 

There 1s another approach whlch does not requlre lntegratlon of f . If we 
And a functlon g zf , and use reJectlon, then slmllar acceleratloiis can be 
obtalned If we cut the graph of g up lnto convenlent pleces. But because g 1s 
plcked by us, we do of course know the areas (welghts) of the pleces, and we can 
choose g plecewlse constant so that each component plece 1s for example 
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rectangular. One could object that for thls method, we need to  compute the ratlo 
f /g rather often as part of the reJectlon algorlthm. But thls too can be avolded 
whenever a glven plece lles completely under the graph of f . Thus, In the deslgn 
of pleces, we should try to maxlmlze the area of all the pleces entlrely covered by 
the graph of f . 

From thls general descrlptlon, I t  1s seen that all bolls down to decomposl- 
tlons of densltles lnto small manageable pieces. Baslcally, such decomposltlons 
account for nearly all very fast methods avallable today: Marsaglla's rectangle- 
wedge-tall method for normal and exponentlal densltles (Marsaglla, Maclaren and 
Bray, 1964; Marsaglla, Ananthanarayanan and Paul, 1976), the method of Ahrens 
and Kohrt (1981), the allas-reJectlon-mlxture method (Kronmal and Peterson, 
1980), and the zlggurat method (Marsaglla and Tsang, 1984). The acceleration 
can only work well If we have a flnlte decomposltlon. Thus, lnflnlte talls must be 
cut off and dealt wlth separately. Also, from a dldactlcal polnt of vlew, rectangu- 
lar decomposltlons are by far the most lmportant ones. We could add trlangles, 
but thls would detract from the maln polnts. Slnce we do care about the general- 
lty of the results, I t  seems polntless to descrlbe a partlcular normal generator for 
example. Instead, we wlll present algorlthms whlch are appllcable to large classes 
of densltles. Our treatment dlffers from that found In the references clted above. 
But at the same tlme, all the ldeas are borrowed from those same references. 

In sectlon 2, we wlll dlscuss strlp methods, 1.e. methods that are based upon 
the partltlon of f lnto parallel strlps. Because the strlps have unequal probablll- 
tles, the strlp selectlon part of the algorlthm 1s usually based upon the allas or 
allas-urn methods. Partltlons lnto equal parts are convenlent because then fas t  
table methods can be used dlrectly. Thls 1s further explored In sectlon 3. 

2. STRIP METHODS. 

2.1. Definition. 
1s a 

bounded denslty on [0,1]; the lnterval [O,l] 1s dlvlded lnto n equal parts ( n  Is 
chosen by the user); g Is a functlon constant on the n Intervals, 0 outslde [0,1], 
and at least equal to f everywhere. We set 

The followlng wlll be our standlng assumptlons In thls sectlon: f 

Define the strlp probabllltles 

Then, the followlng rejectlon algorlthrn 1s valld for generatlng a random varlate 
wlth denslty f : 
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REPEAT 
Generate a discrete random variate z whose distribution is determined by 
P(Z=i)=pi  (15i I n ) .  
Generate two iid uniform [O,l] random variate u , v . 

Z-l+V 
n x+ 

As n Increases, the reJectlon rate should dlmlnlsh slnce l t  1s posslble to And 
better and better domlnatlng functions g .  But regardless of how large n 1s 
plcked, there 1s no avoldlng the two unlform random varlates and the computa- 
tlon of f ( X ) .  Suppose now that each strlp 1s cut lnto two parts by a horlzontal 
llne, and that the bottom part 1s completely tucked under the graph of f . For 
part i , the horlzontal llne has helght hi. We can set up a table of 2n probablll- 
tles: p . . . , p 2n to  the 
top portlons. Then, random varlate generatlon can proceed as follows: 

. . . , pn correspond to the bottom portlons, and pn 

REPEAT 
Generate a discrete random variate 2' whose distribution is determined by 
P(Z=i)=pi ( 1 s i < 2 n ) .  
Generate a uniform [0,1] random variate V .  

X +  

IF Z F n  

z-1+ v 
n 

THEN RETURN x 
ELSE 

Generate a uniform [0,1] random variate U . 
IF hz-,  + U ( g z - , - h Z - , ) < f  (X-1 )  THEN RETURN X-1 

UNTIL False 

When the bottom probabllltles are domlnant, we can get away wlth generatlng 
Just one dlscrete random varlate and one unlform [0,1] random varlate V most 
of the tlme. The performance of the algorlthm 1s summarlzed In Theorem 2.1: 
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Theorem 2.1. 

1. 

2. 

3. 

For the rejectlon method based upon n spllt strlps of equal wldth, we have: 
1 *  The expected number of lteratlons 1s - g i .  This 1s also equal to the 

expected number of dlscrete random varlates 2 per returned random varlate 
X .  

l n  
The expected number of computatlons of f 1s (s i  -hi ). 

ni=l 
The expected number of unlform [0,1] random varlates 1s 

i n  

Proof of Theorem 2.1. 

Wald's equatlon. 
The proof uses standard propertles of rejectlon algorlthms, together wlth 

The algorlthm requlres tables for gi ,hi, 152 s n  , and p i  , 152 < 2 n .  Some 
of the 4 n  numbers stored away contaln redundant lnformatlon. Indeed, the pi ' s  
can be computed from the si ' s  and hi's. We store redundant lnformatlon to 
Increase the speed of the algorlthm. There may be addltlonal storage requlre- 
ments dependlng upon the dlscrete random varlate generatlon method: see for 
example what 1s needed for the method of gulde tables, and the allas and allas- 
urn methods whlch are recommended for thls appllcatlon. Recall that the 
expected tlme of these generators does not depend upon n . 

Thus, we are left only wlth the cornputatlon of the s i ' s  and hi's. Conslder 
flrst the best posslble constants: 

hi = lnf f ( 5 ) .  

-52 <- i -1 t 

n n 

Normally, we cannot hope to  compute these values In a flnlte amount of tlme. 
For speclally restrlcted densltles f , I t  1s posslble however to do so qulte easlly. 
Regardless of whether we can actually compute them or not, we have the follow- 
lng important observation: 
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Theorem 2.2. 

deflned by: 
Assume that f 1s a Rlemann lntegrable denslty on [O,l] .  Then, If g i  , hi are 

S i  = SUP . f (a:): 
-52 C L  

hi = inf . f (a:), 
-5x <-I. 

i-1 
n n 

i -1 

n n 

we have: 

Proof of Theorem 2.2. 
It sufflces to  prove the second statement, In view of the fact that 

1 "  l n  - C Si 5 I+- 
n i = l  n i = l  

( g i - h i )  * 

But the second statement 1s a dlrect consequence of the deflnltlon of Rlemann 
lntegrablllty. 

Thus, for sufflclently well-behaved densltles, If we have optlmal bounds , 
hi at our dlsposal, the algorlthm becomes very efflclent when n grows large. 

2.2. Example 1: monotone densities on [0,1]. 

When f 1s monotone on [0 ,1] ,  we can set 

We also have 
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The performance of the algorlthm can be summarlzed qulte slmply: 

1. The expected number of lteratlons 1s 5 i+ - ' ('I. Thls 1s also equal to the 

expected number of dlscrete random varlates 2 per returned random varlate 
X .  

n 

2. 

3. 

We also note that to set up the tables g;, h i ,  I t  sufflces to evaluate f at the 
n +1 mesh polnts. Furthermore, the extremes of f are reached at the endpolnts 
of the lntervals, so that the constants are in thls case best possible. The only way 
to Improve the performance of the algorlthm would be by conslderlng unequal 
Interval slzes. It should be clear that the lnterval slzes should become smaller as 
we approach the orlgln. The unequal lntervals need to be plclced wlth care If real 
savlngs are needed. For a falr comparlson, we wlll use n lntervals wlth break- 
polnts 

The expected number of computatlons of f Is 5 -. f (0) 
The expected number of unlform [0,1] random varlates 1s 5 1+-. 2f (0) 

n 

n 

o=x,<x,<x,< * . . <x, = 1 ,  

where 

~ j + ~ - ~ i  = 6b' 

6 = - ,  

(05; s n - 1 )  , 
b -1 

b -1 

and b >1 1s a deslgn constant. The algorlthm 1s only sllghtly dlfferent now 
because an addltlonal array of zi 's 1s stored. 
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Theorem 2.3. 

strlp method shown above, 
A. 

Assume that f 1s a monotone denslty on [0,1]. Then for the reJectlon-based 

The expected number of lteratlons does not exceed 

1 
n 

B. If b =l+-log(l+f (O)+f (O)log(f (0))), then the upper bound 1s of the 

form 

as n+m. (Note: when f (0) 1s large, we have approxlmately I+  log(f (0)) .) 
n 

Proof of Theorem 2.3. 
The expected number of lteratlons 3 

n -1 

i 2 0  

= C S b ' f  (q) 

f (zi )(zi+l-zi ) 

n -1 

i =O 

What we retaln from Theorem 2.2 1s that wlth some careful deslgn, we can 
(10 much better than In the equl-spacri :zterval case. Roughly speaklng, we have 
reduced the expected number of ltelS-:::Ifs for monotone densltles on [0,1] from 

log(' ('I). Several C5:L-s of the last algorlthm are dealt wlth In 
n 

1+ (O) to 1+ 
11 



366 

the exerclses. 
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2.3. Other examples. 
In the absence of lnformatlon about monotonlclty or unlinodallty, I t  1s vlrtu- 

ally lmposslble to  compute the best posslble constants gi and hi for the 
reJectlon-based table method. Other pleces of lnformatlon can ald In the derlva- 
tlon of sllghtly sub-optlmal constants. For example, when f EL@ ,(C ), then 

hi = 
f (i-l)+f (4 n 

C n 
--A 

2n 2 
9 

wlll do. These numbers can agaln be computed from the values of f at the n +I 
mesh polnts. We can work out the detalls of Theorem 2.1: 

Theorem 2.4. 

L i p , ( c )  denslty f on [0,1], we have: 
1. 

For the reJectlon method based upon n split strlps of equal wldth, used on a 

The expected number of lteratlons 1s 

Thls Is also equal t o  the expected number of dlscrete random varlates Z per 
returned random varlate X .  

C 
n 

2. The expected number of computatlons of f 1s 5-. 

3. 2c 
n 

The expected number of unlform [0,1] random varlates 1s 51+-. 

Proof of Theorem 2.4. 
The flrst expresslon follows dlrectly after resubstltutlon of the values of g i  

and hi lnto Theorem 2.1. The upper bound of parts 1 and 2 are obtalned by not- 
for all i. Flnally, part 3 1s obtalned by summlng the bounds C lng that gi  -hi =- 

n 
obtalned In parts 1 and 2. 
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Once agaln, we can control the performance characterlstlcs of the algorlthm 
by our cholce of n . The characterlstlcs can be lmproved sllghtly 1f we make use 
of the fact that for Llpschltz densltles known at mesh polnts, the obvlous plece- 
wlse llnear domlnatlng curve has sllghtly smaller lntegral than the plecewlse con- 
stant domlnatlng curve suggested here. It should be noted that the swltch to 
plecewlse llnear domlnatlng curves 1s costly in terms of the number of unlform 
random varlates needed, and In terms of the length of the program. It 1s much 
slmpler to lmprove the performance by lncreaslng n . 

2.4. Exercises. 
1. For the algorlthm for monotone densltles analyzed In Theorem 2.3, glve a 

good upper bound for the expected number of computatlons of f , both In 
terms of general constants b >1 and for the constant actually suggested In 
Theorem 2.3. 

When f 1s monotone and convex on [0,1], then the plecewlse llnear curve 
whlch touches the curve of f at the mesh polnts can be used as a domlnat- 
lng curve. If n equal lntervals are used, show that the expected number of 
evaluatlons of f can be reduced by 50% over the correspondlng plecewlse 
constant case. Glve the detalls of the algorlthm. Compare the expected 
number of unlform [0,1] random varlates for both cases. 
Develop the detalls of the rejectlon-based strlp method for Llpschltz densl- 
tles whlch uses a plecewlse llnear domlnatlng curve and n equl-spaced lnter- 
vals. Compute good bounds for the expected number of lteratlons, the 
expected number of computatlons of f , and the expected number of unl- 
form [0,1] random varlates actually requlred. 

4. Adaptive methods. Conslder a bounded monotone denslty f on [O,i]. 
When f (0) 1s known, we can generate a random varlate by reJectlon from a 
unlform denslty on [0,1]. Thls corresponds to the strlp method wlth one 
Interval. As random varlates are generated, the domlnatlng curve for the 
strlp method can be adjusted by conslderlng a stalrcase functlon wlth break- 
polnts at the Xi 's. Thls calls for a dynamlc data structure for adjustlng the 
probabllltles and sampllng from a varylng dlscrete dlstrlbutlon. Deslgn such 
a structure, and prove that the expected tlme needed per adjustment 1s 0 (1) 
as n +m, and that the expected number of f evaluatlons 1s o (1) as n 3 0 0 .  

Let F be a contlnuous dlstrlbutlon functlon. For Axed but large n , compute 
zi =F-'(-) , 05 i 5 n . Select one of the x i ' s  ( O s  i < n ) wlth equal proba- 

blllty l / n  , and deflne X=oi + U ( ~ i + ~ - x i  ) where u 1s a unlform [O,l] ran- 
dom varlate. The random varlable X has dlstrlbutlon functlon G, whlch 1s 
close to F .  It has been suggested as a fast unlversal table method In a 
varlety of papers; for slmllar approaches, see Barnard and Cawdery (1974) 
and Mltchell (1977). When x0=-m or 2, =a, deflne x In a sensible way on 
the lnterval In questlon. 

2. 

3. 

5.  
i 
n 
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[SET-UP]  
b -1 

b " - 1  
Choose b > I ,  and integer n >I .  Set 6t- . Set xo+-O. 

FOR i :=1 TO n DO 

g i  t - f  ( Z i - 1 ) ;  hi --f ( x i  1 
p i  +-hi ( x i - z j - 1 )  

P n  +i  + ( S i  -hi ) ( x i  - Z i - J  

Normalize the vector of p i  's. 
[GENERATOR] 
REPEAT 

Generate a discrete random variate whose distribution is determined by 
P ( Z = i ) = p i  (15; <2n  ). 
Generate a uniform [0 ,1 ]  random variate V .  
W +-( Z -1)modn 

w Z < n  
X-w + V b w + 1 - W  1) 

THEN RETURN x 
ELSE 

Generate a uniform [0,1] random variate U. 
IF hz-n -I- u(g,-, -hz-,  )I -f (x) THEN RETURN x 

UNTIL False 
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A. 

B. 
Prove that In all cases, sup I F-G, I -0 as n -00. 

Prove that when F has a denslty f , then I f -gn I +O as n-w, 
where gn 1s the denslty of G, . Thls property holds true wlthout excep- 
tlon. 
Determlne an upper bound on the L error of part B In terms of f’ and 
n whenever f 1s absolutely contlnuous wlth almost everywhere derlva- 
tlve f I .  

C. 

3. GRID METHODS. 

3.1. Introduction. 
Some acceleratlon can be obtalned over strlp methods If we make sure that 

all the components boxes (usually rectangles) are of equal area. In that case, the 
standard (very fast) table methods can be used for generatlon. The cost can be 
prohlbltlve: the boxes must be flne so that they can capture the detall In the out- 
llne of the denslty f , and thls forces us to  store very many small boxes. 

The versatlllty of the prlnclple 1s lllustrated here on a varlety of problems, 
ranglng from the problem of the generatlon of a unlformly dlstrlbuted random 
vector In a compact set of R d ,  to avoldance problems, and fast random varlate 
generatlon. 

3.2. Generating a point uniformly in a compact set. 
Let us enclose the compact set A of R wlth a hyperrectangle H wlth sldes 

hi h I , h 2 ,  . . . , hd . Dlvlde each slde up lnto Ni lntervals of length - , l<i Id.  
N; - 

There are three types of grld rectangles, the good rectangles (entlrely contalned 
In A ), the bad rectangles (those partlally overlapplng wlth A ), and the useless 
rectangles (those entlrely outslde A ). Before we start  generatlng, we need to  set 
up an array of addresses of rectangles, whlch we shall call a dlrectory. For the 
tlme belng, we can thlnk of an address of a rectangle as the coordlnates of Its 
leftmost vertex (In all dlrectlons). The dlrectory (called 0) 1s such that In posl- 
tlons 1 through k we have good rectangles, and In posltlons k + l  through k + I ,  
we have bad rectangles. Useless rectangles are not represented In the array. The 
lnformal algorlthm for generatlng a unlformly dlstrlbuted polnt In A 1s as fol- 
lows: 
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REPEAT 
Generate an integer Z uniformly distributed in 1,2, . . . , k + I .  
Generate x uniformly in rectangle D [z] (D [ Z ]  contains the address of rectangle 

Accept +[z sk] (Accept is a boolean variable.) 
IF NOT Accept THEN Accept +[XEA 1. 

z 1. 

UNTIL Accept 
RETURN x 

The expected number of lteratlons 1s equal to 
area( C ) 
area(A ) 

where C 1s the unlon of the good and bad rectangles (If the useless rectangles are 
not dlscarded, then C=H).  If the area of one rectangle 1s a ,  then 
area(C)=a (k +I). For most bounded sets A , thls can be made to go to 1 as the 
grld becomes flner. That thls 1s not always the case follows from thls slmple 
example: let A be [0,lId unlon all the ratlonal vectors ln [1,2ld . Since the ratlon- 
als are dense In the real llne, any grld cover of A necessarlly covers [ O , l l d  and 
[1,2Id, so that the ratlo of the areas 1s always at least 2. Fortunately, for all com- 
pact (Le., closed and bounded) sets A ,  the glven ratio of areas tends to one a s  
the grld becomes flner (see Theorem 3.1). 

The speed of the algorithm follows from the fact that when a good rectangle 
1s chosen, no boundary checklng needs to be done. Also, there are many more 
good rectangles than bad rectangles, so that the contrlbutlon to the expected 
tlme from boundary checklng 1s small. Of course, we must In any case look up an 
entry In a dlrectory. Thls 1s remlnlscent of the urn or table look-up method and 
Its modlflcatlons (such as the allas method (Walker, 1977) and the alias-urn 
method (Peterson and Kronmal, 1982)). Flner grlds yleld faster generators but 
requlre more space. 

One of the measures of the efflclency of the algorlthm 1s the expected 
nqmber of lteratlons. We have to  make sure that as the grld becomes flner, thls 
expected number tends to one. 
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Theorem 3.1. 
Let A be a compact set of nonzero area (Lebesgue measure), and let us con- 

slder a sequence of grlds G 1,G2,... whlch 1s such that as n -00, the dlameter of 
the prototype grld rectangle tends to 0. If c, 1s the grld cover of A deflned by 

G, , then the ratlo 
area( C, ) 
area(A ) 

tends to 1 as n+m. 

Proof of Theorem 3.1. 
Let H be an open rectangle coverlng A ,  and let B be the lntersectlon of H 

wlth the complement of A .  Then, B 1s open. Thus, for every ~ € 8 ,  we know 
that the grld rectangle In G, to whlch I t  belongs 1s entlrely contained In B for 
all n large enough. Thus, by the Lebesgue dominated convergence theorem, the 
Lebesgue measure of the ”useless” rectangles tends to the Lebesgue measure of 
B .  But then, the Lebesgue measure of C, must tend to the Lebesgue measure of 
A*.  

The dlrectory ltself can be constructed as follows: deflne a large enough 
array (of slze n =N,N,  Nd ), lnltlally unused, and keep two stack polnters, 
one for a top stack growlng from posltlon 1 down, and one for a bottom stack 
growlng from the last posltlon up. The two stacks are tled down at the ends of 
the array and grow towards eacff other. Travel from grld rectangle to grld rectan- 
gle, ldentlfy the type of rectangle, and push the address onto the top stack when 
I t  corresponds to a good rectangle, and onto the bottom stack when we have a 
bad rectangle. Useless rectangles are Ignored. After thls, the array 1s partlally full, 
and we can move the bottom stack up to flli posltlons k +1 through k +1. If the 
number of useless rectangles 1s expected to be unreasonably large, then the stacks 
should flrst be lmplemented as llnked llsts and at the end copled to the dlrectory 
of slze k: + I .  In any case, the preprocesslng step takes time equal to n , the cardl- 
nallty of the grld. 

It 1s lmportant to obtaln a good estlmate of the slze of the dlrectory. We 
have 

* 

area(A ) area(A ) 
U area(H ) 

n .  - - k + l  2 

We know from Theorem 3.1 and the fact that area( C, )=(k +1 ) a  , that 
k + l  area(A) llm - = 

n-oo n area(H ) ’ 

provlded that as n 300, we make sure that lnf Ni --+m (thls wlll lnsure that the 

dlameter of the prototype rectangle tends to 0). Upper bounds on the slze of the 
dlrectory are harder to come by In general. Let us conslder a few speclal cases In 

a 

I 
.. 
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the plane, to lllustrate some polnts. If A 1s a convex set for example, then we can 
look at all N ,  columns and N ,  rows In the grld, and mark the extrema1 bad rec- 
tangles on elther slde, together wlth thelr lmmedlate nelghbors on the lnslde. 
Thus, In each row and column, we are puttlng at most 4 marks. Our clalm 1s that 
unmarked rectangles are elther useless or good. For If a bad rectangle 1s not 
marked, then I t  has at least two nelghbors due north, south, east and west that 
are marked. By the convexlty of A ,  I t  1s physlcally lmposslble that thls rectangle 
1s not completely contalned In A .  Thus, the number of bad rectangles 1s at most 
4(N,+N2).  Therefore, 

+4(N1+N2) 
area(A ) 
area( H ) 

k + 1  I n  
If A conslsts of a unlon of K convex sets, then a very crude bound for k + I  
could be obtalned by replaclng 4 by 4K (Just repeat the marklng procedure for 
each convex set). We summarize: 

Theorem 3.2. 
The slze of the dlrectory 1s k + I ,  where 

<-=  area(A) k+Z area(A ) 
area(H ) - n ('1) area(H) * 

The asymptotlc result 1s valld whenever the dlameter of the grld rectangle tends 
to 0. For convex sets A on R 2 ,  we also have the upper bound 

k + l  area(A) Ni+N2 - <  + 4  
n - area(H ) N l N 2  * 

We are left now wlth the cholce of the N; 's. In the example of a convex set 
In the plane, the expected number of lteratlons 1s 

area(H) 4 (k + I  )a  
area(A ) < - If area(A) n - (N,+N2)  ' 

The upper bound 1s mlnlmal for N,=N2=&- (assume for the sake of convenl- 
ence that n 1s a perfect square). Thus, the expected number of lteratlons does 
not exceed 

area(H) 8 '+ area(A) fi * 

- 

where n 1s the cardlnallty of the encloslng grld. This Is of the form I+ 

By controlllng n , we can now control the expected tlme taken by the algorlthm. 
The algorlthm Is fast If we avold the bad rectangles very often. It 1s easy to see 
tha t  the expected number of lnspectlons of bad rectangles before haltlng 1s the 

expected number of lteratlons tlmes - 

const ant 
&- 

1 whlch equals to 1 area(H) = o ( l )  k + l '  n area(A ) 
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I 
n 

slnce -+O (as a consequence of Theorem 3.1). Thus, asymptotlcally, we spend a 

negllglble fractlon of tlme lnspectlng bad rectangles. In fact, uslng the speclal 
example of a convex set In the plane wlth N , = N , = 6 ,  we see that the 
expected number of bad rectangle lnspectlons 1s at most 

area(H) 8 
area(A) 6 ' - 

3.3. Avoidance problems. 
In some slmulatlons, usually wlth geometrlc lmpllcatlons, one 1s asked to 

generate polnts unlformly in a set A but not In UAi where the Ai 's  are glven 
sets of R d .  For example, when one slmulates the random parklng process (cars of 
length one park at random In a street of length L but should avold each other), 
I t  1s lmportant to generate polnts unlformly In [ O , L ]  minus the unlon of some 
lntervals of the same length. Towards the end of one slmulatlon run, when the 
street fllls up, I t  1s not feaslble to keep generatlng new polnts untll one falls in a 
good spot. Here a grld structure wlll be useful. In two dlmenslons, slmllar prob- 
lems occur: for example, the clrcle avoldance problem 1s concerned wlth the gen- 
eratlon of uniform polnts In a clrcle glven that the polnt cannot belong to any of 
a glven number of clrcles (usually, but not necessarlly, havlng the same radius). 
For appllcatlons lnvolvlng nonoverlapplng clrcles, see Alder and Walnwrlght 
(1902), Dlggle, Besag and Gleaves (1976), Talbot and Wlllls (1980), Kelly and 
Rlpley (1976) and Rlpley (1977, 1979). Rlpley (1979) employs the rejectlon 
method for sampllng, and Lotwlck (1982) trlangulates the space In such a way 
that each trlangle has one of the data polnts as a vertex. The trlangulatlon 1s 
deslgned to make sampllng easy, and to  improve the rejection constant. Lotwlck 
also lnvestlgates the performance of the ordlnary rejectlon method when checking 
for lncluslon In a clrcle 1s done based upon an algorlthm of Green and Slbson 
(1978). 

We could use the grld method In all the examples glven above. Note that 
unllke the problems dealt wlth In the prevlous subsectlon, avoldance problems are 
dynamlc. We cannot afford to  recompute the entlre dlrectory each tlme. Thus, we 
also need a fast method for updatlng the dlrectory. For thls, we wlll employ a 
dual data structure (see e.g. Aho, Hopcroft and Ullman, 1983). The operatlons 
that we are lnterested In are "Select a random rectangle among the good and bad 
rectangles", and "Update the dlrectory" (whlch lnvolves changlng the status of 
good or bad rectangles to bad or useless rectangles, because the avoldance reglon 
grows contlnuously). Also, for reasons explalned above, we would llke to keep the 
good rectangles together. Assume that we have a d-dlmenslonal table for the rec- 
tangles contalnlng three pleces of lnformatlon: 
(1) The coordlnates of the rectangle (usually of vector of Integers, one per coor- 

dlnate). 
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(11) The status of the rectangle (good, bad or useless). 
(111) The posltlon of the rectangle In the dlrectory (thls 1s called a polnter to the 

dlrectory). 
The dlrectory 1s as before, except that I t  wlll shrink In size as more and more rec- 
tangles are declared useless. The update operatlon lnvolves changlng the status of 
a number of rectangles (for example, If a new clrcle to be avolded 1s added, then 
all the rectangles entlrely wlthln that  clrcle are declared useless, and those that 
straddle the boundary are declared bad). Slnce we would llke to  keep the tlme of 
the update proportlonal to the number of cells lnvolved tlmes a constant, I t  1s 
obvious that we wlll have to  reorganlze the dlrectory. Let us use two llsts agaln, 
a llst of good rectangles tled down at 1 and wlth top at k ,  and a llst of bad rec- 
tangles tled down at n and wlth top at n- I+1  ( I t  has I elements). There are 
three sltuatlons: 
(A) A good rectangle becomes bad: transfer from one llst to the other. Flll the 

hole ln the good llst by fllllng I t  wlth the top element. Update k and I .  
(B) A good or bad rectangle becomes useless: remove the element from the 

approprlate Ilst, and All the hole as In case (A). Update k or I .  
(C) A bad rectangle remalns bad: lgnore thls case. 
For generation, there 1s only a problem when z > k  : when thls happens, replace 
Z by 2' +n -I - k ,  and proceed as before. Thls replacement makes us jump to the 
end of the dlrectory. 

Let us turn now to the car parklng problem, to see why the grid structure 1s 
to be used with care, If at all, In avoidance problems. At flrst, one mlght be 
tempted to thlnk that for Ane enough grlds, the performance 1s excellent. Also, 
the number of cars ( N )  that  are eventually parked on the street cannot exceed 
L , the length of the street. In fact, E ( N )  - XL as L 4 0 0  where 

t 

00 - 2 [ ( l - e - " ) / u  du 

0 
A = J e  O d t  = 0.748 ... 

(see e.g. Renyl (1958), Dvoretzky and Robblns (1964) or Mannlon (1964)). What 
determines the tlme of the slmulatlon run 1s of course the number of uniform 
[0,1] random varlates needed In the process. Let E be the event 

[ Car 1 does not lntersect [0,1] 1. 
Let T be the tlme (number of uniforms) needed before we can park a car to the 
left of the flrst car. Thls Is lnflnlte on the complement of E, so we wlll only con- 
slder E. The expected tlme of the entlre slmulatlon 1s at least equal to 
P ( E ) E  ( T  I E). Clearly, P (E)=(L -1)/L 1s posltlve for all L > 1. We wlll show 
t h a t  E ( T  I E)=o~, which leads us to the concluslon that for all L > 1, and for 
all grld slzes n ,  the expected number of uniform random varlates needed 1s 00. 

Recall however that the actual slmulatlon tlme 1s flnlte wlth probablllty one. 
Let w be the posltlon of the leftmost end of the flrst car. Then 



374 VIII.3.GRID METHODS 

1 
1+- 

n 
dt  > -  - L-1 L J E ( T  I W = t ) -  L 

1 l+- 

Slmllar dlstresslng results are true for d -dlmenslonal generallzatlons of the car 
parklng problem, such as the hyperrectangle parklng problem, or the problem of 
parklng clrcles in the plane (Lotwlck, 1984)(the clrcle avoldance problem of flgure 
3 1s that of parklng clrcles wlth centers In uncovered areas untll the unit square IS 

covered, and 1s closely related to the clrcle parklng problem). Thus, the reJectlon 
method of Rlpley (1979) for the clrcle parklng problem, whlch 1s nothlng but the 
grld method wlth one glant grld rectangle, suffers from the same drawbacks as 
the grld method In the car parklng problem. There are several posslble cures. 
Green and Slbson (1978) and Lotwlck (1984) for example zoom in on the good 
areas In parklng problems by uslng Dlrlchlet tessellations. Another posslblllty 1s 
t o  use a search tree. In the car parklng problem, the search tree can be defined 
very slmply as follows: the tree 1s blnary; every lnternal node corresponds to a 
parked car, and every termlnal node corresponds to  a free lnterval, 1.e. an lnter- 
Va l  In whlch we are allowed to park. Some parked cars may not be represented at 
all. The lnformatlon In one lnternal node conslsts of: 

p 1  : the total amount of free space In the left subtree 

p ,  : the total amount of free space in the rlght subtree. 
of that node; 

For a termlnal node, we store the endpolnts of the lnterval for that node. To 
park a car, no reJectlon 1s used at all. Just travel down the tree taklng left turns 
wlth probablllty equal to  pf / ( p l  + p r  ), and rlght turns otherwise, untll a termlnal 
node 1s reached. Thls can be done by uslng one unlform random varlate for each 
lnternal node, or by reuslng (mllklng) one unlform random varlate tlme and 
agaln. When a termlnal node 1s reached, a car 1s parked, 1.e. the mldpolnt of the 
car 1s put unlformly on the lnterval In questlon. Thls car causes one of three 
sltuatlons to occur: 

1. The lnterval of length 2 centered at the mldpolnt of the car 
covers the entire orlglnal lnterval. 

2. The lnterval of length 2 centered at the mldpolnt of the car 
forces the orlglnal lnterval t o  shrlnk. 

3. The lnterval of length 2 centered at the mldpolnt of the car 
spllts the orlglnal lnterval In two Intervals, separated by the 
parked car. 

In case 1, the termlnal node 1s deleted, and the slbllng termlnal node 1s deleted 
too by movlng I t  up to  Its parent node. In case 2, the structure of the tree 1s 
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unaltered. In case 3, the termlnal node becomes an lnternal node, and two new 
termlnal nodes are added. In all cases, the lnternal nodes on the path from the 
root to the termlnal node In questlon need to  be updated. It can be shown that 
the expected tlme needed In the slmulatlon 1s 0 ( L  log(L )) as L +oo. Intultlvely, 
thls can be seen as follows: the tree has lnltlally one node, the root. At the end, I t  
has no nodes. In between, the tree grows and shrlnks, but can never have more 
than L lnternal nodes. It 1s known that the random blnary search tree has 
expected depth 0 (log(L )) when there are L nodes, so that,  even though our tree 
1s not dlstrlbuted as a random blnary search tree, I t  comes as no surprlse that the 
expected tlme per car parked 1s bounded from above by a constant tlme log(L ). 

3.4. Fast random variate generators. 
It 1s known that when ( X , U )  1s unlformly dlstrlbuted under the curve of a 

denslty f , then x has denslty f . Thls could be a denslty In R d ,  but we wlll 
only conslder d =1 here. All of our presentatlon can easlly be extended t o  R d .  
Assume that f 1s a denslty on [0,1], bounded by M .  The lnterval [0,1] 1s dlvlded 
lnto N ,  equal Intervals, and the lnterval [O,M] for the y -dlrectlon 1s dlvlded lnto 
N 2  equal Intervals. Then, a dlrectory 1s set up with k good rectangles (those 
completely under the curve of f ), and 1 bad rectangles. For all rectangles, we 
store an lnteger i whlch lndlcates that the rectangle has 2-coordlnates 
[-- - i + l  ). Thus, ranges from 0 t o  N , - l .  In addltlon, for the bad rectangles, 

we need t o  store a second lnteger j lndlcatlng that the y coordlnates are 
j j+l [M-,M-). Thus, O l j  < N 2 .  It 1s worth repeatlng the algorlthm now, 

N2 N2 
because we can re-use some unlform random varlates. 

i 
N , '  N l  
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Generator for density f on [0,1] bounded by M 

(NOTE: D [l], . . . , D [k + I ]  is a directory of integer-valued x-coordinates, and 
Y[k+l], . . . , Y [ k + / ]  is a directory of integer-valued y-coordinates for the bad rectan- 
gles.) 
REPEAT 

Generate a uniform [0,1] random variate u. 
2 6  L(k + I  )U] (2 chooses a random element in D ) 
A+(k + I  )v-Z (A is again uniform [0,1]) 

Accept -[z 5 k ] 
IF NOT Accept THEN 

Generate a uniform [OJ] random variate v. 
Accept --[M(Y[Z]+V)_<f (X)N,]  

UNTIL Accept 
RETURN x 

Thls algorlthm uses only one table-look-up and one unlform random varlate most 
of the tlme. It should be obvlous that more can be galned If we replace the D [z] 
entrles by - ['I , and that in most hlgh level languages we should Just return 

from lnslde the loop. The awkward structured exlt was added for readablllty. 
Note further that In the algorlthm, I t  1s Irrelevant whether f 1s used or cf 
where c 1s a convenlent constant. Usually, one mlght want to choose c In such a 
way that an annoylng normallzatlon constant cancels out. 

When f 1s nonlncreaslng (an lmportant speclal case), the set-up 1s faclll- 
tated. I t  becomes trlvlal to declde qulckly whether a rectangle 1s good, bad or 
useless. Notlce that when f 1s In a black box, we wlll not be able to declare a 
partlcular rectangle good or useless In our llfetlme, and thus all rectangles must 
be classified as bad, Thls wlll of course slow down the expected tlme qulte a blt. 
Still for nonlncreaslng f , the number of bad rectangles cannot exceed N , + N , .  
Thus, notlng that the area of a grld rectangle 1s -, we observe that the 

expected number of lteratlons does not exceed 

N l  

M 
n 

n 
1 Taklng N 1 = N 2 = 6 ,  we note that the bound 1s l+O(-). We can adjust n 

t o  off-set large values of M ,  the bound on f . But In comparlson with strlp 
methods, the performance 1s sllghtly worse In terms of n :  In strlp methods wlth 
n equal-slze Intervals, the expected number of lteratlons for monotone densltles 

&- 
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M 
n 

does not exceed 1+- .  For grld 

expected number of computatlons c 
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methods, the n 1s replaced by fi. The 

f for monotone densltles does not exceed 
- 1 ( ( k + l ) M ) -  1M < M ( N i + N d  
k +I n n -  n 

For unlmodal densltles, a slmllar dlscusslon can be glven. Note that In the case of 
a monotone or unlmodal denslty, the set-up of the dlrectory can be automated. 

I t  1s also important to prove that as the grld becomes flner, the expected 
number of lteratlons tends t o  1. Thls 1s done below. 

Theorem 3.3. 
For all Rlemann lntegrable densltles f on [0 ,1 

lnf (Nl ,N2)+oo ,  the expected number of lteratlons, 
bounded by M ,  we have, a s  

tends to 1 .  The expected number of evaluatlons of f 1s o ( 1 ) .  

Proof of Theorem 3.3. 
Glven an n -grid, we can construct two estlmates of f , 

N1-1 1 
E- 

i=o N ,  L S Z  5- 
S U P  f . ( 4  Y 

i +1 

N1 N1 

and 

By the deflnltlon of Rlemann lntegrablllty (Whltta,er and M Atson, 1 9 2 7 ,  p.63), 
these tend to J f  as N l+oo. Thus, the dlfference between the estlmates tends to 
0. By a slmple geometrlcal argument, I t  1s seen that the area taken by the bad 
rectangles 1s at most thls dlfference plus 2 N 1  tlmes the area of one grld rectangle, 
that Is, o ( I ) + - - 0  2 M -  ( 1 ) .  

N2 

Densltles that are bounded and not Rlemann lntegrable are somehow pecu- 
Ilar, and less lnterestlng In practice. Let us close thls sectlon by notlng that extra 
savings In space can be obtalned by grouplng rectangles In groups of slze m , and 
Puttlng the groups In an auxlllary dlrectory. If we can do thls In such a way that 
many groups are homogeneous (all rectangles In I t  have the same value for D [i ]  
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and are all good), then the correspondlng rectangles In the dlrectory can be dls- 
carded. Thls, of course, 1s the sort of savings advocated In the multiple table 
look-up method of Marsaglla (1963) (see sectlon 111.3.2). The prlce pald for this is 
an extra comparlson needed to examlne the auxlllary dlrectory. 

A Anal remark 1s In order about the space-time trade-off. Storage is needed 
for at most N,+N2 bad rectangles and - good rectangles when f 1s monotone. 
The bound on the expected number of lteratlons on the other hand 1s 

l+M(N,+N,). If N,=N2=&, then keeplng the storage Axed shows that the 

expected tlme lncreases In proportlon to M .  The same rate of Increase, albelt 
wlth a dlfferent constant, can be observed for the ordinary rejectlon method wlth 
a rectangular domlnatlng curve. If we keep the expected tlme Axed, then the 
storage lncreases In proportlon to  M .  The product of storage ( 1 + 2 M / K )  and 
expected tlme ( 2 6  +n /M) 1s 4 6  +n /M +4M. Thls product 1s mlnlmal for 
n =1,M=& /2, and the mlnlmal value 1s 8. Also, the fact that storage tlmes 
expected time 1s at least 4M shows that there 1s no hope of obtalnlng a cheap 
generator when M 1s large. Thls Is not unexpected slnce no condltlons on f 
besldes the monotonlclty are Imposed. It Is well-known for example that for 
speclflc classes of monotone or unlmodal densltles (such as all beta or gamma 
densltles), algorlthms exlst which have unlformly bounded (In M ) expected tlme 
and storage. On the other hand, table look-up 1s so fast  that grld methods may 
well outperform standard reJectlon methods for many well known densltles. 

n 
M 

n 


