
Chap fer Thirteen 
RANDOM COMBINATORIAL OBJECTS 

1. GENERAL PRINCIPLES. 

1.1. Introduction. 
Some appllcatlons demand that random comblnatorlal obJects be generated: 

by deflnltlon, a comblnatorlal obJect 1s an object that can be put into one-to-one 
correspondence wlth a flnlte set of Integers. The maln dlfference wlth discrete 
random varlate generatlon 1s that the one-to-one mapplng 1s usually compllcated, 
so that I t  may not be very emclent to  generate a random lnteger and then deter- 
mlne the object by uslng the one-to-one mapplng. Another characterlstlc 1s the 
slze of the problem: typlcally, the number of dlfferent objects 1s phenomenally 
large. A final dlstlngulshlng feature 1s that most users are interested In the unl- 
form dlstrlbutlon over the set of obJects. 

In thls chapter, we wlll dlscuss general strategies for generatlng random com- 
blnatorlal obJects, wlth the understandlng that only uniform dlstrlbutlons are 
consldered. Then, In dlfferent subsectlons, partlcular comblnatorlal obJects are 
studled. These lnclude random graphs, random free trees, random blnary trees, 
random search trees, random partltlons, random subsets and random permuta- 
tlons. Thls 1s a representatlve sample of the slmplest and most frequently used 
comblnatorlal objects. It 1s hoped that for more compllcated objects, the readers 
wlll be able t o  extrapolate from our examples. A good reference text 1s NlJenhuls 
and Wllf( 1978). 
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1.2. The decoding method. 
Slnce we want to generate only one of a flnlte number of obJects, it is possl- 

ble to And a functlon f such that  for every palr of objects (6,~) In the collectlon 
of obJects 9, we have 

f (Off  (C))E{L . * . > n } 9 

where n 1s an  lnteger, whlch 1s usually equal to I 8 I , the number of elements In 
8. Such a functlon wlll be called a codlng functlon. By f -'(i ), we deflne the 
obJect E In 8 for whlch f (c)=z' (1f thls object exlsts). When I B I = n ,  the fol- 
lowlng decodlng algorlthm 1s valld. 

The decoding method 

[NOTE: f is a coding function.] 
Generate a uniform random integer XE(1, . . . , n }. 
RETURN f - ' ( X )  

The expected tlme taken by thls algorlthm 1s the average tlme needed for decod- 
1ng f : 

l n  - TIME(f -'(z')) . 
n j - 1  

The advantage of the method 1s that only one unlform random varlate 1s needed 
per random comblnatorlal obJect. The decodlng method 1s optlmal from a storage 
polnt of vlew, slnce each comblnatorlal object corresponds unlquely to an lnteger 
In 1, . . . , n .  Thus, about log,n blts are needed to store each comblnatorlal 
obJect, and thls cannot be improved upon. Thus, the codlng functlons can be 
used to store data in compact form. The dlsadvantages usually outwelgh the 
advantages: 
1. 

2. 

3. 

Except In the slmplest cases, I 8 I 1s too large to  be practlcal. For example, 
If thls method 1s t o  be used to generate a random permutatlon of 1, . . . , 40, 
we have I B 1 =40!, so that multlple preclslon arlthmetlc 1s necessary. Recall 
tha t  12! <235< 13!. 

The expected tlme taken by the decodlng algorlthm 1s often unacceptable. 
Note that  the tlme taken by the unlform random varlate generator 1s negll- 
glble compared to the tlme needed for decodlng. 
The method can only be used when for the glven value of n , we are able to 
count the number of objects. Thls 1s not always the case. However, If we use 
rejectlon (see below), the countlng problem can be avolded. 



644 XIII.1.GENERAL PRINCIPLES 

Example 1.1. Random permutations. 
Assume that 8={ all permutatlons of 1, . . . , n }. There are a number of 

posslble codlng functlons. For example, we could use the factorlal representatlon 
of Lehmer (1964), where a permutatlon o,, . . . , 0, 1s unlquely descrlbed by a 
sequence of n -1 lntegers a ,, . . . , a, -1 (where 05 ai 5 n -i ) accordlng to  the fol- 
lowlng rule: start  wlth 1, . . . , n . Let 6, be the a ,+l-st lnteger from thls list, 
and delete thls number. Let o2 be the a2+1-st number of the remalnlng numbers, 
and so forth. Then, deflne 

f (ul, . . . , u , , - ~ )  = a,(n-l)!+a2(n-2)!+ - . +~,-~1!+1 

It 1s easy to see that f 1s a proper codlng functlon glvlng all values between 1 
and n !. Just observe that 

n !  = (n-l)!n = (n-i)!(n-i)+(n-i)! 

= (n-l>!(n-i)+(n-2)!(n-2)+ . +1!i+i . 
The algorlthm conslsts of lgeneratlng a random lnteger x between 1 and n!, 
determlnlng a ,, . . . , a,,, from x, and determlnlng the random permutation 
ol, . , . , on from the ai sequence. Flrst, the ai’s are obtalned by repeated dlvl- 
slons by (n-l)!,(n-2)!, etcetera. The ai's can be obtalned by an exchange algo- 
rlthm. Formally, we have: 

Random permutation generator 

Generate a random integer X uniformly distributed on {I,  . . . , n !}. XeX-1. 
FOR i :=1 TO n -1 DO 

(a i  ,X)+( ,Xmod(n - i ) ! )  (This determines all the ai ’s.) 
n --I )! 

Set o1, . . . , o, + 1, . . . , n . 
FOR i;=1 TO n-1  DO 

Exchange (swap) u , , + ~  and o , i + ,  

RETURN ol, . . . , b, . 

In the exchange step of the algorlthm, we exchange a randomly picked element 
wlth the last element In every lteratlon. The tlme taken by the algorlthm 1s 
o w .  

Sometlmes slmple codlng functlons can be found w1t.h the property that 
n > I E I , that Is, some of the lntegers In 1, . . . , n do not correspond to any 
comblnatorlal obJect In E. When n 1s not much larger than I E I , thls 1s not a 
blg problem, because we can apply the reJectlon prlnclple: 
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Decoding with rejection 

REPEAT 
Generate a random integer X with a uniform distribution on { 1, , . . , n }. 
Accept -[f (E)=x for some <€E] 

UNTIL Accept 

RETURN f-'(X) 

Just how one determlnes quickly whether (c)=x for some c € R  depends upon 
the clrcumstances. Usually, because of the size of 19 I , I t  is lmposslble or not 
practical to store a vector of flags, flagglng the bad values of X .  If I B I 1s 
moderately small, then one could consider dolng thls In a preprocesslng step. 
Most of the tlme, I t  is necessary to  start  decodlng x, untll in the process of 
decodlng one dlscovers that there 1s no comblnatorlal obJect for the glven value 
of X .  In any case, the expected number of iteratlons is 7 . What we have 
bought here 1s (1) slmpllcity (the decodlng functlon can be slmpler If we allow 
gaps in our enumeratlon) and (11) convenlence ( I t  is not necessary to count I B I ; 
ln fact, this value need not be known at all !). 

n 
I4 

1.3. Generation based upon recurrences. 
Most comblnatorlal objects can be counted lndirectly vla recurrence rela- 

tlons. Dlrect countlng, as in the case of random permutatlons, addresses itself to 
the decodlng method. Countlng vla recurrences can be used to obtaln alternatlve 
generators. The idea has been around for some tlme. It was flrst developed 
thoroughly by Wllf (1Q77) (see also NlJenhuls and Wllf (1978)). 

We need to have two thliigs: 
A formula for the number of comblnatorlal obJects wlth a certaln parameter 
(or parameters) k In terms of the number of combinatorlal obJects wlth 
smaller parameter(s). This wlll be called our recurrence relatlon. 
A good understanding of the recurrence relatlon, so that the relatlon itself 
can be llnked In a constructlve way to a combinatorlal object. 

1. 

2. 

For example, consider E , ,  the collectlon of permutatlons of 1, . . . , n . We have 

I S ,  I = n / E ~ - ~  I . 

The meanlng of this relation 1s clear: we can obtaln f€E,  by conslderlng all per- 
mutations E,-,, padding them wlth the slngle element n (In the last position), 
and then swapplng the n - t h  element wlth one of the n elements. The swapplng 
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operatlon glves us the factor n In the recurrence relatlon. We wlll rewrlte the 
recurrence relatlon as follows: 

where S,-l(l,2, . . . , i -1,i +1, . . . , n ) 1s the collectlon of all permutatlons of 
the glven n-1 elements, and . 1s the concatenatlon operator. T o  generate a ran- 
dom element from a,, I t  suf€lces to choose a random term In the unlon (wlth pro- 
bablllty proportional to the cardlnallty of the chosen term), and to  construct the  
part of the comblnatorlal obJect that corresponds t o  thls cholce. In the case of 
the random permutatlons, each of the n terms In the unlon shown In the 
recurrence relatlon has equal cardlnallty, and should thus be chosen wlth equal 
probablllty. But chooslng the t - th  term corresponds t o  puttlng the i - th  element 
of the n-vector at the end of the permutation, and generatlng a random permu- 
tation for the n-1 remalnlng elements. Thls leads qulte naturally to  the swap- 
ping method for random permutatlons: 

The swapping method for random permutations 

Set ul, . . . , u, + 1, . . . , n .  

FOR i :=n DOWNTO 2 DO 
Generate x uniformly in 1, . . . , i . 
Swap ux and u;, 

RETURN cl, . . . ,u, . 

There are obviously more compllcated sltuatlons: see for example the subsec- 
tlons on random partitions and random blnary trees in the correspondlng subsec- 
tlons. For now, we wlll merely apply the technlque to the generation of random 
subsets of slze k out of n elements, and see that I t  reduces to  the sequentlal 
method In random sampllng. 

There are 

n -1 n -1 ll = 1 k l + l k - l l  

sets of slze k 2 1 conslstlng of dlfferent lntegers plcked from (1, . . . , n }, where 
n 2 IC. Clearly, a s  boundary condltlons, we have 

[;] = l ;  1:) = l .  

The recurrence can be lnterpreted as follows: k lntegers can be drawn from 
2, . , . , n (thus, lgnorlng l),  or by chooslng 1 and chooslng a random subset of 
slze k-1 from 2, . . . , n (thus, lncludlng 1). The probablllty of lncluslon of 1 1s 
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therefore 

Thls leads dlrectly to the followlng algorlthm: 

Random subset of size k from 1, ..., n 

S+-0 (set to be returned is empty) 
FOR i:=1 TO n DO 

Generate a uniform [0,1] random variate U . 

RETURN S 

We can also look at the method of recurrences as some sort of composltlon 
method. Typlcally, E n  1s spllt lnto a number of subsets of obJects, each havlng a 
speclal property. Let us write 

k 

where the sets 8, ( i )  
blllty 

1 8 n ( i ) l  

18, I 

are non-overlapplng. If an lnteger t' 1s plcked wlth proba- 

(1LiLk:) 9 

and lf we generate a unlformly dlstrlbuted obJect in E,(;), then the random 
obJect 1s unlformly dlstrlbuted over E,. Of course, we are allowed to apply the 
same decomposltlon prlnclple to the lndlvldual subsets In turn. The subsets have 
generally speaklng some property whlch allows us to construct part of the solu- 
tlon, as was lllustrated wlth random permutatlons and random subsets. 

I 

i 
-- 
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2. RANDOM PERMUTATIONS. 

2.1. Simple generators. 
The decodlng method of sectlon XIII.1.2 requlres only one unlform random 

varlate per random permutatlon of 1, . . . , n .  It was suggested In a number of 
papers (see e.g. Roblnson (1907), Jansson (1966), de Balblne (1967)’ and the sur- 
vey paper by Plackett (1968)). Glven an arbltrary array of length n , and one unl- 
formly dlstrlbuted random lnteger on 1, . . . , n !, the  decodlng method constructs 
In tlme 0 ( n )  one random permutatlon of 1, . . . , n . The algorlthm of sectlon 
XIII.1.2 1s a two-pass algorlthm. Robson (1909) has polnted out  that there 1s a 
slmple one-pass algorlthm based upon decodlng: 

Robson’s decoding algorithm 

[NOTE: This algorithm assumes that some permutation ul, . . . , u, of 1, . . . , n is given. 
Usually, this permutation is a previously generated random permutation.] 
Generate a random integer x uniformly on 1, . . . , n !. 
FOR i :=n DOWNTO 2 DO 

Swap ui and uz 
RETURN u,, . . . ,6, 

Desplte the obvlous Improvement over the algorlthm of sectlon XIII.1.2, the 
decodlng method remalns of llmlted value because n ! lncreases too qulckly wlth 
n .  

The exchange method of sectlon XIII.1.3 on the other hand does not have 
this drawback. It 1s usually attrlbuted to Moses and Oakford (1963) and to 
Durstenfeld (1964). The method requlres n -1 Independent unlform random varl- 
ates per random permutatlon, but I t  1s extremely slmple In conceptlon, requlrlng 
only one pass and no multlpllcatlons, dlvlslons or truncatlons. 

2.2. Random binary search trees. 
Random permutatlons are useful In a number of appllcatlons. As we have 

polnted out  earller, the swapplng method can be stopped after a glven number of 
lteratlons to yleld a method for generatlng a random subset of 1, . . . , n of slze 
k <n . Thls was dealt wlth In chapter XI1 on random sampllng. Another appllca- 
tlon deals wlth the generatlon of a random blnary search tree. 
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A random blnary search tree wlth n nodes 1s deflned as a blnary search tree 
constructed from a random permutatlon, where each permutatlon 1s equally 
llkely. It 1s easy to see that dlfferent permutatlons can yleld a tree of the same 
shape, so all trees are not equally llkely (but the permutatlons are !). It 1s clear 
that if we proceed by lnsertlng the elements of a random permutatlon In turn, 
startlng from an empty tree, then the expected tlme of the algorlthm can be 
measured by 

+ ( D i )  
i =I 

where Di 1s the depth (path length from root to node) of the i - t h  node when 
lnserted lnto a blnary search tree of slze i-1 (the depth of the root 1s 0). The fol- 
lowlng result 1s well-known, but 1s lncluded here because of Its short unorthodox 
proof, based upon the theory of records (see Gllck (1978) for a recent survey): 

Lemma 2.1. In a random blnary search tree, 

(D, 1 5 2(log(n )+I) . 

In fact E(D,)-2 log(n). Based upon Lemma 2.1, I t  1s not dlfflcult to see that 
the expected tlme for the generator 1s 0 ( n  log(n )). Slnce E (Dn )-2 log(n ) , the 
expected tlme 1s also Cl(n log(n )). 
Proof of Lemma 2.1. 

D, 1s equal to the number of left turns plus the number of rlght turns on 
the path from the root to the node correspondlng to the n - t h  element. By sym- 
metry, E (D, ) Is twlce the expected number of rlght turns. These rlght turns can 
convenlently be counted as follows. Conslder the random permutatlon of 
1, , . . , n ,  and extract the subsequence of all elements smaller than the last ele- 
ment. In thls subsequence (of length at most n-1), flag the records, 1.e. the larg- 
est values seen thus far. Note that the flrst element always represents a record. 
The second element Is a record wlth probablllty one half, and the i - th  element 1s 
a record wlth probablllty l / i .  Each record corresponds to a rlght turn and vlce 
versa. Thls can be seen by notlng that elements followlng a record whlch are not 
records themselves are In a left subtree of a node on the path to the record, 
whereas the n - t h  orlglnal element 1s In the rlght subtree. Thus, these elements 
cannot have any lnfluence on the level of the n - t h  element. The subsequence has 
length between 0 and n-1, and to  bound the expected number of records from 
above, I t  sufflces to conslder subsequences of length equal to n -1. Therefore, the 
expected depth of the last node 1s not more than 

n 
1 n -1 

2 1 < 2(l+J- dx) = 2(l+log(n)) .I 
l X  

. i -  
1 =1 

I 
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But Just as wlth the problem of the generatlon of an ordered random Sam- 
ple, there Is an lmportant short-cut, whlch allows us to  generate the random 
blnary search tree In llnear expected tlme. The lmportant fact here Is that lf the 
root 1s Axed (say, Its lnteger value 1s t ' ) ,  then the left subtree has cardlnallty i-1, 
and the rlght subtree has cardlnallty n -t' . Furthermore, the value of the root 
ltself 1s unlformly dlstrlbuted on 1, . . . , n. These propertles allow us t o  use 
recurslon In the generatlon of the random blnary search tree. Slnce there are n 
nodes, we need no more than n uniform random varlates, so that the total 
expected tlme 1s 0 (n ). A rough outllne follows: 

Linear expected time algorithm for generating a random binary search tree with 
n nodes 

[NOTE: The binary search tree consists of cells, having a data fleld "Data", and two 
pointer flelds, "Left" and "Right". The algorithm needs a stack s for temporary storage,] 

h4AKENULL (S) (stack S is initially empty). 
Grab an unused cell pointed to by pointer p.. 
PUSH [p , l , n  ] onto S. 
WHILE NOT EMPTY (s) DO 

POP S ,  yielding the triple [p ,l , r  1. 
Generate a random integer x uniformly distributed on 1 ,  . . . , r . 
p f . D a t a c X ,  p f .Lef t tNIL,  p f.Right+NIL 
W x < r  THEN 

Grab an unused cell pointed to  by q* . 
p f.Right+q* (make link with right subtree) 
PUSH [q* , X + l , r  ] onto stack s (remember for later) 

Grab an unused cell pointed to  by q . 
p t.Left-q (make link with left subtree) 
PUSH [ q  , I  ,x-1] onto stack s (remember for later) 

F X > I  THEN 

2.3. Exercises. 
1. Conslder the followlng putatlve swapplng method for generatlng a random 

permut atlon: 
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Start with an arbitrary permutation ul, . . . , u, of 1, . . . , n . 
FOR ;:=I TO n DO 

Generate a random integer x on 1, . . . , n (note that  the range does not 
depend upon ;). 

Swap ui and ux 
RETURN ul, . . . , 6, 

Show that thls algorlthm does not yleld a valld random permutatlon (all per- 
mutatlons are not equally likely). Hlnt: there 1s a three line comblnatorlal 
proof(de Balblne, 1967). 

The dlstrlbutlon of the height H, of a random blnary search tree 1s very 
cornpllcated. To slmulate H,, , we can always generate a random blnary 
search tree and And H,, . Thls can be done In expected tlme 0 (n  ) as we 
have seen. Flnd an algorlthm for the generatlon of H, In subllnear expected 
tlme. The closer to constant expected tlme, the better. 
Show why Robson’s decodlng algorlthm 1s valld. 
Show that for a random blnary search tree, E (D, )-2 log(n ) by employlng 
the analogy wlth records explalned ln the proof of Lemma 2.1. 
Glve a linear expected tlme algorlthm for constructlng a random trle wlth n 
elements. Recall that a trle Is a blnary tree In whlch left edges correspond to 
zeroes and right edges correspond to ones. The n elements can be consldered 
a s  n Independent lnflnlte sequences of zeroes and ones, where all zeroes and 
ones are obtalned by perfect coln tosses. Thls yields an lnflnlte tree In whlch 
there are preclsely n paths, one for each element. The trle denned by these 
elements 1s obtalned by truncatlng all these paths to the polnt that any 
further truncatlon would lead to two ldentlcal paths. Thus, all lnternal 
nodes whlch are fathers of leaves have two chlldren. 
Random heap. Glve a llnear expected tlme algorlthm for generatlng a ran- 
dom heap wlth elements 1, . . . , n so that each heap is equally llkely. Hlnt: 
assoclate wlth lnteger 2’ the i - t h  order statistlc of a unlform sample of slze 
n , and argue In terms of order statlstlcs. 

2 .  

3. 
4. 

5. 

6. 
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3. RANDOM BINARY TREES. 

3.1. Representations of binary trees. 

XIII.3.RANDOM BINARY TREES 

A binary tree consists of a root, or a root anG a left and/or a right subtree, 
and each of the subtrees In turn is a binary tree. Two blnary trees are similar if 
they have the same shape. They are equivalent If they are slmllar, and If the 
corresponding nodes contain the same information. The distlnctlon between siml- 
larlty and equivalence Is thus based upon the absence or presence of labels for the 
nodes. If there are n nodes, then every permutatlon of the labels of the nodes 
ylelds another labeled blnary tree, and all such trees are similar. 

A random binary tree with ?a nodes is a random unlabeled blnary tree whlch 
1s uniformly distributed over all nonslmilar blnary trees wlth n nodes. The uni- 
form distrlbutlon on the n nodes causes some problems, as we can see from the 
following simple example: there are 5 different binary trees with 3 nodes. Yet, if 
we generate such a tree either by generatlng a random permutation of 1,2,3 and 
constructlng a blnary search tree from thls permutatlon, or by growlng the tree 
via uniform replacements of NIL polnters by new nodes, then the resultlng trees 
are not equally llkely. For example, the complete blnary tree wlth 3 nodes has 

1 1 
.3 5 

probabillty - in both schemes, lnstead of - as is requlred. The unlformlty con- 
dltlon will roughly speaklng stretch the binary trees out, make them appear more 
unbalanced, because less likely shapes (under standard models) become equally 
llkely. 

In this section, we look at some handy representatlons of binary trees whlch 
can be useful further on. 

Theorem 3.1. 
Let p , , p , ,  . . . , p a n  be a balanced sequence of parentheses, Le. each p i  

belongs to {(,)}, for every partial sequence p l,p 2,  . . . , p i ,  the number of open- 
lng parentheses is at least equal to  the number of closlng parentheses, and in the 
entlre sequence, there are an equal number of opening and closing parentheses. 

Then there exlsts a one-to-one correspondence between all such balanced 
sequences of 2n parentheses and all binary trees wlth n nodes. 

Proof of Theorem 3.1. 
We will prove this constructively. Consider an inorder traversal of a binary 

tree, 1.e. a traversal whereby each node 1s vlslted after Its left subtree has been 
vlsited, but before Its rlght subtree is visited. In the traversal, a stack S is used. 
Inltlally the root 1s pushed onto the stack. Then, a move to  the left down the tree 
corresponds to another push. If there is no left subtree, we pop the stack and go 
the the right subtree If there Is one (thls requlres yet another push). If there is no 
right subtree elther, then we pop agaln, and so forth untll we try to pop an 
empty stack. The algorithm is as follows: 
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Inorder stack traversal of a binary tree 

[NOTE: The binary tree consists of n cells, each having a left and a right pointer fleld. S 
Is a stack, and p l ,  . . . , p n n  is the sequence of pushes (opening parentheses) and pops 
(closing parentheses) to be returned.] 
p +- root of tree ( p  is a pointer) 
i -2 ( i  is a counter) 
MAKENULL (S ) 
PUSH p onto S ; p lt( 
REPEAT 

XF p t.Left#NIL 
THEN PUSH p !.Left onto S ;  p +-p  t.Left; pi+(;  i+- i+ l  
ELSE 

REPEAT 
P O P  S , yielding p : p i  +); i +i +1 

UNTIL i > 2 n  OR p t.Right#NIL 
P i 5 2 7 2  

THEN PUSH p t.Right onto S ; p - p  1.Right; p i  +(; i + i  +1 

UNTIL i > 2 n  

RETURN PI, - * > ~ 2 n  

Dlfferent sequences of pushes and pops correspond to  dlfferent blnary trees. Also, 
every partial sequence of pushes and pops 1s such that the number of pushes 1s at 
least equal to the number of pops. Upon exlt from the algorithm, both numbers 
are of course equal. Thus, if a push 1s ldentifled wlth an openlng parenthesls, and 
a pop with a closlng parenthesls, then the equlvalence clalmed In the theorem 1s 
obvlous. 

For example, the sequence ()()()()() 0 . + () corresponds to  a blnary tree In 
whlch all nodes have only rlght subtrees. And the sequence ((((( . . ))))) 
corresponds to a blnary tree In whlch all nodes have only left subtrees. The 
representatlon of a blnary tree In terms of a balanced sequence of parentheses 
comes In very handy. There are other representations that can be derived from 
Theorem 3.1. 
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Theorem 3.2. 
There 1s a one-to-one correspondence between a balanced sequence of 2n 

parentheses and a random walk of length 2n whlch starts at the orlgln and 
returns to the orlgln wlthout ever crosslng the zero axls. 

Proof of Theorem 3.2. 
Let every openlng parenthesls correspond to a step of slze "+l" In the ran- 

dom walk, and let every closlng parenthesls correspond to a step of slze "-1" In 
the random walk. Obvlously, such a random walk returns to the orlgln If the 
strlng of parentheses 1s balanced. Also, I t  does not take any negatlve values. 

Theorem 3.2 can be used to obtaln a short proof for countlng the number of 
dlfferent (l.e., nonslmllar) blnary trees wlth n nodes. 

Theorem 3.3 
There are 

1 - 
n +I " 1  n 

dlflerent blnary trees wlth n nodes. 

Proof of Theorem 3.3. 
The proof uses the celebrated mlrror prlnclple (Feller, 1965). Conslder a 

random walk startlng at (2k ,O) (2k 20 1s the lnltlal value; 0 1s the lnltlal tlme): 
In one tlme unlt, the value of the random walk elther lncreases by 1 or decreases 
by 1. The number of paths endlng up at ( 0 , 2 n )  whlch take at least one negatlve 
value 1s equal to the number of unrestrlcted paths from (2k ,O) to (-2,2n ). This 
can most easlly be seen by the followlng argument: there 1s a one-to-one 
correspondence between the glven restrlcted and unrestrlcted paths. Note that 
each restrlcted path must take the value -1 at some polnt In tlme. Let t be the 
flrst tlme that thls happens. From the restrlcted path to ( 0 , 2 n ) ,  construct an 
unrestrlcted path to (-2,2n ) as follows: keep the lnltlal segment up to tlme t , 
and fllp the tall segment between tlme t and tlme 2n around, so that the path 
ends up at (-2,2n ). Each dlfferent restrlcted path ylelds a dlfferent unrestrlcted 
path. Vlce versa, slnce the unrestrlcted paths must all cross the horlzontal llne at 
-1, tlme t 1s well deflned, and each unrestrlcted path corresponds to a restrlcted 
path. 

The number of paths from ( 2 k  ,O) to (0,2n ) whlch do not cross the zero axls 
equals the total number of unrestrlcted paths mlnus the number of paths that do 
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n 

1 

655 

Number of binary trees with n 
nodes 

1 

cross the zero axls, 1.e. 

2 

3 

whlch 1s easlly seen by uslng a small argument lnvolvlng numbers of posslble sub- 
sets. In partlcular, If we set k=O, we see that the total number of blnary trees 
(or the total number of nonnegatlve paths from (0,O) to (0,2n )) 1s 

2 

5 

The number of blnary trees wlth n nodes grows very qulcltly wlth n (see 
table below). 

11 
429 

3430 

One can show (see exerclses) that thls number ~4~ / ( d % ~ ~ / ~ ) .  Because of thls, 
the decodlng method seems once agaln lmpractlcal except perhaps for n smaller 
than 15, because of the wordslze of the lntegers lnvolved In the computatlons. 

3.2. Generation by rejection. 
Random blnary trees or random strlngs of balanced parentheses can be gen- 

erated by the rejectlon method. Thls could be done for example by generatlng a 
random permutatlon of n openlng parentheses and n closlng parentheses, and 
acceptlng only If the resultlng strlng satlsfles the property that all partlal sub- 
strlngs have at least as many openlng parentheses as closlng parentheses. There 
are 

lnltlal strlngs, all 

a strlng 1s thus 
equally llkely. By Theorem 3.3, the probablllty of 

- . Furthermore, to declde whether a strlng 
n +I 

acceptance of 

has the sald 

I 
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property takes expected tlme propqrtlonal to n .  Thus, the expected tlme taken 
by the algorlthm varles as n2. For thls reason, the reJectlon method 1s not recom- 
men de d. 

3.3. Generation by sequential sampling. 
It 1s posslble to  generate a random blnary tree wlth n nodes In time 0 (n ) 

by flrst generatlng a random strlng of balanced paren3heses of length 2n In tlme 
0 ( n  ) and then reconstructlng the tree by mlmlcklng the lnorder traversal glven 
In the proof of Theorem 3.1. The strlng can be generated In one pass, from left to  
rlght, slmllar to the sequentlal sampllng method for generatlng a random subset, 
It 1s perhaps best t o  conslder the analogy wlth random walks once agaln. We 
star t  at (O,O), and have to  end up at (0,2n ). At each point, say ( k  , t  ), we declde 
to generate a ( wlth probablllty equal t o  the ratlo of the number of nonnegatlve 
paths from ( k  + l , t  +1) t o  (0,2n ) t o  the number of nonnegatlve paths from ( k  , t  ) 
to ( 0 , 2 n ) .  We generate a ) otherwlse. It 1s clear that thls method uses a 
recurrence relatlon for blnary trees, but the explanatlon glven here In terms of 
random walks 1s perhaps more lnslghtful. The number of nonnegatlve paths from 
( k  , t  ) to (0,2n ) 1s (see the proof of Theorem 3.3 ): 

2n - t  2n -t  2n -t  2k +2 1 k + r - t  1-1 k+2;2n-t  = 1 k + r - t ]  2 n - t + k + 2  ' 

The probablllty of a ( at ( k  , t  ) 1s thus 

2k +4 

k + 2  2n- t -k  =- 

The resultlng algorlthm for generatlng a random strlng of balanced parentheses 1s 
due to Arnold and Sleep (1980): 
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Sequential method for generating a random string of balanced parentheses 

[NOTE: The string generated by us is returned in p l , . . . ,p  an .] 
XtO (X holds the current "value" of the corresponding random walk.) 

FOR t :=0 TO 2n -1 DO 
Generate a uniform [0,1] random variate U. 

x + 2  2 n  4 - X  
x+l 2 ( 2 n - t )  

IF us- 

It Is relatlvely straightforward to check that the random walk cannot take nega- 
tlve values because when X=O, the probablllty of generatlng ( in the algorlthm 
1s 1. It 1s also not posslble to overshoot the origin at tlme 2n because whenever 
X=2n -t , the probabillty that a ( 1s generated Is 0. 

The reconstructlon in llnear tlme of a blnary tree from a strlng of balanced 
parentheses 1s left as an exerclse to the reader. Baslcally, one should mlmlc the 
algorlthm of Theorem 3.1 where such a strlng 1s constructed glven a blnary tree. 

3.4. The decoding method. 
There are a number of sophlstlcated codlng functlons for blnary trees, whlch 

can be decoded In llnear tlme, but all of them requlre extra storage space for aux- 
lllary constants. See e.g. Knott  (1977), Ruskey (1978), Ruskey and Hu (1977) and 
Trojanowskl (1978). See also Tlnhofer and Schreck (1984). 

3.5. Exercises. 

1. 
4n 

&n 
Consider an arbltrary (unrestrlcted) random walk from (0,O) to (0,271 ) (thls 
can be generated by generatlng a random permutation of n 1's and n -1's). 
DeAne another random walk by taklng the absolute value of the unrestrlcted 
random walk. Thls random walk does not take negative values, and 
corresponds therefore to a strlng of balanced parentheses of length 2 n .  Show 
that the random strlngs obtalned In thls manner are not unlformly 

Show that the Dumber of blnary trees wlth n nodes - 
3 - 

2. 
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dlstrlbuted. 
Glve a llnear tlme algorlthm for reconstructlng a blnary tree from a strlng or 
balanced parentheses of length 2n uslng the correspondence establlshed In 
Theorem 3.1. 

4. Random rooted trees. A rooted tree wlth n vertlces consists of a root 
and an ordered collectlon of nonempty rooted subtrees when n >1. When 
n =1, I t  conslsts of just a root. The vertlces are unlabeled. Thus, there are 5 
dlfferent rooted trees when n=4. There are a number of representatlons of' 
rooted trees, such as: 
A. A vector of degrees: wrlte down for each node the number of children 

(nonempty subtrees) when the tree 1s traversed In preorder or level 
order. 

B. A vector of levels: traverse the tree In preorder or postorder and wrlte 
down the level number of each node when i t  Is vlslted. 

We can call these vectors of length n codewords. There are other more 
storage-efflclent codewords: And a codeword of length 2n conslstlng of blts 
only, whlch unlquely represents a rooted tree. Show tha t  all codewords for 
representlng rooted trees or blnary trees must take at least (2+0(l))n blts 
of storage. Generatlng a codeword 1s equlvalent to generatlng a rooted tree. 
Plck any codeword you llke, and glve a llnear tlme algorlthm for generatlng 
a valld random codeword such that all codewords are equally llkely to be 
generated. Hlnt: notlce the connectlon between rooted trees and blnary 
trees. 
Let us grow a tree by replaclng on a sequentlal basls all NIL polnters by new 
nodes, where the cholce of a NIL polnter 1s unlform over the set of such 
polnters (see sectlon 3.1). Note that there are n +1 NIL polnters If the tree 
has n nodes. Let us generate another tree by generatlng a random permuta- 
tlon and constructlng a blnary search tree. Are the two trees slmllar In dls- 
trlbutlon, 1.e. 1s I t  true that  for each shape of a tree wlth n nodes, and for 
all n ,  the probablllty of a tree wlth that  shape 1s the same under both 
schemes ? Prove or dlsprove. 
Flnd a codlng functlon for blnary trees whlch can be decoded In p]me 0 ( n  ). 

3. 

5.  

6. 

4. RANDOM PARTITIONS. 

4.1. Recurrences and codewords. 
Many problems can be related to  the generatlon of random partltlons Of 

(1, . . . , n }  lnto k nonempty subsets. We know that  there are { i }  such part]- 

tlons, where {.} denotes the Stlrllng number of the second klnd. Rather than give 
a formula for the Stlrllng numbers In terms of a serles, we wlll employ the 



XIII. 4 .RAND OM PARTITIONS 

k =  

2 
3 
4 
5 
6 

659 

n = 1 2 3 4  5 6 

1 1 1 1 1  1 1  
1 3 7 15 31 

1 6 25 90 
1 10 65 

1 15 
1 

recurslve deflnltlon: 

Uslng thls, we can form a table of Stlrllng numbers, Just as we can form a table 
(Pascal's trlangle) from the well-known recurslon for blnomlal numbers. We have: 

The recurslon has a physlcal meanlng: we can form a partltlon lnto k nonempty 
subsets by conslderlng a partltlon of (1, . . . , n -1} and addlng one number, n . 
That number n can be consldered as a new slngleton set In the partltlon (thls 
explalns the contrlbutlon 

In the recurslon). It can also be added to one of the sets In the partltlon of 
(1, . . . , n -1). In thls case, we can add I t  to one of the k sets In the latter partl- 
tlon. To have a unlque way of addresslng these sets, we order the sets accordlng 
to the value of thelr smallest elements, and label the sets 1,2,3, . . . , k. The 
addltlon of n to set i lmplles that we must lnclude 

In the recurslon. 
Before we proceed wlth the generatlon of a random partltlon based upon thls 

recurslon, I t  1s perhaps useful to descrlbe one klnd of codeword for random partl- 
tlons. Conslder the case n =5 and k =3. Then, the partltlon (1,2,5),(3),(4) can be 
represented by the n-tuple 11231 where each lnteger In the n-tuple represents 
the set to whlch each element belongs. By conventlon, the sets are ordered 
accordlng to the values of thelr smallest elements. So I t  1s easy to see that 
dlfferent codewords yleld dlfferent partltlons, and vlce versa, that all n -tuples of 
Integers from (1, . . . , k }  (such that each lnteger 1s used at least once) havlng 
thls orderlng property correspond to some partltlon lnto k nonempty subsets. 
Thus, generatlng random codewords or random partltlons 1s equlvalent. Also, one 
can be constructed from the other In tlme 0 (n ). 



XIII.4.RANDOM PARTITIONS 

4.2. Generation of random partitions. 
The generator descrlbed below produces a random codeword, unlformly dis- 

trlbuted over the collectlon of all posslble codewords. It 1s based upon the recur- 
slon explalned above. To add n to  a partltlon of (1, . . . , n -1}, we should define 
a slngleton set {n } (In which case I t  must have set number k ) wlth probablllty 

and add I t  to a randomly plcked set from among 1, . . . , k wlth probablllty 

each. Obvlously, we have to generate the random codeword backwards. 

Random partition generator based upon 
numbers 

[NOTE: n and k are given and will be destroyed.] 
REPEAT 

Generate a uniform [0,1] random variate U. 

THENX,+k, k t k - 1  

ELSE Generate xn uniformly on 1, . . 
n t n - 1  

UNTIL n=O 

RETURN the codeword x,,x,, . . . , x,, 

recurrence relation for Stirling 

, k  

If the Stlrllng numbers can be computed In tlme 0 (1) (for example, If they are 
stored In a two-dlmenslonal table), then the algorithm takes tlme 0 ( n  ) per code- 
word. The storage requlrements are proportlonal to nk . The preprocesslng time 
needed to set up the table of slze 12 by k Is also proportlonal to nk If we use the 
fundamental recurslon. 
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We conclude this sectlon by notlng that the algorithm given above 1s a 
slightly modlfled verslon of an algorlthm given in Wllf (1977) and Nijenhuls and 
Wllf (1978). 

4.3. Exercises. 
1. 

2. 

Deflne a coding function for random partitions, and And an 0 ( n  ) decoding 
algor1 t hm. 
Random partitions of integers. Let p ( n  ,k) be the number of partltlons 
of an integer n such that the largest part 1s k. The followlng recurrence 
holds: 

p(n,IC) = p ( n - l , k - l ) + p ( n - k , k ) .  

The flrst term on the rlght-hand slde represents those partltlons of n whose 
largest part is k and whose second largest part 1s less than k (because such 
partitlons can be obtained from one of n - 1  whose large% part is k-1  by 
addlng 1 to the largest part). The partitions of n whose largest two parts 
are both IC come from partltlons of n-k  of largest part k by replicating the 
largest part. Argulng as In Wilf (1977), a partition 1s a series of declslons 
"add 1 to the largest part" or "adjoin another copy of the largest part". 
A. Glve an algorlthm for the generation of such a random partltion (all 

partitions should be equally likely of course), based upon the glven 
recurrence relation. 

B. 

C. 

Flnd a codlng functlon for these partltlons. Hlnt: base your functlon on 
the parts of the partltion given In descending order. 
How would you generate an unrestricted partitlon of n ? Here, unres- 
tricted means that no bound 1s glven for the largest part in the partl- 
tlon. 

D. Flnd a recurrence relatlon similar to the one given above for the 
number of partltions of n with parts less than or equal to k. 

E. For the combinatorial obJects of part D, And a coding function and a 
decoding algorithm for generating a random object. See also McKay 
(1965). 
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5. RANDOM FREE TREES. 

5.1. Prufer’s construction. 
A free tree 1s a connected graph wlth no cycles. If there are n nodes, then 

there are n-1 edges. The distlnctlon between labeled and unlabeled free trees 1s 
Important. Note however that unlike other trees, free trees do not have a given 
root, All nodes are treated equally. We wlll however keep uslng the term leaf for 
nodes wlth degree one. 

The generatlon of a random free tree can be based upon the followlng 
theorem: 

Theorem 5.1. 
Cayley’s theorem. There are exactly n n - 2  labeled free trees wlth n nodes. 
Prufer’s construction. There exlsts a one-to-one correspondence between all 
(n  -2)-tuples (”codewords”) of lntegers a ,, . . . , a,-,, each taklng values in 
{I, . . . , n ), and all labeled free trees wlth n nodes. The relatlonshlp 1s glven In 
the proof below. 

Proof of Theorem 5.1. 
Cayley’s theorem follows from Prufer’s constructlon. Let the nodes of the 

labeled free tree have labels 1, . . . , n .  From a labeled free tree a codeword can 
be constructed as follows. Let a ,  be the label of the neighbor of the leaf wlth the 
smallest label. Delete the correspondlng edge. Slnce one of the endpoints of the 
edge is a leaf, removal of the edge wlll leave us wlth a labeled free tree of slze 
n-1. Repeat thls process untll n-2 components of the codeword have been calcu- 
lated. At the end, we have a labeled free tree wlth Just 2 nodes, whlch can be dls- 
carded. For example, for the labeled free tree wlth 6 nodes and edges (1,2), (2,3), 
(4,3), (5,3), (6,3), the codeword (2,3,3,3) is obtalned. 

Conversely, from each codeword, we can construct a free tree havlng the 
property tha t  if we use the constructlon given above, the lnltial codeword 1s 
obtalned agaln. Thls 1s all that 1s needed to establlsh the one-to-one correspon- 
dence. For the constructlon of the tree from a glven codeword, we begln wlth 
three llsts: 
A. 
B. 

The codeword: a,, . . . , a,-,. 

A list of n flags: f ,, . . . , f , where f i  =1 lndlcates that node t’ 1s avall- 
able. Initlally, all flags are 1. Flag i 1s set to 0 only when i 1s a leaf, and the 
edge connected to i is suddenly removed from the tree. 
A llst of n flags lndlcatlng whether a node 1s a leaf or not: 1 ,, . . . , 1, . li =1 
lndlcates that node 2’ 1s a leaf. Note that thls llst 1s redundant, slnce a node 
1s a leaf If and only If Its label can be found In the codeword. The inltlallza- 
tion of thls llst of flags 1s slmple. 

C. 
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The constructlon proceeds by flrst recreatlng the n -2 edges that correspond to 
the n -2 components of the codeword. Thls 1s done slmply as follows: choose node 
a (thls 1s not a leaf, slnce I t  1s In the codeword), and choose the smallest leaf v 
(flag 1, =1 and avallablllty flag f , =1 ). Return the edge ( a  ,,v ), and set the flag 
of w to 0, which effectlvely ellmlnates v . If a cannot be found In the remalnder 
of the codeword, then a ,  becomes a leaf In the new free tree, and the flag la1 
must be set to 1. Thls process can be repeated untll a ,, . . . , a, -2 1s exhausted. 
The last (n-1-st) edge at the end 1s slmply found by taklng the only two nodes 
whose avallablllty flags are stlll 1. Thls concludes the constructlon. It 1s easy to 
verlfy that  If the tree 1s used to construct a codeword, the lnltlal codeword 1s 
obtalned. 

The degree of a node 1s one plus the number of occurrences of the node In 
the codeword, at least If codewords are translated lnto free trees vla Prufer’s con- 
structlon. To generate a random labeled free tree wlth n nodes (such that all 
such trees are equally llkely), one can proceed as follows: 

Random labeled free tree generator 

FOR i:=1 TO n -2 DO 

Generate a; uniformly on (1, . . . , n }. 
Translate the codeword into a labeled free tree via Prufer’s construction. 

A careless translatlon of the codeword could be lnefflclent. For example, the 
verlflcatlon of whether an lnternal node becomes a leaf durlng constructlon, when 
done by traverslng the leftover part of the codeword, yields an n ( n 2 )  contrlbu- 
tlon to the total tlme. Uslng llnear search to And the smallest avallable leaf 
would glve a contrlbutlon of S2(n2) to the total tlme. Even If a heap were used 
for thls, we would stlll be faclng a contrlbutlon of n(n log(n )) to the total tlme. 
In the next sectlon, a llnear tlme translatlon algorlthm due to Kllngsberg (1977) 
1s presented. 
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5.2. Klingsberg's algorithm. 
The purpose of this section 1s to  explaln Kllngsberg's 0 ( n  ) algorlthm for 

translatlng a codeword a , ,  . . . , anP2 lnto a labeled free tree. Hls solution 
requlres one addltlonal array T (11, . . . , T [n  1, whlch Is used to return the edges 
and t o  keep lnformatlon about the avallablllty flags and about the leaf flags (see 
proof of Theorem 1). The edges returned are 

(l,T[l]),(2,T[21), . * , (n-1,T[n-11) 

The other uses of thls array are: 
A. 7'[i]=avallable-not-leaf means that node i 1s stlll avallable and is not a 

leaf. The constant 1s set to  -1 In Klngsberg's work. 
B. T[z]=avallable-leaf means that node i 1s an avallable leaf. The constant is 

set t o  0 in Kllngsberg's work. 
C. T [i]=j >O lndlcates that node i 1s no longer avallable, and In fact that 

(i , j  ) 1s an edge of the labeled free tree. 
In the example of codeword (2,3,3,3) glven In sectlon 5.1, the array T would lnl- 
tlally be set to  (avallable-leaf , avallable-not-leaf , avallable-not-leaf , 
avallable-leaf , avallable-leaf , avallable-leaf ) slnce only nodes 2 and 3 are lnter- 
nal nodes. 

To speed up the determlnatlon of when an lnternal node becomes a leaf, we 
merely flag the last occurrence of every node In the codeword. Thls can con- 
venlently be done by changlng the slgns of these entrles. In our example, the 
codeword would lnltlally be replaced by (-2,3,3,-3). 

Flnally, to  And the smallest avallable leaf qulckly, we note that In the con- 
structlon, these leaf labels lncrease except when a new leaf 1s added, and Its label 
1s smaller than the current smallest leaf label. Thls can be managed wlth the ald 
of two movlng polnters: there 1s a masterpolnter whlch moves up monotonlcally 
from 1 to n ; In addltlon, there 1s a temporary polnter, whlch usually moves wlth 
the masterpolnter, except ln the sltuatlon descrlbed above, when I t  1s temporarlly 
set to a value smaller than that of the masterpolnter. The temporary polnter 
always polnts at the smallest avallable leaf. I t  Is thls lngenlous devlce whlch per- 
mltted Kllngsberg to  obtaln an 0 (n ) algorlthm. We can now summarlze hls 
algorlthm. 
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Klingsberg’s algorithm for constructing a labeled free tree from a codeword 

[PREPARATION.] 
FOR i :=1 T O  n DO T [i]+ availableleaf 

IF T [ai ] =available-leaf THEN 
FOR i :=n -2 DOWNTO 1 DO 

T [a i  ]=available-not-leaf; a i  --ai 

Master +-1 
a,-,+n (for convenience in deflning last edge) 
Master -min( J’ : T [J’ ]= availableleaf ) 

Temp +- Master 
[TRANSLATION.] 
FOR i:=1 T O  n-1 DO 

Select + I ai I 
T [Temp]+ Select (return edge) 

(select internal node) 

IF i < n - l  THEN 
IF ai >o 

THEN 
Master t m i n (  j : T [i]= available-leaf ) 
Temp + Master 

ELSE 
T [Select]+ available-leaf 
IF Select 5 Master THEN Temp +- Select (temporary step 
UP)  

RETURN (1 ,T [I]), . . . , ( n - I , T [ n - l ] )  

The llnearlty of the algorlthm follows from the fact that the masterpolnter can 
only Increase, and that all the operatlons In every lteratlon that do not lnvolve 
the masterpolnter are constan4 tlme operatlons. 

5.3. Free trees with a given number of leaves. 
Assume next that we wlsh to generate a labeled free tree wlth n nodes and 1 

leaves where 2 5 1  s n - 1 .  For the solutlon of thls problem, we recall Prufer’s 
codeword. The codeword contalns the labels of all lnternal nodes. Thus, I t  1s 
necessary to generate only codewords in whlch preclsely n-1 labels are present. 
The actual labels can be put In by selectlng n-1 labels from n labels by one Of 
the random sampllng algorlthms. Thus, we have: 
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Generator of a labeled free tree with n nodes and 1 leaves 

Generate a random subset of n -1 labels from 1, . . . , n . 
Perform a random permutation on these labels (this may not be necessary, depending upon 
the random subset algorithm.) 
Generate a random partition of n -2 elements into n -1 non-empty subsets, and assign the 
flrst label to the first subset, etcetera. This yields a codeword of length n -2 with precisely 
n-1 different labels. 
Translate the codeword into a labeled free tree (preferably using Klingsberg's algorithm). 

In thls algorlthm, we need algorlthms for random subsets, random partltlons and 
random permutatlons. It goes wlthout saylng that some of these algorlthms can 
be comblned. Another by-product of the decomposltlon of the problem lnto 
manageable sub-problems 1s that I t  1s easy to count the number of comblnatorla! 
obJects. W e  obtaln, In thls example: 

n -2 n -2 

5.4. Exercises. 
1. Let d,, . . . , dn be the degrees of the nodes 1, . . . , n In a free tree. (Note 

that the sum of the degrees 1s 2n-2.) How would you generate such a free 
tree ? Hlnt: generate a random Prufer codeword wlth the correct number of 
occurrences of all labels. The answer 1s extremely slmple. Derlve also a slm- 
ple formula for the number of such labeled free trees. 
Glve an  algorlthm for computlng the Prufer codeword for a labeled free tree 
wlth n nodes In tlme 0 ( n  ). 
Prove that the number of free trees that can be bullt wlth n labeled edges 
(but unlabeled nodes) 1s ( n  +1)"-2. Hlnt: count the number of free trees wlth 
n labeled nodes and n - 1  labeled edges flrst. 
Glve an 0 ( n  ) algorlthm for the generatlon of a random free tree wlth n 
labeled edges and n+l unlabeled nodes. Hlnt: try to use Kllngsberg's algo- 
rlthm by reduclng the problem t o  one of generatlng a labeled free tree. 

5. Random unlabeled free trees with n vertices. Flnd the connectlon 
between unlabeled free trees wlth n vertlces and rooted trees wlth n ver- 
tlces. Explolt the connectlon to generate random unlabeled free trees such 
that all trees are equally lllcely (Wllf, 1981). 

2. 

3. 

4. 
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6. RANDOM GRAPHS. 

6.1. Random graphs with simple properties. 
Graphs are the most general comblnatorlal objects dealt wlth In thls 

chapter. They have appllcatlons In nearly all flelds of sclence and englneerlng. I t  
1s qulte lmposslble to glve a thorough overvlew of the dlfferent subclasses of 
graphs, and how objects In these subclasses can be generated unlformly and at 
random. Instead, we wlll just glve a superflclal treatment, and refer the reader to 
general prlnclples or speclflc artlcles In the llterature whenever necessary. 

We wlll use the notatlon n for the number of nodes In a graph, and e for 
the number of edges In a graph. A random graph wlth a certaln property P 1s 
such that all graphs wlth thls property are equally llkely to occur. Perhaps the 
slmplest property 1s the property: "Graph G has n nodes". We know that there 
are 

objects wlth thls property. Thls can easlly be seen by conslderlng that each of the 

[i] posslble edges can either be present or absent. Thus, we should lnclude each 

edge ln a random graph wlth this property wlth probablllty 1/2. 
The number of edges chosen 1s blnomlally dlstrlbuted wlth parameters n 

and 1/2. It 1s often necessary to  generate sparser graphs, where roughly speaklng 
e 1s O ( n )  (or at least not 0(n2)). Thls can be done In two ways. If we do not 
requlre a speclflc number of edges, then the slmplest solutlon 1s to select all edges 
lndependently and wlth probablllty p . Note that the expected number of edges 1s 

p [ l] b Thls 1s most easlly lmplemented, especlally for small p , by uslng the fact 

that the waltlng tlme between two selected edges 1s geometrlcally dlstrlbuted 
wlth parameter p , where by "waltlng tlme" we mean the number of edges we 
must manlpulate before we see another selected edge. Thls requlres a llnear order- 
lng on the edges, whlch can be done by the codlng functlon glven below. 

If the property 1s "Graph G has n nodes and e edges", then we should flrst 

select a random subset of e edges for the set of [ posslble edges. Thls pro- 

perty 1s slmple to deal wlth. The only sllght problem 1s that of establlshlng a slm- 
ple codlng functlon for the edges, whlch 1s easy to decode. Thls 1s needed slnce 
we have to access the endpolnts of the edges some of the tlme (e.g., when return- 
h g  edges), and the coded edges most of the tlme (e.g., when random sampllng 
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n -1 n , 

based upon hashlng). One posslblllty 1s shown below: 

( n  -1)+(n -2)+ . . . +2+1 

Node u Node v 
1 2 
1 3 

. . .  . . .  

. . .  . . .  
1 n 
2 3 

. . .  . . .  

. . .  . . .  
2 n 

. . .  . . .  

. . .  . . .  

Coded version of edge (u , v ) 
1 
2 

. . .  

. . .  
n -1 

(n -I)+ 1 
. . .  
. . .  

( n  -I)+( n -2 )  
* . .  
. . .  

The codlng functlon for thls scheme 1s 
u (u -1) f ( u  ,v ) = (u -1)n - +(v-u)  . 

2 

Interestlngly, thls functlon can be decoded .A tlme 0 ( 1 )  (see exerclse 6.1). 
Whether random sampllng should be done on coded lntegers wlth decodlng only 
at the very end, or on sets of edges (u , v )  wlthout any decodlng, depends upon 
the sampllng scheme. In classlcal sampllng schemes for example, I t  1s necessary to  
verlfy whether a certaln edge has already been selected. The verlflcatlon can be 
based upon a vector of flags (whlch can be done here by uslng a lower triangular 
n by n matrlx of flags). When a heap or a tree structure 1s used, there 1s no need 
ever for codlng. When hashlng 1s used, codlng seems approprlate. In sequentlal 
sarnpllng, no codlng 1s needed, as long as we can easlly lmplement the functlon 
NEXT(u , v )  (IF v = n  THEN NEXT(u ,v )+(u + l , u  +2) ELSE 
NEXT(u ,v )+(u ,v +l)). However, If sequentlal sampllng 1s accelerated by taklng 
glant steps, then codlng the edges seems the wise thlng to do. 

6.2. Connected graphs. 
Most random graphs that people want to generate should be of the con- 

nected type. From the work of Erdos and Renyl (1959, lQSO), we know that If e 
then the 1s much larger than -n log(n ) (or If p 1s much larger than 

probablllty that a random graph wlth e (or blnomlal (n  ,p  )) edges 1s connected 
tends to 1 as n --too. In those sltuatlons, I t  1s clear that we could use the rejectlon 
algorlt hm: 

1 
2 n 
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Rejection method for generating a connected random graph with n nodes and e 
edges 

REPEAT 
Generate a random graph G with e edges and n nodes. 

UNTIL G is connected 
RETURN G 

To verlf’y that a graph 1s connected 1s a standard operatlon: If we use depth flrst 
search, thls can be done In tlme 0 (max(n , e  )) (Aho, Hopcroft and Ullman, 1983). 
Thus, the expected tlme needed by the algorlthm 1s 0 (max(n , e  )) when 

e 1 Ilm lnf > - .  
~ - C O  nlog(n)  2 

In fact, slnce In those cases the probablllty of acceptance tends to 1 as n--+oo , 
the expected tlme taken by the algorlthm Is ( l + o ( l ) )  tlmes the expected tlme 
needed to check for connectedness and to generate a random graph wlth e edges. 
Unfortunately, the condltlon glven above 1s asymptotlc, and I t  1s dlfflcult to ver- 
lfy whether for glven values of e and n ,we have a good reJectlon constant. Also, 
there 1s a gap for preclsely the most lnterestlng sorts of graphs, the very sparse 
graphs when e 1s of the order of n . Thls can be done via a general graph genera- 
tlon technlque of Tlnhofer’s (1978,1980), whlch ls explalned In the next sectlon. In 
I t ,  we recognlze lngredlents of Wllf‘s recurrence based method. 

6.3. Tinhofer’s graph generators. 
In two publlcatlons, Tlnhofer (1978,1980) has proposed useful random graph 

generators, wlth appllcatlons to connected graphs (wlth or wlthout a speclflc 
number of edges), dlgraphs, blchromatlc graphs, and acycllc connected graphs. 
Hls algorlthms requlre In all cases that  we can count certaln subclasses of graphs, 
and they run fastest If tables of these counts can be set up beforehand. We wlll 
merely glve the general outllne, and refer to Tlnhofer’s work for the detalls. 

Let us represent a graph by a sequence of adJacency llsts, wlth the property 
tha t  each edge should appear In only one adjacency Ilst. The adJacency llst for 
node t’ wlll be denoted by Ai. Thus, the graph Is completely determlned by the 
sequence 

LVe wlll generate the adJacency llsts In some (usually random ) order, 
. . . , where v l , v v ,  . . . , v, 1s a permutatlon of 1, . . . , n .  To avoid 
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the dupllcatlon of nodes, we requlre that all nodes In adJacency list A,, fall out- 
j 

slde U {vi}. The followlng sets of nodes wlll be needed: 
i = 1  

j 
1. The set Uj of all nodes In U A,, wlth label not In v l ,  . . . , v j .  Thls set 

contalns all nelghbors of the flrst j nodes outslde vl, . . . , v j  . 
The set vj whlch conslsts of all nodes wlth label outslde v l ,  . . . , vj that 
are not In U j .  

The speclal sets U,={l}, v0={2,3, . . . , n }. 

i =1 

2. 

3. 

When the adJacency llsts are belng generated, I t  1s also necessary to do some 
countlng: deflne the quantlty N, as the total number of graphs wlth the deslred 
property, havlng Axed adJacency llsts A , ,  . . . , A",. Sometlmes we wlll wrlte 
Nj (Aul ,  . . . , A, ) to make the dependence expllclt. Glven A , ,  . . . , A,J-l, we 
should of course generate Aut accordlng to the followlng dlstrlbutlon: 

N j  * * 7 AvJ-IJ 1 
P (A,, =A ) = 

Nj-l(AVlt * * , A,,-1) . 

It 1s easy to see that thls 1s lndeed a probablllty vector in A .  We are now ready 
to glve Tlnhofer's general algorlthm. 

Tinhofer's random graph generator 

V,+{l}; V0-{2, . . 1 , n } 
FOR j:=1 TO n DO 

IF EMPTY (Uj-1) 
THEN wj +min(i:i€Vj-l)  
ELSE wj +min(i :i  

Generate a random subset AvJ on uj-lUv'-l-{wj} according to the probability dis- 
tribution given above. 
Vj + Uj -1UA j - { v j } 
Vj +Vj- l -Aj - {~ j }  

RETURN Av1,Av2, . . . , 

The mafor problem In thls algorlthm 1s to compute (onlllne) the  probablllty dls- 
trlbutlon for A,>. In many examples, the probabllltles depend only upon the car- 
dlnalltles of Uj-l and Vj-l and posslbly some other sets, and not upon the actual 
structure of these sets. Thls 1s the case for the class of all connected graphs wlth 
n nodes, or  all connected graphs wlth n nodes and e edges (see Tlnhofer, 1980). 
Nevertheless, we stlll have to count, and run lnto nurnerlcal problems when n or 
e are large. 
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6.4. Bipartite graphs. 
A bipartite graph 1s a graph In whlch we can color all vertlces wlth two 

colors (baby plnk and mustard yellow) such that no two vertlces wlth the same 
color are aaacent .  There exlsts a useful connectlon wlth matrlces whlch makes 
blpartlte graphs a manageable class of graphs. If there are b baby vertlces and 
m mustard vertlces, then a blpartlte graph 1s completely deflned by a b X m  
Incidence matrlx of 0's and 1's. At thls polnt we may recall the algorlthms of sec- 
tlon XI.6.3 for generatlng a random R X C  table wlth glven row and column 
totals. Thls leads dlrectly to a reJectlon algorlthm for generatlng a random blpar- 
tlte graph wlth glven degrees for all vertlces: 

Bipartite graph generator 

[NOTE: This algorithm returns a b X m  incidence matrix deflning a random bipartite 
graph with b baby vertices and m mustard vertices. The row totals are ri , 15 i 5 b , and 
the column totals are c i  , 15 i 5 rn .] 
REPEAT 

Generate a random R X c matrix of dimension b X m with the given row and 
column totals. 

UNTIL all elements in the matrix are 0 or 1 

RETURN the matrix 

The reductlon to a random R X C  matrlx was suggested by Wormaid 
(1984). By Wald's equatlon, we know that the expected tlme taken by the algo- 
rlthm Is equal to the product of the expected tlme needed to generate one ran- 
dom l? X C matrlx and the expected number of lteratlons. For example, If we use 
the ball-ln-urn method of sectlon XI.6.3, then a random R X C  matrlx can be 
obtalned In tlme proportlonal to e ,  the total number of edges (whlch Is also equal 
to Cri and to Ccj). The analysls of the expected number of lteratlons 1s also 
due to Wormald (1984): 

Theorem 6.1. 

of ltera't'lons In the rejectlon algorlthm 1s 
Assume that all r i ' s  and c j  's are at most equal to k . The expected number 

I 
1 Tvhere e 1s the total number of edges, and o (1) denotes a functlon tendlng to 0 
I 1 35 e -00 whlch depends only upon k and not on the ri 's and b j  3. 
I 
I 
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As a corollary of thls Theorem, we see that the expected number of ltera- 
tlons 1s unlformly bounded over all blpartlte graphs whose degrees are unlformly 
bounded by some number k . 

Blpartlte graphs play a cruclal role In graph theory partly because of the fol- 
lowlng connection. Conslder a b X m  lncldence matrlx for a blpartlte graph In 
whlch all baby vertlces have degree 2, Le. all r i ’ s  are equal to 2. This deflnes a 
graph on m nodes In the followlng manner: each palr of edges connected to a 
baby vertex deflnes an edge In the graph on m nodes. Thus, the new graph has 
b edges. We can now generate a random graph wlth glven collection of degrees 
as follows: 

Random graph generator 

[NOTE: This algorithm returns an array of b edges deflned on a graph with vertices 
(1, . . . , m }.. The degree sequence is e 1, . . . , c, .] 
REPEAT 

Generate a random b Xm bipartite graph with degrees all equal to  two for the baby 
vertices (ri =2), and degrees equal to e . . . , e, for the mustard vertices. 

UNTIL no two baby vertices share the same two neighbors 

RETURN ( k I J l ) ,  . . . , (k, ,I, ) where ki and li are the columns of the two 1’s found in 
the i - th  row of the incidence matrix of the bipartite graph. 

A aln we use the reJec lon prlnclple, In the hope that for many graphs the 
reJectlon constant 1s not unreasonable. Note that we need to check that there are 
no dupllcate edges In the graph. Thls 1s done by checklng that no two rows In the 
blpartlte graph’s lncldence matrlx are ldentlcal. It can be verlfled that the pro- 
cedure takes expected tlme 0 ( 6  +m ) where b 1s the number of edges In the 
graph, provlded that all degrees of the vertlces In the graph are bounded by a 
constant k (Wormald, 1984). In partlcular, the method seems to be ldeally sulted 
for generatlng random r-regular graphs, 1.e. graphs In whlch all degrees are 
equal to r . It can be shown that the expected number of R X C matrlces needed 
before haltlng 1s roughly speaklng e(r2-1)/4. Thls lncreases rapldly wlth r . Wor- 
mald also glves a partlcular algorlthm for generatlng 3-regular, or cublc, graphs. 
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6.5. Exercises. 

673 

1. 

2. 
3. 

4. 

5.  

Flnd a slmple 0 (1) decodlng rule for the codlng functlon for edges In a 
graph glven In the text. 
Prove Theorem 6.1. 

Prove that If random graphs wlth 6 edges and m vertlces are generated by 
Wormald's method, then, provlded that all degrees are bounded by I C ,  the 
expected tlme 1s 0 ( 6  +m ). Glve the detalls of all the data structures 
lnvolved In the solutlon. 
Event simulators. We are glven n events wlth the followlng dependence 
structure. Each lndlvldual event has probablllty p of occurrlng, and each 
palr of events has probablllty q of occurrlng. All trlples carry probablllty 
zero. Determlne the allowable values for p ,q . Also indlcate how you would 
handle one slmulatlon. Note that In one slmulatlon, we have to report all the 
lndlces of events that are supposed to occur. Your procedure should have 
constant expected tlme. 
Random strings in a context-free language. Let S be the set of all 
strlngs of length n generated by a glven context-free grammar. Assume that 
the grammar 1s unambiguous. Uslng at most 0 (n '+') space where r 1s the 
number of nontermlnals In the grammar, and uslng any amount of prepro- 
cesslng tlme, And a method for generatlng a unlformly dlstrlbuted random 
strlng of length n In S In llnear expected tlme. See also Hlckey and Cohen 
(1983). 

. .  1 


