
Chap fer Fifteen 
THE RANDOM BIT MODEL 

1. THE RANDOM BIT MODEL. 

1.1. Introduction. 
Chapters I-XTV are based on the premlses that a perfect unlform [0,1] ran- 

dom varlate generator 1s avallable and that real numbers can be manlpulated and 
stored. Now we drop the flrst of these premlses and lnstead assume a perfect blt 
generator (l.e., a source capable of generatlng lld (0,l) random varlates 
B 1,B2,...),whlle stlll assumlng that real numbers can be manlpulated and stored, 
as before: thls 1s for example necessary when someone glves us the probabllltles 
p ,  for dlscrete random varlate generatlon. The cost of an algorlthm can be 
measured In terms of the number of blts requlred to  generate a random varlate. 
Thls model 1s due to Knuth and Yao (1Q76) who lntroduced a complexlty theory 
for nonunlform random varlate generatlon. We wlll report the maln ldeas of 
Knuth and Yao In thls chapter. 

If random blts are used to construct random varlates from scratch, then 
there 1s no hope of constructlng random varlates wlth a denslty In a flnlte 
amount of tlme. If on the other hand we are to generate a discrete random varl- 
ate, then I t  1s posslble to  And Anlte-tlme algorlthms. Thus, we wlll malnly be con- 
cerned wlth dlscrete random varlate generatlon. For contlnuous random varlate 
generatlon, I t  1s posslble to  study the relatlonshlp between the number of lnput 
blts needed per n blts of output, and t o  develop a complexlty theory based upon 
thls relatlonshlp. Thls wlll not be done here. See however Knuth and Yao (1976). 
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1.2. Some examples. 
Assume flrst that we wlsh to generate a blnomlal random varlate W i t h  

1 parameters n = l  and p #-. Thls can be consldered as the slmulatlon of a 

blased coln fllp, or the slmulatlon of the occurrence of an event havlng probabll- 
lty p . If p were -, we could Just exlt wlth B,. When p has blnary expanslon 

2 

1 
2 

P = O.P,P,P, * * 

I t  sufflces to generate random blts untll for the flrst tlme Bi #pi, and to return 1 
If Bi <pi and 0 otherwlse: 

Binomial (1,p) generator 

i t o  
REPEAT 

i C i + l  
Generate a random bit B . 

UNTL B # p i  

RETURN X +I, < p, 

If we deflne the unlform [O, l ]  random varlate 

U = 0.B,B2B3 * * , 

then I t  1s easy to see that thls slmple algorlthm returns 

Interestlngly, the probablllty of exltlng after i blts 1s 2-*, so that the expected 
number of blts needed 1s preclsely 2, lndependent of p .  We recognlze In thls 
example the lnverslon method. 

The rejectlon method too has a nlce analog. Suppose that we want to gen- 
erate a random lnteger X where P ( X = i ) = p i  , lsz'sn, and that all probablll- 
tles pi are multlples of -, where Zk- l<M 52k for some lnteger k .  Then we can 

conslder consecutlve k-tuples In the sequence B1,B2,  ... and set up a table wlth 
Z k  entrles: M entrles are used for storlng Integers between 1 and M ,  and the 
remalnlng entrles are 0. If pi =l; /M, then the lnteger z' should appear li tlmes In 
the table. An lnteger 0 lndlcates a rejectlon. Now use 

1 
M 



770 XV.1.THE RANDOM BIT MODEL 

Rejection algorithm 

REPEAT 
Generate k random bits, forming the number Z€{O,i, . , . , z k - i } .  

U N T E  Z < M  
RETURN X + A  (z] (where A is the table of M integers) 

In this algorithm, the expected number of blts requlred 1s k dlvlded by the pro- 
bability of lmmedlate acceptance, !.e. 

In both examples provided here, we can conslder the complete unbounded 
binary tree In whlch we travel down by turnlng left when Bi=O and rlght when 
Bi =l. In the rejection method, we have deslgnated M nodes at the k -th level as 
terminal nodes. The remalnlng nodes at the k-th level are "rejectlon nodes", and 
are In turn roots of slmllar subtrees. Slnce these reJectlon nodes are ldentlfled 
wlth the overall root, we can superlmpose them on the root, and form a pseudo- 
tree wlth some loopbacks from the k- th  level to  the root. But then, we have a 
flnlte dlrected graph, or a flnlte state machine. 

In the lnverslon method, the expansion of p determines an unbounded path 
down the tree, and so does the expansion of u .  Since we need only determine 
whether one path 1s to the left or the rlght of the other path, I t  sufflces t o  travel 
down until the paths separate. With probablllty -, they separate rlght away. 

Otherwise, they separate with probability - at the next level, and so forth. 

1 
2 

1 
2 

What we wlll do In the sections that follow 1s 
(1) Develop a lower bound for the expected number of blts In terms of 

p I,p 2, . . . , the probability vector of the dlscrete random varlate. 
(11) Develop black box methods and study their expected complexlty. 
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2. THE KNUTH-YAO LOWER BOUND. 

2.1. DDG trees. 
Suppose that we wish to generate a discrete random variate X with proba- 

bility vector p I , p 2 ,  ... . The probability vector can be flnite or inflnite dimen- 
slonal. Every algorithm based upon random blts can be represented as a binary 
tree (which Is usually inflnite), contalnlng nodes of two types: 
(I) Branch nodes (or internal nodes), having two children. We can travel to the 

left child when a 0 bit is encountered, and to the right child otherwise. 
(11) Terminal nodes without chlldren. These nodes are marked with an integer to 

be returned. 
It is instructive to  verify that this structure 1s present for the examples of the 
previous section. For example, for the binomial (1,p ) generator, consider the path 
for p ,  and assign terminal nodes marked 1 to all left children of nodes on the 
path that do not belong to  the path themselves, and terminal nodes marked 0 to 
all right chlldren of nodes on the path that do not belong to the path themselves. 

Let us introduce the notation t i ( / ? )  for the number of termlnal nodes on 
level IC (the root is on level 0) whlch are marked i . Then we must have 

When these condltlons are satlsfled, we say that we have a DDG-tree (dlscrete 
distributlon generating tree, terminology introduced by Knuth and Yao, 1976). 
The corresponding algorithms are called DDG-tree algorithms. DDG-tree algo- 
rithms halt with probability one because the sum of the probablllties of reaching 
the terminal nodes is 

2.2. The lower bound. 

of z . Deflne furthermore 
Let us introduce the function x(z  ) = z mod 1 = z - 1x1 , the fractional part 

and the entropy functlon 

H ( z )  = z l o g 2 i  (z >O) 
5 
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Theorem 2.1 1 

Then: 
Let N be the number of random blts taken by a DDG-tree algorlthm. 

A. E ( W  2 C4Pi) * 
I 

B. Let H ( p  l , p  2,...) = C H ( p i )  be the entropy of the probablllty dlstrlbutlon 

( p  l,p2,...). Then 
I 

H ( P  I , P 2 , . . . )  5 p ( P i  1 * 

i 

Proof of Theorem 2.1. 
We begln wlth an expresslon for E ( N ) :  

E ( N )  = P ( N > k )  
k 20 

where 6 (k ) 1s the number of lnternal (or: branch) nodes at level k . We obtaln 
the lower bound by Andlng a lower bound for 6 (k ). Let us use the notatlon t (k ) 
for the number of termlnal nodes at level k . Thus, 

6 ( O ) + t ( O )  = 1 , 
6 (k)+t(k) = 26 (IC-1) 

Uslng these relatlons, we can show that 

(k 21) . 

(Note that thls 1s true for k =0, and use lnductlon from there on.) But 

Thls 1s true because the left-hand-sum 1s nonnegatlve, and the rlght-hand-sum 1s 
an lnteger multlple of 2-k . Comblnlng all of thls ylelds 

Thls proves part A. Par t  B follows If we can show the followlng: 

H ( z )  _< Y(X) 5 H ( z ) + 2 ~  (all 5 ) .  
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Note that thls 1s more than needed, but the second part of the lnequallty wlll be 
useful elsewhere. For a number z E [ O , l ) ,  we wlll use the notatlon z =O.Z 1 ~ 2  * - - 
for the blnary expanslon. By deflnltlon of u(x ), 

Now, Y(O)=H(O)=O. Also, If SZ <21-k  , 

Also, because xk = 1 ,  

= 0 .I 

The lower bound of Theorem 2.1 1s related to the entropy of the probablllty 
vector. Let us briefly look at the entropy of some probablllty vectors: If 

1 
p i = ;  , 1 5 ;  s n ,  then 

a p , ,  . . . > P n  1 = m , n  ’ 

In fact, because H 1s lnvarlant under permutatlons of Its arguments, and 1s a 
concave functlon, I t  1s true that for probablllty vectors 
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( P  1, * . * > Pn ),(Qi> * . > Qn 1, 
H ( P ~ ,  * * .  1 P n )  L H(Q1, ' .  * Q n )  9 

when the pn vector 1s stochastlcally smaller than the qn vector, 1.e. If the pi 's 
and qi 's are In lncreaslng order, then 

P 1 L  Q 1 ;  

Pl+P2 L Q l + Q 2 ;  

Thls follows from the theory of Schur-convexity (Marshall and Olkln, 1979). In 
partlcular, for all probablllty vectors (p 11 . . . , p, ), we conclude that 

Both bounds are attalnable. In a sense, entropy lncreases when the probablllty 
vector becomes smoother, more unlform. It 1s smallest when there 1s no random- 
ness, 1.e. all the probablllty mass 1s concentrated In one polnt. Accordlng to 
Theorem 2.1, we are tempted to  conclude that unlform random varlates are the 
costllest to produce. Thls 1s lndeed the case If we compare optlmal algorlthms for 
dlstrlbutlons, and 1f the lower bounds can be attalned for all dlstrlbutlons (thls 
wlll be dealt wlth in the next sub-sectlon). If we conslder dlscrete dlstrlbutlons 
wlth n lnflnlte, then I t  1s posslble to have H (p l ,p 2,...)=00. To construct coun- 
terexamples very easlly, we note that If the p ,  's are 1, then 

where X 1s a random varlate wlth the glven probablllty vector. To see thls, note 
that pn 5 -, and thus that -p, log(p, ) 2 pn log(n ). Thus, whenever 1 

n 

Pn - C 

n logl+'(n ' 
a s  n 4 m ,  for some €E(O,l], we have lnflnlte entropy. The constant c may be 
dlmcult to calculate except In speclal cases. The followlng example 1s due to 
Knuth and Yao (1976): 

-I log2(n)1-2~0g2(10p~n)) l - i  
P 1 = O ; P n  "2 ( n  2 2 )  * 

Note that thls corresponds t o  the case ~ = l .  Thus, we note that for any DDG-tree 
algorlthm, E (log(X))=m lmplles E (N)=oo, regardless of whether the probabll- 
lty vector 1s monotone or not. The explanatlon 1s very slmple: E(log2(X)) 1s the 
expected number of blts needed to store, or descrlbe, X .  If thls 1s 03, there 1s ll t-  
tle hope of generatlng x requlrlng only E (N)<oo provlded that the dlstrlbutlon 
of X 1s sumclently spread out so that no blts are "redundant" (see exerclses). 
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2.3. Exercises. 
1. The entropy. Thls 1s about the entropy H of a probablllty vector 

( p  , , p  ,,...). Show 'the followlng: 
A. 

B. 

C. 

D. 

E. 

There exlsts a probablllty vector such that E (log,(X))=Od, yet 
E(N)<oo .  Here X 1s a dlscrete random varlate wlth the glven proba- 
blllty vector. Hlnt: clearly, the counterexample 1s not monotone. 
Is I t  true that  when the probablllty vector 1s monotone, then 
E (log,(X))<oo Implies H ( p  ,,...) <oo ? 

Show that the p f l  's deflned by 

form a probablllty vector, and that Its entropy 1s 03. 

Show that If one flnlte probablllty vector 1s stochastlcally larger than 
another probablllty vector, then Its entropy Is at most equal to the 
entropy of the second probablllty vector. 
Prove that when zE[O,l] 1s a power of 2, we have v ( z ) = H ( z ) ,  and 
that for any z E[O,l], v(z )=2 ,  v(-)-nz. 

2 

2fl 

3. OPTIMAL AND SUBOPTIMAL DDG-TREE ALGORITHMS. 

3.1. Suboptimal DDG-tree algorithms. 
We know now what we can expect at  best from any DDG-tree algorlthm In 

terms of the expected number of random blts. I t  1s another matter altogether to 
construct feaslble DDG-tree algorlthms. Some algorlthms requlre unwleldy set-up 
tlmes and/or calculatlons whlch would overshadow the contrlbutlon to the total 
complexlty from the random blt generator. In fact, most practlcal DDG-tree algo- 
rlthms correspond to algorlthms descrlbed In chapter 111. Let us qulckly check 
what klnd of DDG-tree algorlthms are hldden In that chapter. 

In sectlon 111.2, we lntroduced lnverslon of a unlform [0,1] random varlate 
U .  In sequentlal lnverslon, we compared U wlth successlve partlal sums of p ,  's. 
Thls corresponds to the followlng lnflnlte DDG-tree: conslder all the paths for the 
partlal sums, 1.e. the path for p ,, for p l + p  ,, etcetera. In case of a flnlte vector, 
we deflne the last cumulatlve sum by the blnary expanslon 0.111111111 .... Then 
generate random blts until the path traveled by the random blts devlates for the 
flrst tlme from any of the p ,  paths., If that path In question 1s for p , ,  then 
return n If the last random blt was 0 (the correspondlng blt on the path 1s l) ,  
and return n +1 otherwlse. Thls method has two problems: flrst, the set-up Is 
lmposslble except In the followlng speclal case: all p ,  's have a flnlte blnary 
expanslon, and the probablllty vector 1s flnlte. In all other cases, the DDG-tree 
must be constructed as we go along. 
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The analysls for thls DDG-tree algorlthm 1s not very difficult. Construct 
(Just for the analysls) the trle In whlch termlnal nodes are put at the polnts 
where the paths for the p n  's dlverge for the Arst tlme. For example, for the prG 
bablllty vector 

p 1 = 0.00101 
p.2 = 0.001001 I p ,  = 0.101101 

we have the cumulatlve probabllltles 0.00101,0.010011,0.111111111 l . . . .  Thus, we 
can put termlnal nodes at the posltlons 00, 01, and 1. It Is easy to see that  once 
the termlnal nodes are reached, then on the average 2 more random blts are 
needed. Thus, E ( N ) = 2 +  expected depth of the termlnal nodes In the trle 
deflned above. In our example, thls would yleld E (N)=2+-1+-2=-.  In 

another example, If all the p n  's are equal to , 1 5  n 52k , for some lnteger I C ,  
then E ( N ) = 2 + k ,  whlch grows as log2n . In general, we have 

1 1  7 
2 2 2  

n 
E (N) L 2+ pi log2(-) 5 3+H(pl, . * . t ~n 1 

i = 1  1 p 1 ]  
Thls follows from a slmple argument. Conslder the unlform [0,1] random varlate 
U formed by the random blts of the random bit generator. Also mark the partlal 
sums of p i ' s  on [ O , l ] ,  so that [0,1] 1s partltloned lnto n Intervals. The expected 
depth of a termlnal node In the trle 1s 

1 

J D ( x )  dx 
0 

where D (x ) 1s the smallest nonnegatlve Integer k such that the 2k dyadlc partl- 
tlon of [0,1] 1s such that  only one of the partlal sums (0 1s also consldered as a 
partlal sum) falls In the same lqterval. The i - th  partlal sum "controls" an lnter- 

val ln whlch D (5)s [ log2($) 1 ,  and the s h e  of the lnterval ltself 1s a power of 

2. Thus, 

from whlch we derlve the result shown above. We conclude that  sequentlal search 
type DDG-tree algorlthms are nearly optlmal for all probablllty vectors (compare 
wlth Theorem 2.1). 

The method of gulde tables, and the Huffman-tree based methods are slml- 
lar, wlth the sole exceptlon that the probablllty vector 1s permuted In the 
Huffman tree case. All these methods can be translated lnto a DDG-tree algo- 
rithm of the type descrlbed for the sequentlal search method, and the perfor- 
mance bounds glven above remaln valid. In vlew of the lower bound of Knuth 
and Yao, we don't galn by uslng speclal truncation-based trlcks, because trunca- 
tlon corresponds to search lnto a trle formed wlth equally-spaced polnts, and 
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takes tlme proportlonal to log, of the number of lntervals. 
Thus, I t  comes as no surprlse that  the allas method (section 111.4) has an 

unlmpresslve DDG-tree analog. We can conslder the followlng DDG-tree algo- 
rlthm: Arst, generate a uniform (1, . . . , n } -valued random lnteger (this requlres 
on the average >log,n and Sl+log,n random blts, as we remarked above). 
Then, havlng plcked a slab, we need to make one more comparlson between a 
unlform random varlate and a threshold, whlch takes on the average 2 comparls- 
ons by the blnomlal (1,p ) algorlthm descrlbed In sectlon XV.1. Thus, 

2+1og,n 5 E ( N )  5 3+log,n . 

Thls performance grows wlth n ,  while for the optlmal DDG-tree algorlthms we 
wlll see that  there are sequences of probablllty vectors for whlch E ( N )  remaln 
bounded as n + m .  In many cases, the allas algorlthm does not even come close 
to the lower bound of Theorem 2.1. 

The reJectlon method corresponds to the followlng DDG-tree: construct a 
DDG-tree In the obvlous fashlon wlth two types of termlnal nodes, termlnal 
nodes correspondlng to a successful return (acceptance), and reJectlon nodes. 
Make the reJectlon nodes roots of lsomorphlc trees agaln, and contlnue at  
lnflnltum. 

3.2. Optimal DDG-tree algorithms. 
The notation of sectlon XV.2 Is lnherlted. We start  wlth the followlng 

Theorem, due to Knuth and Yao (1976). It states that optlmal algorlthms achlev- 
lng the lower bound do lndeed exlst. 
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Theorem 3.1. 
Let ( p , , p 2 ,  . . . , p , )  be a dlscrete probabillty vector (where n may be 

v ( p i  )<m. Then there exists a DDG-tree algorlthrn 
n 

i = 1  

lnflnlte). Assume flrst that  

for whlch 

In fact, the followlng statements are equlvalent for any DDG-tree algorlthm: 

(I )  P (N > k  ) 1s mlnlmlzed for all k 20 over all DDG-tree algorithms for the 
glven dlstrlbutlon. 

(11) For all k 20 and all 1 S i  sn , there are exactly P j k  termlnal nodes marked 
i on level k where p j k  denotes the coefflclent of 2-k in the blnary expanslon 
of p j .  

(111) E (N) = 
n 

4 P j  1 . 
1 =1 

n 
Assume next that v(pi )=m. Then, statements (1) and (11) are equlvalent. 

: -1 

Proof of Theorem 3.1. 
We lnherit the notatlon of the proof of Theorem 2 . 1 .  By lnspectlng that 

proof, we note that a DDC-tree algorlthm attalns the lower bound (if I t  1s flnlte) 
If and only if for all i and k ,  we have equallty In 

Thls means that 
k 

j =O 
t i ( j ) 2 k - j  = [ 2 k p j  1 . 

But thls says slmply that ti (k ) is P j k  for all k . The number of termlnal nodes at 
level k for integer 2 1s 0 or 1 dependlng upon the value of the k- th  blt in the 
blnary expanslon of p i .  To prove that such DDG-trees actually exist, deflne ti (k ) 
and t ( k )  by 

( I c  = P j k  

t ( k )  = p , ( k ) + .  * + p , ( k )  I 

Thus, we certalnly have 
2-k t j ( k )  = p j  

2 4  t ( k )  = 1 . 
k 20 

k 20 

I 
I 

i 
1 

i 
- 
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A DDG-tree with these condltlons exists If and only If the integers 6 ( k )  deflned 
by 

6 (O)+ t (O)  = 1 , 
6 ( k ) + t  ( k )  = 26 (IC-1) ( k  > I )  

are nonnegative. But the 6 ( k  )'s thus deflned have a solution 

Hence 6 ( I C ) > O ,  and such trees exist. This proves all the statements involving 
(ill). For the equivalence of (1) and (11) in all cases, we note that In Theorem 2.1, 
we have obtalned a lower bound for 6 ( I C  ) for all k , and that the construction of 
the present theorem gives us a tree for which the lower bound Is attained for all 

k . B u t  P(N>k)=- (' ) , and we are done. 
2k 

Let us give an example of the optimal construction. 

Example 3.1. (Knuth and Yao, 1976) 
Consider the transcendental probabilities 

~ ~~ 

=0.010100010111110.. . 1 
P l =  ; I 

1 P 2 = 7  =0.010111100010110 ... 
p 3 = 1-p ,-p 2 =0.010100000101010 ... 

The optimal tree Is inherently Inflnlte and cannot be obtained by a flnlte state 
machine (this is possible If and only If all probabilities are rational). The optimal 
tree has at each level between 0 and 3 termlnal nodes, and can be constructed 
without too much trouble. Baslcally, all internal nodes have two children, and at 
each level, we put the terminal nodes to the right on that level. This usually 
gives an asymmetric left-heavy tree. Uslng the notatlon I for internal node, and 
1,2,3 for terminal nodes for the integers 1,2,3 respectively, we can specify the 
optimal DDG-tree by specifying the nature of all the nodes on each level, from 
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left to rlght. In the present example, thls glves 

3.3. Distribution-free inequalities for the performance of optimal 
DD G-t ree algorithms. 

We have seen that an optlmal DDG-tree algorlthm requlres on the average 
n 

i = 1  
E ( N )  = C4Pi) 

random blts. By an lnequallty shown In Theorem 2.1, 
H ( z ) s v ( z  )<H(z)+2z ,z E[O,l], we see that for optlmal algorlthms, 

n 

i =I  
C H W  = H(P1, * * .  > P,) 

F E ( W  I W P , ,  * .  . > P,)+2 f 

Thus, the performance 1s roughly speaklng proportlonal to the entropy of the dls- 
trlbutlon. In general, thls quantlty is not known beforehand. Often one wants a 
prlorl guarantees about the performance of the algorlthm. Thus, dlstrlbutlon-free 
bounds on E ( N )  for the optlmal algorlthm can be very useful. We offer: 
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Theorem 3.2. (Knuth and Yao, 1976) 
Let p 1, . . . , p n  ' be a finlte probablllty vector. Then, 

Proof of Theorem 3.2. 
By deflnltlon of x and v, 

for all k 20. The n-1 upper bound follows by notlng that the left hand side 1s 
less than n , and that I t  Is lnteger valued because I t  can be wrltten as 

Thus, 

The upper bound follows when we note that iog2(n-1) 1 = [log,(n 11-1. Let us 
now turn to the lower bound. Uslng the notatlon of the proof of Theorem 2.1, an 
optlmal DDG-tree always has 

Slnce 6 ( k ) Z n - l  (there are > n  termlnal nodes, and thus z n  -1 lnternal 
k 20 

nodes), and slnce condltlonal on the latter sum belng equal to s , the mlnlmum of 

k 2 o  2 
1s reached for 6 (O)= * = 6  (s-l)=l, we see that 

n 

i - 1  
Y(&) > - 2-2- 2 2-22-n *I 

- I '  
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1. 

2. 

3. 

4. 

The bounds of Theorem 3.2 are best possible. By lnspectlon of the proof, 
construct for each n a probability vector p l ,  . . . , pn for whlch the lower 
bound 1s attained. (Conclude that for this family of dlstrlbutions, the 
expected performance of optlmal DDG-tree algorlthms 1s unlformly bounded 
In n .) Show that the upper bound of the theorem 1s attained for 

2 n  4 - 4 4  
)+2-q ,l<i 529 +l-n , 

2n -1 

where q = log,(n ) (Knuth and Yao, 1976). 

Describe an optlmal DDG-tree algorithm of the shape descrlbed In Example 
3.1, whlch requlreg storage of the probability vector only. In other words, the 
tree is constructed dynamically. You can assume of course that the pn 's can 
be manipulated in your computer. 
Finite state machines. Show that there exists a flnite state machlne 
(edges correspond to random blts, nodes to  lnternal nodes or termlnal nodes) 
for generatlng a dlscrete random varlate X taking values In (1, . . . , n } if 
and only If all probabilitles involved are ratlonal. Give a general procedure 
for constructing such flnlte state machines from (not necessarlly optimal) 
DDG-trees by lntroduclng reJectlon nodes and feedbacks to lnternal nodes. 
For simulating one die, And a Anite state machine requiring on the average 
11 - random bits. Is this optlmal ? For simulatlng the sum of two dice, And a 
3 

random bits. For 79 flnite s ta te  machlne whlch requires on the average - 
18 

slmulatlng two dlce (NOT the sum), And a flnlte state machlne whlch 
requires on the average - random bits. Show that all of these numbers are 

optimal. Note that in the last case, we do better than Just simulating one dle 
22 random twice wlth the flrst algorlthm slnce thls would have eaten up - 
3 

bits on the average (Knuth and Yao, 1976). 

Consider the following 5-state automaton: there is a START state, two ter- 
mlnal states, A and B, and two other states, S1 and S2. Transltions between 
states occur when blts are observed. In particular, we have: 

1 1  

20 
3 

START + 0 3 S1 
START + 1 3 S2 
S l + O + A  
s1 + 1 -+ s2 
S 2 + O - - t B  
S2 + 1 -+ START 

I 
- 
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If we start at START, and observe a perfect sequence of random blts, then 
what Is P ( A  ),P ( B  ) ? Compute the expected number of blts before haltlng. 
Flnally, construct the optimal DDG-tree algorlthm for thls problem and And 
a flnite-state equlvalent form requlrlng the same expected number of blts. 
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