EXAMPLE 6.2-1: Approximate Computed-Torque Controller

We wish to design and simulate an approximate computed-torque
controller for the two-link arm given in Figure 6.2.1 (see Chapter 2 for
the two-link revolute robot arm dynamics). Assuming that the friction is
negligible, the link lengths are exactly known, and the masses m; and m1,
are known to be in the regions 0.820.05 kg and 2.3£0.1 kg, respectively,
a possible approximated computed-torque controller can be written as

Figure 6.2.1: Two-link planar arm.
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where l;==1 m and g is the gravitational constant. We choose 1,=0.85 kg
and 1,=2.2 kg since the actual values are assumed to be unknown. After
substituting the control law above into the two-link robot dynamics, we can
form the error system

E+ Kyé+ Kpe= M ()W (g,4,7) (3)

where M~ (g) is the inverse of the inertia matrix M(g) with »; and 1, replaced
by 1711, and 1fi, respectively. The matrix W(4, @, §), sometimes called the
regression matrix [Craig 1985], is a 2x2 matrix given by
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The vector 5 called the parameter error vector, is a 2x1 vector given by
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where

and
(P2 = mz — M.

The associated tracking error 2x1 vector and 2x2 gain matrices in (3) are
given by
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For #1,=0.8 kg and m,=2.3 kg, the approximate computed torque controller
(1)—({2) was simulated with g(0)=gr(0)=0, with the controller gains set at

4 0

and with a desired trajectory of

S ¢

Figure 6.2.2: Simulation of approximate computed-torque controller.



Torque Controller:

T = M (q) (§a + Koé + Kpe) + Vi (0,9) 4 + G (¢) + F (4)

Update Rule: _
¢ =TWT (q,4,§) M~ (q) BT Pe

e On [ o, 1,

=[s] o= (%] 4= [% %]

W (g,d,3) ¢ =M(q) G+ Vu(q,9) 3+ G (q) + F(q)
ATP + PA = —)

where

for some positive-definite, symmetric matrices P and Q).
Stability:

Tracking error vector e is asymptotically stable.
Restrictions:

Parameter resetting method is required. Measurement of § is required.




EXAMPLE 6.2-2: Adaptive Computed-Torque Controller

It is desired to design and simulate the adaptive computed-torque
controller given in Table 6.2.1 for the two-link arm given in Figure 6.2.1.

Assuming that the friction is negligible and that the link lengths are exactly
known, the adaptive computed-torque controller can be written in the same
form as that given in Example 6.2.1, with the exception that we must find
the update rules for fy; and 1f,. That is, we use Equations (1) and (2) in
Example 6.2.1 for the joint torque control and then formulate the update rule
for #1; and m; according to Table 6.2.1.

For simplicity, in this example we select the servo gains as

K,=kJ, and K,=k,I, (1)

where k, and k; are positive, scalar constants and for this case I, is the
2x%2 identity matrix. We propose that the matrix P in Table 6.2.1 be
selected as
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F= [ P, Py, ] = f?[ \al, L |- @



MNote that P is symmetric, and that it is positive definite if k, is selected
to be greater than 1 (see the Gerschgorin Theorem in Chapter 1). To
see if our selection of P gives a positive-definite O, perform the matrix
operation

ATP+ PA=-Q (3)
RN O
Q= "0, (K, +)l ] ' 4

Since we have already restricted k,>1, it can be verified that Q is a positive
definite, symmetric matrix. We note here that the process of finding a positive
definite, symmetric P and Q for the general Lyapunov approach is not always
an easy task.

Now that we have found an appropriate F, we can formulate the adaptive
update rule given in Table 6.2.1. The associated parameter estimate vector is
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Figure 6.2.4: Simulation of the adaptive computed-torque controller.



EXAMPLE 6.3-1: Adaptive Inertia-Related Controller

We wish to design and simulate the adaptive inertia-related controller given
in Table 6.3.1 for the two-link arm given in Figure 6.2.1. Assuming that
the friction is negligible and the link lengths are exactly known, the adaptive
inertia-related torque controller can be written as

7 = Ynmy + Yiamg + kyié) + kypdpeg (1)

1 =Y ()@ + Kot + KyAe 2)

In the expression for the control torques, the regression matrix Y(-) is given

by

. : Yii 1
Y (4, G4, 94,4, 4) = [ Yo Yur } , (3)
where
Y =1 (Ga + Méa) + ligen, (4)

Yia = (I3 + 2hlaeo + 1}) (G + Miéy)

+ (I3 + hilaes) (daz + A2é2) — lilasags (Gar + Arer) (5)
— hilasg (g1 + Go) (Gao + Azez) + lagera + ligey,



Yz =40, (6)
and

Yoo = (Iilaca + 13) (a1 + Mé1) + B (Gao + Aaéa)
= lilasaqy (Ga1 + Mr€1) + lagess.

Formulating the adaptive update rule as given in Table 6.3.1, the associated
parameter estimate vector is

with the adaptive update rules
ﬁ:ll =7 []"11 I[:'I.]El +é1) + Y51 (Agea + éﬂ] (8)
and

ﬁg = Y2 {le {l]ﬂ; +é1) + Yoo (Agea + 6'2]] . 2)



For 71,=0.8 kg and m,=2.3 kg, the adaptive inertia-related controller was
simulated with k,,=k,,=10, L,=k,=2.5, L,=4,=20,151,(0)=0, yi.(0)=0, and with
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Figure 6.3.2: Simulation of the adaptive inertia-related controller.



Table 6£.3.1: Adaptive Inertia-Related Controller

Torqgque Controller:
T=Y ()@ + K,é+ K, Ae
Update Rule:
¢ =TYT(-)(Ae + &)
where
Y ()@ = M(q)(ja + Aé) + Vin(g, 9) (da + Ae) + G(g) + F(q)
Stability:

Tracking error e and é are asymptotically stable. Parameter estimate
% is bounded.
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Figure 6.3.1: Block diagram of the adaptive inertia-related controller.



EXAMPLE 6.6-2: Least-Squares Estimator for a One-Link Robot Arm

Using the dynamics of the one-link robot arm given in Example 6.5.1, it is
desired to find the least-squares estimator given by (6.6.16) and (6.6.17).
Since the number of unknown parameters is two, define the matrix P to be

A B

P=1p, pa]- (1)
T = m{ + by, (1)

t = mj + bqg,

Figure 6.5.1: One-link revolute arm.



Utilizing the filtered regression matrix from Example 6.6.1, we have
Welg,g)=[ Wrn Whna ], 2)
where

Wei=(f+d) +d-fi(0) and Wpa=fxq

Using (6.6.17), it is easy to see that the matrix P should be updated in the
following manner:

Py == (Wi Py + Wi Ps)? (3)

and

Py == (WP + Wﬂ:ﬁi]z- (5]



Now using (6.6.16), the parameter update rules are

m = (PiWpy + W) 7y

b= (PaWeyy + PsWiia) 7,

where, from (6.6.16), 7 is given by

Ty =7 — Wi — H’_flgti.r.

(6)

(8)



For insight into how the least-squares esimation method extracts parameter
information, we now show how (6.6.18) is obtained. Utilizing (6.6.13) and
the fact that the parameters are constant, we write (6.6.16) as

¢ =—PW{ (Y\W; ()¢ (6.6.20)
Using the matrix identity P=—PP-'P we can write (6.6.17) as
Pl =W[ ()W (). (6.6.21)
Substituting (6.6.21) into (6.6.20) yields the differential equation
¢=—PP g (6.6.22)
We claim that
@=—-PP ' (0)¢(0) (6.6.23)

is the solution to (6.6.22). This fact can be verified by substituting (6.6.23)
into the right-hand and left-hand sides of (6.6.22). That is, we obtain

~PP7 (0)(0) = PP'PPY(0) ¢ (0); (6.6.24)



therefore, (6.6.23) is the solution. Now from (6.6.21) it is easy to see that the
solution for P is given by

¢ =
o —1 T .
P= {P {ﬂ}+]ul Wf (o) Wy (o) dcr} 4 (6.6.25)

After examining (6.6.25), we can intuitively see that if the infinite integral
condition is satisfied, then

tEbIEIm Amax {FP} =0 (6.6.26)

and

tlilrgl:- n}lmj_n {P-l} = . {6.6.1?]



