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Tell me and I will forget.
Show me and I will remember.
Involve me and I will understand.

Chinese proverb



What is Kinematics
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Review
• What is a robot?

– By general agreement a robot is:

• A programmable machine that imitates the actions or appearance of 
an intelligent creature–usually a human.

– To qualify as a robot, a machine must be able to:

1) Sensing and perception: get information from its surroundings 

2) Carry out different tasks: Locomotion or manipulation, do something 
physical–such as move or manipulate objects

3) Reprogrammable: can do different things

4) Function autonomously and/or interact with human beings

• Why use robots?

4A: Automation, Augmentation, Assistance, Autonomous

4D: Dangerous, Dirty, Dull, Difficult

–Perform 4A tasks in 4D environments



Kinematics studies the motion  of 

bodies 

4



Joints for Robots
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Manipulators

• Robot arms, industrial robot

– Rigid bodies (links) connected 

by joints

– Joints: revolute or prismatic

– Drive: electric or hydraulic 

– End−effector (tool) mounted on a 

flange or plate secured to the 

wrist joint of robot 



Robot Joints

Prismatic Joint: Linear, No rotation involved.
(Hydraulic or pneumatic cylinder)

Revolute Joint: Rotary, (electrically driven with stepper motor, servo motor)
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Manipulators
• Robot Configuration:

Cartesian: PPP Cylindrical: RPP Spherical: RRP

SCARA: RRP

(Selective Compliance 

Assembly Robot Arm)

Articulated: RRR

Hand coordinate:

n: normal vector; s: sliding vector; 

a: approach vector, normal to the

tool mounting plate
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Manipulators

• Motion Control Methods

– Point to point control

• a sequence of discrete points

• spot welding, pick−and−place, loading & unloading

– Continuous path control

• follow a prescribed path, controlled−path motion

• Spray painting, Arc welding, Gluing 
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Manipulators

• Robot Specifications

– Number of Axes

• Major axes, (1−3) => Position the wrist

• Minor axes, (4−6) => Orient the tool

• Redundant, (7−n) => reaching around 

obstacles, avoiding undesirable 

configuration

– Degree of Freedom (DOF)

– Workspace

– Payload (load capacity)

– Precision vs. Repeatability

Which one is more important?

how accurately a specified point 

can be reached

how accurately the same position 

can be reached if the motion is 

repeated many times



An Example − The PUMA 560

The PUMA 560 has SIX revolute joints

A revolute joint has ONE degree of freedom ( 1 DOF) that is    

defined by its angle

1

2
3

4

There are two more 

joints on the end 

effector (the gripper)

Concepts:
- Revolute joint
- DOF 11



Other basic joints

Spherical Joint

3 DOF ( Variables − 1, 2, 3)

Revolute Joint

1 DOF ( Variable − )

Prismatic Joint

1 DOF (linear) (Variables − d) 

Concepts:
- Prismatic joint
- Spherical joint 12



We are interested in two kinematics topics

Forward Kinematics (angles to position)
What you are given:  The length of each link

The angle of each joint

What you can find:  The position of any point

(i.e. its  (x, y, z) coordinates

Given the angles, locate the tool tip position

Inverse Kinematics (position to angles)

What you are given: The length of each link

The position of some point on the robot

What you can find: The angles of each joint needed to obtain 

that position

Given the tool tip position, determine the joints angles

Concepts:
- Forward Kinematics
- Inverse Kinematics 13



Forward Kinematics:  

to determine where the robot’s hand is?

(If all joint variables are known)

Inverse Kinematics: 

to calculate what each joint variable is?

(If we desire that the hand be 

located at a particular point)
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Kinematic Problems for 

Manipulation
• Reliably position the tip − go from one position to another 

position 

• Don’t hit anything, avoid obstacles

• Make smooth motions

– at reasonable speeds and 

– at reasonable accelerations

• Adjust to changing conditions − 

– i.e. when something is picked up respond to the change in weight
17



SCARA
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Spatial description and transformation

• We need to be able to describe the position and 

the orientation of the robot’s parts

• Suppose there’s a universe coordinate system

to which everything can be referenced.
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Spatial description and 

transformation

• We need to be able to describe the position and 

the orientation of the robot’s parts (relative to U)

U
universe

coordinate

system

What’s its position
(“reference point”) ?

What’s its orientation ?
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Positions, orientations and frames

• The position of a point p relative to a coordinate 

system A (Ap):

x

A

y

z

p

p p

p

 
 

  
 
 

ZA

XA

YA

A
p
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Positions, orientations and frames

• The orientation of a body is described by a 

coordinate system B attached to the body, 

relative to A (a known coordinate system).

ZB

XB

ZA

XA

YA

YB
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Positions, orientations and frames

• The orientation of a body is described by a 

coordinate system B attached to the body, 

relative to A (a known coordinate system).

A A A A

B B B B

B A B A B A

B A B A B A

B A B A B A

R X Y Z

X X Y X Z X

X Y Y Y Z Y

X Z Y Z Z Z

   

   
 

   
 
    

cosine of the angle
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Positions, orientations and frames

• A frame is a set of 4 vectors giving the position 

and orientation.

• Example: frame B

   ,A A

B BorgB R P

ZA

XA

YA

A
PBorg

ZB

XB
YB

A A A

B B BX Y Z  
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position

A
PBorgZA

XA

YA

Positions, orientations and frames

• Remember the robot’s part:

ZB

XB
YB

orientation



Concatenation of numerous translations and rotations

Y

X

Z

T

P

















A

O

N

W

W

W

H = (Rotate so that the X−axis is aligned with T)

* ( Translate along the new t−axis by || T || (magnitude of T))

* ( Rotate so that the  t−axis is aligned with P)

* ( Translate along the p−axis by || P || )

* ( Rotate so that the p−axis is aligned with the O−axis)  
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Mapping

• Until now, we saw how to describe positions, 

orientations and frames.

• We need to be able to change descriptions 

from one frame to another: mapping.

• Mappings:

– translated frames

– rotated frames

– general frames



A  rigid  body in  space 

• A  rigid  body  is completely  described  in  

space by  its position  and  orientation

Unit vectors

28
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Preliminary

• Robot Reference Frames

– World frame

– Joint frame

– Tool frame

x

y
z

x

z

y

W R

PT
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Preliminary

• Coordinate Transformation

– Reference coordinate frame 

Oxyz

– Body−attached frame O’uvw

wvu kji wvuuvw pppP 


zyx kji zyxxyz pppP 


x

y

z

P

u

v
w

O, O’

Point represented in  Oxyz:

zwyvxu pppppp 

T

zyxxyz pppP ],,[

Point represented in O’uvw:

Two frames coincide   ==>



Properties: Dot Product 

Let     and     be arbitrary vectors in       and     be 

the angle from     to    , then
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Preliminary

• Mutually perpendicular • Unit vectors

Properties of orthonormal coordinate frame

0

0

0







jk

ki

ji







1||

1||

1||







k

j

i







3R 

cosyxyx 

x y
x y



The components of each unit vector are the 

direction cosines of the axes of frame O'−x'y'z’   

with respect  to the reference frame O−xyz .
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Rotation Matrix

Properties:

→

33



Representation of a Vector
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Representation of a Vector

• Since p and p’ are representations of the same 

point P, it is

35



Rotation of a Vector

• Point “=“ Vector

36



Rotation matrix: equivalent 

geometrical meanings

• It describes the mutual orientation between 
two coordinate frames; its column vectors are 
the direction cosines of the axes of the rotated 
frame with respect to the original frame.

• It represents the coordinate transformation 
between the coordinates of a point expressed 
in two different frames (with common origin).

• It is the operator that allows the rotation of a 
vector in the same coordinate frame.

37



Rotation Matrices

•

• Successive rotations can be also specified by 

constantly referring them to the initial frame; 

in this case, the rotations are made with respect 

to a fixed frame.
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Vector rotation (fixed frame)
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Vector rotation: order is important
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Composition of rotation matrices for 

current Frames

• First rotate the given frame A

according to so as to align it 

with frame B

• Then rotate the current frame, now 

aligned with frame B, according to  

s so as to align it with frame C

41

A

BR

B

CR



Current and fixed Frames

• Current: 

• Fixed: 

42

A A B A B C A B C D

B B C B C Dp R p R R p R R R p  

A A B

B

B A B B C

A C

C B A C C D

B A D

D C B A D

C B A

p R p

R p p R p

R R p p R p

R R R p p



  

  

 
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Composite Rotation Matrix

• A sequence of finite rotations 

– matrix multiplications do not commute!

– rules:

• if rotating coordinate O−uvw is rotating about a 

principal axis of a fixed O−xyz frame, then 

pre−multiply the previous (resultant) rotation matrix 

with an appropriate basic rotation matrix

• if rotating coordinate O−uvw is rotating about its own 

principal axes, then post−multiply the previous 

(resultant) rotation matrix with an appropriate basic 

rotation matrix
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So far:
Rotations

 FIXED:

C

C

B B

B

B

A A A

A Ap R p R R p

p p

A

 

A B C

B rotates wrt A and C rotates wrt B 
but the rotation is described via A
Multiply on the left
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So far:
Rotations

A B: “new” A

C: “new” B, “newer” A

CURRENT:

B B

B B

A A CA

Cp R p R R p 

Multiply on the right



Practical Matters:

How to transform
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Elementary Rotations
Frames that can be obtained via 

elementary rotations of the 

reference frame about one of the 

coordinate axes

Positive if they are made 

counter−clockwise about the 

relative axis. Example: z

New unit vectors:

48



Rotation Matrix 3D
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Example 1

Consider the vector p which is obtained by 

rotating a vector p’ in the plane xy by an angle α 

about axis z of the reference frame 

Coordinates of the vector p’: 

The vector p has components

50
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Example 2

• A point                      is attached to a rotating frame and 

this frame rotates 60 degree about the Oz axis of the 

reference frame.  Find the coordinates of the point 

relative to the reference frame after the rotation.

)2,3,4(uvwa

















































 





2

964.4

598.0

2

3

4

100

05.0866.0

0866.05.0

)60,( uvwxyz azRota
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Example 3

• A point                    is the coordinate w.r.t. the 

reference coordinate system, find the 

corresponding point         w.r.t. the rotated Ouvw

coordinate system if it has been rotated 60 degree 

about Oz axis. 

)2,3,4(xyza

uvwa























































2

964.1

598.4

2

3

4

100

05.0866.0

0866.05.0

)60,( xyz

T

uvw azRota
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Example 4

• Find the rotation matrix for the following 

operations:

Post−multiply if rotating about the Ouvw (current) axes 

Pre−multiply if rotating about the Oxyz (reference) axes

Rotation  about  axis

Rotation  about  axis

Rotation  about  axis

...

y

w

u

O

O

O

Answer







C 0 S 0 1 0 0

0 1 0 0 0

-S 0 C 0 0 1 0

C S

R S C C S

S C

C C S S C S C C S S S C

S C C C S

S C S S C C S C C S S S

   

   

   

           

    

           

     
     

 
     
          

  
 

 
 
    

( , ) ( , ) ( , )R Rot y Rot w Rot u  



Trigonometric shorthand
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Moving Between Coordinate Frames
Translation Along the X−Axis

N

O

X

Y

Px

VN

VO

Px = distance between the XY and NO coordinate planes











Y

X

XY

V

V
V 










O

N

NO

V

V
V 










0

P
P

x

P

(VN,VO)

Notation:



N
X

P

VN

VO

Y O



NO

O

N

XXY
VP

V

VP
V 







 


Writing        in terms of 
XY

V NO
V



X

N
VN

VO

O

Y

Translation along the X−Axis and Y−Axis















O

Y

N

XNOXY

VP

VP
VPV

 
  
 

xXY

Y

P
P

P
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Coordinate Transformations
• position vector of P 

in {B} is transformed 

to position vector of P 

in {A}

• description of {B} as 

seen from an observer 

in {A}

Rotation of {B} with respect to {A}

Translation of the origin of {B} with respect to origin of {A}
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Coordinate Transformations
• Two Cases

1. Translation only

– Axes of {B} and {A} are 

parallel

2. Rotation only

– Origins of {B} and {A} 

are coincident

1B

AR

'oAPB

B

APA rrRr 

0' oAr
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Homogeneous Representation

• Coordinate transformation from {B} to {A} 

• Homogeneous transformation matrix

'oAPB

B

APA rrRr 



























 1101 31

' PBoA

B

APA rrRr























1010

1333

31

' PRrR
T

oA

B

A

B

A

Position 

vector

Rotation 

matrix

Scaling
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Homogeneous Transformation
• Special cases

1. Translation

2. Rotation















10

0

31

13B

A

B

A R
T















10 31

'

33

oA

B

A rI
T
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Example 5

• Translation along z−axis with h:





















1000

100

0010

0001

),(
h

hzTrans














































































111000

100

0010

0001

1

hp

p

p

p

p

p

hz

y

x

w

v

u

w

v

u

x

y

z P

u

v
w

O, O’h
x

y

z

P

u

v

w

O, O’
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Example 6

• Rotation about the X−axis by θ






















1000

00

00

0001

),(





CS

SC
xRot

x

z

y

v

w

P

u


























































11000

00

00

0001

1

w

v

u

p

p

p

CS

SC

z

y

x







BONUS: Scaling & Stretching

• Scaling

• Stretching

64

0 0 0

0 3 0 0

0 0 0

0 0 0 1

s

s
S

s

 
 
 
 
 
 

0 0 0

0 0 0

0 0 0

0 0 0 1

a

b
T

c

 
 
 
 
 
 

Original scale Y axis

scale all axes



65

Recap: Homogeneous Transformation

• Composite Homogeneous Transformation Matrix

• Rules:

– Transformation (rotation/translation) w.r.t (X,Y,Z) 

(OLD FRAME), using pre−multiplication

– Transformation (rotation/translation) w.r.t (U,V,W) 

(NEW FRAME), using post−multiplication
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Recap: Homogeneous Transformation

• Composite Homogeneous Transformation Matrix

• Perspective: to be used when a camera gets involved; now:[0,0,0]

• Homogeneous coordinates for             wrt F, coordinate frame in     :

• Then,                       where                                 (We take σ = 1)

3q 3

   1 1 1, , ,
F T

q q q q   

 
F

q H q  3 3

1 F
H


 I 0
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Recap: Homogeneous Coordinates

• Composite Homogeneous Transformation Matrix

• Rules:

– Transformation (rotation/translation) w.r.t (X,Y,Z) 

(OLD FRAME), using pre−multiplication

– Transformation (rotation/translation) w.r.t (U,V,W) 

(NEW FRAME), using post−multiplication



Order of operations…

…does matter. Let’s look at an example:

1. Translate
2. Rotate 

1. Rotate
2. Translate
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Example 7

• Find the homogeneous transformation matrix (T) 

for the following operations:

Rotation  about  axis

Translation of  along  axis

Translation of  along  axis

Rotation of  about  axis

:

Ox

h Ox

d Oz

Oz

Answer





, , , , 4 4z z d x h xT T T T T I  

0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

C S h

S C C S

d S C

 

   

 

       
       


       
       
       
       
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Homogeneous Representation

• A frame in space (Geometric Interpretation)





















1000

zzzz

yyyy

xxxx

pasn

pasn

pasn

F













10

1333 PR
F

Principal axis n w.r.t. the reference coordinate system

x

y

z

),,( zyx pppP

n

s
a

(X’)

(y’)

(z’)
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Homogeneous Transformation

• Translation  

y

z

n

s
a n

s
a



































































1000

       

10001000

100

010

001

zzzzz

yyyyy

xxxxx

zzzz

yyyy

xxxx

z

y

x

new

dpasn

dpasn

dpasn

pasn

pasn

pasn

d

d

d

F

oldzyxnew FdddTransF  ),,(
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Homogeneous Transformation

2

1

1

0

2

0 AAA 

Composite Homogeneous Transformation Matrix

0x

0z

0y

1

0 A
2

1A

1x

1z

1y 2x

2z
2y

?

i

i A1 Transformation matrix for 

adjacent coordinate frames

Chain product of successive 

coordinate transformation matrices
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Example 8
• For the figure shown below, find the 4x4 homogeneous transformation matrices          

and          for i = 1, 2, 3, 4, 5





















1000

zzzz

yyyy

xxxx

pasn

pasn

pasn

F

i

i A1

iA0

0x 0y

0z

a

b

c

d

e

1x

1y

1z

2z

2x

2y

3y
3x

3z

4z

4y
4x

5x

5y

5z


























1000

010

100

0001

1

0

da

ce
A

























1000

0100

001

010

2

0
ce

b

A

























1000

0001

100

010

2

1
da

b

A

Can you find the answer by observation 

based on the geometric interpretation of 

homogeneous transformation matrix? 
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Positions, orientations and frames

Three unit vectors describing the hand 
orientation:

• The z vector lies in the direction from 
which the hand would approach an 
object and is known as the approach 
vector, a. 

• The y vector, known as the orientation 
vector, o, is in the direction specifying 
the orientation of the hand, from 
fingertip to fingertip. 

• The final vector, known as the normal 
vector, n, forms a right−handed set of 
vectors and is thus specified by the 
vector cross−product 

• Remember the robot’s end part:
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Positions, orientations and frames

• 12 quantities

n o a 

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p
T

n o a p

 
 
 
 
 
 



Euler Angles 

• Orientation is more frequently specified 

by a sequence of rotations about the x, y, 

or z axes.

• Euler angles describe any possible 

orientation in terms of a rotation φ about 

the z axis, then a rotation θ about the new 

y axis, y’, and finally, a rotation of ψ about 

the new z axis, z’’. 
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Euler Angles
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1

2

3
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Euler Angles Interpreted in Base Coordinates  

The sequence of rotations can be
interpreted in the reverse order as
rotations in base coordinates: a rotation ψ 
about the z axis, followed by a rotation θ
about the base y axis, and finally a 
rotation φ, once again
about the base z axis



Euler Angles
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'

''

cos sin 0 1 0 0

sin cos 0 , 0 cos sin ,

0 0 1 0 sin cos

cos sin 0

sin cos 0

0 0 1

z u

w

R R

R

 



 

   

 

 

 

   
   

     
   
   

 
 

  
 
 

       , , , , ,Euler Rot z Rot y Rot z     
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Euler Angle

Resultant Eulerian rotation matrix:

, , , , ,

0 0 0

0 0 1 0 0

0 0 1 0 0 0 1

z y z

C S C S C S

S C S C

S C

R R R R    

     

   

 

 



     
      
     
          

C C C S S C C S S C C S

S C C C S S C S C C S S

S C S S C

           

           

    

  

  



 
 
 
  



Roll, Pitch, Yaw
Περιστροφή, Πρόνευση, Εκτροπή

For a ship moving along the z axis, then roll 

corresponds to a rotation φ about the z axis, pitch 

corresponds to a rotation θ about the y axis, and 

yaw corresponds to a rotation ψ about the x axis
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Roll, Pitch, Yaw
Περιστροφή, Πρόνευση, Εκτροπή

For an airplane moving along the x axis, then roll 

corresponds to a rotation φ about the x axis, pitch 

corresponds to a rotation θ about the y axis, and 

yaw corresponds to a rotation ψ about the z axis
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Roll, Pitch, Yaw
Περιστροφή, Πρόνευση, Εκτροπή

83

• Robot manipulator, Robot hand



Roll, Pitch, Yaw
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, , , , ,

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

z y x

C S C S

S C C S

S C S C

R R R R    

   

   

   







     
      
     
          

C C C S S S C C S C S S

S C S S S C C S S C C S

S C S C C

           

           

    

 

 



 
 
 
  



85

Orientation Representation

• Euler Angles Representation (   ,   ,    )
– Many different types

– Description of Euler angle representations

  

Euler Angle I               Euler Angle II          Roll−Pitch−Yaw

Sequence      about OZ axis               about OZ axis about OX axis

of                   about OU axis               about OV axis          about OY axis

Rotations      about OW axis               about OW axis         about OZ axis

 



  

 





Can be useful

• Cylindrical Coordinates :

• Spherical Coordinates:
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     , ,   (0,0, ) ,  ,0,0Cyl z r Trans z Rot z Trans r 

     , ,   ,  , (0,0, )Sph r Rot z Rot y Trans r   



Homogeneous transformations for 

robot manipulators

• A serial link manipulator consists of a sequence 

of links connected together by actuated joints. 

• For an n degree of freedom manipulator, there 

will be n links and n joints. 

• The base of the manipulator is link 0 and is not 

considered one of the n links. 

• Link 1 is connected to the base link by joint 1.

• There is no joint at the end of the final link. 
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The Length a and Twist a of a Link 

• Any link can be characterized by two dimensions: 

1. the common normal distance      and 

2. the angle between the axes in a plane 

perpendicular to . 

• It is customary to call the length and the 

twist of the link 

89

na

n

na

nna



The Length a and Twist a of a Link 
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Important variables

• Angle θ between the normals

• Relative position d between links

91



Denavit−Hartenberg Parameters

• 4 in total D−H parameters:

• 3 fixed link parameters

• 1 joint variable 

• describe the Link i

• describe the Link’s connection

92

variable if revolute joint

variable if prismatic joint

,  ,  ,i i i ia d 

i

 and  i ia

id

 and i id 

{



Denavit−Hartenberg Parameters

93



AFFIXING FRAMES TO LINKS 

94



Summary for link parameters and  

link frames 

If the attachment convention has been followed, 

then define:  

• ai = the distance from Zi to Zi+1 measured along Xi

• αi = the angle from Zi to Zi+1 measured about Xi

• di = the distance from Xi−1 to Xi measured along Zi

• θi = the angle from Xi−1 to Xi measured about Zi
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Summary for link parameters and  

link frames 

• We usually choose ai > 0, because it corresponds 

to a distance; however, αi, di, and θi are signed 

quantities

• Attachment of frames to links NOT UNIQUE !! 
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RULES: Revolute joints

1. Each link requires a coordinate frame assigned to it. 

2. In revolute joints is the joint variable. 

3. The origin of the coordinate frame of link n is set to be at the intersection 
of the common normal between the axes of joints n and n + 1 and the axis 
of joint n. 

4. In the case of intersecting joint axes, the origin is at the point of 
intersection of the joint axes. 

5. If the axes are parallel, the origin is chosen to make the joint distance zero 
for the next link whose coordinate origin is defined. 

6. The z axis for link n will be aligned with the axis of joint n + 1. 

7. The x axis will be aligned with any common normal which exists and is 
directed along the normal from joint n to joint n + 1. 

8. In the case of intersecting joints, the direction of the x axis is parallel or 
antiparallel to the vector cross product . 

9. Notice that this condition is also satisfied for the x axis directed along the 
normal between joints n and n + 1. 

10. is zero for the nth revolute joint when and     are parallel and have 
the same direction. 97

n

1n nz z 

n nx1nx 



RULES: Revolute joints
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RULES: Prismatic joints

1. In the case of a prismatic joint, the distance is the joint variable.

2. The direction of the joint axis is the direction in which the joint 
moves. 

3. The direction of the axis is defined but, unlike a revolute joint, the 
position in space is not defined.

4. Length      has no meaning and is set to zero. 

5. The origin of the coordinate frame for a prismatic joint is 
coincident with the next defined link origin. 

6. The z axis of the prismatic link is aligned with the axis of joint n+1.

7. The     axis is parallel or antiparallel to the vector cross product of 
the direction of the prismatic joint and     . 

8. For a prismatic joint, we will define the zero position when = 0. 
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RULES: Prismatic joints
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The 

Denavit-Hartenberg

Method

101



Denavit−Hartenberg Parameters
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Denavit−Hartenberg Parameters
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Denavit−Hartenberg Parameters
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Denavit−Hartenberg Parameters
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Denavit−Hartenberg Parameters
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Denavit−Hartenberg Parameters

107

di variable if joint is prismatic



Denavit−Hartenberg Parameters

108



Denavit−Hartenberg Parameters

109

θi variable if joint is revolute



Next: Assign frames

• Two Design Principles prevail in this modeling 

approach 

– Principle 1: The Axis Xi must be designed to intersect 

Zi−1

– Principle 2: The Axis Xi must be designed to be 

perpendicular to Zi−1



AFFIXING FRAMES TO LINKS: Zi

111
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AFFIXING FRAMES TO LINKS: 

Locate origins 
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AFFIXING FRAMES TO LINKS: Xi
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AFFIXING FRAMES TO LINKS: Yi
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FINAL



116



Denavit−Hartenberg Method
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Denavit−Hartenberg Method
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Denavit−Hartenberg Method
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Denavit−Hartenberg Method
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Denavit−Hartenberg Method
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Denavit−Hartenberg Method
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MOVIE 1
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TRANSFORMATIONS

126

1
2

3

4

1 1( , ) ( , ) ( , ) ( , )i i i i i i i iT z d R z T x a R x  



Overall transformation fixed i−1
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1

1 1

1 1

1 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

i i i

i i i i

i i i

a C S

C S S C

S C d

 

   

 



 

 

       
       


         
       
       
       

1

1 1 1 1

1 1 1 1

0

0 0 0 1

i i i

i i i i i i i

i i i i i i i

C S a

S C C C S S d

S S C S C C d

 

     

     



   

   

 
 

 
 
 
 
 



Overall transformation fixed i
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1 0 0 0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

ii i

i i i i

i i i

C S

S C C S

d S C

a 

   

 





       
       
       
       
       
       

1 1 1

1 1 1

1 10

0 0 0 1

i i i i i i i

i i i i i i i

i i i

C C S S S C

S C C S C S

S C d

a

a

     

     

 

  

  

 





 
 
 
 
 
 



Overall transformation
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1 1 1

1 1 1

1 1 1

1 10

0 0 0 1

( , ) ( , ) ( , ) ( , )i

i i i i i i i i i

i i i i i i i

i i i i i i i

i i i

C C S S S C

S C C S C S

S C d

a

a

T T z d R z T x a R x

     

     

 

   

  

  

 







 
 
 
 
 
 

The position and orientation of the i−th frame 

coordinate can be expressed in the (i−1)th frame by 

the following homogeneous transformation matrix:

Source coordinate

Reference
Coordinate



Overall transformation
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Each matrix is a function of the i-th joint variable, di or θi depending on the

joint type. For notational ease, the joint variable is generically indicated as qi , i.e.:

qi = di for prismatic joints

qi = θi for rotational joints

Therefore: 

In case of a manipulator with n joints, the relationship between frame F0 and

frame Fn is:

This equation expresses the position and orientation of the last link wrt the base

frame, once the joint variables q1, q2, . . . , qn are known.

This equation is the kinematic model of the manipulator.

1

i

iT 

 1 1

i i

i i iT T q 

     1 2

0 0 1 1 2 1 1

n n

nT T q T q T q



MOVIE 2
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Denavit−Hartenberg Algorithm v2
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Denavit−Hartenberg Algorithm v3
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MOVIE
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The Denavit−Hartenberg Matrix

• The Denavit−Hartenberg Matrix is an homogeneous 

transformation matrix from one coordinate frame to 

the next. 

• Using a series of D−H Matrix multiplications and the 

D−H Parameter table, the final result is a 

transformation matrix from some frame to your 

initial frame.

1

1 1 1 1

1 1 1 1

0

0 0 0 1

i i i

i i i i i i i

i i i i i i i

C S a

S C C C S S d

S S C S C C d

 

     

     



   

   

 
 

 
 
 
 
 
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The Denavit−Hartenberg Parameter table

• Two−link manipulator arm

137

1

0T  2

1T 



The Denavit−Hartenberg Parameter table

• SCARA arm, the Selective Compliant Articulated Robot for Assembly

• two revolute joints (elbow, “wrist”) and one prismatic joint 

138



The Denavit−Hartenberg Parameter table

• SCARA arm, the Selective Compliant Articulated 

Robot for Assembly

• two revolute joints (elbow, “wrist”) and one prismatic joint 

• * indicates the moving joint variable

• *the end-tool is not included
139



The Denavit−Hartenberg Parameter table

• Spherical wrist

• can be used to achieve any desired orientation of the 

end effector

• * indicates the moving joint variable
140



APPLICATION
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2

2

0 0 0

2

1

X

Y

X Y Z

Z

V

V
V T

V

 
 
 
 
 
 

0 1

0 1 2( )( )( )T T T T

Note: T is the D−H matrix with (i−1) = 0 and i = 1.

Z0

X0

Y0

Z1

X2

Y1

X1

Y2

d2

a0 a1

i (i-1) a(i-1) di i 

0 0 0 0 0 

1 0 a0 0 1 

2 -90 a1 d2 2 
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3 Revolute Joints



0 0

0 0

0

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

T

 

 

 
 
 
 
 
 

This is just a rotation around the Z0 axis

1 1 0

1 10

1

cos sin 0

sin cos 0 0

0 0 0 0

0 0 0 1

a

T

 

 

 
 
 
 
 
 

2 2 1

21

2

2 2

cos sin 0

0 0 1

sin cos 0 0

0 0 0 1

a

d
T

 

 

 
 
 
  
 
 

This is a translation by a0 followed by a 

rotation around the Z1 axis

This is a translation by a1 and then d2

followed by a rotation around the X2 and

Z2 axis

0 1

0 1 2( )( )( )T T T T

i (i-1) a(i-1) di i 

0 0 0 0 0 

1 0 a0 0 1 

2 -90 a1 d2 2 
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PUMA 260
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PUMA 260
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PUMA 260
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PUMA 260
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PUMA 260
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PUMA 260
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Denavit−Hartenberg Parameters

PUMA 

Link i 
i  

i  
ia  

id  Εύρος κίνησης 

1 90 -90 0 0 -160 to +160 

2 0 0 431.8mm 149.09mm -225 to 45 

3 90 90 -20.32mm 0 -45 to 225 

4 0 -90 0 433.07mm -110 to 170 

5 0 90 0 0 -100 to 100 

6 0 0 0 56.25mm -266 to 266 
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PUMA 560
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PUMA 560
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RECAP: Denavit−Hartenberg

154

ai = the distance from zi−1 to zi measured along xi

αi = the angle from zi−1 to zi measured about xi

di = the distance from xi−1 to xi measured along zi

θi = the angle from xi−1 to xi measured about zi−1



RECAP: Denavit−Hartenberg
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RECAP: Denavit−Hartenberg
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RECAP: 

Worked out example

THE STANFORD (Scheinman) Arm

157



STANFORD MANIPULATOR
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The original ~1968



STANFORD MANIPULATOR
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O1

O2

O3O4
O5

O6



STANFORD MANIPULATOR
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O1

O2

O3O4
O5

O6α5

α4

α2
α1



i i i i i i i

i i i i i i i

i i i

c -c s s s a c

s c c -s c a s

0 s c d

0 0 0 1

iA

     

     

 

 
 
 
 
 
 

The DH parameters are:
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1

0 1T A

1 2 1 1 2 2 1

1 2 1 1 2 2 12

0 1 2

2 20 0

0 0 0 1

c c s c s d s

s c c s s d c
T A A

s c

  
 
  
 
 
 

0

0

0

1

z

 
 


 
  

1

1 1

0

s

z c

 
 


 
  

1 2

2 1 2

2

c s

z s s

c

 
 


 
  

1 2 1 1 2 3 1 2 2 1

1 2 1 1 2 3 1 2 2 13

0 1 2 3

2 2 3 20

0 0 0 1

c c s c s d c s d s

s c c s s d s s d c
T A A A

s c d c

  
 


  
 
 
 

1 2

3 1 2

2

c s

z s s

c

 
 


 
  

3 1 2 2 1

3 3 1 2 2 1

3 2

d c s d s

O d s s d c

d c

 
 

 
 
  

0 1

0

0

0

O O

 
 

 
 
  

2 1

2 2 1

0

d s

O d c

 
 


 
  
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4

0 1 2 3 4T A A A A

5

0 1 2 3 4 5T A A A A A

6

0 1 2 3 4 5 6T A A A A A A

1 2 4 1 4

4 1 2 4 1 4

2 4

c c s s c

z s c s c c

s s

  
 

  
 
  

T4 =

[  c1c2c4−s1s4,       −c1s2, −c1c2s4−s1*c4,  c1s2d3−sin1d2]

[  s1c2c4+c1s4,   −s1s2, −s1c2s4+c1c4, s1s2d3+c1*d2]

[−s2c4,  −c2,  s2s4, c2*d3]

[   0,   0, 0, 1]

3 1 2 2 1

4 3 1 2 2 1

3 2

d c s d s

O d s s d c

d c

 
 

 
 
  
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T5 =

[ (c1c2c4−s1s4)c5−c1s2s5, c1c2s4+s1c4, (c1c2c4−s1s4)s5+c1s2c5,c1s2d3−s1d2]

[ (s1c2c4+c1s4)c5−s1s2s5, s1c2s4−c1c4, (s1c2c4+c1s4)s5+s1s2c5,s1s2d3+c1d2]

[  −s2c4c5−c2s5, −s2s4, −s2c4s5+c2c5,  c2d3]

[   0,   0, 0, 1]

1 2 4 5 1 4 5 1 2 5

5 1 2 4 5 1 4 5 1 2 5

2 4 5 2 5

c c c s s s s c s c

z s c c s c s s s s c

s c s c c

  
 

  
 
   
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1 2 4 5 1 4 5 1 2 5

5 1 2 4 5 1 4 5 1 2 5

2 4 5 2 5

c c c s s s s c s c

z s c c s c s s s s c

s c s c c

  
 

  
 
   

3 1 2 2 1

5 3 1 2 2 1

3 2

d c s d s

O d s s d c

d c

 
 

 
 
  
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 

5 

 

 1 2 4 1 4 5 1 2 5,  1 2 4 1 4,  1 2 4 1 4 5 1 2 5,  1 2 3 1 2

 1 2 4 1

[ ( ) ( ) ]

[ ( )4 5 1 2 5, 1 2 4 1 4,  1 2 4 1 4 5 1 2 5,  1 2 3 1 2

  2 4 5 2 5, 2 4, 2 4 5 2 5,  2 3

    0, 

]

]

0

[

 

T

c c c s s c c s s c c s s c c c c s s s c s c c s d s d

s c c c s c s s s s c s c c s c c c s s s s c s s d c d

s c c c s s s s c s c c c d



     

     

    

 ,  0,  1



STANFORD MANIPULATOR

ALTERNATIVE EDITION/REPRESENTATION

166




