Tell me and I will forget.
Show me and I will remember.
Involve me and I will understand.

Chinese proverb

What is Kinematics

Review

- What is a robot?
- By general agreement a robot is:
- A programmable machine that imitates the actions or appearance of an intelligent creature-usually a human.
- To qualify as a robot, a machine must be able to:

1) Sensing and perception: get information from its surroundings
2) Carry out different tasks: Locomotion or manipulation, do something physical-such as move or manipulate objects
3) Reprogrammable: can do different things
4) Function autonomously and/or interact with human beings

- Why use robots?
-Perform 4A tasks in 4D environments
4A: Automation, Augmentation, Assistance, Autonomous
4D: Dangerous, Dirty, Dull, Difficult

Kinematics studies the motion of bodies

Joints for Robots

Manipulators

- Robot arms, industrial robot
- Rigid bodies (links) connected by joints
- Joints: revolute or prismatic
- Drive: electric or hydraulic
- End-effector (tool) mounted on a flange or plate secured to the wrist joint of robot

Robot Joints

Prismatic Joint: Linear, No rotation involved.

(Hydraulic or pneumatic cylinder)

Revolute Joint: Rotary, (electrically driven with stepper motor, servo motor)

Manipulators

- Robot Configuration:

Cartesian: PPP

Articulated: RRR

Cylindrical: RPP

SCARA: RRP

(Selective Compliance Assembly Robot Arm)

Hand coordinate:
\mathbf{n} : normal vector; s: sliding vector;
a: approach vector, normal to the
tool mounting plate

Spherical: RRP

Manipulators

- Motion Control Methods
- Point to point control
- a sequence of discrete points
- spot welding, pick-and-place, loading \& unloading
- Continuous path control
- follow a prescribed path, controlled-path motion
- Spray painting, Arc welding, Gluing

Manipulators

- Robot Specifications
- Number of Axes
- Major axes, (1-3) => Position the wrist
- Minor axes, (4-6) => Orient the tool
- Redundant, $(7-\mathrm{n})=>$ reaching around obstacles, avoiding undesirable configuration
- Degree of Freedom (DOF)
- Workspace
- Payload (load capacity)
- Precision vs. Repeatability can be reached if the motion is
how accurately a specified point repeated many times
can be reached

An Example - The PUMA 560

The PUMA 560 has SIX revolute joints
A revolute joint has ONE degree of freedom (1 DOF) that is defined by its angle

Concepts:

- Revolute joint
- DOF

Other basic joints

Concepts:

> Prismatic joint Spherical joint

We are interested in two kinematics topics

Forward Kinematics (angles to position)
What you are given: The length of each link The angle of each joint

What you can find: The position of any point
(i.e. its ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinates

Given the angles, locate the tool tip position
Inverse Kinematics (position to angles)
What you are given:
The length of each link
The position of some point on the robot
What you can find: The angles of each joint needed to obtain that position
Given the tool tip position, determine the joints angles

Concepts:

- Forward Kinematics
- Inverse Kinematics
- Forward Kinematics:
to determine where the robot's hand is?
(If all joint variables are known)
\checkmark Inverse Kinematics:
to calculate what each joint variable is?
(If we desire that the hand be located at a particular point)

Kinematic Problems for Manipulation

- Reliably position the tip - go from one position to another position
- Don't hit anything, avoid obstacles
- Make smooth motions
- at reasonable speeds and
- at reasonable accelerations
- Adjust to changing conditions -
- i.e. when something is picked up respond to the change in weight

Figure 1.2
Symbols of joints (arrows show direction of motion). (a) Prismatic joint. (b) Revolute joint 1. (c) Revolute joint 2. (c1) Up-and-down rotation. (c2) Back-and-forth rotation.

Spatial description and transformation

- We need to be able to describe the position and the orientation of the robot's parts
- Suppose there's a universe coordinate system to which everything can be referenced.

Spatial description and transformation

- We need to be able to describe the position and the orientation of the robot's parts (relative to U)

Positions, orientations and frames

- The position of a point p relative to a coordinate system $A\left({ }^{A} p\right)$:

$$
{ }^{A} p=\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right)
$$

Positions, orientations and frames

- The orientation of a body is described by a coordinate system B attached to the body, relative to A (a known coordinate system).

Positions, orientations and frames

- The orientation of a body is described by a coordinate system B attached to the body, relative to A (a known coordinate system).

$$
\left.\begin{array}{rl}
{ }_{B}^{A} R & =\left[{ }^{A} X_{B}\right. \\
{ }^{A} Y_{B} & { }^{A} Z_{B}
\end{array}\right] \quad \begin{array}{rlll}
{\left[\begin{array}{|ccc}
X_{B} \cdot X_{A} & Y_{B} \cdot X_{A} & Z_{B} \cdot X_{A} \\
& =\left[\begin{array}{lcc}
X_{B} \cdot Y_{A} & Y_{B} \cdot Y_{A} & Z_{B} \cdot Y_{A} \\
X_{B} \cdot Z_{A} & Y_{B} \cdot Z_{A} & Z_{B} \cdot Z_{A}
\end{array}\right]
\end{array} .\right.}
\end{array}
$$

cosine of the angle

Positions, orientations and frames

- A frame is a set of 4 vectors giving the position and orientation.
- Example: frame B

$$
\{B\}=\left\{{ }_{B}^{A} R,{ }^{A} P_{\text {Borg }}\right\}
$$

Positions, orientations and frames

- Remember the robot's part:

Concatenation of numerous translations and rotations

$\mathrm{H}=$ (Rotate so that the X -axis is aligned with T$)$ * (Translate along the new $\mathrm{t}-$ axis by $\|\mathrm{T}\|$ (magnitude of T$)$)

* (Rotate so that the t -axis is aligned with P)
* (Translate along the p -axis by $\|\mathrm{P}\|$)
* (Rotate so that the p -axis is aligned with the O^{-}-axis)

Mapping

- Until now, we saw how to describe positions, orientations and frames.
- We need to be able to change descriptions from one frame to another: mapping.
- Mappings:
- translated frames
- rotated frames
- general frames

A rigid body in space

- A rigid body is completely described in space by its position and orientation

Preliminary

- Robot Reference Frames
- World frame
- Joint frame
- Tool frame

Preliminary

- Coordinate Transformation
- Reference coordinate frame Oxyz
- Body-attached frame O’uvw

Point represented in Oxyz:

$$
\begin{aligned}
& P_{x y z}=\left[p_{x}, p_{y}, p_{z}\right]^{T} \\
& \vec{P}_{x y z}=p_{x} \dot{\mathrm{i}}_{\mathrm{x}}+p_{y} \mathrm{j}_{\mathrm{y}}+p_{z} \mathrm{k}_{\mathrm{z}}
\end{aligned}
$$

Point represented in O^{\prime} uvw:

$$
\vec{P}_{u v w}=p_{u} \mathrm{i}_{\mathrm{u}}+p_{v} \mathrm{j}_{\mathrm{v}}+p_{w} \mathrm{k}_{\mathrm{w}}
$$

Two frames coincide $==>\quad p_{u}=p_{x} \quad p_{v}=p_{y} \quad p_{w}=p_{z}$

Preliminary

Properties: Dot Product

Let x and y be arbitrary vectors in R^{3} and θ be the angle from x to y, then

$$
x \cdot y=|x||y| \cos \theta
$$

Properties of orthonormal coordinate frame

- Mutually perpendicular

$$
\begin{aligned}
& \vec{i} \cdot \vec{j}=0 \\
& \vec{i} \cdot \vec{k}=0 \\
& \vec{k} \cdot \vec{j}=0
\end{aligned}
$$

- Unit vectors

$$
\begin{aligned}
& |\vec{i}|=1 \\
& |\vec{j}|=1 \\
& |\vec{k}|=1
\end{aligned}
$$

The components of each unit vector are the direction cosines of the axes of frame $O^{\prime}-x^{\prime} y^{\prime} z^{\prime}$ with respect to the reference frame $O-x y z$.

Rotation Matrix

$\boldsymbol{R}=\left[\begin{array}{lll}\boldsymbol{x}^{\prime} & \boldsymbol{y}^{\prime} & \boldsymbol{z}^{\prime} \\ & & \end{array}\right]=\left[\begin{array}{lll}x_{x}^{\prime} & y_{x}^{\prime} & z_{x}^{\prime} \\ x_{y}^{\prime} & y_{y}^{\prime} & z_{y}^{\prime} \\ x_{z}^{\prime} & y_{z}^{\prime} & z_{z}^{\prime}\end{array}\right]=\left[\begin{array}{lll}\boldsymbol{x}^{\prime T} \boldsymbol{x} & \boldsymbol{y}^{\prime T} \boldsymbol{x} & \boldsymbol{z}^{\prime T} \boldsymbol{x} \\ \boldsymbol{x}^{T} \boldsymbol{y} & \boldsymbol{y}^{T} \boldsymbol{y} & \boldsymbol{z}^{\prime T} \boldsymbol{y} \\ \boldsymbol{x}^{\prime T} \boldsymbol{z} & \boldsymbol{y}^{\prime T} \boldsymbol{z} & \boldsymbol{z}^{T T} \boldsymbol{z}\end{array}\right]$
Properties:

$$
\begin{array}{lll}
\boldsymbol{x}^{\prime T} \boldsymbol{y}^{\prime}=0 & \boldsymbol{y}^{\prime T} \boldsymbol{z}^{\prime}=0 & \boldsymbol{z}^{\prime T} \boldsymbol{x}^{\prime}=0 \\
\boldsymbol{x}^{\prime T} \boldsymbol{x}^{\prime}=1 & \boldsymbol{y}^{\prime T} \boldsymbol{y}^{\prime}=1 & \boldsymbol{z}^{\prime T} \boldsymbol{z}^{\prime}=1
\end{array}
$$

As a consequence, \boldsymbol{R} is an orthogonal matrix meaning that

$$
\boldsymbol{R}^{T} \boldsymbol{R}=\boldsymbol{I}_{3} \quad \rightarrow \quad \boldsymbol{R}^{T}=\boldsymbol{R}^{-1}
$$

$\operatorname{det}(\boldsymbol{R})=1$ if the frame is right-handed $\operatorname{det}(\boldsymbol{R})=-1$ if the frame is left-handed

Representation of a Vector

$$
\begin{aligned}
\boldsymbol{p} & =\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right] \\
\boldsymbol{p}^{\prime} & =\left[\begin{array}{c}
p_{x}^{\prime} \\
p_{y}^{\prime} \\
p_{z}^{\prime}
\end{array}\right]
\end{aligned}
$$

Representation of a Vector

- Since \boldsymbol{p} and \boldsymbol{p} ' are representations of the same point P, it is

$$
\boldsymbol{p}=p_{x}^{\prime} \boldsymbol{x}^{\prime}+p_{y}^{\prime} \boldsymbol{y}^{\prime}+p_{z}^{\prime} z^{\prime}=\left[\begin{array}{lll}
x^{\prime} & \boldsymbol{y}^{\prime} & z^{\prime}
\end{array}\right] p^{\prime}
$$

$$
\begin{aligned}
& \boldsymbol{p}=\boldsymbol{R} \boldsymbol{p}^{\prime} \\
& \qquad p^{\prime}=\boldsymbol{R}^{T} \boldsymbol{p}
\end{aligned}
$$

Rotation of a Vector

- Point "=" Vector

Rotation matrix: equivalent geometrical meanings

- It describes the mutual orientation between two coordinate frames; its column vectors are the direction cosines of the axes of the rotated frame with respect to the original frame.
- It represents the coordinate transformation between the coordinates of a point expressed in two different frames (with common origin).
- It is the operator that allows the rotation of a vector in the same coordinate frame.

Rotation Matrices

$$
\boldsymbol{R}_{i}^{j}=\left(\boldsymbol{R}_{j}^{i}\right)^{-1}=\left(\boldsymbol{R}_{j}^{i}\right)^{T}
$$

- Successive rotations can be also specified by constantly referring them to the initial frame; in this case, the rotations are made with respect to a fixed frame.

Figure 1.1. $\operatorname{Rot}(z, 90)$

Figure 1.2. $\operatorname{Rot}(y, 90)$

$$
\begin{aligned}
\mathbf{v} & =\operatorname{Rot}(z, 90) \mathbf{u} \\
\mathbf{w} & =\operatorname{Rot}(y, 90) \mathbf{v}
\end{aligned}
$$

Vector rotation: order is important

Figure 1.3. $\operatorname{Rot}(z, 90) \operatorname{Rot}(y, 90)$

Composition of rotation matrices for current Frames

- First rotate the given frame A according to R_{B}^{A} so as to align it with frame B
- Then rotate the current frame, now aligned with frame B, according to R_{C}^{B} so as to align it with frame C

Current and fixed Frames

- Current:

$$
p^{A}=R_{B}^{A} p^{B}=R_{B}^{A} R_{C}^{B} p^{C}=R_{B}^{A} R_{C}^{B} R_{D}^{C} p^{D}
$$

- Fixed: $p^{A}=R_{B}^{A} p^{B}$

$$
\begin{aligned}
& \Rightarrow R_{A}^{B} p^{A}=p^{B}=R_{C}^{B} p^{C} \\
& \Rightarrow R_{B}^{C} R_{A}^{B} p^{A}=p^{C}=R_{D}^{C} p^{D} \\
& \Rightarrow R_{C}^{D} R_{B}^{C} R_{A}^{B} p^{A}=p^{D}
\end{aligned}
$$

Composite Rotation Matrix

- A sequence of finite rotations
- matrix multiplications do not commute!
- rules:
- if rotating coordinate $\mathrm{O}-\mathrm{uvw}$ is rotating about a principal axis of a fixed $\mathrm{O}-\mathrm{xyz}$ frame, then pre-multiply the previous (resultant) rotation matrix with an appropriate basic rotation matrix
- if rotating coordinate O^{-}uvw is rotating about its own principal axes, then post-multiply the previous (resultant) rotation matrix with an appropriate basic rotation matrix

So far:

Rotations

B rotates wrt A and C rotates wrt B but the rotation is described via A Multiply on the left

A FIXED:

$$
\begin{array}{rr}
p^{A} \rightarrow R_{A}^{B} p^{A} \rightarrow R_{B}^{C} & R_{A}^{B} p^{A} \\
p^{B} & p^{C}
\end{array}
$$

So far:

Rotations

Multiply on the right

CURRENT:

$$
p^{A} \rightarrow R_{B}^{A} p^{B} \rightarrow R_{B}^{A} R_{C}^{B} p^{C}
$$

Practical Matters:

How to transform

Elementary Rotations

Frames that can be obtained via elementary rotations of the reference frame about one of the coordinate axes

Positive if they are made counter-clockwise about the relative axis. Example: z

New unit vectors:

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha \\
0
\end{array}\right] \quad \boldsymbol{y}^{\prime}=\left[\begin{array}{c}
-\sin \alpha \\
\cos \alpha \\
0
\end{array}\right] \quad \boldsymbol{z}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Rotation Matrix 3D

$\boldsymbol{R}_{z}(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \boldsymbol{R}_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \\
& \boldsymbol{R}_{x}(\gamma)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right]
\end{aligned}
$$

$$
\boldsymbol{R}_{k}(-\vartheta)=\boldsymbol{R}_{k}^{T}(\vartheta) \quad k=x, y, z
$$

Example 1

Consider the vector \boldsymbol{p} which is obtained by rotating a vector \boldsymbol{p} 'in the plane $x y$ by an angle α about axis z of the reference frame
Coordinates of the vector \boldsymbol{p} ': $\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}\right)$
The vector \boldsymbol{p} has components

$$
\begin{aligned}
& p_{x}=p_{x}^{\prime} \cos \alpha-p_{y}^{\prime} \sin \alpha \\
& p_{y}=p_{x}^{\prime} \sin \alpha+p_{y}^{\prime} \cos \alpha \\
& p_{z}=p_{z}^{\prime} \\
\boldsymbol{p}= & \boldsymbol{R}_{z}(\alpha) \boldsymbol{p}^{\prime}
\end{aligned}
$$

Example 2

- A point $a_{u v w}=(4,3,2)$ is attached to a rotating frame and this frame rotates 60 degree about the Oz axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation.

$$
\begin{aligned}
& a_{x y z}=\operatorname{Rot}(z, 60) a_{u v w} \\
& =\left[\begin{array}{ccc}
0.5 & -0.866 & 0 \\
0.866 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-0.598 \\
4.964 \\
2
\end{array}\right]
\end{aligned}
$$

Example 3

- A point $a_{x y z}=(4,3,2)$ is the coordinate w.r.t. the reference coordinate system, find the corresponding point $a_{u v w}$ w.r.t. the rotated Ouvw coordinate system if it has been rotated 60 degree about Oz axis.

$$
\begin{aligned}
& a_{u v w}=\operatorname{Rot}(z, 60)^{T} a_{x y z} \\
& =\left[\begin{array}{ccc}
0.5 & 0.866 & 0 \\
-0.866 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
4.598 \\
-1.964 \\
2
\end{array}\right]
\end{aligned}
$$

Example 4

- Find the rotation matrix for the following operations:
otation φ about O_{y} axis $R=\left[\begin{array}{ccc}\mathrm{C} \varphi & 0 & \mathrm{~S} \varphi \\ 0 & 1 & 0 \\ -\mathrm{S} \varphi & 0 & \mathrm{C} \varphi\end{array}\right]\left[\begin{array}{ccc}C \theta & -S \theta & 0 \\ S \theta & C \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & C \alpha & -S \alpha \\ 0 & S \alpha & C \alpha\end{array}\right]$ Rotation θ about O_{w} axis $\quad\left[\begin{array}{lll}C \varphi C \theta & S \varphi S \alpha-C \varphi S \theta C \alpha & C \varphi S \theta S \alpha+S \varphi C \alpha\end{array}\right]$ Rotation α about O_{u} axis $=\left[\begin{array}{ccc}S \theta & C \theta C \alpha & -C \theta S \alpha \\ -S \varphi C \theta & S \varphi S \theta C \alpha+C \varphi S \alpha & C \varphi C \alpha-S \varphi S \theta S \alpha\end{array}\right]$ Answer...
$R=\operatorname{Rot}(y, \varphi) \operatorname{Rot}(w, \theta) \operatorname{Rot}(u, \alpha)$

Pre-multiply if rotating about the $\mathrm{O}_{x y z}$ (reference) axes

Post-multiply if rotating about the $\mathrm{O}_{u v w}$ (current) axes

Trigonometric shorthand

Symbol

C ϕ
S ϕ
V ϕ
C_{k}
S_{k}
$C_{k i}$
$S_{k j}$
C_{k-j}
S_{k-j}

Meaning
$\cos \phi$
$\sin \phi$
$1-\cos \phi$
$\cos \theta_{k}$
$\sin \theta_{k}$
$\cos \left(\theta_{k}+\theta_{j}\right)$
$\sin \left(\theta_{k}+\theta_{j}\right)$
$\cos \left(\theta_{k}-\theta_{j}\right)$
$\sin \left(\theta_{k}-\theta_{j}\right)$

Moving Between Coordinate Frames Translation Along the X -Axis

$\mathrm{P}_{\mathrm{x}}=$ distance between the XY and NO coordinate planes
Notation: $\quad \overline{\mathbf{V}}^{\mathbf{X Y}}=\left[\begin{array}{c}\mathbf{V}^{\mathbf{X}} \\ \mathbf{V}^{\mathbf{Y}}\end{array}\right] \quad \overline{\mathbf{V}}^{\mathbf{N O}}=\left[\begin{array}{c}\mathbf{V}^{\mathbf{N}} \\ \mathbf{V}^{\mathbf{0}}\end{array}\right] \quad \overline{\mathbf{P}}=\left[\begin{array}{c}\mathbf{P}_{\mathbf{x}} \\ \mathbf{0}\end{array}\right]$

Writing $\overline{\mathbf{V}}^{\mathrm{XY}}$ in terms of $\overline{\mathbf{V}}^{\mathrm{NO}}$

$$
\overline{\mathbf{V}}^{\mathbf{X Y}}=\left[\begin{array}{c}
\mathbf{P}_{\mathbf{X}}+\mathbf{V}^{\mathbf{N}} \\
\mathbf{V}^{\mathbf{O}}
\end{array}\right]=\overline{\mathbf{P}}+\overline{\mathbf{V}}^{\mathbf{N O}}
$$

Translation along the X-Axis and Y-Axis

Coordinate Transformations

- position vector of P in $\{B\}$ is transformed to position vector of P in $\{A\}$
- description of $\{B\}$ as seen from an observer in $\{A\}$

$$
{ }^{A} \mathbf{r}^{P}={ }^{A} \mathbf{R}_{B}{ }^{B} \mathbf{r}^{P}+{ }^{A} \mathbf{r}^{O^{\prime}}
$$

Rotation of $\{B\}$ with respect to $\{A\}$
Translation of the origin of $\{B\}$ with respect to origin of $\{A\}$

Coordinate Transformations

- Two Cases
${ }^{A} r^{P}={ }^{A} R_{B}{ }^{B} r^{P}+{ }^{A} r^{o^{\prime}}$

1. Translation only

- Axes of $\{B\}$ and $\{A\}$ are parallel

$$
{ }^{A} R_{B}=1
$$

2. Rotation only

- Origins of $\{B\}$ and $\{A\}$ are coincident

$$
{ }^{A} r^{o^{\prime}}=0
$$

Homogeneous Representation

- Coordinate transformation from $\{B\}$ to $\{A\}$

$$
\begin{gathered}
{ }^{A} r^{P}={ }^{A} R_{B}{ }^{B} r^{P}+{ }^{A} r^{o^{\prime}} \\
{\left[\begin{array}{c}
{ }^{A} r^{P} \\
1
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} r^{o^{\prime}} \\
0_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} r^{P} \\
1
\end{array}\right]}
\end{gathered}
$$

- Homogeneous transformation matrix

$$
{ }^{A} T_{B}=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} r^{o^{\prime}} \\
0_{1 \times 3} & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{3 \times 3} & P_{3 \times 1} \\
0 & \vdots 1
\end{array}\right] \begin{aligned}
& \begin{array}{l}
\text { Rotation } \\
\text { matrix }
\end{array} \\
& \begin{array}{l}
\text { Position } \\
\text { vector }
\end{array}
\end{aligned}
$$

Homogeneous Transformation

- Special cases

1. Translation

$$
{ }^{A} T_{B}=\left[\begin{array}{cc}
I_{3 \times 3} & { }^{A} r^{o^{\prime}} \\
0_{1 \times 3} & 1
\end{array}\right]
$$

2. Rotation

$$
{ }^{A} T_{B}=\left[\begin{array}{cc}
{ }^{A} R_{B} & 0_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]
$$

Example 5

- Translation along $\mathrm{z}-$ axis with h :

$$
\operatorname{Trans}(z, h)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{u} \\
p_{v} \\
p_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{u} \\
p_{v} \\
p_{w}+h \\
1
\end{array}\right]
$$

Example 6

- Rotation about the X -axis by θ

$$
\operatorname{Rot}(x, \theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \theta & -S \theta & 0 \\
0 & S \theta & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] z \begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \theta & -S \theta & 0 \\
0 & S \theta & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{u} \\
p_{v} \\
p_{w} \\
1
\end{array}\right]}
\end{aligned}
$$

BONUS: Scaling \& Stretching

- Scaling $S=\left[\begin{array}{cccc}s & 0 & 0 & 0 \\ 0 & 3 s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \xrightarrow[\text { Original }]{2}$
- Stretching $T=\left[\begin{array}{llll}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ scal a ll axes

Recap: Homogeneous Transformation

- Composite Homogeneous Transformation Matrix
- Rules:
- Transformation (rotation/translation) w.r.t (X,Y,Z) (OLD FRAME), using pre-multiplication
- Transformation (rotation/translation) w.r.t (U,V,W) (NEW FRAME), using post-multiplication

Recap: Homogeneous Transformation

perspective scale

- Composite Homogeneous Transformation Matrix
- Perspective: to be used when a camera gets involved; now:[0,0,0]
- Homogeneous coordinates for $q \in \mathbb{R}^{3}$ wrt F, coordinate frame in \mathbb{R}^{3} :

$$
[q]^{F}=\left[\sigma q_{1}, \sigma q_{1}, \sigma q_{1}, \sigma\right]^{T}
$$

- Then, $q=H_{\sigma}[q]^{F}$ where $H_{\sigma}=\frac{1}{\sigma}\left[\mathbf{I}_{3} \vdots \mathbf{0}_{3}\right]^{F} \quad($ We take $\sigma=1)$

Recap: Homogeneous Coordinates

- Composite Homogeneous Transformation Matrix
- Rules:
- Transformation (rotation/translation) w.r.t (X,Y,Z) (OLD FRAME), using pre-multiplication
- Transformation (rotation/translation) w.r.t (U,V,W) (NEW FRAME), using post-multiplication

Order of operations...

...does matter. Let's look at an example:

Example 7

- Find the homogeneous transformation matrix (T) for the following operations:

Rotation α about $O x$ axis
Translation of h along $O x$ axis
Translation of d along $O z$ axis
Rotation of θ about $O z$ axis
Answer: $\quad T=T_{z, \theta} T_{z, d} T_{x, h} T_{x, \alpha} I_{4 \times 4}$
$=\left[\begin{array}{cccc}C \theta & -S \theta & 0 & 0 \\ S \theta & C \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & h \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & C \alpha & -S \alpha & 0 \\ 0 & S \alpha & C \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Homogeneous Representation

- A frame in space (Geometric Interpretation)

$$
\begin{aligned}
& F=\left[\begin{array}{cc}
R_{3 \times 3} & P_{3 \times 1} \\
0 & 1
\end{array}\right] \\
& F=\left[\begin{array}{cccc}
n_{x} & s_{x} & a_{x} & p_{x} \\
n_{y} & s_{y} & a_{y} & p_{y} \\
n_{z} & s_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Principal axis n w.r.t. the reference coordinate system

Homogeneous Transformation

- Translation

$$
\begin{aligned}
F_{n e w} & =\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
n_{x} & s_{x} & a_{x} & p_{x} \\
n_{y} & s_{y} & a_{y} & p_{y} \\
n_{z} & s_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
n_{x} & s_{x} & a_{x} & p_{x}+d_{x} \\
n_{y} & s_{y} & a_{y} & p_{y}+d_{y} \\
n_{z} & s_{z} & a_{z} & p_{z}+d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
F_{\text {new }}=\operatorname{Trans}\left(d_{x}, d_{y}, d_{z}\right) \times F_{\text {old }}
$$

Homogeneous Transformation

Composite Homogeneous Transformation Matrix

Example 8

- For the figure shown below, find the 4×4 homogeneous transformation matrices
${ }^{0} A_{i}$ and ${ }^{i-1} A_{i}$ for $i=1,2,3,4,5$

Positions, orientations and frames

- Remember the robot's end part:

Three unit vectors describing the hand orientation:

- The z vector lies in the direction from which the hand would approach an object and is known as the approach vector, a.
- The y vector, known as the orientation vector, \mathbf{o}, is in the direction specifying the orientation of the hand, from fingertip to fingertip.
- The final vector, known as the normal vector, \mathbf{n}, forms a right-handed set of vectors and is thus specified by the vector cross-product

Positions, orientations and frames

Euler Angles

- Orientation is more frequently specified by a sequence of rotations about the x, y, or z axes.
- Euler angles describe any possible orientation in terms of a rotation φ about the z axis, then a rotation $\boldsymbol{\theta}$ about the new y axis, y^{\prime}, and finally, a rotation of ψ about the new z axis, z ".

Euler Angles

Euler Angles Interpreted in Base Coordinates

Euler Angles

Euler $(\varphi, \theta, \psi)=\operatorname{Rot}(z, \varphi) \operatorname{Rot}(y, \theta) \operatorname{Rot}(z, \psi)$
$R_{z \varphi}=\left(\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right), R_{u^{\prime} \theta}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)$,
$R_{w^{\prime \prime} \psi}=\left(\begin{array}{ccc}\cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1\end{array}\right)$

Euler Angle

Resultant Eulerian rotation matrix:

$$
\begin{aligned}
R_{\phi, \theta, \psi} & =R_{z, \phi} R_{y, \theta} R_{z, \psi}=\left[\begin{array}{ccc}
C \phi & -S \phi & 0 \\
S \phi & C \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
C \theta & 0 & S \theta \\
0 & 1 & 0 \\
-S \theta & 0 & C \theta
\end{array}\right]\left[\begin{array}{ccc}
C \psi & -S \psi & 0 \\
S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
C \phi C \theta C \psi-S \phi S \psi & -C \phi C \theta S \psi-S \phi C \psi & C \phi S \theta \\
S \phi C \theta C \psi+C \phi S \psi & -S \phi C \theta S \psi+C \phi C \psi & S \phi S \theta \\
-S \theta C \psi & S \theta S \psi & C \theta
\end{array}\right]
\end{aligned}
$$

Roll, Pitch, Yaw

Пєрьбтрофף́, Про́vєvбๆ, Ектролף́

For a ship moving along the z axis, then roll corresponds to a rotation φ about the z axis, pitch corresponds to a rotation θ about the y axis, and yaw corresponds to a rotation ψ about the x axis

Roll, Pitch, Yaw

Пєрьєтро甲ŋ́, Про́vєvбๆ, Ектролŋ́

For an airplane moving along the x axis, then roll corresponds to a rotation φ about the x axis, pitch corresponds to a rotation θ about the y axis, and yaw corresponds to a rotation ψ about the z axis

Roll, Pitch, Yaw

Пєрьбтрофŋ́, Про́vєvбๆ, Ектролŋ́

- Robot manipulator, Robot hand

Roll, Pitch, Yaw

$$
R_{\phi, \theta, \psi}=R_{z, \phi} R_{y, \theta} R_{x, \psi}=\left[\begin{array}{ccc}
C \phi & -S \phi & 0 \\
S \phi & C \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
C \theta & 0 & S \theta \\
0 & 1 & 0 \\
-S \theta & 0 & C \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \psi & -S \psi \\
0 & S \psi & C \psi
\end{array}\right]
$$

$=\left[\begin{array}{ccc}C \phi C \theta & C \phi S \theta S \psi-S \phi C \psi & C \phi S \theta C \psi+S \phi S \psi \\ S \phi C \theta & S \phi S \theta S \psi+C \phi C \psi & S \phi S \theta C \psi-C \phi S \psi \\ -S \theta & C \theta S \psi & C \theta C \psi\end{array}\right]$

Orientation Representation

- Euler Angles Representation (ϕ, θ, ψ)
- Many different types
- Description of Euler angle representations

	Euler Angle I	Euler Angle II	Roll-Pitch-Yaw
Sequence	ϕ about OZ axis	ϕ about OZ axis	ψ about OX axis
of	θ about OU axis	θ about OV axis	θ about OY axis
Rotations	ψ about OW axis	ψ about OW axis	ϕ about OZ axis

Can be useful

- Cylindrical Coordinates :

$$
\operatorname{Cyl}(z, \alpha, r)=\operatorname{Trans}(0,0, z) \operatorname{Rot}(z, \alpha) \operatorname{Trans}(r, 0,0)
$$

- Spherical Coordinates:

$$
\operatorname{Sph}(\alpha, \beta, r)=\operatorname{Rot}(z, \alpha) \operatorname{Rot}(y, \beta) \operatorname{Trans}(0,0, r)
$$

Homogeneous transformations for robot manipulators

- A serial link manipulator consists of a sequence of links connected together by actuated joints.
- For an n degree of freedom manipulator, there will be n links and n joints.
- The base of the manipulator is link 0 and is not considered one of the n links.
- Link 1 is connected to the base link by joint 1 .
- There is no joint at the end of the final link.

The Length a and Twist a of a Link

- Any link can be characterized by two dimensions:

1. the common normal distance a_{n} and
2. the angle α_{n} between the axes in a plane perpendicular to a_{n}.

- It is customary to call a_{n} the length and α_{n} the twist of the link

The Length a and Twist a of a Link

Important variables

- Angle θ between the normals
- Relative position d between links

Denavit-Hartenberg Parameters

- 4 in total D-H parameters: $\alpha_{i}, a_{i}, d_{i}, \theta_{i}$
- 3 fixed link parameters
- 1 joint variable $\left\{\begin{array}{l}\theta_{i} \text { variable if revolute joint } \\ d_{i} \text { variable if prismatic joint }\end{array}\right.$
- α_{i} and a_{i} describe the Link i
- d_{i} and θ_{i} describe the Link's connection

Denavit-Hartenberg Parameters

AFFIXING FRAMES TO LINKS

Summary for link parameters and link frames

If the attachment convention has been followed, then define:

- $a_{i}=$ the distance from Z_{i} to Z_{i+1} measured along X_{i}
- $\alpha_{i}=$ the angle from Z_{i} to Z_{i+1} measured about X_{i}
- $d_{i}=$ the distance from X_{i-1} to X_{i} measured along Z_{i}
- $\theta_{i}=$ the angle from X_{i-1} to X_{i} measured about Z_{i}

Summary for link parameters and link frames

- We usually choose $a_{i}>0$, because it corresponds to a distance; however, α_{i}, d_{i}, and θ_{i} are signed quantities
- Attachment of frames to links NOT UNIQUE !!

RULES: Revolute joints

1. Each link requires a coordinate frame assigned to it.
2. In revolute joints θ_{n} is the joint variable.

3. The origin of the coordinate frame of link n is set to be at the intersection of the common normal between the axes of joints n and $n+1$ and the axis of joint n.
4. In the case of intersecting joint axes, the origin is at the point of intersection of the joint axes.
5. If the axes are parallel, the origin is chosen to make the joint distance zero for the next link whose coordinate origin is defined.
6. The z axis for link n will be aligned with the axis of joint $n+1$.
7. The x axis will be aligned with any common normal which exists and is directed along the normal from joint n to joint $n+1$.
8. In the case of intersecting joints, the direction of the x axis is parallel or antiparallel to the vector cross product $z_{n-1} \times z_{n}$.
9. Notice that this condition is also satisfied for the x axis directed along the normal between joints n and $n+1$.
10. θ_{n} is zero for the nth revolute joint when x_{n-1} and x_{n} are parallel and have the same direction.

RULES: Revolute joints

RULES: Prismatic joints

1. In the case of a prismatic joint, the distance d_{n} is the joint variable.
2. The direction of the joint axis is the direction in which the joint moves.
3. The direction of the axis is defined but, unlike a revolute joint, the position in space is not defined.
4. Length a_{n} has no meaning and is set to zero.
5. The origin of the coordinate frame for a prismatic joint is coincident with the next defined link origin.
6. The z axis of the prismatic link is aligned with the axis of joint $n+1$.
7. The x_{n} axis is parallel or antiparallel to the vector cross product of the direction of the prismatic joint and z_{n}.
8. For a prismatic joint, we will define the zero position when $d_{n}=0$.

RULES: Prismatic joints

The

Denavit-Hartenberg Method

Denavit-Hartenberg Parameters

Next: Assign frames

- Two Design Principles prevail in this modeling approach
- Principle 1: The Axis X_{i} must be designed to intersect Z_{i-1}
- Principle 2: The Axis X_{i} must be designed to be perpendicular to Z_{i-1}

AFFIXING FRAMES TO LINKS: \mathbb{Z}_{i}

AFFIXING FRAMES TO LINKS: Locate origins

AFFIXING FRAMES TO LINKS: X_{i}

AFFIXING FRAMES TO LINKS: Y_{i}

FINAL

Summary - Frame Attachment

$\begin{array}{ll}\text { 1. Normals } & \text { 3. Z-axes } \\ \text { 2. Origins } & \text { 4. } \mathrm{X} \text {-axes }\end{array}$

Denavit-Hartenberg Method

MOVIE 1

DH Parameter and Coordinate system assignment

Prof. Jatin Dave
Mechanical Engineering Department
Institute of Technology
Nirma University
Ahmedabad, Gujarat, India

TRANSFORMATIONS

Overall transformation fixed $i-1$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{i-1} & -S \alpha_{i-1} & 0 \\
0 & S \alpha_{i-1} & C \alpha_{i-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i-1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & C \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & a_{i-1} \\
S \theta_{i} C \alpha_{i-1} & C \theta_{i} C \alpha_{i-1} & -S \alpha_{i-1} & -S \alpha_{i-1} d_{i} \\
S \theta_{i} S \alpha_{i-1} & C \theta_{i} S \alpha_{i-1} & C \alpha_{i-1} & C \alpha_{i-1} d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Overall transformation fixed i

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & C \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{i} & -S \alpha_{i} & 0 \\
0 & S \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
C \theta_{i} & -C \alpha_{i-1} S \theta_{i} & S \alpha_{i-1} S \theta_{i} & a_{i-1} C \theta_{i} \\
S \theta_{i} & C \alpha_{i-1} C \theta_{i} & -S \alpha_{i-1} C \theta_{i} & a_{i-1} S \theta_{i} \\
0 & S \alpha_{i-1} & C \alpha_{i-1} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Overall transformation

The position and orientation of the i-th frame coordinate can be expressed in the $(i-1)$ th frame by the following homogeneous transformation matrix:

Overall transformation

Each matrix T_{i-1}^{i} is a function of the i-th joint variable, d_{i} or θ_{i} depending on the joint type. For notational ease, the joint variable is generically indicated as q_{i}, i.e.:
$q_{i}=d_{i}$ for prismatic joints
$q_{i}=\theta_{i}$ for rotational joints
Therefore: $T_{i-1}^{i}=T_{i-1}^{i}\left(q_{i}\right)$
In case of a manipulator with n joints, the relationship between frame F_{0} and frame F_{n} is:

$$
T_{0}^{n}=T_{0}^{1}\left(q_{1}\right) T_{1}^{2}\left(q_{2}\right) \cdots T_{n-1}^{n}\left(q_{1}\right)
$$

This equation expresses the position and orientation of the last link wrt the base frame, once the joint variables $q_{1}, q_{2}, \ldots, q_{n}$ are known.

This equation is the kinematic model of the manipulator.

MOVIE 2

Derivation of link transformation matrix

Prof. Jatin Dave
Mechanical Engineering Department Institute of Technology
Nirma University
Ahmedabad, Gujarat, India

Algorithm 2-5-1: D-H Representation

0. Number the joints from 1 to n starting with the base and ending with the tool yaw, pitch, and roll, in that order.
1. Assign a right-handed orthonormal coordinate frame L_{0} to the robot base, making sure that z^{0} aligns with the axis of joint 1 . Set $k=1$.
2. Align z^{k} with the axis of joint $k+1$.
3. Locate the origin of L_{k} at the intersection of the z^{k} and z^{k-1} axes. If they do not intersect, use the intersection of z^{k} with a common normal between z^{k} and z^{k-1}.
4. Select x^{k} to be orthogonal to both z^{k} and z^{k-1}. If z^{k} and z^{k-1} are parallel, point x^{k} away from z^{k-1}.
5. Select y^{k} to form a right-handed orthonormal coordinate frame L_{k}.
6. Set $k=k+1$. If $k<n$, go to step 2 ; else, continue.
7. Set the origin of L_{n} at the tool tip. Align z^{n} with the approach vector, y^{n} with the sliding vector, and x^{n} with the normal vector of the tool. Set $k=1$.
8. Locate point b^{k} at the intersection of the x^{k} and z^{k-1} axes. If they do not intersect, use the intersection of x^{k} with a common normal between x^{k} and z^{k-1}.
9. Compute θ_{k} as the angle of rotation from x^{k-1} to x^{k} measured about z^{k-1}.
10. Compute d_{k} as the distance from the origin of frame L_{k-1} to point b^{k} measured along z^{k-1}.
11. Compute a_{k} as the distance from point b^{k} to the origin of frame L_{k} measured along x^{k}.
12. Compute α_{k} as che angle of rotation from z^{k-1} to z^{k} measured about x^{k}.
13. Set $k=k+1$. If $k \leq n$, go to step 8 ; else, stop.

Denavit-Hartenberg Algorithm v2

1: Numerate links beginning with 1 (first mobile link of link's chain) and ending with n (last mobile link). The fixed base reference coordinate system will be numbered as link 0 .
2: Numerate each articulation beginning with 1 (that is the first DOF for a joint) and ending with n.
3: Locate axis of each articulation. If this is revolving, the axis will be its own turn axis. If it is prismatic, it will be the axis along which the displacement takes place.
4: For $n+1$ of link 0 to n locate Z_{n+1} axis on the axis of articulation n.
5: Place the origin of the base reference coordinate system in any point of z_{0} axis. Axes z_{0} and y_{0} will be located so that they form a right-handed system with z_{0}.
6: For $n+1$ of link 1 to n, place the $\left\{S_{j}\right\}$ system with regard to the link $n+1$) in the intersection of Z_{n+1} axis with the normal line common to Z_{n} and Z_{j}. If both axes cuts, $\left\{S_{j}\right\}$ would be located in the cut point. If they were parallel then $\left\{S_{j}\right\}$ would be located in the articulation n.

Denavit-Hartenberg Algorithm v3

Step 1: Locate and label the joint axes $z_{0}, \cdots z_{n-1}$.
Step 2: Establish the base frame. Set the origin anywhere on the z_{0} axis. The x_{0} and y_{0} axes are chosen conveniently to form the right-hand frame.

For $i=1, \cdots n-1$, perform steps 3 to 5
Step 3: Locate the origin o_{i} where the common normal to z_{i} and z_{i-1} intersects z_{i}. If z_{i} intersects z_{i-1} locate o_{i} at this intersection. If z_{i} and z_{i-1} are parallel, locate o_{i} at joint i.
Step 4: Establish x_{i} along the common normal between z_{i-1} and z_{i} through o_{i}, or in the direction normal to the $z_{i-1} \times z_{i}$ plane if z_{i-1} and z_{i} intersect.
Step 5: Establish y_{i} to complete a right hand frame.
Step 6: Establish the end-effector frame $o_{n} x_{n} y_{n} z_{n}$. Set z_{n} along the direction z_{n-1}. Establish the origin o_{n} conveniently along z_{n} preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Establish x_{n} along the common normal between z_{n-1} and z_{n} through o_{n}.
Step 7: Create a table of link parameters $\theta_{i}, d_{i}, a_{i}, \alpha_{i}$.
θ_{i} : the angle between x_{i-1} and x_{i} measured about $z_{i-1} . \theta_{i}$ is variable if joint i is revolute.
d_{i} : distance along z_{i-1} from o_{i-1} to the intersection of the x_{i} and z_{i-1} axes. d_{i} is variable if joint i is prismatic.
a_{i} : distance along x_{i} from o_{i} to the intersection of the x_{i} and z_{i-1} axes.
α_{i} : the angle between z_{i-1} and z_{i} measured about x_{i}.
Step 8: Form the homogeneous transformation matrices A_{i} by substituting the above parameters.
Step 9: Form ${ }^{0} T_{n}=A_{1} A_{2} \cdots A_{n}$. This then gives the position and orientation of the tool frame expressed in base coordinates.

MOVIE

Denavit-Hartenberg Reference Frame Layout

 Produced by Ethan Tira-Thompson

The Denavit-Hartenberg Matrix

$$
\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & a_{i-1} \\
S \theta_{i} C \alpha_{i-1} & C \theta_{i} C \alpha_{i-1} & -S \alpha_{i-1} & -S \alpha_{i-1} d_{i} \\
S \theta_{i} S \alpha_{i-1} & C \theta_{i} S \alpha_{i-1} & C \alpha_{i-1} & C \alpha_{i-1} d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The Denavit-Hartenberg Matrix is an homogeneous transformation matrix from one coordinate frame to the next.
- Using a series of $\mathrm{D}-\mathrm{H}$ Matrix multiplications and the D-H Parameter table, the final result is a transformation matrix from some frame to your initial frame.

The Denavit-Hartenberg Parameter table

- Two-link manipulator arm

$$
T_{0}^{1}=\left[\begin{array}{cccc}
C_{1} & -S_{1} & 0 & a_{1} C_{1} \\
S_{1} & C_{1} & 0 & a_{1} S_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad T_{1}^{2}=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & a_{2} C_{2} \\
S_{2} & C_{2} & 0 & a_{2} S_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The Denavit-Hartenberg Parameter table

- SCARA arm, the Selective Compliant Articulated Robot for Assembly
- two revolute joints (elbow, "wrist") and one prismatic joint

The Denavit-Hartenberg Parameter table

- SCARA arm, the Selective Compliant Articulated Robot for Assembly
- two revolute joints (elbow, "wrist") and one prismatic joint

DH parameter	θ	d	a	α
Joint 1	θ_{1}^{*}	d_{1}	0	0
Joint 2	θ_{2}^{*}	0	r_{2}	π
Joint 3	0	d_{3}^{*}	0	0

- * indicates the moving joint variable
- *the end-tool is not included

The Denavit-Hartenberg Parameter table

- Spherical wrist
- can be used to achieve any desired orientation of the end effector

DH parameter	θ	d	a	α
Joint 1	$\theta_{1}{ }^{*}$	d_{1}	0	$-\pi / 2$
Joint 2	$\theta_{2}{ }^{*}$	0	0	$\pi / 2$
Joint 3	$\theta_{3}{ }^{*}$	d_{3}	0	0

- * indicates the moving joint variable

APPLICATION

3 Revolute Joints

$$
V^{X_{0} Y_{0} Z_{0}}=T\left[\begin{array}{c}
V^{X_{2}} \\
V^{Y_{2}} \\
V^{Z_{2}} \\
1
\end{array}\right]
$$

$$
T=\left({ }_{0} T\right)\left({ }_{1}^{0} T\right)\left({ }_{2}^{1} T\right)
$$

Note: T is the $\mathrm{D}-\mathrm{H}$ matrix with $(i-1)=0$ and $i=1$.

i	$\boldsymbol{\alpha}_{(i-1)}$	$\boldsymbol{a}_{(i-1)}$	$\boldsymbol{d}_{\boldsymbol{i}}$	$\boldsymbol{\theta}_{\boldsymbol{i}}$
0	0	0	0	θ_{0}
1	0	a_{0}	0	θ_{1}
2	-90	a_{1}	d_{2}	θ_{2}

$$
{ }_{0} T=\left[\begin{array}{cccc}
\cos \theta_{0} & -\sin \theta_{0} & 0 & 0 \\
\sin \theta_{0} & \cos \theta_{0} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This is just a rotation around the Z_{0} axis
${ }_{1}^{0} T=\left[\begin{array}{cccc}\cos \theta_{1} & -\sin \theta_{1} & 0 & a_{0} \\ \sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

This is a translation by a_{0} followed by a rotation around the Z_{1} axis

$$
{ }_{2}^{1} T=\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & a_{1} \\
0 & 0 & 1 & d_{2} \\
-\sin \theta_{2} & -\cos \theta_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This is a translation by a_{1} and then d_{2} followed by a rotation around the X_{2} and Z_{2} axis

$$
T=\left({ }_{0} T\right)\left({ }_{1}^{0} T\right)\left({ }_{2}^{1} T\right)
$$

PUMA 260

Denavit-Hartenberg Parameters

PUMA					
Link i	θ_{i}	α_{i}	a_{i}	d_{i}	Ev́poş кívŋбף¢
1	90	-90	0	0	-160 to +160
2	0	0	431.8 mm	149.09 mm	-225 to 45
3	90	90	-20.32mm	0	-45 to 225
4	0	-90	0	433.07 mm	-110 to 170
5	0	90	0	0	-100 to 100
6	0	0	0	56.25mm	-266 to 266

PUMA 560

PUMA 560

RECAP: Denavit-Hartenberg

1. Find and number consecutively the joint axes; set the directions of axes

$$
z_{0}, \ldots, z_{n-1}
$$

2. Choose Frame 0 by locating the origin on axis z_{0}; axes x_{0} and y_{0} are chosen so as to obtain a right-handed frame. If feasible, it is worth choosing Frame 0 to coincide with the base frame.

Execute steps from 3 to $\mathbf{5}$ for $i=1, \ldots, n-1$:
3. Locate the origin O_{i} at the intersection of z_{i} with the common normal to axes z_{i-1} and z_{i}. If axes z_{i-1} and z_{i} are parallel and Joint i is revolute, then locate O_{i} so that $d_{i}=0$; if Joint i is prismatic, locate O_{i} at a reference position for the joint range, e.g., a mechanical limit.
4. Choose axis x_{i} along the common normal to axes z_{i-1} and z_{i} with direction from Joint i to Joint $i+1$.
5. Choose axis y_{i} so as to obtain a right-handed frame.

To complete:
6. Choose Frame n; if Joint n is revolute, then align z_{n} with z_{n-1}, otherwise, if Joint n is prismatic, then choose z_{n} arbitrarily. Axis x_{n} is set according to step 4.
7. For $i=1, \ldots, n$, form the table of parameters $a_{i}, d_{i}, \alpha_{i}, \vartheta_{i}$.
8. On the basis of the parameters in $\mathbf{7}$, compute the homogeneous transformation matrices $\boldsymbol{A}_{i}^{i-1}\left(q_{i}\right)$ for $i=1, \ldots, n$.
9. Compute the homogeneous transformation $\boldsymbol{T}_{n}^{0}(\boldsymbol{q})=\boldsymbol{A}_{1}^{0} \ldots \boldsymbol{A}_{n}^{n-1}$ that yields the position and orientation of Frame n with respect to Frame 0.
10. Given T_{0}^{b} and T_{e}^{n}, compute the direct kinematics function as $T_{e}^{b}(\boldsymbol{q})=$ $T_{0}^{b} \boldsymbol{T}_{n}^{0} \boldsymbol{T}_{e}^{n}$ that yields the position and orientation of the end-effector frame with respect to the base frame.

$$
\begin{aligned}
a_{i} & =\text { the distance from } z_{i-1} \text { to } z_{i} \text { measured along } x_{i} \\
\alpha_{i} & =\text { the angle from } z_{i-1} \text { to } z_{i} \text { measured about } x_{i} \\
d_{i} & =\text { the distance from } x_{i-1} \text { to } x_{i} \text { measured along } z_{i} \\
\theta_{i} & =\text { the angle from } x_{i-1} \text { to } x_{i} \text { measured about } z_{i-1}
\end{aligned}
$$

RECAP: Denavit-Hartenberg

RECAP: Denavit-Hartenberg

FIGURE 2.16
Coordinate transformation of the end-effector frame with respect to the base frame.

RECAP:
 Worked out example THE STANFORD (Scheinman) Arm

STANFORD MANIPULATOR

The original ~ 1968

STANFORD MANIPULATOR

STANFORD MANIPULATOR

STANFORD MANIPULATOR

The DH parameters are:

Link	d_{i}	a_{i}	α_{i}	θ_{i}
1	0	0	-90	\star
2	d_{2}	0	+90	\star
3	\star	0	0	0
4	0	0	-90	\star
5	0	0	+90	\star
6	d_{6}	0	0	\star

$$
A_{i}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{\mathrm{i}} & -\mathrm{c} \alpha_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} & \mathrm{~s} \alpha_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}} \mathrm{c} \theta_{\mathrm{i}} \\
\mathrm{~s} \theta_{\mathrm{i}} & \mathrm{c} \theta_{\mathrm{i}} \mathrm{c} \alpha_{\mathrm{i}} & -\mathrm{s} \alpha_{\mathrm{i}} \mathrm{c} \theta_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}} \mathrm{\theta} \theta_{\mathrm{i}} \\
0 & \mathrm{~s} \alpha_{\mathrm{i}} & \mathrm{c} \alpha_{\mathrm{i}} & \mathrm{~d}_{\mathrm{i}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

* joint variable
$A_{1}=\left[\begin{array}{rrrr}c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad A_{2}=\left[\begin{array}{rrrr}c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1\end{array}\right] \quad A_{3}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1\end{array}\right]$
$A_{4}=\left[\begin{array}{rrrr}c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad A_{5}=\left[\begin{array}{rrrr}c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad A_{6}=\left[\begin{array}{rrrr}c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1\end{array}\right]$

STANFORD MANIPULATOR

$$
A_{1}=\left[\begin{array}{rrrr}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad A_{2}=\left[\begin{array}{rrrr}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \quad A_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{0}^{1}=A_{1}
$$

$$
\begin{aligned}
& T_{0}^{1}=A_{1} \\
& T_{0}^{2}=A_{1} A_{2}=\left[\begin{array}{cccc}
c_{1} c_{2} & -s_{1} & c_{1} s_{2} & -d_{2} s_{1} \\
s_{1} c_{2} & c_{1} & s_{1} s_{2} & d_{2} c_{1} \\
-s_{2} & 0 & c_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad z_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] z_{1}=\left[\begin{array}{c}
-s_{1} \\
c_{1} \\
0
\end{array}\right] z_{2}=\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right] z_{3}=\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
T_{0}^{3}=A_{1} A_{2} A_{3}=\left[\begin{array}{cccc}
c_{1} c_{2} & -s_{1} & c_{1} s_{2} & d_{3} c_{1} s_{2}-d_{2} s_{1} \\
s_{1} c_{2} & c_{1} & s_{1} s_{2} & d_{3} s_{1} s_{2}+d_{2} c_{1} \\
-s_{2} & 0 & c_{2} & d_{3} c_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \quad O_{0}=O_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
O_{3}=\left[\begin{array}{c}
d_{3} c_{1} s_{2}-d_{2} s_{1} \\
d_{3} s_{1} s_{2}+d_{2} c_{1} \\
d_{3} c_{2}
\end{array}\right]
\end{aligned}
$$

STANFORD MANIPULATOR

$\mathrm{T} 4=$

$$
\begin{aligned}
& T_{0}^{4}=A_{1} A_{2} A_{3} A_{4} \\
& T_{0}^{5}=A_{1} A_{2} A_{3} A_{4} A_{5} \\
& \text { [c1c2c4-s1s4, -c1s2, -c1c2s4-s1*c4, c1s2d3-sin1d2] } \\
& \text { [s1c2c4+c1s4, -s1s2, -s1c2s4+c1c4, s1s2d3+c1*d2] } \\
& \text { [-s2c4, -c2, s2s4, c2*d3] } \\
& \text { [} 0,0,0,1 \text {] } \\
& z_{4}=\left[\begin{array}{c}
-c_{1} c_{2} s_{4}-s_{1} c_{4} \\
-s_{1} c_{2} s_{4}+c_{1} c_{4} \\
s_{2} s_{4}
\end{array}\right] \\
& O_{4}=\left[\begin{array}{c}
d_{3} c_{1} s_{2}-d_{2} s_{1} \\
d_{3} s_{1} s_{2}+d_{2} c_{1} \\
d_{3} c_{2}
\end{array}\right]
\end{aligned}
$$

STANFORD MANIPULATOR

T5 =
[(c1c2c4-s1s4)c5-c1s2s5, c1c2s4+s1c4, (c1c2c4-s1s4)s5+c1s2c5,c1s2d3-s1d2] [(s1c2c4+c1s4)c5-s1s2s5, s1c2s4-c1c4, (s1c2c4+c1s4)s5+s1s2c5,s1s2d3+c1d2] [-s2c4c5-c2s5, -s2s4, -s2c4s5+c2c5, c2d3] [$0,0,0,1$]

$$
z_{5}=\left[\begin{array}{c}
c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5} \\
s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c_{5} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{array}\right]
$$

STANFORD MANIPULATOR

$T 5=$
[$(c 1 c 2 c 4-s 1 s 4) c 5-c 1 s 2 s 5, c 1 c 2 s 4+s 1 c 4,(c 1 c 2 c 4-s 1 s 4) s 5+c 1 s 2 c 5, c 1 s 2 d 3-s 1 d 2]$
[$(s 1 c 2 c 4+c 1 s 4) c 5-s 1 s 2 s 5, s 1 c 2 s 4-c 1 c 4,(s 1 c 2 c 4+c 1 s 4) s 5+s 1 s 2 c 5, s 1 s 2 d 3+c 1 d 2]$
$[-s 2 c 4 c 5-c 2 s 5,-s 2 s 4,-s 2 c 4 s 5+c 2 c 5, c 2 d 3]$
$[0,0,0,1]$

$$
z_{5}=\left[\begin{array}{c}
c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5} \\
s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c_{5} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{array}\right]
$$

$$
O_{5}=\left[\begin{array}{c}
d_{3} c_{1} s_{2}-d_{2} s_{1} \\
d_{3} s_{1} s_{2}+d_{2} c_{1} \\
d_{3} c_{2}
\end{array}\right]
$$

Stanford manipulator

Alternative edition/representation

