Tell me and I will forget.
Show me and | will remember.
Involve me and | will understand.

Chinese proverb



What 1s Kinematics



Review
 What is a robot?

— By general agreement a robot is:

« A programmable machine that imitates the actions or appearance of
an intelligent creature—usually a human.

— To qualify as a robot, a machine must be able to:
1) Sensing and perception: get information from its surroundings

2) Carry out different tasks: Locomotion or manipulation, do something
physical-such as move or manipulate objects

3) Reprogrammable: can do different things
4) Function autonomously and/or interact with human beings

* Why use robots?
—Perform 4A tasks in 4D environments

4A: Automation, Augmentation, Assistance, Autonomous
4D: Dangerous, Dirty, Dull, Difficult



Kinematics studies the motion of
bodies




Joints for Robots



Manipulators

Robot arms, industrial robot

— Rigid bodies (links) connected
by joints

— Joints: revolute or prismatic

— Drive: electric or hydraulic

— End—effector (tool) mounted on a
flange or plate secured to the
wrist joint of robot




Robot Joints

Prismatic Joint: Linear, No rotation involved.

(Hydraulic or pneumatic cylinder)

Revolute Joint: Rota I'Y, (electrically driven with stepper motor, servo motor)



Manipulators

» Robot Configuration:

2. = 3, 2
\ \ 27
//2 EEE
2]
i = re ]
Cartesian: PPP Cylindrical: RPP Spherical: RRP
2] s
H5—T —=—F
o 3
.2);;)/
v e ||
P - Hand coordinate:
/ =/ SCARA: RRP n: normal vector; s: sliding vector;
Articulated: RRR (Selective Compliance a: approach vector, normal to the
Assembly Robot Arm)

tool mounting plate



Manipulators

 Motion Control Methods

— Point to point control

* a sequence of discrete points

* spot welding, pick—and—place, loading & unloading
— Continuous path control

* follow a prescribed path, controlled—path motion
 Spray painting, Arc welding, Gluing



Manipulators

* Robot Specifications

— Number of Axes
« Major axes, (1—3) => Position the wrist
* Minor axes, (4—6) => Orient the tool

« Redundant, (7—n) => reaching around
obstacles, avoiding undesirable
configuration

— Degree of Freedom (DOF)
— Workspace

— Payload (load capacit
y ( pacity) how accurately the same position

— Precision vs. Repeatability can pe reached if the motion is

how accurately a specified point repeated many times
can be reached

Which one is more important?
10



An Example — The PUMA 560

There are two more
joints on the end
effector (the gripper)

The PUMA 560 has SIX revolute joints
A revolute joint has ONE degree of freedom ( 1 DOF) that is

defined by its angle
Concepts:

- Revolute joint
-  DOF H



Other basic joints

Ve " Revolute Joint
R 1 DOF ( Variable - Y)

Yo

Prismatic Joint

Spherical Joint
3 DOF ( Variables—Y,, Y,, Y;)

Concepts:
- Prismatic joint
- Spherical joint

12



We are interested In two kinematics topics

Forward Kinematics (angles to position)
What you are given: The length of each link
The angle of each joint

What you can find: The position of any point
(i.e. its (X, Yy, z) coordinates
Given the angles, locate the tool tip position

Inverse Kinematics (position to angles)

What you are given: The length of each link
The position of some point on the robot

What you can find: The angles of each joint needed to obtain
that position
Given the tool tip position, determine the joints angles

Concepts:
- Forward Kinematics
- Inverse Kinematics .



+ Forward Kinematics:
to determine where the robot’s hand is?
(If all joint variables are known)

¢ Inverse Kinematics:
to calculate what each joint variable is?

(If we desire that the hand be
located at a particular point)

14



Kinematic Problems for
Manipulation

* Reliably position the tip — go from one position to another
position

* Don’t hit anything, avoid obstacles

« Make smooth motions
— at reasonable speeds and
— at reasonable accelerations

« Adjust to changing conditions —
— 1.e. when something is picked up respond to the change in weight

17
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(¢)

Figure 1.2
Symbols of joints (arrows show direction of motion). (a) Prismatic joint. (b) Revolute joint
1. (c) Revolute joint 2. (c1) Up-and-down rotation. (c2) Back-and-forth rotation.

|1 SCARA
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Spatial description and transformation

* We need to be able to describe the position and
the orientation of the robot’s parts

* Suppose there’s a universe coordinate system
to which everything can be referenced.



Spatial description and
transformation

* \We need to be able to describe the position and
the orientation of the robot’s parts (relative to U)

universe | N
coordinate IYVhat s its po§|t|8n
A (“reference point”) ?
system

What'’s its orientation ?

20



Positions, orientations and frames

« The position of a point p relative to a coordinate
system A (Ap):

(p )




Positions, orientations and frames

« The orientation of a body is described by a
coordinate system B attached to the body,
relative to A (a known coordinate system).

22



Positions, orientations and frames

« The orientation of a body is described by a
coordinate system B attached to the body,
relative to A (a known coordinate system).

cosine of the angle



Positions, orientations and frames

« Aframe is a set of 4 vectors giving the position
and orientation.

« Example: frame B

(B} ={8R, "Puory |

Zp

L




Positions, orientations and frames

* Remember the robot’s part:

YB

orientation
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Concatenation of numerous translations and rotations

H = (Rotate so that the X—axis is aligned with T)
* ( Translate along the new t—axis by || T || (magnitude of T))
* ( Rotate so that the t—axis Is aligned with P)
* ( Translate along the p—axis by || P || )

* ( Rotate so that the p—axis is aligned with the O—axis)



Mapping

 Until now, we saw how to describe positions,
orientations and frames.

* We need to be able to change descriptions
from one frame to another: mapping.

* Mappings:
— translated frames

— rotated frames
— general frames



A rigid body In space

* A rigid body is completely described iIn
space by Its position and orientation

A
O-xyz| -} . |
0 f
x x‘ T
A/U; vectors\\i Y o = fi:ri;,
L0, _




Preliminary

* Robot Reference Frames
— World frame
— Joint frame
— Tool frame
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Preliminary

* Coordinate Transformation

— Reference coordinate frame
Oxyz
— Body—attached frame O’uvw

Point represented in Oxyz:

Py =[P Py P, T
Py = Pl + 0, ), + P,K,

Point represented in O” uvw:

—

Pl_jVW — puiu + ijV + kaW

Two frames coincide ==> pu — px pv — py pw — pz

30




Preliminary

Properties: Dot Product

Let X and Y be arbitrary vectors in R® and @ be

the angle from X to Y, then
Xy =|x|y|cos @

Properties of orthonormal coordinate frame

« Mutually perpendicular  Unit vectors
i-j=0 i =1
i-k=0 jl=1
k-7=0 K |=1
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The components of each unit vector are the
direction cosines of the axes of frame O'—x'y'z’
with respect to the reference frame O—xyz .

I / N,
r =, x+r,Y+r,2

aal f f

Yy — yi:m e (Ug‘y Bl y:::-”
. / /

Z = Z, LT Ey’y T Z.Z.




Rotation Matrix

[ x. oy z ' y'x o
R= 2 oy 2|=\|x, v, 2z, | ="y y'y 2"y
i ] a Yyl 2] xlz ytz 2Tz
Properties:
[E'rTyf — 0 yszf —0 ermr —0
2Tl — 1 Ty =1 ST o

As a consequence, R is an orthogonal matrix meaning that

R'R=1I; > R'=R!
det(R) = 1 if the frame is right-handed
det(R) = —1 if the frame is left-handed
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Representation of a Vector

Px
Py

<
EJ
= [~
Y
O ]
|II
Il
|II o ¥
5
T I
34



Representation of a Vector

 Since p and p’ are representations of the same
point P, It Is

p=p, +py +p.z' =z’ y 2|p




Rotation of a VVector
A

. 1
e Point “=* Vector “




Rotation matrix: equivalent
geometrical meanings

It describes the mutual orientation between
two coordinate frames; its column vectors are
the direction cosines of the axes of the rotated
frame with respect to the original frame.

* |t represents the coordinate transformation
between the coordinates of a point expressed
In two different frames (with common origin).

* It is the operator that allows the rotation of a
vector In the same coordinate frame.




Rotation Matrices

+ |R] = (R)™" = (R))"

* Successive rotations can be also specified by
constantly referring them to the initial frame;
In this case, the rotations are made with respect
to a fixed frame.



Vector rotation (fixed frame)

Figure 1.1. Rot(z, 90) X

Figure 1.2. Rot(y, 90)

v = Rot{z, 30)u __
w = Rot(y, 90)y w = Rot(y, 90) Rot(z, 90) u



Vector rotation: order Is Important

z
A

>y

v

X
Figure 13. Rot(z, 90)Rot(y, 90)



Composition of rotation matrices for
current Frames

* FIrst rotate the given frame A
according to R so as to align it
with frame B

* Then rotate the current frame, now
aligned with frame B, according to
RZso as to align it with frame C



Current and fixed Frames

o Current;
p" = REp® = RERTP® = RERZRS p°
» Fixed: p*"=R.p°
— REpA: pB :R(E:SPC
D

= RgR;p"* = p” =Ryp
= RIRgR;p" = p~
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Composite Rotation Matrix

A sequence of finite rotations

— matrix multiplications do not commute!
— rules:

* if rotating coordinate O—uvw IS rotating about a
principal axis of a fixed O—xyz frame, then

pre—multiply the previous (resultant) rotation matrix
with an appropriate basic rotation matrix

» if rotating coordinate O—uUvw Is rotating about its own
principal axes, then post—multiply the previous

(resultant) rotation matrix with an appropriate basic
rotation matrix



So far:

Rotations

A B

/ B rotates wrt A and C rotates wrt B
but the rotation is described via A
Multiply on the left
A FIXED:

p" —>R.p" > Rg R p"
B

p P

45



So far:
Rotations

A“ B: “new” A

C: “new” B, “newer” A

Multiply on the right

CURRENT:
p" = Ryp” > RgRp

46



Practical Matters:

How to transform



Elementary Rotations

Frames that can be obtained via
elementary rotations of the

reference frame about one of the

coordinate axes

Positive if they are made
counter—clockwise about the
relative axis. Example: z

New unit vectors:

COS (v
S o

0

—SIn o
COS (v

0

2

A
' e
Yy’ LY
| o J
> >
0o Y
0
!
z =10
1
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Rotation Matrix _3D

cosa —sina 0
R.(a) = | sihna cosa O
0 0 1
cos(3 0 sinp
R,(3) = 0 1 0
—sin/3 0 cos 3
1 0 0
R.(v)= |0 cosy —sin~
0 sinvy cos~y

R.(—0) = RY(9) T z‘




Example 1

Consider the vector p which iIs obtained by
rotating a vector p’in the plane xy by an angle a
about axis z of the reference frame

Coordinates of the vector p’: (p.., p,, p-)
The vector p has components
Dy = P COS (¥ — p‘;, S11 Qv
f . f
Py = Px S+ P, COSQ

f
Pz = P-.

p= R.(a)p’

50



Example 2

* Apointa,, =(4,3,2) Is attached to a rotating frame and
this frame rotates 60 degree about the Oz axis of the
reference frame. Find the coordinates of the point
relative to the reference frame after the rotation.

a,,, = Rot(z,60)a,,,

05 -0.866 0]4] [-0.598]
=10.866 05 0| 3|=| 4.964
0 0 1] 2 2
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Example 3

* Apointa,, =(4,32) Is the coordinate w.r.t. the
reference coordinate system, find the

corresponding point a,, W.r.t. the rotated Ouvw
coordinate system if it has been rotated 60 degree

about Oz axis. /

a,, = Rot(z,60)" a,,
05 0.866 0| 4] [ 4.598 ]

=|1-0866 05 O0|3|=|-1.964
0 0 1|2 2




Example 4

 Find the rotation matrix for the following
operations: Co 0 Spl[Co —So 0][1 0 0]

Rotation ¢ about O, axis "= 0 1 0|/5¢ €6 00 Ca -Sa
-Sp 0 Cp| 0O 0 1]|0 Sa Ca

Rotation ¢ about O, aXiS [ cocp spSe—CeSeCa CpSHSa+SeCa

Rotation o about O, axis =| S6 CoCa ~COSa
| —SpCO SpSOCa+CopSa CoCa—SpSOSa |

Answer...
R = Rot(y, ¢)Rot(w, 8)Rot(u, )

Pre—multiply If rotating about the O, , (reference) axes

Post—multiply If rotating about the O, (current) axes

53



Trigonometric shorthand

 Symbol Meaning
Isli cos ¢
sin ¢
V¢ 1 — cos ¢
Ck COos 'ﬂj;
Sy sin 31:
C’i COS (9;; + ﬂj)
Sﬁ sin (ﬂt + ﬂ.f)
| & ~f COS (6.1- 'BJ)

St—j sin {Oj; - &j}




P, = distance between t

Notation:

Moving Between Coordinate Frames
Translation Along the X—Axis

(VN,V0)

VO

VN

ne XY and NO coordinate planes

]



Writing V™" in terms of V'°




Translation along the X—Axis and Y—Axis

VO




Coordinate Transformations

* position vector of P
In {B} is transformed
to position vector of P

in {A}

« description of {B} as
seen from an observer

in {A}

Rotation of {B} with respect to {A}

58



Coordinate Transformatlons

. Two Cases

:AR BI’P+Ar°

1. Translation only
— Axes of {B} and {A} are
parallel
ARB =1

2. Rotation only

— Origins of {B} and {A}
are coincident

Aro' _ O

59



Homogeneous Representation
 Coordinate transformation from {B} to {A}

ATB

ArP:ARBBrP_|_Ar0'
AP [ A A0 | B,.P |
r Re “r°
1] 10, 1 | 1
« Homogeneous transformation matrix
_ — —
A A0 i il
RB r . R3><3 P3><1\
Ol><3 1 O :.I'
— - - v

Rotation
matrix

Position
vector

60



Homogeneous Transformation

 Special cases
1. Translation

ATB _

2. Rotation

ATB _

|3x3

_()lx3

61



Example 5

 Translation along z—axis with h:

Trans(z,h) =

0
1
0
0

o —» O O

o o o -

0

1
0
0

o r O O

o O O

Py
Py
Pw

Py

P,
p, +h
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Rot(x,8) =

o O O Bk

0

0 0

Co -S6 0

S CoO O

0 0 1
W

Example 6

* Rotation about the X—axis by 6

1 0
0 Cé6
0 S6

0 0

0
- S0
Cco

0

R O O O

Py
Py
Pw
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BONUS: Scaling & Stretching

« Scaling s=

OO O O um

 Stretching T =

0

o O O D2

o O

O unw O O

OO O T O

R O O O

o o O O

y
étx
1

Original

cale all axes
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Recap: Homogeneous Transformation

« Composite Homogeneous Transformation Matrix

* Rules:

— Transformation (rotation/translation) w.r.t (X,Y,2)
(OLD FRAME), using pre—multiplication

— Transformation (rotation/translation) w.r.t (U,V,W)
(NEW FRAME), using post—multiplication

65



Recap: Homogeneous Transformation

rotation translation

perspective scale

Composite Homogeneous Transformation Matrix
Perspective: to be used when a camera gets involved; now:[0,0,0]
Homogeneous coordinates for € R® wrt F, coordinate frame in R®

[q]F = [qu, qugql’G]T

Then, CI=H0[CI]F where Hazl[lsiog]F (We take 0 =1)

o 66



Recap: Homogeneous Coordinates

« Composite Homogeneous Transformation Matrix

* Rules:

— Transformation (rotation/translation) w.r.t (X,Y,2)
(OLD FRAME), using pre—multiplication

— Transformation (rotation/translation) w.r.t (U,V,W)
(NEW FRAME), using post—multiplication

67



Order of operations...

...does matter. Let’s look at an example:

1. Rotate
2. Translate

1. Translate

2. Rotate
® 0,6
<) | & (@)
S

cd
-

SRE
-

e
-



Example 7

 Find the homogeneous transformation matrix (T)
for the following operations:

Rotation « about Ox axis

Translation of h along Ox axis
Translation of d along Oz axis

Rotation of @ about Oz axis
T — Tz,eTz,de,hT

X, " 4x4

Answer :

(CO

-S0

SO Cdo

0
0

0
0

oo r»r O O

b O O O

o O O -

© O —» O

o r O O

R O O O

o O O BB

0

1
0
0

o »r O O

. O O =T

o o O -

Ca
Sa

S«
Ca

R O O O
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Homogeneous Representation

 Aframe in SPacCe (Geometric Interpretation)

_ —_ P , ’ :
F = R3><3 P3><1 Z K(p;(zl?)y p)
0 1 \<S(y’>

N )

> 3
mw O wm
QO
(&

>

N
N
N
N

o
o
o
=

Principal axis n w.r.t. the reference coordinate system
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 Translation

new

>0 OS5 S5 O O O -

o O +— O

>
x

N <
w O»O oum
N <

o
o

o rr O O

r]X SX a'X pX
X ny Sy ay py
nZ SZ a'Z pZ
/10 0 0 1]
p, +d, |
py+dy
p,+d,
1 —

Homogeneous Transformation

F :Trans(dx,dy,dz)xFo,d

new
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Homogeneous Transformation
Composite Homogeneous Transformation Matrix

1-1 Aj Transformation matrix for
adjacent coordinate frames

OAZ _OAilAZ Chain product of successive
R coordinate transformation matrices
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Example 8

» For the figure shown below, find the 4x4 homogeneous transformation matrices
"Aand' A fori=1,2,3,4,5

_n S a p N __1 O O O |
A 0 0 -1 e+c
7 = Y B A g e
A n, s, a, P, ) T
5 ; 0 0 1 o0 0 1
) ) 0 -1 0 b
7
o | X e,/ 1A2 _ 0 0 -1 a-d
. X, s Z, 1 0 O 0
0O 0 O 1
_________ Zy 1 2 _ -
*Zo - 0 1 0 -b
! > 2 . -1 0 0 e+c
>( Yo Can you find the answer by observation A, = 0 01 0
based on the geometric interpretation of
homogeneous transformation matrix? 0 00 1 2




Positions, orientations and frames

* Remember the robot’s end part:

Three unit vectors describing the hand
orientation:

« The z vector lies in the direction from
which the hand would approach an
object and is known as the approach
vector, a.

« The y vector, known as the orientation
vector, o, Is in the direction specifying
the orientation of the hand, from
fingertip to fingertip.

« The final vector, known as the normal
vector, n, forms a right—handed set of
vectors and is thus specified by the
vector cross—product




Positions, orientations and frames

N=0Xa
_nX OX a'X pX_
T — Ny 0, a, Py
r-]Z OZ a'Z pZ
0 0 0 1

— 12 quantities



Euler Angles

 Orientation Is more frequently specified
by a sequence of rotations about the X, v,
Or Z axes.

» Euler angles describe any possible
orientation in terms of a rotation ¢ about
the z axis, then a rotation # about the new
y axis, y’, and finally, a rotation of y about
the new z axis, z”.



Euler Anales

Z2




Euler Angles Interpreted in Base Coordinates

z2
A v
Wy,
2" g NP
y”
¢ ylf
yf
>
8

The sequence of rotations can be
interpreted in the reverse order as
rotations in base coordinates: a rotation
about the z axis, followed by a rotation 6
about the base y axis, and finally a
rotation ¢, once again

) ) X" about the base z axis



Euler Angles
Euler (¢,0,y ) =Rot(z,¢) Rot(y,0) Rot(z,y)

(cosp —sing
Singp  COS@
L0 0
(cosy —siny
=| siny  CcoSy
L0 0

0)
0

1,
0)
0

1

’Ru'H —

(1 0
0O cosé
0 sin @

0 )
—sin g
cosd )




Euler Angle

Resultant Eulerian rotation matrix:

RM,W:R,R R,,=|S¢ C¢

0 0

' C#COCw — S¢Sy
= | S¢COHCy + CopSy

-SOCy

Cp -S¢ 0l][co 0 sollcy

ol o0 1 o0 | sy

1 -S 0 C@ 0

—CgCOSy —S¢Cy C@SO |

-S¢PCOHSy + CopCy
SOSy

Sy 0
Cy O

0 1

S#SO
Co
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Roll, Pitch, Yaw

IeproTpoon), Ilpovevon, Extpon)

For a ship moving along the z axis, then roll
corresponds to a rotation ¢ about the z axis, pitch
corresponds to a rotation £ about the y axis, and
yaw corresponds to a rotation y about the x axis

z

roll

7 ¢
]// | U piéch

ship

D

o




Roll, Pitch, Yaw

IeproTpoon), Ilpovevon, Extpon)

For an airplane moving along the x axis, then roll
corresponds to a rotation ¢ about the x axis, pitch
corresponds to a rotation € about the y axis, and
yaw corresponds to a rotation y about the z axis




Roll, Pitch, Yaw

IeproTpoon), Ilpovevon, Extpon)

« Robot manipulator, Robot hand

yaw



S#CO
~S@

Roll, Pitch, Yaw

ey

— Z,¢ Vi X,l//: S¢

0

—S¢
Co
0

0
0
1

co 0 SO
0 1 0

-S6 0 Co|

1 0
0 Cy

10 Sy

' CoCO C@SOSy —SgCy  ChSOCw + SéSy

SoSOSy + CoCy SoSOCY — CoSy

COSy

COCy




Orientation Representation

» Euler Angles Representation (¢, 8, v )

— Many different types
— Description of Euler angle representations

Euler Angle | Euler Angle Il Roll-Pitch-Yaw
Sequence| ¢ about OZ axis ¢ about OZ axis ¥ about OX axis
of @ about OU axis @ about OV axis @ about OY axis

Rotations | about OW axis ¥ about OW axis ¢ about OZ axis
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Can be useful

* Cylindrical Coordinates :

Cyl(z,a,r) = Trans(0,0,z) Rot(z,«) Trans(r,0,0)

» Spherical Coordinates:

Sph(e, f8,r) = Rot(z,a) Rot(y, ) Trans(0,0,r)



Homogeneous transformations for
robot manipulators

A serial link manipulator consists of a sequence
of links connected together by actuated joints.

For an n degree of freedom manipulator, there
will be n links and n joints.

The base of the manipulator is link 0 and is not
considered one of the n links.

Link 1 is connected to the base link by joint 1.
There 1s no joint at the end of the final link.



The Length a and Twist a of a Link

* Any link can be characterized by two dimensions:
1. the common normal distance a, and

2. the angle «, between the axes in a plane
perpendicular to a,, .

* [tis customary to call a, the length and «, the
twist of the link




The Length a and Twist a of a Link

Joint n Joint n+|




Important variables

* Angle 6 between the normals

* Relative position d between links



Denavit—Hartenberg Parameters

* 4 in total D—H parameters: ¢;, &;, d;, 6,

* 3 fixed link parameters

@, variable if revolute joint
* 1 joint variable{

d. variable if prismatic joint

« o, and a describe the Link i
» d. and 6. describe the Link’s connection



Denavit—Hartenberg Parameters

Axisi—1 Axis i

Link { — 1 .
N

Link i




AFFIXING FRAMES TO LINKS

Axisi—1 Axis i

Linki—1
D\




Summary for link parameters and
link frames

If the attachment convention has been followed,
then define:

* a; = the distance from Z; to Z;,, measured along X,
* o; = the angle from Z; to Z;,, measured about X
* d; = the distance from X._, to X. measured along Z,
» 6. =the angle from X._, to X, measured about Z




Summary for link parameters and
link frames

We usually choose a; > 0, because It corresponds
to a distance; however, a;, d;, and &, are signed
quantities

Attachment of frames to links NOT UNIQUE !!



N

9.

RULES: Revolute joints

Each link requires a coordinate frame assigned to it.
In revolute joints 6. is the joint variable.

The origin of the coordlnate frame of link n is set to be at the mtersectlon h
of the common normal between the axes of joints n and n + 1 and the axis
of joint n.

In the case of intersecting joint axes, the origin is at the point of
Intersection of the joint axes.

If the axes are parallel, the origin is chosen to make the joint distance zero
for the next link whose coordinate origin is defined.

The z axis for link n will be aligned with the axis of jointn + 1.

The x axis will be aligned with any common normal which exists and is
directed along the normal from joint n to joint n + 1.

In the case of intersecting joints, the direction of the x axis is parallel or
antiparallel to the vector cross product Z, ; X Z,.

Notice that this condition is also satisfied for the x axis directed along the
normal between jointsnand n + 1.

10. 6, is zero for the nth revolute joint when X, ; and X, are parallel and have

the same direction.



RULES: Revolute joints

Joint n Joint n+l
- <-.D En el."H-i
Joint n-| \ .
8 _?,-/ Linkn \ i
-l Link n-| ] Link n+l
If
Link n- = %
. ,;f' On %n 3 Zn
Ly /.
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RULES: Prismatic joints

In the case of a prismatic joint, the distance d_ is the joint variable.

The direction of the joint axis is the direction in which the joint
moves.

The direction of the axis is defined but, unlike a revolute joint, the
position in space Is not defined.

Length a, has no meaning and is set to zero.

The origin of the coordinate frame for a prismatic joint is
coincident with the next defined link origin.

The z axis of the prismatic link is aligned with the axis of joint n+1.

The x, axis is parallel or antiparallel to the vector cross product of
the direction of the prismatic joint and z,,.

For a prismatic joint, we will define the zero position whend, = 0.



RULES: Prismatic joints

Joint n

HTH Joint n+1




The
Denavit-Hartenberg
Method



Denavit—Hartenberg Parameters

Axisi—1
Linki—1
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Denavit—Hartenberg Parameters




Denavit—Hartenberg Parameters

Axisi—1

Linki—1
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Denavit—Hartenberg Parameters

Axisi—1

Linki—1
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Denavit—Hartenberg Parameters

Axisi—1 %7

Link i — 1




Denavit—Hartenberg Parameters

Axisi—1
Link{—1
7 U A e
_mmﬁ il
/ T
R
If% d; variable if joint is prismatic



Denavit—Hartenberg Parameters

Axisi—1

Linki—1

\ l



Denavit—Hartenberg Parameters

Axisi—1
Linki—1
| _—-——— . #
Ty &;
/ —- Ty -
\L @i Ty -
Ij% U, variable if joint is revolute



Next: Assign frames

« Two Design Principles prevail in this modeling
approach

— Principle 1: The Axis X; must be designed to intersect
Zi—l

— Principle 2: The Axis X; must be designed to be
perpendicular to Z;_,



AFFIXING FRAMES TO LINKS: Z

Axisi—1 Axis i

.
——
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AFFIXING FRAMES TO LINKS:
_ocate origins

Axisi—1 Axis i




AFFIXING FRAMES TO LINKS:

Axisi—1 Axisi



AFFIXING FRAMES TO LINKS: Y.

Axisi—1 Axisi



FINAL
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Summary — Frame Attachment

1. Normals 3. Z-axes
2. Origins 4. X-axes



Denavit—Hartenberg Method



Denavit—Hartenberg Method




Denavit—Hartenberg Method
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Denavit—Hartenberg Method

120



Denavit—Hartenberg Method
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Denavit—Hartenberg Method
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MOVIE 1

- DH Parameter and

Coordinate system
assignment

Prof. Jatin Dave
Mechanical Engineering Department
Institute of Technology
Nirma University
Ahmedabad, Gujarat, India




TRANSFORMATIONS

Axisi—1

:}(Zi—li di)R(Zi—l’ ‘9|)T (Xi , a‘i)R(Xi ’ 0[,)



| |
o o o -

Overall transformation fixed i-1

0 0 0]f1 00 a,][coe -s& 0 0][1 0 0
Cay =Sy 0| [0 1 0 0 [S6 C4 0 0| |0 1 0
Se., Ca., 0| [0 0 1 0 0 10/||0 01
0 0 1/[000 1][0 0 0 1/|0 0 O

co S0 0 a .

S6.Ca,, COCa_, -Sa_, —-Sa_d

S0 Sa., CO Se,, Cea, Cead,

0 0 0 1

] —, & o o
| |




[ I
o o o —

Overall transformation fixed i

0 0 o]fce -s4 o o[t 0o 0 allt o 0
1 0 0[S C6 0 0{[0 1 0 0|0 Ca -Se
0 1 di|flo0o 0 1 0ff0 0 1 0]/0 Se Ca
0 0 1J0 0o o0 1J{0 0 0 1]l0 O 0

0 Sa;_, Ca; , d.

0 0 0 1

L O O O




Overall transformation

The position and orientation of the i—th frame
coordinate can be expressed in the (i—1)th frame by
the following homogeneous transformation matrix:

Source coordinate
Tii—lz/T(Zi—l’di)R(Zi—l’gi)T(Xi’ai)R(Xi’ai)
Cc4 -Ca,_,S60 Sa ,S6. a_,CO

Reference
Coordinate

0 Sa; 4 Ca; 4 d.

0 0 0 1



Overall transformation

Each matrix Tii_l IS a function of the i-th joint variable, dior 6 depending on the
joint type. For notational ease, the joint variable is generically indicated as g, i1.e.:
g = di for prismatic joints
g = & for rotational joints

Therefore: T, =T, ()

In case of a manipulator with n joints, the relationship between frame F,and
frame F, is:

Ton — Tol (ql)T12 (qz)' . 'Tnn—l (ql)

This equation expresses the position and orientation of the last link wrt the base
frame, once the joint variables g, Qz, . . . , 0. are known.

This equation is the kinematic model of the manipulator.



MOVIE 2

W Detivation of link transformation matrix

Prof. Jatin Dave
Mechanical Engineering Department
Institute of Technology
Nirma University
Ahmedabad, Gujarat, India




11.

12.
13.

Algerithm ‘2_-_'-5'-1_:‘ ])-H Rebresentation

. Number the joints from 1 to n starting with the base and ending with the tool

yaw, pitch, and roll, in that order. _
Assign a right-handed orthonormal coordinate frame Lo to the robot base,
making sure that z° aligns with the axis of joint 1. Set k= 1.

Align z* with the axis of joint k + 1.

Iocate the origin of L, at the intersection of the 7% and z* ! axes. If they do not
g Y

intersect, use the intersection of 7% with a common normal between z* and
k—1
/A

Select x* to be orthogonal to both z* and z*~". If z* and z*™" are parallel, point
x* away from z*7.

Select y* to form a right-handed orthonormal coordinate frame Ly.

Setk = k + 1. If k < n, go to step 2; else, continue.

Set the origin of L, at the tool tip. Align z" with the approach vector, y” with
the sliding vector, and x" with the normal vector of the tool. Setk = 1.
Locate point b* at the intersection of the x* and z*¥ 1 axes. If they do not inter-
sect, use the intersection of x* with a common normal between x*and z¥7'.
Compute 6; as the angle of rotation from x*1 to x* measured about z*7'.
Compute di as the distance from the origin of frame Li- to point b* measured
along z¢7".

Compute a; as the distance from point b* to the origin of framne L, measured
along x*. |

Compute a; as the angle of rotation from z*7" to z* measured about x*.

Setk = k + 1. If k = n, go to step 8; else, stop.



Denavit—Hartenberg Algorithm v2

1: Numerate links beginning with 7 (first mobile link of link’s chain) and ending
with n (last mobile link). The fixed base reference coordinate system will be
numbered as link 0.

2: Numerate each articulation beginning with 7 (that is the first DOF for a
joint) and ending with n.

3: Locate axis of each articulation. If this is revolving, the axis will be its own
turn axis. If it 1s prismatic, it will be the axis along which the displacement
takes place.

4: For n+1 of link 0 to n locate 2,11 axis on the axis of articulation n.

5: Place the origin of the base reference coordinate system in any point of zg
axis. Axes zg and yp will be located so that they form a right-handed system
with zg.

6: For n/ 1 of link I to n. place the {5} system with regard to the link n /1)
in the intersection of 7,1 axis with the normal line common to Z,, and Z;. If
both axes cuts, {5;} would be located in the cut point. If they were parallel
then {.5;} would be located in the articulation n.
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Denavit—Hartenberg Algorithm v3

Step 1: Locate and label the jointaxes z,,---z, .

Step 2: Establish the base frame. Set the origin anywhere on the z; axis. The x;, and y, axes are

chosen conveniently to form the right-hand frame.

For i=1,---n—1, perform steps 3to 5

Step 3: Locate the origin 0, where the common normalto z, and z, , intersects z,. If z, intersects
z, ,locate o, at this intersection. If z; and z | are parallel, locate o, at joint i.

Step 4: Establish x, alongthe common normal between z_, and z, through o, , orin the
direction normal to the z, , Xz, planeif z, | and z, intersect.

Step 5: Establish y, to complete a right hand frame.

Step 6: Establish the end-effector frame o x y z .Set z along the direction z_, . Establish the
origin o conveniently along z_ preferably at the center of the gripper or at the tip of any
tool that the manipulator may be carrying. Establish x along the common normal
between z |, and z, through o, .

Step 7: Create a table of link parameters 8,d,,a,,,.

¢, : the angle between x,_; and x, measured about z, . &, isvariableif joint i is
revolute.

d, :distance along z, | from o, , to the intersection of the x, and z, ; axes. d, is
variable if joint 7 is prismatic.
a, . distance along x, from o, to the intersection of the x, and z, , axes.
o, . the angle between z, | and z; measured about x,.
Step 8: Form the homogeneous transformation matrices 4, by substituting the above parameters.
Step 9: Form °T, = A A, --- A . This then gives the position and orientation of the tool frame

expressed in base coordinates.



MOVIE

Denavit-Hartenberg Reference Frame Layout
Produced by Ethan Tira-Thompson




The Denavit—Hartenberg Matrix
Cé -S6, 0 a,
S0, Ca;, COCeoy —Sa,; —Sai, 0
SO Sa., COSa,, Ca., Cgo_d

0 0 0 1

"'he Denavit—Hartenberg Matrix is an homogeneous

transformation matrix from one coordinate frame to
the next.

Using a series of D—H Matrix multiplications and the
D—H Parameter table, the final result is a

transformation matrix from some frame to your
Initial frame.



The Denavit—Hartenberg Parameter table

* Two—link manipulator arm

X2

dil Cl

a1 51

d| 6| a | «
L1 0 91 di 0°
L2 0 92 k) 0°
C2 — 52 0 a C?
T 5 _ 52 Cz 0 =h 52
1 0 0 1 0
0 0 0 1
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The Denavit—Hartenberg Parameter table

SCARA arm, the Selective Compliant Articulated Robot for Assembly

two revolute joints (elbow, “wrist”’) and one prismatic joint

U 0

138



The Denavit—Hartenberg Parameter table
SCARA arm, the Selective Compliant Articulated
Robot for Assembly

two revolute joints (elbow, “wrist”’) and one prismatic joint

DH parameter| 0 | d | a |«
Joint 1 01" d; |00
Joint 2 0, 0 rm|m
Joint 3 0 dz* 010

* Indicates the moving joint variable

*the end-tool i1s not included



The Denavit—Hartenberg Parameter table

Spherical wrist

 can be used to achieve any desired orientation of the
end effector

DH parameter 0 |d la «
Joint 1 61* dl 0 —7'[/2
Joint 2 0,1 0|0 /2
Joint 3 93$ d3 0 0

* *Indicates the moving joint variable



APPLICATIO




3 Revolute Joints i oy |aen | o | @
Z, Z, 0 0 0 0 &
< 1 | 0 | a | 0 | &
XO _—: )21
2 -90 ai d2 &
dg a;
_V X, ] T :(oT)(ciT)(;T)

V XoYoZo T VY /

V 42 Note: T is the D—H matrix with (i—1) =0and i = 1.
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i agy [a | 4| 4 cosf, -sing, 0 O
T o o T o & T sing, cosd, 0 O
0 0 1 0
2 | 90 | a d, o This is just a rotation around the Z, axis

cosd, -sing, 0 a, - cosd, -—singd, 0 a |
o _ sing, cosd 0 O o 0 0 1 d,
' 0 0 0 O * |-sing, —cosd, 0 O
0 0 0 1 0 0 0 1|

This is a translation by a, and then d,
followed by a rotation around the X, and
Z, axis

T=(NENET)

This is a translation by a, followed by a
rotation around the Z, axis
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Shoulder rotation o

PUMA 260




PUMA 260

COUPLING
BEVEL BEVEL GEAR

JT 2 MOTOR 2N PINION T
- ( > ('*" ROTATION
JT 3 MOTOR - 5
: h"’*«,”) \’

BULL GEAR
1st IDLER SHAFT

SPUR PINION
2nd IDLER SHAFT

N _IT 3
( [y ROTATION

JOINT 3 MECHANICAL NOMENCLATURE
IS IDENTICAL TO JOINT 2
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PUMA 260

JT 6§ MOTOR

GOUPLING JOINTS 4 & 5
DRIVE SHAFT

JT 5 IDLER CARTRIDGE
JT 5 SPUR GEARS

>/ JT 5 BEVEL GEARS
[/

JT 4 MOTOR
JT 4 SPUR GEARS
JT 4 IDLER CARTRIDGE

<> JT 5
~ ROTATION

COUPLING
JT 4 IDLER CARTRIDGE ‘f)
b
JT 4 SPUR GEARS AT 4

ROTATION



PUMA 260

JOINT 6

JT 6 MOTOR
DRIVE SHAFT
JT 6 BEVEL GEARS

COUPLING

JT 6 BEVEL GEARS

JT 6
JT 6 SPUR GEARS | ROTATION



PUMA 260

149



PUMA 260
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Denavit—Hartenberg Parameters

PUMA
Link i o Q a d, Evpog kivnong

1 90 |-90 | 0O 0 -160 to +160

2 0| O0]431.8mm 149.09mm -225t0 45

3 90 | 90 | -20.32mm 0 -45 to 225

4 0[-90|0 433.07mm -110to 170

5 0] 900 0 -100 to 100

6 0| 0|0 56.25mm -266 to 266







PUMA 560

Robot PUMA 560

" ¥ (%)

Iy ')
Xy (m)
PUMA robot arm link coordinate parumeters
Jont i 1 g, La, a; d, Joant range
1 [0 %0 0 0 160 10 +160
2 (0] 0| 4N8mm |14909mm | -2251045
3. /9| 9 | -2032 mm 0 ~45 10 22§
4" | 0] -9% 0 433.07 mm | -110 10 170
S o] % 0 0 —100 10 100
6 0 0 0 56.25 mm | -266 w 266
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RECAP: Denavit—Hartenberg

Find and number consecutively the joint axes; set the directions of axes
ysony Bp=—1-

Choose Frame 0 by locating the origin on axis zg; axes xg and 7 are
chosen so as to obtain a right-handed frame. If feasible, it is worth choosing
Frame 0 to coincide with the base frame.

Execute steps from 3 to 5 fori =1,..., n—1:

3.

%]

T

8.

9.

10.

Locate the origin O; at the intersection of z; with the common normal to
axes z;_1 and z;. If axes z;_; and z; are parallel and Joint i is revolute.
then locate O; so that d; = 0; if Joint 7 is prismatic, locate O; at a reference
position for the joint range. e.g.. a mechanical limit.

Choose axis x; along the common normal to axes z;_1 and z; with direction
from Joint 7 to Joint 7 + 1.

Choose axis 1y; so as to obtain a right-handed frame.

complete:

Choose Frame n; if Joint n is revolute, then align z,, with 2,,_;. otherwise,
if Joint n is prismatic, then choose z,, arbitrarily. Axis x,, is set according
to step 4.

For i=1,.:., n, form the table of parameters a;.d;. a;, ;.

On the basis of the parameters in 7, compute the homogeneous transfor-
mation matrices Aﬁ_l(q,-) fori=1,.... n.

Compute the homogeneous transformation T9(q) = A}... A”"! that

vields the position and orientation of Frame n with respect to Frame 0.
Given T} and T", compute the direct kinematics function as T%(q) =
T(b)T?le that yields the position and orientation of the end-effector frame
with respect to the base frame.

oKD

= the distance from z,_, to z; measured along x;
. = the angle from z._, to z; measured about x;

= the distance from x;,_, to x; measured along z,
6, = the angle from x._, to x; measured about z,_,
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RECAP: Denavit—Hartenberg

JOINT 1-1 JOINT 2 JOINT 1 +1

o — — —/
%" LINK i-1 —— " LINK i
e _| i — -

i - - _l'—- e .

\ - )
b T \‘“=.._ I s rd:
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RECAP: Denavit—Hartenberg

T: ()

FIGURE 2.16
Coordinate transformation of the end-effector frame with respect to the base frame,
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RECAP:
Worked out example
THE STANFORD (Scheinman) Arm

Link 6\
Link 5 —=
Link 4

Link 3
Link 2

Link 1 |
Link 0




STANFORD MANIPULATOR

The original ~1968




STANFORD MANIPULATOR
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STANFORD MANIPULATOR

SO LL;4
> ‘ Link (Ei: ; (a'F 91:
< I [0]0—-90]«
2 dy | O | 490 | %
3 * | 0 0 0
4 0110 |—=90]| %
D 01 0|49 | +
6 dg | 0 0 *

25 ___________/ Lo



The DH parameters are:

STANFORD MANIPULATOR

Link | d; | a; | a; |8,
L JO0]0]-907«
2 | dy| O] +90| %
3 * | 0 0 0
4 1 0]0] -9 | *
D 010|490 | %
6 dg | O 0 N
* joint variable
ey 0 —s; 0]
S5 U I 0
A = L‘Ell . 6 0 As
0 0 0 1|
ey 0 —sq 0
— S4q 0 Cyq 0
A= 0 —1 0 0 As
0o 0 01

Cast,  saso,
cOca; -SaCo,
Sa, ca,

0 0
0 sz 0]

0 — 9 0

1 0 do

0 0 1
0 85 0
0 —Cx, ()

—1 0 0
0 0 1

(o B e I i

e O

s R o B
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-{?1

tn
- o=

STANFORD MANIPULATOR

o
_ | %
4 = |7
0
d,c, Ly =
0
1 -

dsclsz o dZSl
d,s;S, +d,C
d3C2
1

0 52 0
U —Co U
L0 dy | 3~
0 0 1 |
0] -, |
O Zl — Cl ZZ —
1 0
0,=0,=|0
_O_
_d3C1$2 _dzsl
O, =|d.s;s, +d.,C,
i d3C2

] ||
= O O =

= o = O

L T A s T

162




T
TS

Ty =

STANFORD MANIPULATOR

= ARAA,
= ARAAA

ARAAARA,

' —C,C,S, —S,C,
-$,C,S, +C,C,

S,S,

T4 =

[ clc2cd—sls4,

[ slc2c4+clsd, —sls2, —slc2s4+clcd, s1ls2d3+cl*d2]

—c1s2, —cl1c2s4—sl1*c4, cls2d3—sinld2]

[—s2c4, —c2, s2s4, c2*d3]

[ 0, 0,0,1]

d,s;S, +d.C,
d3C2

dsclsz o dZSl
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STANFORD MANIPULATOR

T5=

[ (clc2c4—s1s4)c5—cls2s5, clc2s4+slcd, (clc2cd—slsd)s5+cls2c5,c152d3—s1d2]
[ (s1lc2c4+clsd)c5—s1s2s5, slc2sd—clcd, (slc2cd+clsd)s5+s1s2¢5,51s2d3+c1d2]
[ —s2c4c5—c2s5, —s2s54, —s2c4s5+c2c5, c2d3]

[ 0, 0,0,1]

C,C,C,S: —S,5,S: +C,S,Cc
Z. =| $,C,C,S: +C,S,S: +5,5,C

—$,C,S; +C,C;
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STANFORD MANIPULATOR

TS5 =

[ (clc2c4 —sls4)c5—cls2s5, clc2s4 +slcd, (clc2cd —sls4)sh+cls2¢5,c1s2d 3 —s1d 2]

[ (slc2c4 + cls4)c5 —sl1s2s5,s1c2s4 —clc4, (slc2c4 + cls4) s5+s1s2¢5,s1s2d 3+ cld 2]
[-s2c4c5—c2s5,—s254,—s2¢c4s5+ ¢2¢5,c2d 3]

(0,0, 0,1]
C,C,C,S. —5,5,5 +C,S,Cc d:CS, —d,s, |
_ O, =| d,s;S, +d.C
Z. =| 5,C,C,S; +C,S,5; +5,5,C B et
C
i —35,C,S; +C,C; | L 3“2 |
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STANFORD MANIPULATOR
ALTERNATIVE EDITION/REPRESENTATION

ﬂ !

1 25 Zi. 2
Zs

X3, 5 KT

T
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