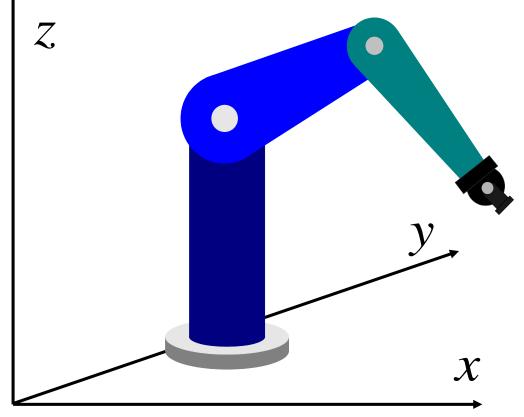
Inverse Kinematics

Given a desired position (**p**) & orientation (**R**) of the end-effector

 $q = (q_1, q_2, \cdots , q_n)$

Find the joint variables which can bring the robot the desired configuration \int_{-7}^{7}



The Inverse Kinematics Problem

• Direct Kinematics

$$x = f(q)$$

• Inverse Kinematics

$$q = f^{-1}(x)$$

The Inverse Kinematics Problem

- The problem is not simple!
- A general approach for the solution of this problem <u>does not</u> <u>exist</u>
- On the other hand, for the most common kinematic structures, a scheme for obtaining the solution has been found. Unfortunately...
- ... The solution is <u>not unique</u>
- In general we may have:
 - \succ No solution (e.g. starting with a position x not in the workspace)
 - ➤ A finite set of solutions (one or more)
 - Infinite solutions
- We seek for closed form solutions not based on numerical techniques:
 - The analytic solution is more efficient from the computational point of view
 - If the solutions are known analytically, it is possible to select one of them on the basis of proper criteria.

The Inverse Kinematics Problem Difficulties

- Possible Problems of Inverse Kinematics
 - $\square Nonlinear (Revolute joints \rightarrow inverse trigonometry)$
 - Discontinuities and singularities
 - □ Can lose one or more DOFs in some configurations
 - □ Multiple solutions for a single Cartesian pose
 - □ Infinitely many solutions
 - Possibly no solutions
 - □ No closed-form (analytical) solutions
 - Not enough!! [Dynamics: in reality, we want to apply forces and torques (while respecting physical constraints), not just move arm!]

The Inverse Kinematics Problem What have we swept under the rug?

Sensing

Shape, pose of target object, accessibility of surfaces
 Classification of material type from sensor data
 Freespace through which grasping action will occur

Prior knowledge

Estimate of mass, moments given material type
Internal, articulated, even active degrees of freedom

Uncertainty & compliance

Tolerate noise inherent in sensing and actuation

Ensure that slight sensing, actuation errors won't cause damage

Handle soft fingers making contact over a finite area (not a point)

Dynamics

≻All of the above factors may be changing in real time

Algebraic Approach

For a 6 DOF manipulator, the kinematic model is described by the equation

$$T_0^{n=6} = T_0^1(q_1)T_1^2(q_2)\cdots T_{n-1=5}^{n=6}(q_{n=6})$$

equivalent to 12 equations in the 6 unknowns q_i , i = 1, ..., 6.

Example: spherical manipulator (only 3 DOF)

T=	0.5868 0.5265 -0.5736 0	-0.6428 0.7660 0.0000 0	0.4394 0.3687 0.8192 0	-0.4231 0.9504 0.4096 1	=	$\begin{array}{c} C_1 C_2 \\ C_2 S_1 \\ -S_2 \\ 0 \end{array}$	$-S_1 \\ C_1 \\ 0 \\ 0$	$\begin{array}{c} C_1 S_2 \\ S_1 S_2 \\ C_2 \\ 0 \end{array}$	$-d_2S_1 + d_3C_1S_2 = d_2C_1 + d_3S_1S_2 = d_3C_2 = 1$	
----	----------------------------------	----------------------------------	---------------------------------	----------------------------------	---	--	-------------------------	---	---	--

Since both the numerical values and the structure of the **intermediate matrices** are known, then by suitable pre- / post-multiplications it is possible to obtain equations

$$\left[T_0^1(q_1)T_1^2(q_2)\cdots T_{i-1}^i(q_i)\right]^{-1}T_0^n = T_i^{i+1}(q_{i+1})T_{i+1}^{i+2}(q_{i+2})\cdots T_{n-1}^n(q_n)$$

8

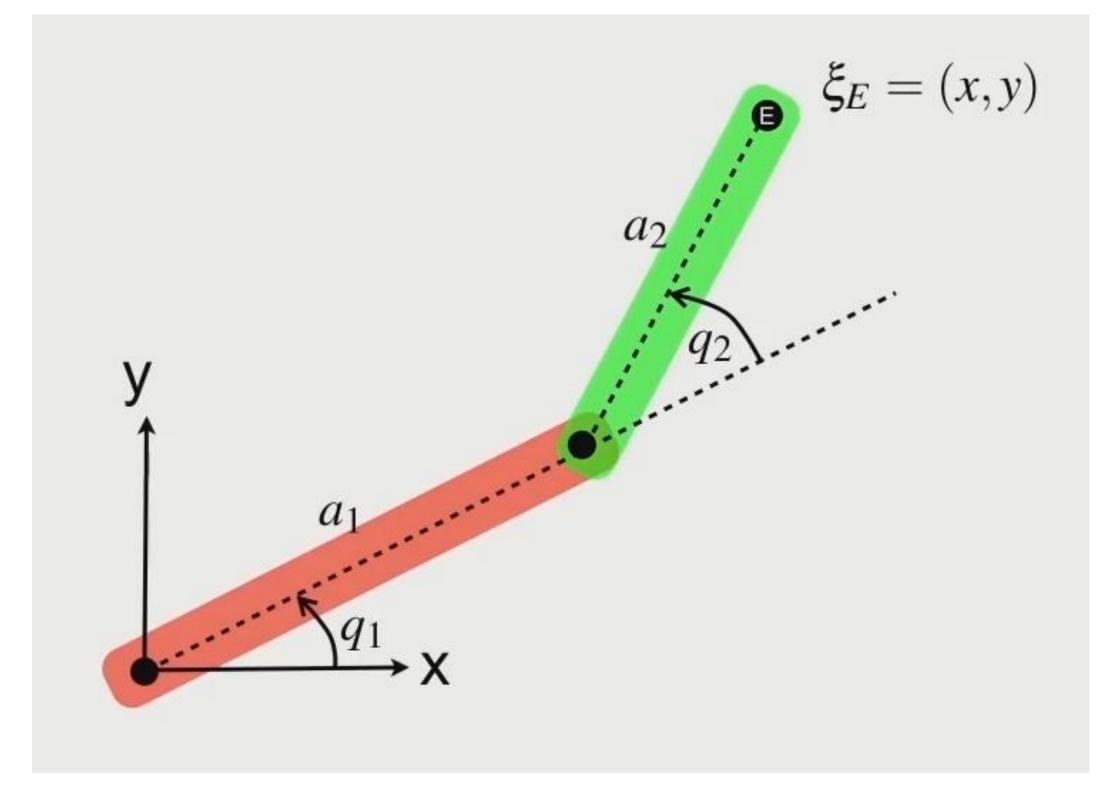
There will be 12 new equations for each *i*, covering the range 1 to *n*. Then, by selecting the most simple equations among all those obtained, **it might be possible** to obtain a solution to the problem.

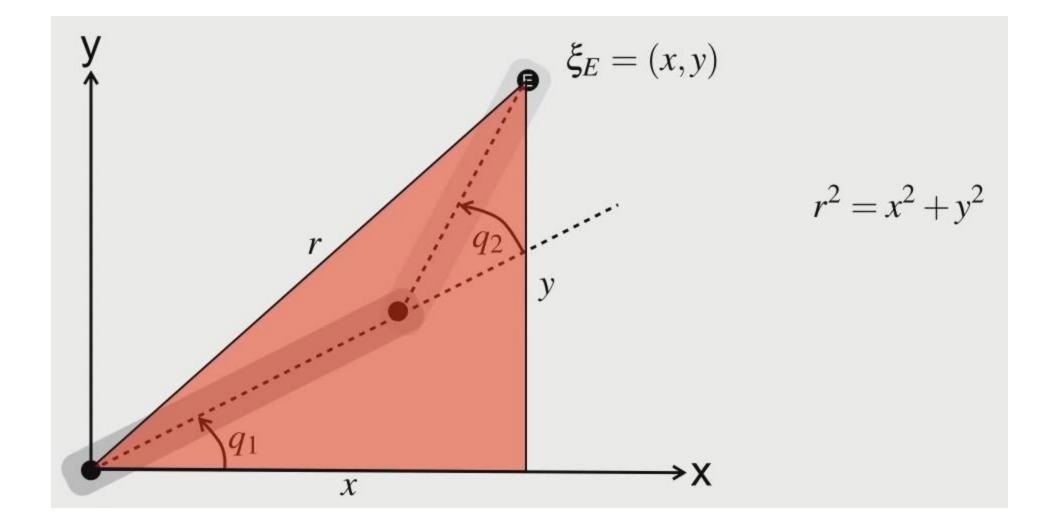
The other way: use geometry

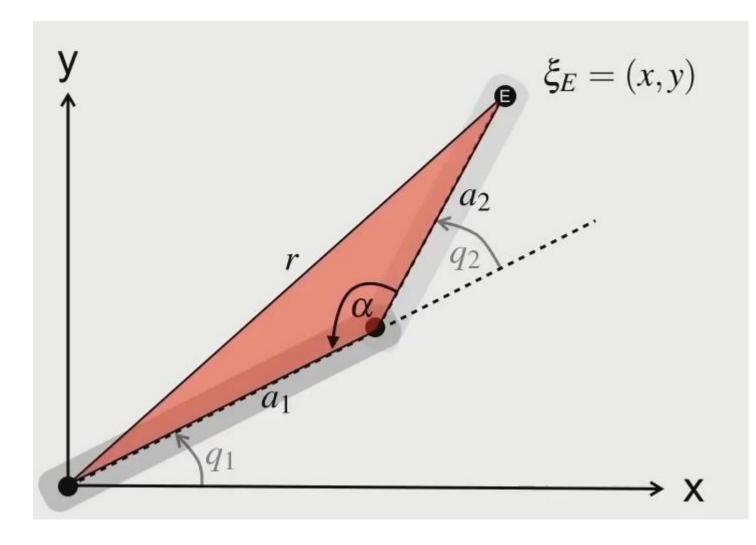
It may be possible to exploit considerations related to the **geometrical structure** of the manipulator

Example 1: the 2 DOF arm

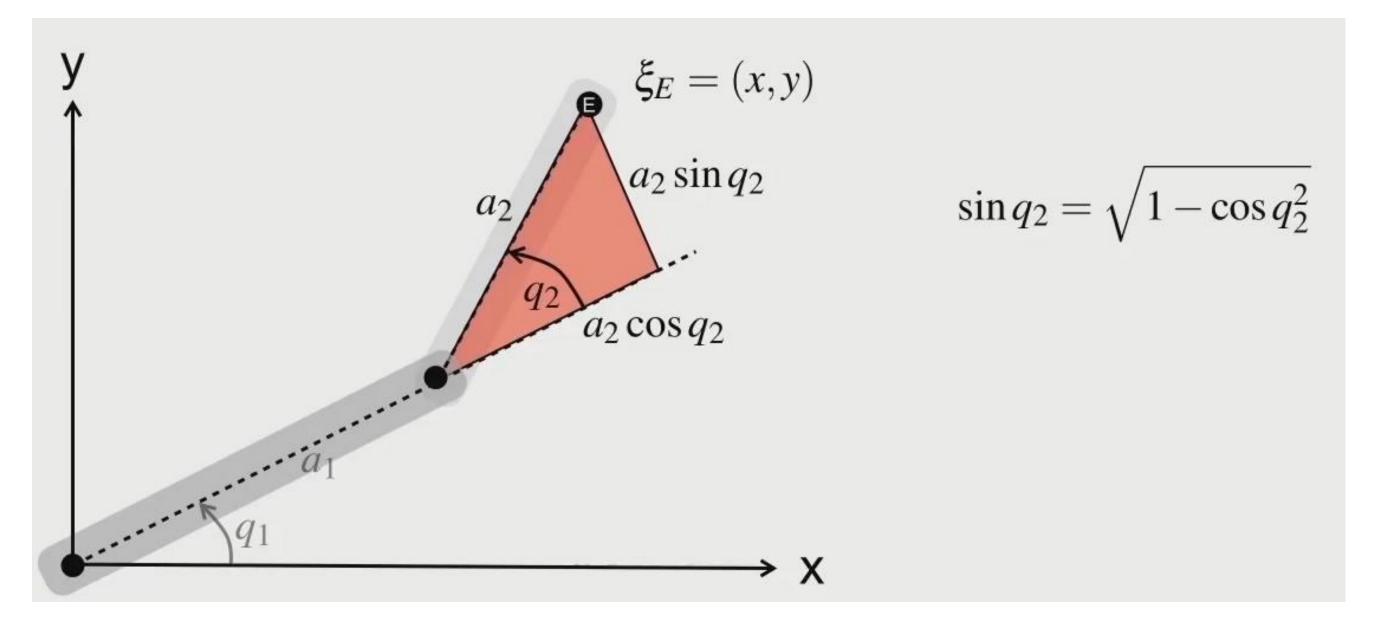
Analytical Inverse Kinematics of a 2 DOF Arm Geometric approach

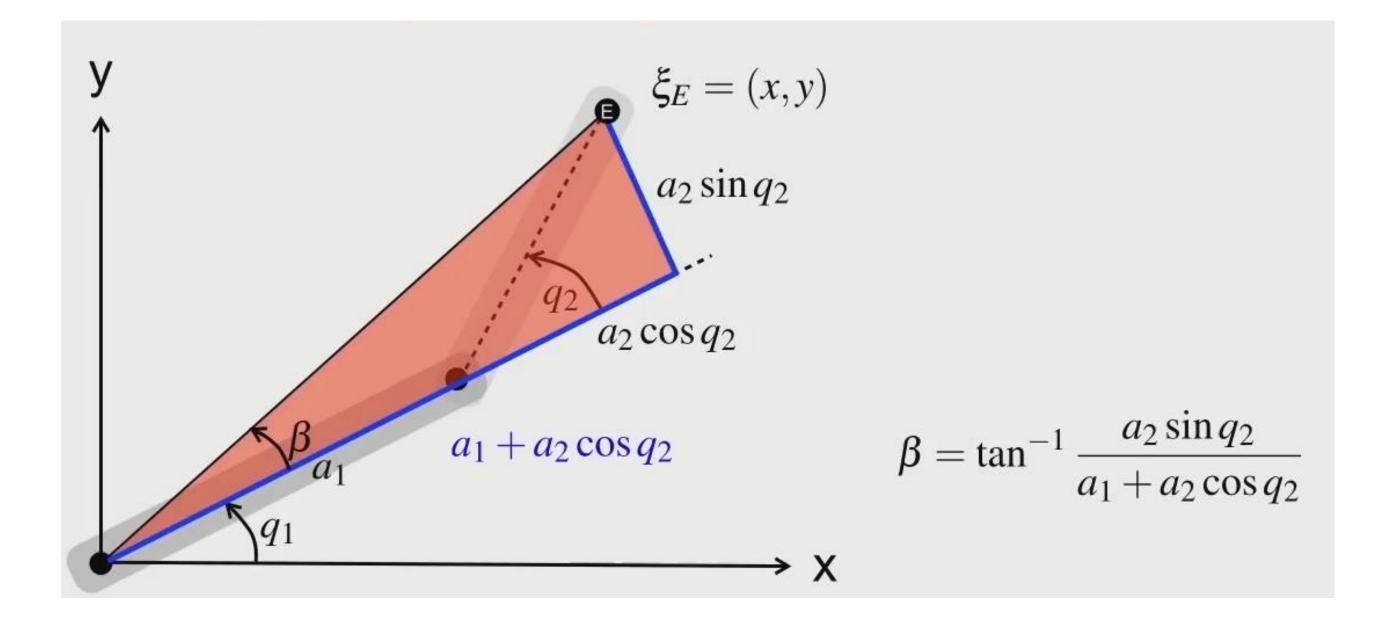


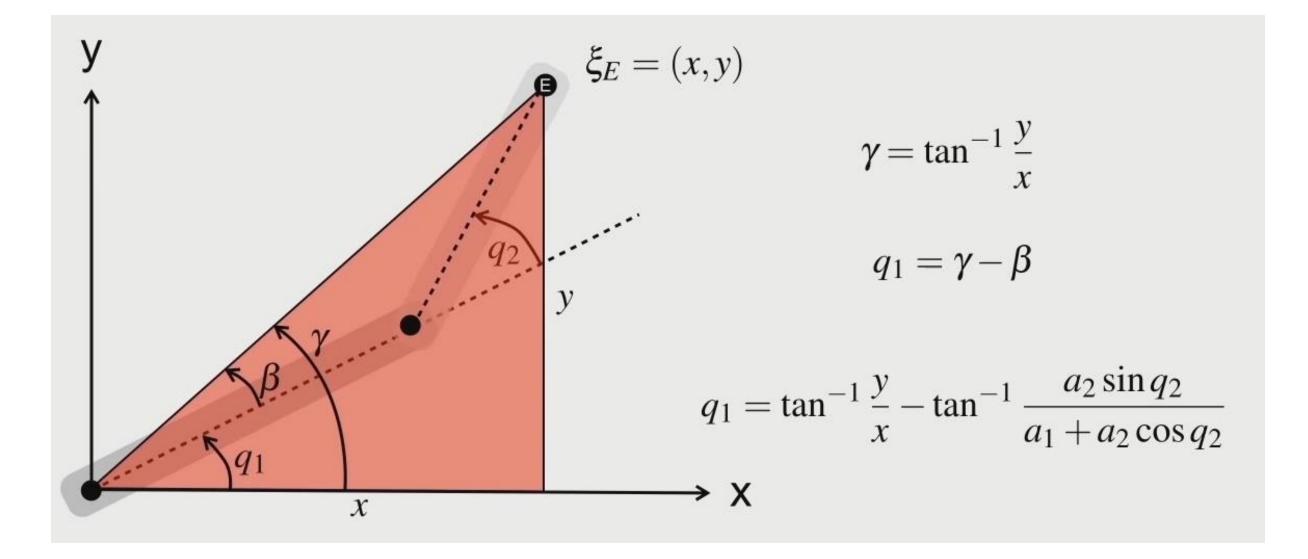




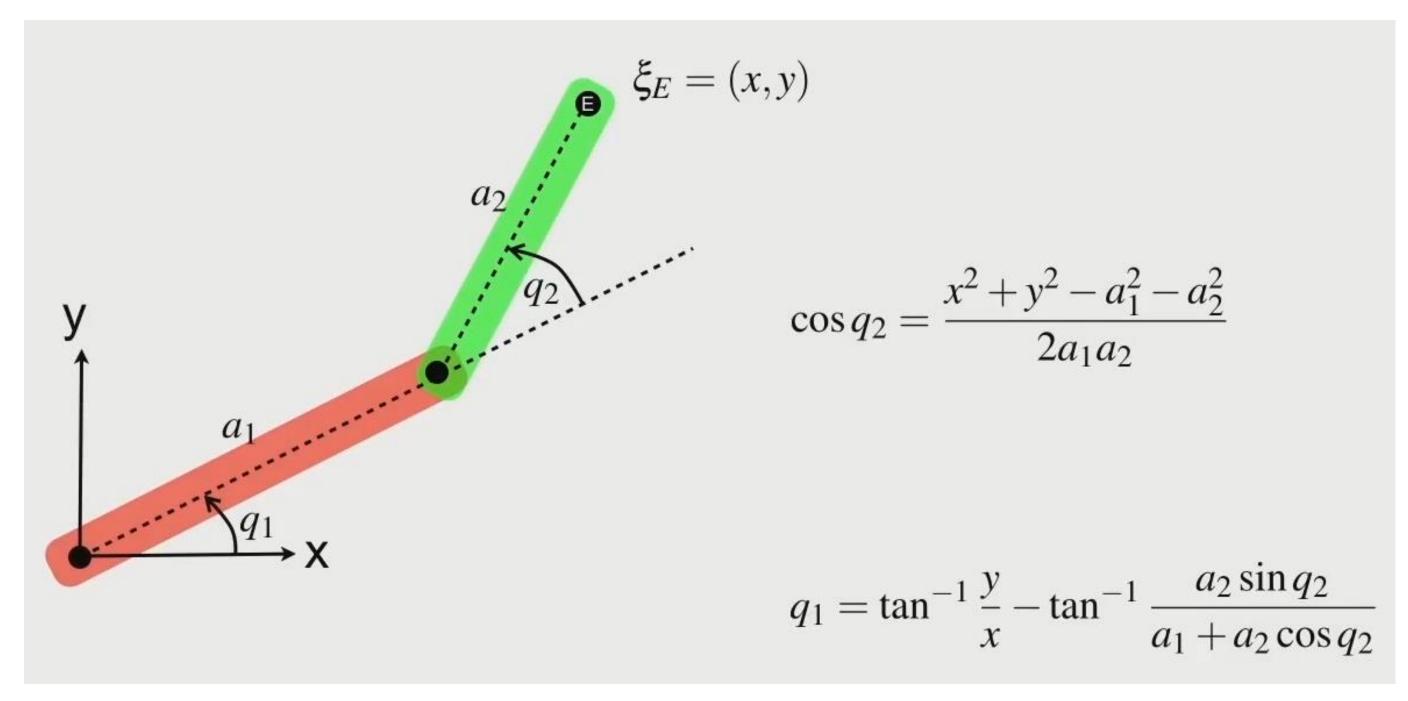
 $r^2 = x^2 + y^2$ $r^2 = a_1^2 + a_2^2 - 2a_1a_2\cos\alpha$ $\cos \alpha = \frac{a_1^2 + a_2^2 - r^2}{2a_1 a_2}$ $=\frac{a_1^2+a_2^2-x^2-y^2}{2a_1a_2}$ $q_2 = \pi - \alpha$ $\cos q_2 = -\cos \alpha$ $\cos q_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}$



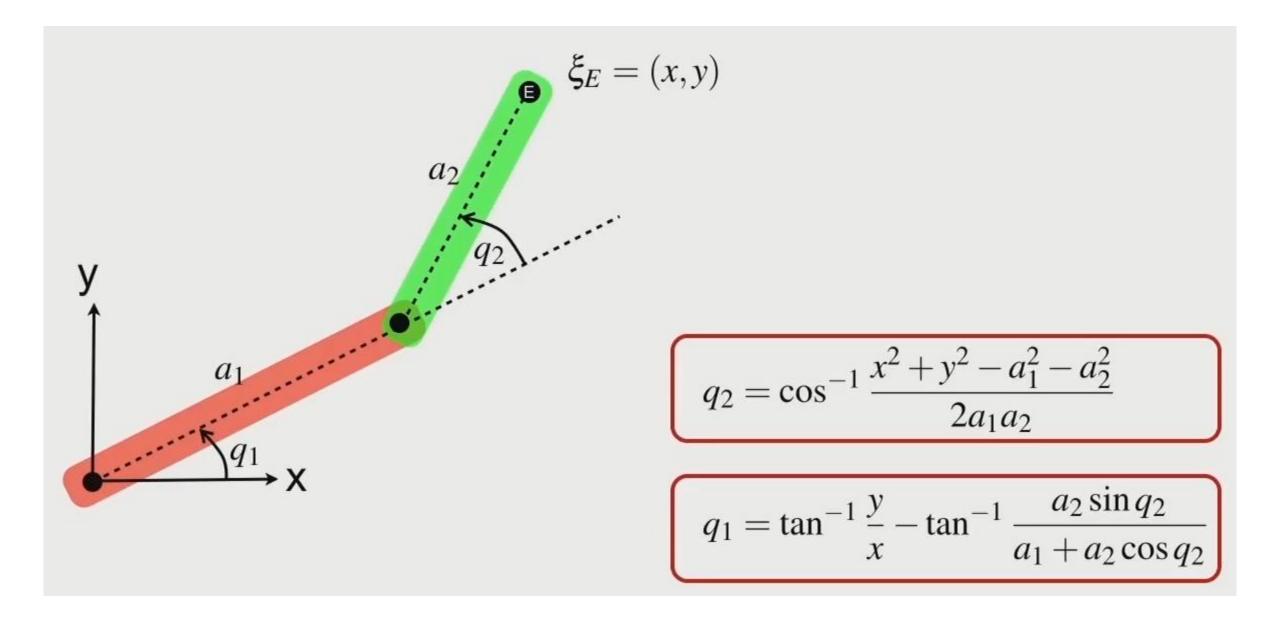




Analytical Inverse Kinematics of a 2 DOF Arm Partial results

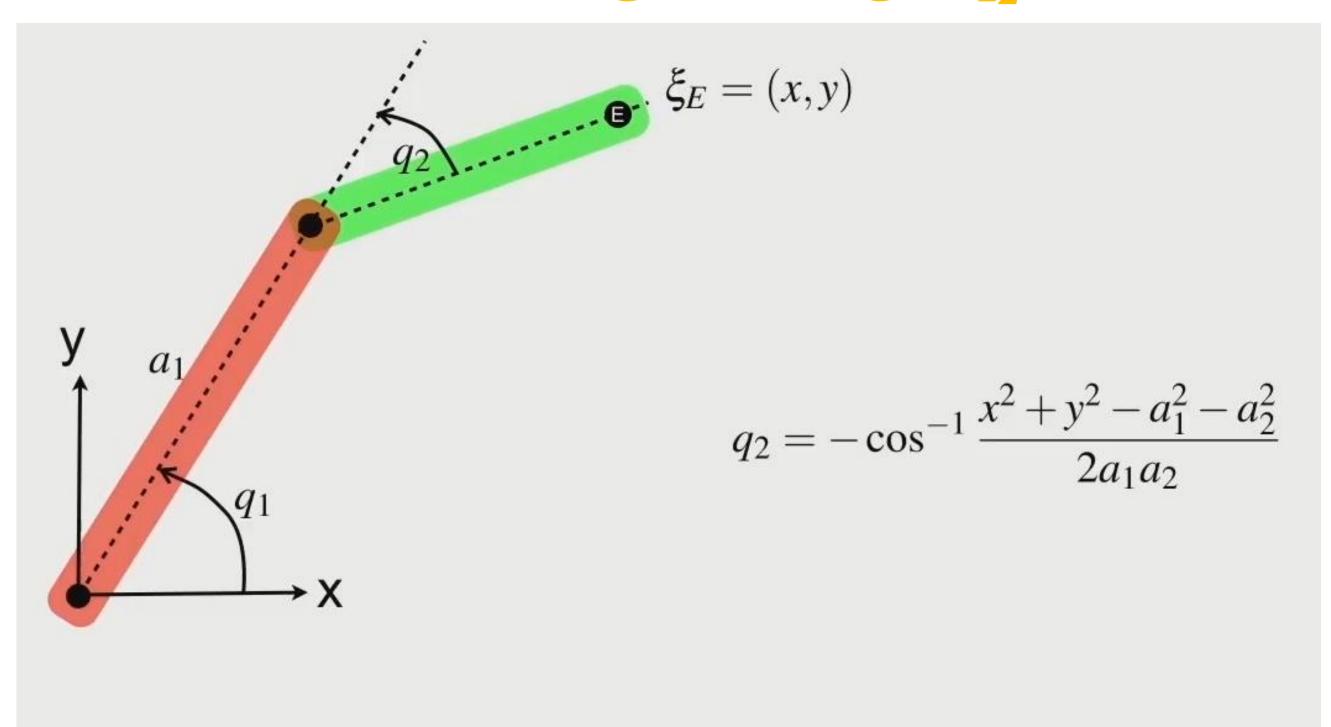


Analytical Inverse Kinematics of a 2 DOF Arm Solution for positive angle q₂

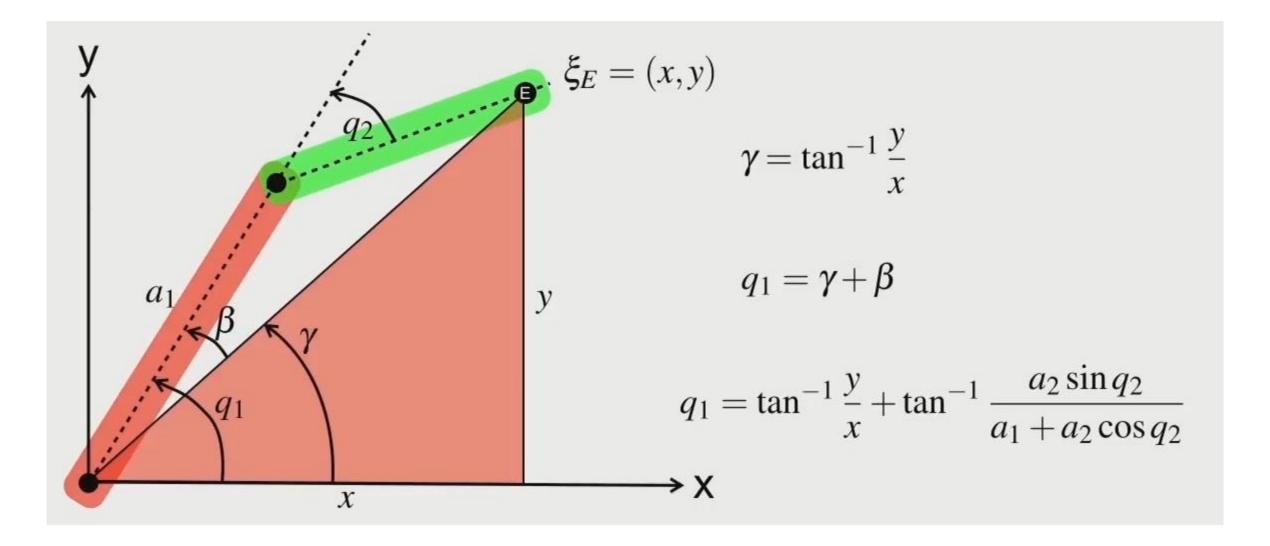


Not independent!

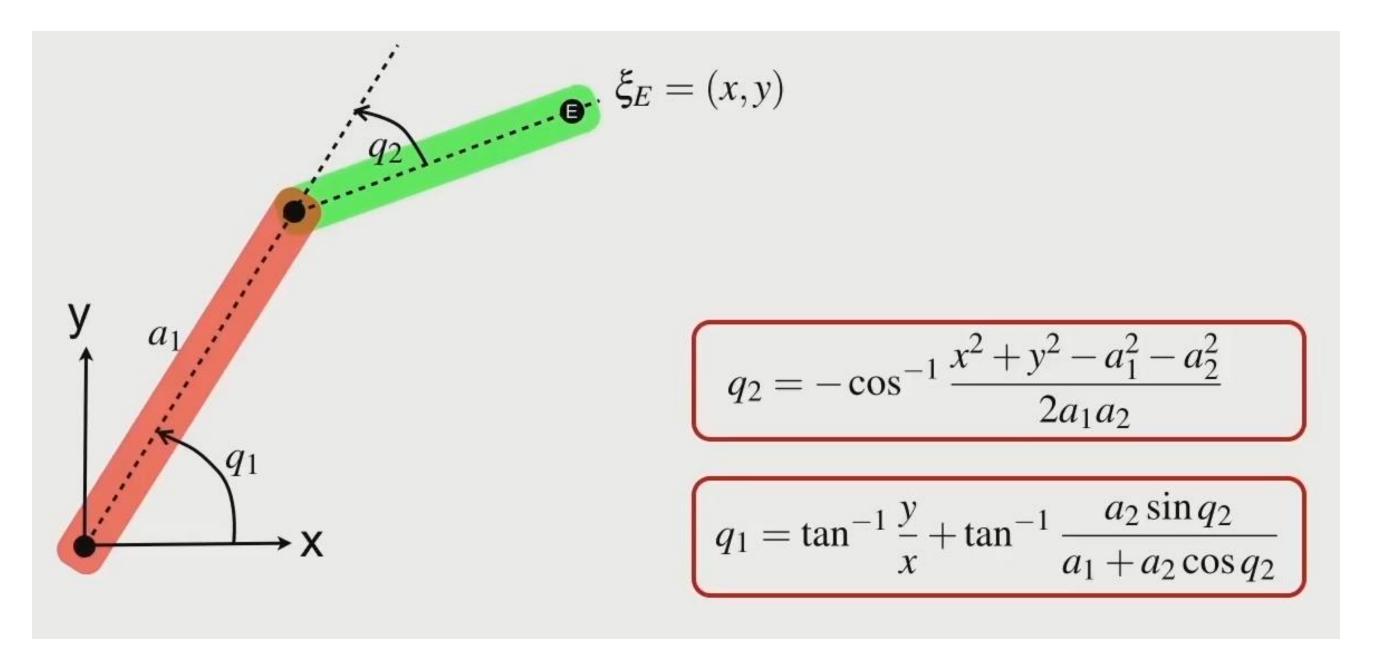
Analytical Inverse Kinematics of a 2 DOF Arm Case of negative angle q₂

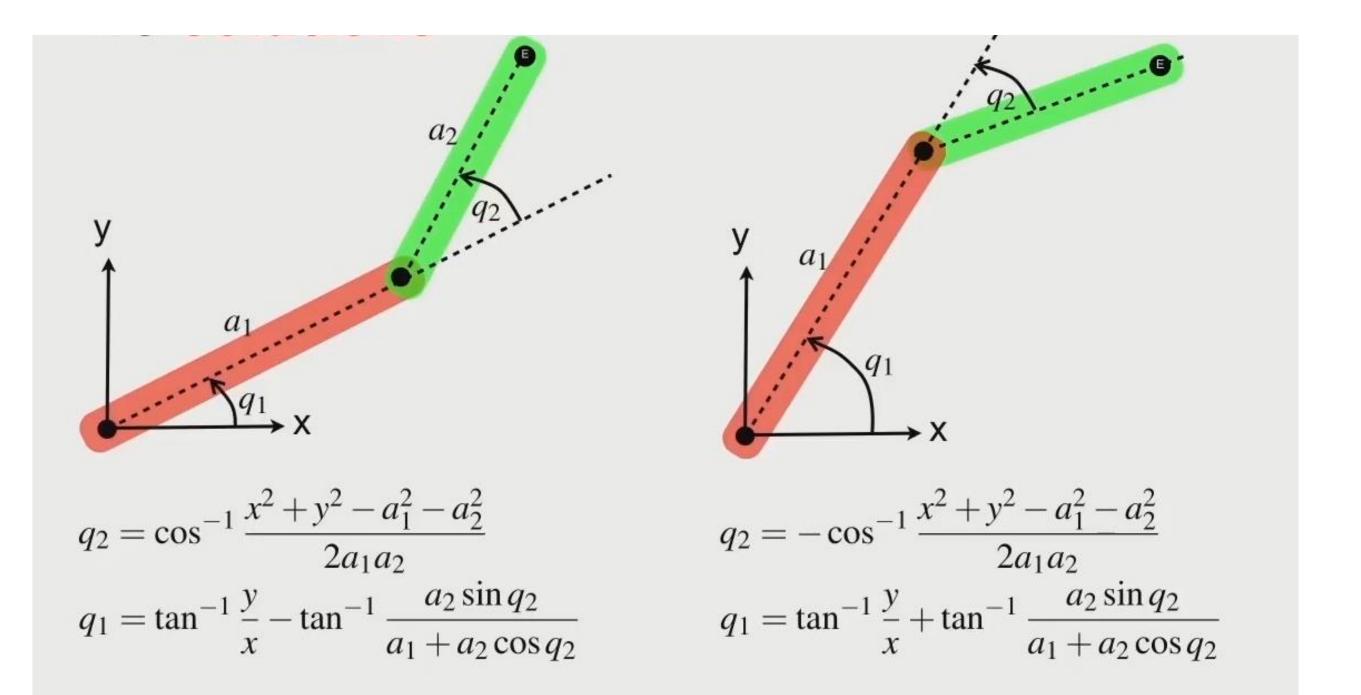


Analytical Inverse Kinematics of a 2 DOF Arm Solve for q₁



Analytical Inverse Kinematics of a 2 DOF Arm Solution for negative angle q₂

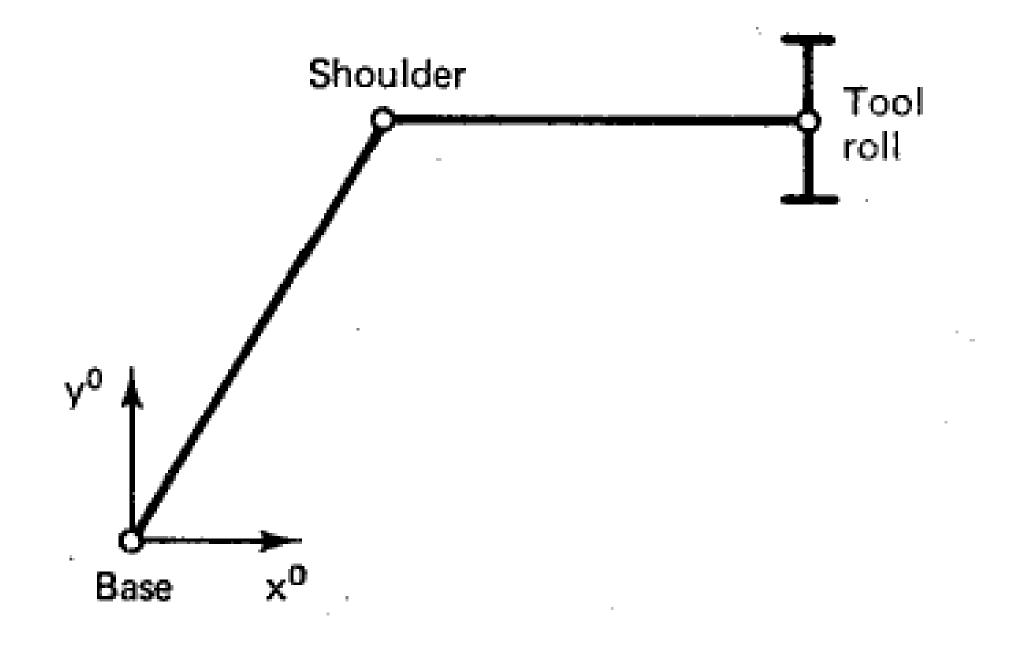




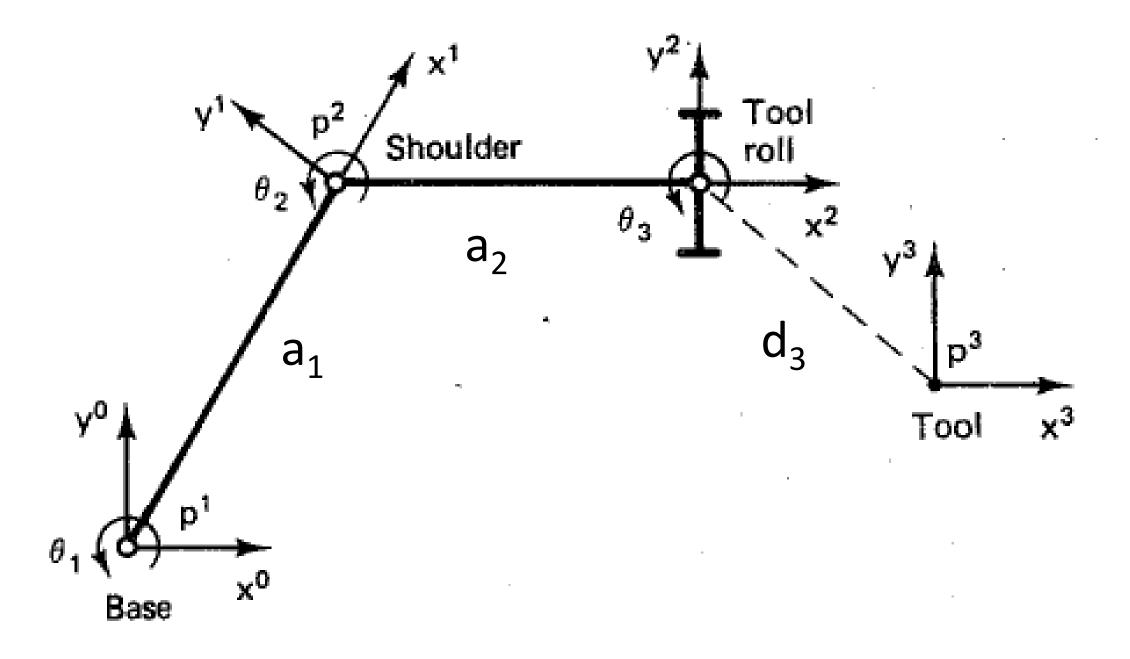
The other way: use geometry

It may be possible to exploit considerations related to the **geometrical structure** of the manipulator

Example 2: the 3 DOF planar arm



Apply DH algorithm:



Kinematic parameters from DH algorithm:

Axis	θ	d	а	α	Home
.1	q_1	0	a_1	0	$\pi/3$
2	q_2	0	a_2	0	$-\pi/3$
3	q_3	d_3	0	0	0

Articulated robot $\rightarrow q = \theta$

Proposition 2-6-1: Link-Coordinate Transformation. Let $\{L_0, L_1, \ldots, L_n\}$ be a set of link-coordinate frames assigned by Algorithm 2-5-1, and let $[q]^k$ and $[q]^{k-1}$ be the homogeneous coordinates of a point q with respect to frames L_k and L_{k-1} , respectively. Then, for $1 \le k \le n$, we have $[q]^{k-1} = T_{k-1}^k[q]^k$, where:

$$T_{k-1}^{k} = \begin{bmatrix} C\theta_{k} & -C\alpha_{k}S\theta_{k} & S\alpha_{k}S\theta_{k} & a_{k}C\theta_{k} \\ S\theta_{k} & C\alpha_{k}C\theta_{k} & -S\alpha_{k}C\theta_{k} & a_{k}S\theta_{k} \\ 0 & S\alpha_{k} & C\alpha_{k} & d_{k} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T_{\text{base}}^{\text{tool}} = T_0^1 T_1^2 T_2^5$

$$= I_0 I_1 I_2$$

$$= \begin{bmatrix} C_1 & -S_1 & 0 & a_1 C_1 \\ S_1 & C_1 & 0 & a_1 S_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_2 & -S_2 & 0 & a_2 C_2 \\ S_2 & C_2 & 0 & a_2 S_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_3 & -S_3 & 0 & 0 \\ S_3 & C_3 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} C_{12} & -S_{12} & 0 & a_1 C_1 + a_2 C_{12} \\ S_{12} & C_{12} & 0 & a_1 S_1 + a_2 S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_3 & -S_3 & 0 & 0 \\ S_3 & C_3 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} C_{123} & -S_{123} & 0 & a_1 C_1 + a_2 C_{12} \\ S_{123} & -S_{123} & 0 & a_1 S_1 + a_2 S_{12} \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Combine tool-tip position and tool orientation into a tool-configuration vector *w*

$$w(q) = \begin{bmatrix} a_1 C_1 + a_2 C_{12} \\ a_1 S_1 + a_2 S_{12} \\ d_3 \\ 0 \\ 0 \\ \exp(q_3/\pi) \end{bmatrix}$$

(tool-configuration)

Describing the orientation with a matrix is redundant

Definition 3-3-1: Tool-Configuration Vector. Let p and R denote the position and orientation of the tool frame relative to the base frame where q_n represents the tool roll angle. Then the *tool-configuration vector* is a vector w in \mathbb{R}^6 defined:

$$w \triangleq \begin{bmatrix} w^{1} \\ \dots \\ w^{2} \end{bmatrix} \triangleq \begin{bmatrix} p \\ \dots \\ [exp(q_{n}/\pi)]r^{3} \end{bmatrix}$$

 r^3 is the third column of R

Tool roll angle q_n :

$$q_n = \pi \ln (w_4^2 + w_5^2 + w_6^2)^{1/2}$$

$$q_{2} = \pm \arccos \frac{w_{1}^{2} + w_{2}^{2} - a_{1}^{2} - a_{2}^{2}}{2a_{1}a_{2}}$$

$$q_{1} = \operatorname{atan2} \left[(a_{1} - a_{2}C_{2})w_{1} + a_{2}S_{2}w_{2}, (a_{1} + a_{2}C_{2})w_{2} - a_{2}S_{2}w_{1} \right]$$

$$q_{3} = \pi \ln w_{6}$$

Is a generalization possible?

Yes! The PIEPER APPROACH (1968)

Many industrial manipulators have a kinematically decoupled structure, for which it is possible to decompose the problem into two (simpler) subproblems:

1) Inverse kinematics for the position

$$\mathbf{p} = (x, y, z) \rightarrow q_1, q_2, q_3$$

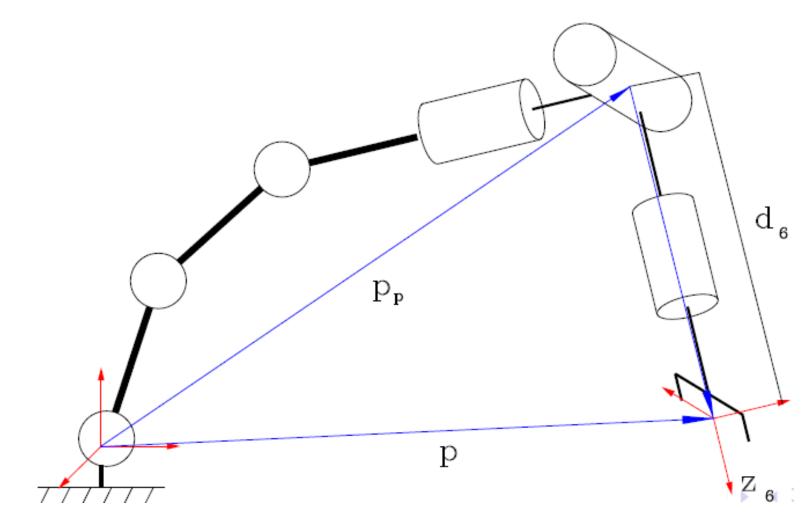
2) Inverse kinematics for the orientation

$$\mathbf{R} \rightarrow q_4, q_5, q_6.$$

The Pieper Approach

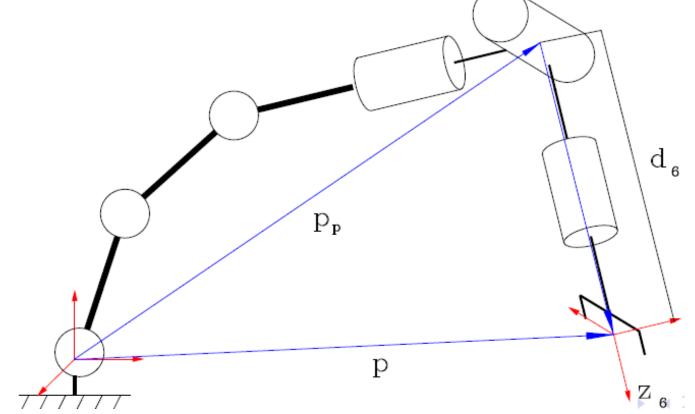
Given a 6 DOF manipulator, a sufficient condition to find a closed form solution for the IK problem is that the kinematic structure presents:

- 1. three consecutive rotational joints with axes intersecting in a single point, or
- 2. three consecutive rotational joints with parallel axes.



The Pieper Approach

- In many 6 DOF industrial manipulators, the first 3 DOF are usually devoted to position the wrist, that has 3 additional DOF give the correct orientation to the end-effector.
- In these cases, it is quite simple to decompose the IK problem in the two subproblems (position and orientation).



The Pieper Approach

In case of a manipulator with a spherical wrist, a natural choice is to decompose the problem in

A. IK for the point \mathbf{p}_p (center of the spherical wrist)

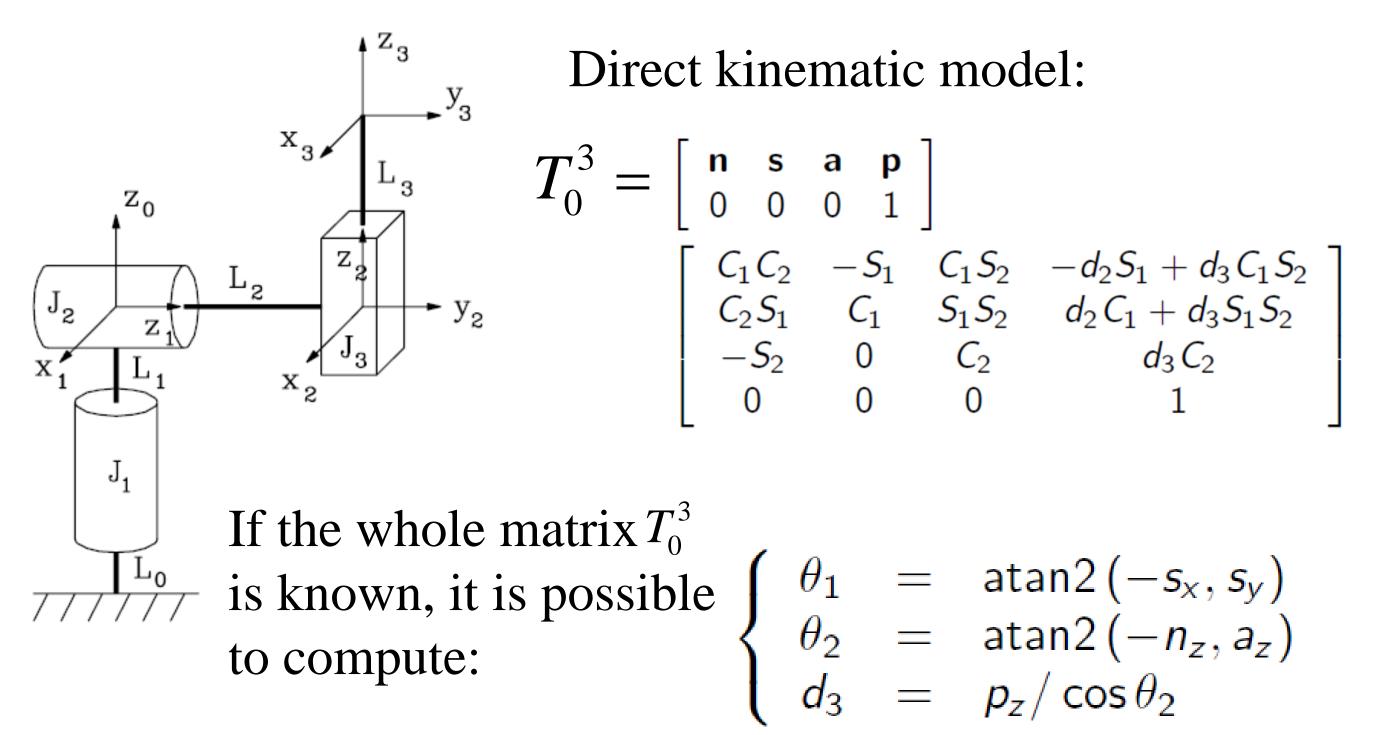
B. solution of the orientation IK problem Therefore:

1) The point \mathbf{p}_p is computed since T_0^6 is known (submatrices **R** and **p**): $\mathbf{p}_p = \mathbf{p} - d_6 \mathbf{a}$

 \mathbf{p}_p depends only on the joint variables (q_1, q_2, q_3) ;

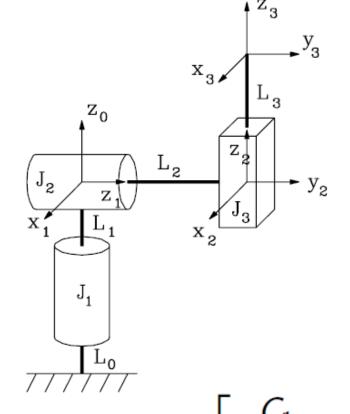
- 2) The IK problem is solved for (q_1, q_2, q_3) ;
- 3) The rotation matrix \mathbf{R}_0^3 related to the first three joints is computed;
- 4) The matrix $\mathbf{R}_{3}^{6} = \left(\mathbf{R}_{0}^{3}\right)^{T} \mathbf{R}$ is computed;
- 5) The IK problem for the rotational part is solved (Euler)

Solution of the spherical manipulator [1]

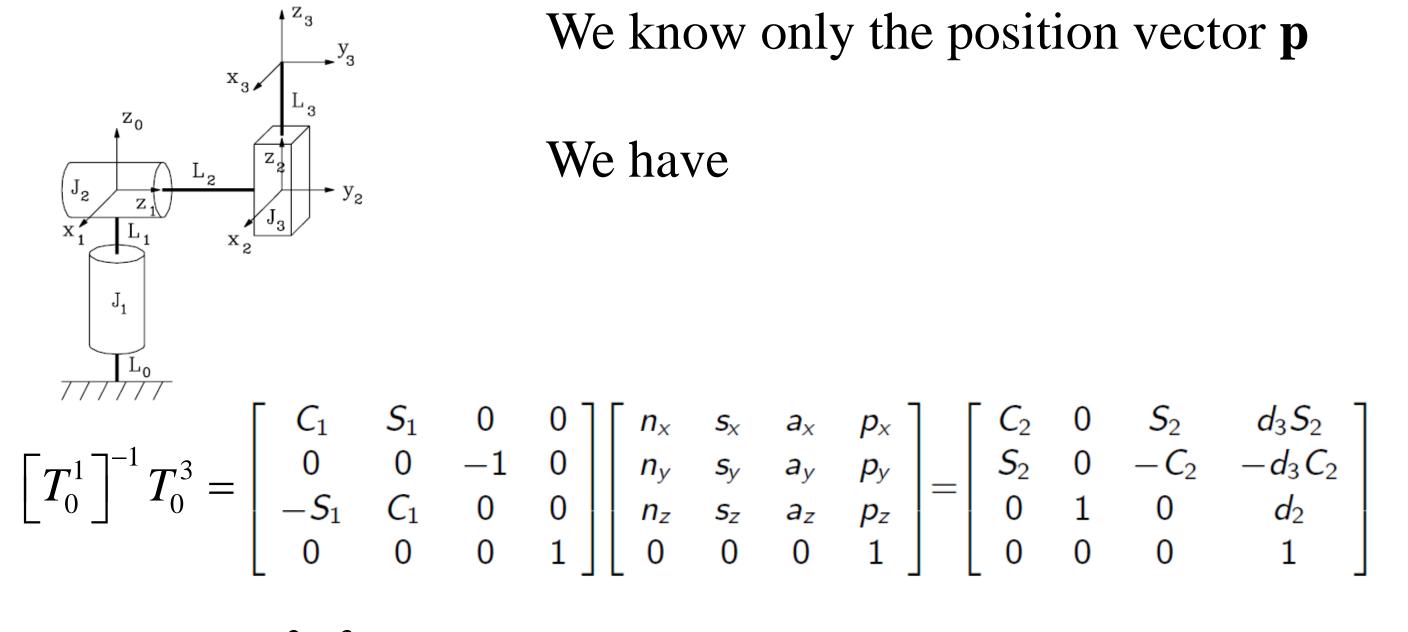


Unfortunately, according to the Pieper approach, only **p** is known!

Solution of the spherical manipulator [2]



We know only the position vector **p**



$$=T_1^2 T_2^3$$

Solution of the spherical manipulator [3]

By equating the position vectors

$${}^{1}\mathbf{p}_{p} = \begin{bmatrix} p_{x}C_{1} + p_{y}S_{1} \\ -p_{z} \\ -p_{x}S_{1} + p_{y}C_{1} \end{bmatrix} = \begin{bmatrix} d_{3}S_{2} \\ -d_{3}C_{2} \\ d_{2} \end{bmatrix}$$

The vector ${}^{1}\mathbf{p}_{p}$ depends only on θ_{2} and d_{3} . Let's define $a = \tan \theta_{1}/2$ Then

$$C_1 = \frac{1 - a^2}{1 + a^2} \qquad \qquad S_1 = \frac{2a}{1 + a^2}$$

By substitution in the last element of ${}^{1}p_{p}$

$$(d_2 + p_y)a^2 + 2p_xa + d_2 - p_y = 0 \implies a = rac{-p_x \pm \sqrt{p_x^2 + p_y^2 - d_2^2}}{d_2 + p_y}$$

Two possible solutions!

of course:
$$((p_x^2 + p_y^2 - d_2^2) > 0??)$$

Then

$$\theta_1 = 2 \operatorname{atan2}(-p_x \pm |\sqrt{p_x^2 + p_y^2 - d_2^2}, d_2 + p_y)$$

Solution of the spherical manipulator [4]

Since

$${}^{1}\mathbf{p}_{p} = \begin{bmatrix} p_{x}C_{1} + p_{y}S_{1} \\ -p_{z} \\ -p_{x}S_{1} + p_{y}C_{1} \end{bmatrix} = \begin{bmatrix} d_{3}S_{2} \\ -d_{3}C_{2} \\ d_{2} \end{bmatrix}$$

From the first two elements $\frac{p_x C_1 + p_y S_1}{-p_z} = \frac{d_3 S_2}{-d_3 C_2}$

from which $\theta_2 = \operatorname{atan2}(p_x C_1 + p_y S_1, p_z)$

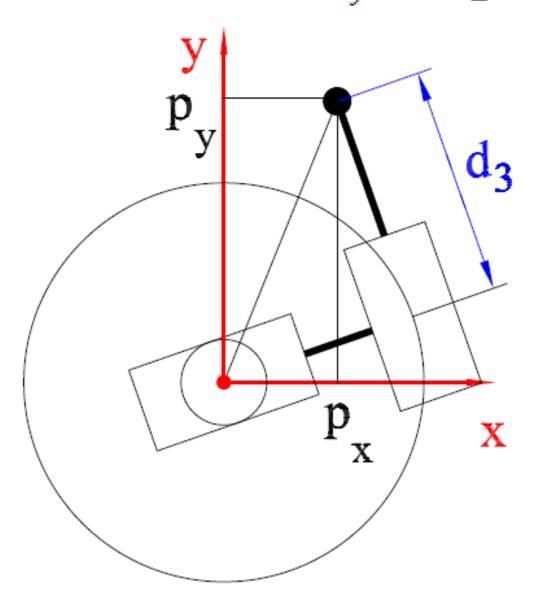
Finally, if the first two elements are squared and added together

$$d_3 = \sqrt{(p_x C_1 + p_y S_1)^2 + p_z^2}$$

Solution of the spherical manipulator [5]

Note that two possible solutions exist considering the position of the end-effector (wrist) only. If also the orientation is considered, the solution (if it exists) is unique.

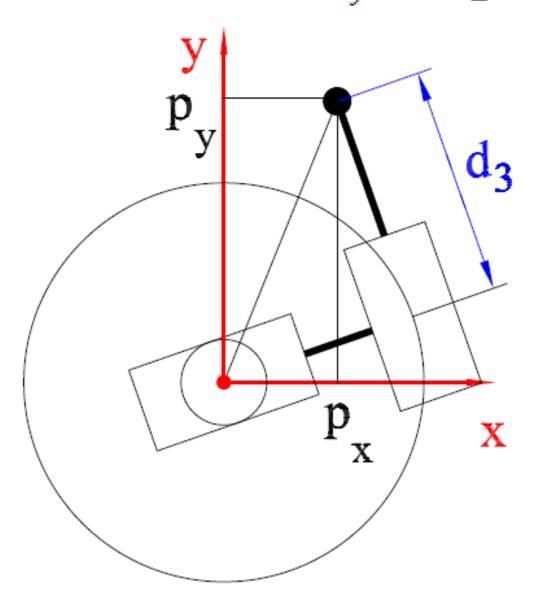
We have seen that the relation $(p_x^2 + p_y^2 - d_2^2) > 0$ must hold:



Solution of the spherical manipulator [5]

Note that two possible solutions exist considering the position of the end-effector (wrist) only. If also the orientation is considered, the solution (if it exists) is unique.

We have seen that the relation $(p_x^2 + p_y^2 - d_2^2) > 0$ must hold:



Solution of the spherical manipulator [6]

Numerical example: Given a spherical manipulator with $d_2 = 0.8$ m in the pose $\theta_1 = 20^\circ$, $\theta_2 = 30^\circ$, $d_3 = 0.5$ m

We have:

$T_0^3 =$	0.8138	-0.342	0.4698	-0.0387
	0.2962	0.9397	0.171	0.8373
	-0.5	0	0.866	0.433
	0	0	0	1

The solution based on the whole matrix T_0^3 is:

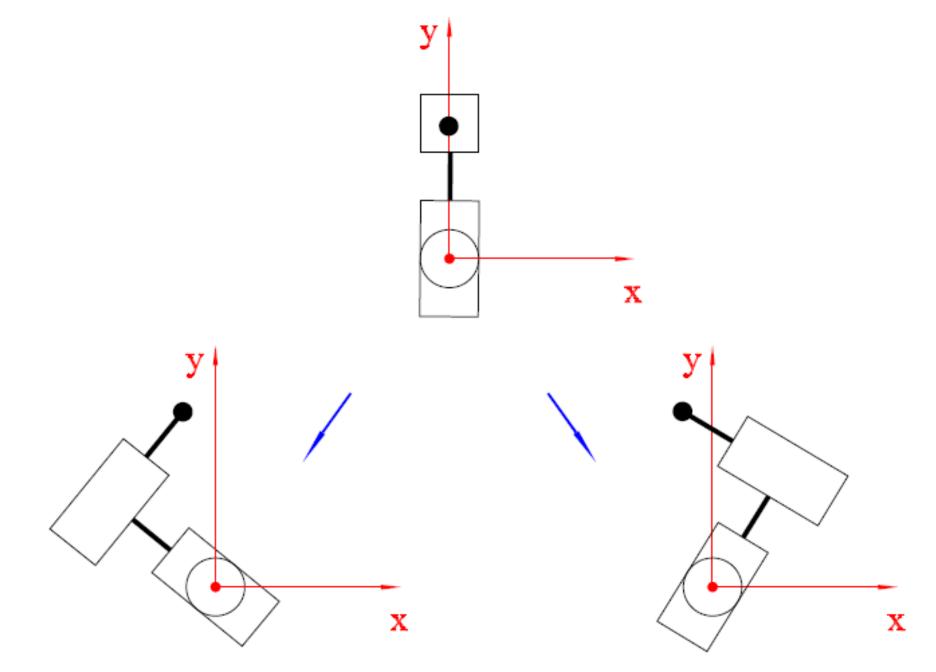
$$\theta_1 = 20^o, \ \theta_2 = 30^o, \ d_3 = 0.5.$$

The solution based on the vector **p** gives:

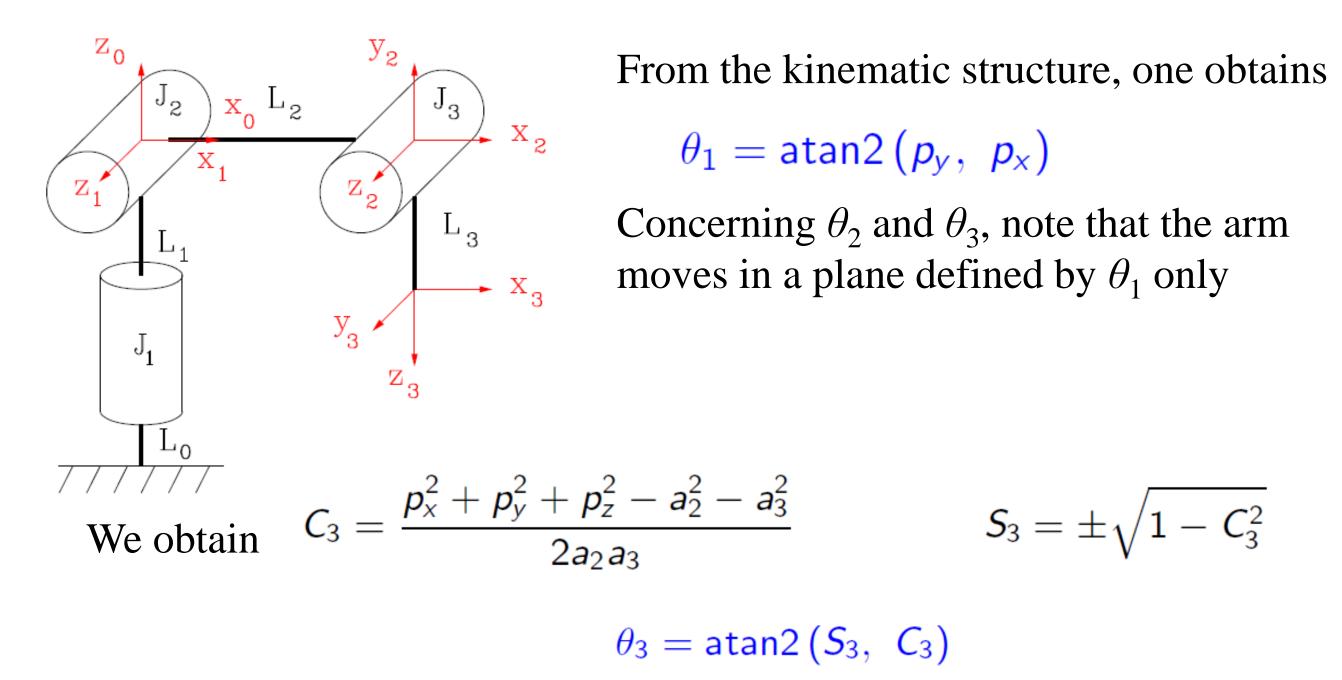
a) $\theta_1 = 20^\circ$, $\theta_2 = 30^\circ$, $d_3 = 0.5$ (with the "+" sign). b) $\theta_1 = -14.7^\circ$, $\theta_2 = -30^\circ$, $d_3 = 0.5$ (with the "-" sign).

Solution of the spherical manipulator [7]

a) $\theta_1 = 20^\circ$, $\theta_2 = 30^\circ$, $d_3 = 0.5$ (with the "+" sign). b) $\theta_1 = -14.7^\circ$, $\theta_2 = -30^\circ$, $d_3 = 0.5$ (with the "-" sign).



Solution of the 3 DOF anthropomorphic arm [1]



Moreover, by geometrical arguments, it is possible to state that:

 $\theta_2 = \operatorname{atan2}(p_z, \sqrt{p_x^2 + p_y^2}) - \operatorname{atan2}(a_3S_3, a_2 + a_3C_3)$

Solution of the 3 DOF anthropomorphic arm [2]

Note that also the following solution is valid

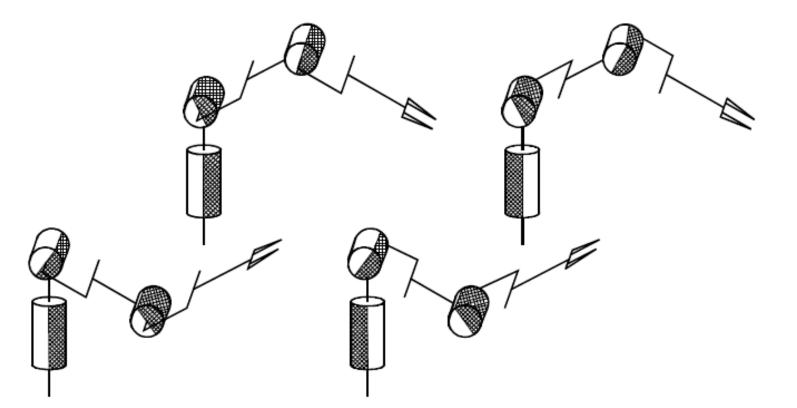
 $\theta_1 = \pi + \operatorname{atan2}(p_y, p_x),$

 $\theta_2' = \pi - \theta_2$

Then, FOUR possible solutions exist: shoulder right - elbow up; shoulder left - elbow up;

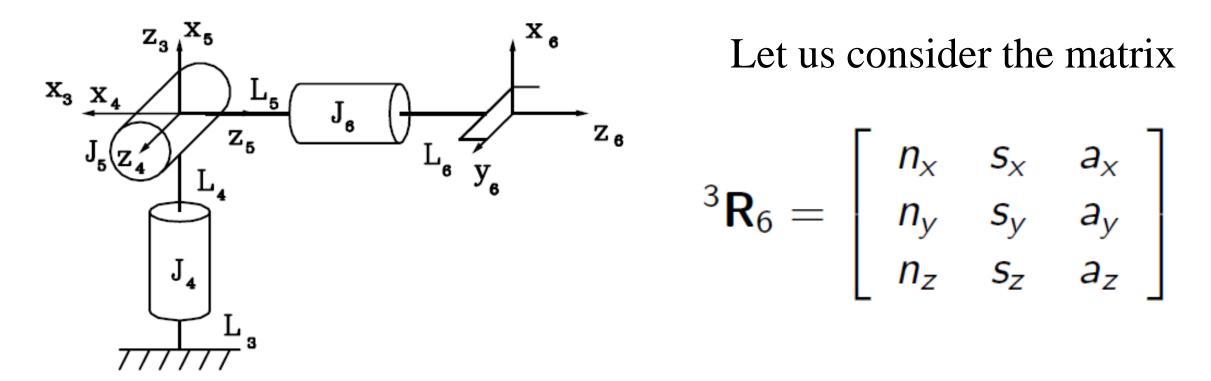
shoulder right - elbow down; shoulder left - elbow down;

Same position, but different orientation!



Note that the conditions $p_x \neq 0$, $p_y \neq 0$ must hold (o.w. singular configuration)₄₄

Solution of the spherical wrist [1]



From the direct kinematic equations one obtains

$${}^{3}\mathbf{R}_{6} = \begin{bmatrix} C_{4}C_{5}C_{6} - S_{4}S_{6} & -S_{4}C_{6} - C_{4}C_{5}S_{6} & C_{4}S_{5} \\ S_{4}C_{5}C_{6} + C_{4}S_{6} & C_{4}C_{6} - S_{4}C_{5}S_{6} & S_{4}S_{5} \\ -S_{5}C_{6} & S_{5}S_{6} & C_{5} \end{bmatrix}$$

Solution of the spherical wrist [2]

$${}^{3}\mathbf{R}_{6} = \begin{bmatrix} C_{4}C_{5}C_{6} - S_{4}S_{6} & -S_{4}C_{6} - C_{4}C_{5}S_{6} & C_{4}S_{5} \\ S_{4}C_{5}C_{6} + C_{4}S_{6} & C_{4}C_{6} - S_{4}C_{5}S_{6} & S_{4}S_{5} \\ -S_{5}C_{6} & S_{5}S_{6} & C_{5} \end{bmatrix}$$

The solution is then computed as (ZYZ Euler angles):

• $\theta_5 \in [0, \pi]$: $\theta_4 = \operatorname{atan2}(a_y, a_x)$ $\theta_5 = \operatorname{atan2}(\sqrt{a_x^2 + a_y^2}, a_z)$

$$\theta_6 = \operatorname{atan2}(s_z, -n_z)$$

• $\theta_5 \in [-\pi, 0]$:

$$\theta_4 = \operatorname{atan2}(-a_y, -a_x)$$

$$\theta_5 = \operatorname{atan2}(-\sqrt{a_x^2 + a_y^2}, a_z)$$

$$\theta_6 = \operatorname{atan2}(-s_z, n_z)$$

Solution of the spherical wrist [3]

Numerical example: Let us consider a spherical wrist in the pose

$$\theta_4 = 10^\circ \qquad \theta_5 = 20^\circ, \qquad \theta_6 = 30^\circ$$

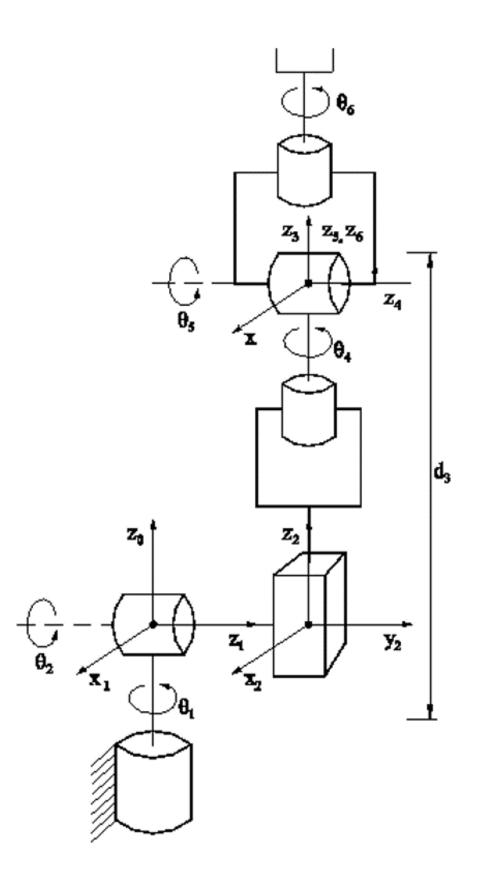
Then

$${}^{3}\mathbf{R}_{6} = \begin{bmatrix} 0.7146 & -0.6131 & 0.3368 \\ 0.6337 & 0.7713 & 0.0594 \\ -0.2962 & 0.1710 & 0.9397 \end{bmatrix}$$

Therefore, if

- $\theta_5 \in [0, \pi]$ $\theta_4 = 10^{\circ}$ $\theta_5 = 20^{\circ}, \quad \theta_6 = 30^{\circ}$
- $\theta_5 \in [-\pi, 0]$ $\theta_4 = -170^{\circ}$ $\theta_5 = -20^{\circ}, \quad \theta_6 = -30^{\circ}$
- Note that the PUMA has an anthropomorphic structure (4 solutions) and a spherical wrist (2 solutions):
- \Rightarrow 8 different configurations are possible!

STANFORD MANIPULATOR



Stanford manipulator IK [1]

We need the forward kinematics:

$$u_{x} = c_{1}[c_{2}(c_{6}c_{4}c_{5}-s_{4}s_{6})-s_{5}s_{2}c_{6}]-s_{1}[c_{6}c_{5}s_{4}+c_{4}s_{6}]$$

$$u_{y} = s_{1}[c_{2}(c_{6}c_{4}c_{5}-s_{4}s_{6})-s_{5}s_{2}c_{6}]+c_{1}[c_{6}c_{5}s_{4}+c_{4}s_{6}]$$

$$u_{z} = -s_{2}c_{6}c_{4}c_{5}-s_{5}c_{2}c_{6}+s_{6}s_{2}s_{4}$$

$$v_{x} = c_{1}[-c_{2}(s_{6}c_{4}c_{5}+s_{4}c_{6})+s_{5}s_{2}s_{6}]-s_{1}[-s_{6}c_{5}s_{4}+c_{4}c_{6}]$$

$$v_{y} = s_{1}[-c_{2}(s_{6}c_{4}c_{5}+s_{4}c_{6})+s_{5}s_{2}s_{6}]+c_{1}[-s_{6}c_{5}s_{4}+c_{4}c_{6}]$$

$$v_{z} = s_{2}s_{6}c_{4}c_{5}+s_{5}c_{2}s_{6}+c_{6}s_{2}s_{4}$$

$$w_{x} = c_{1}[c_{2}c_{4}s_{5}+c_{5}s_{2}]-s_{1}s_{4}s_{5}$$

$$w_{y} = s_{1}[c_{2}c_{4}s_{5}+c_{5}s_{2}]+c_{1}s_{4}s_{5}$$

$$w_{z} = -s_{2}c_{4}s_{5}+c_{5}c_{2}$$

$$p_{x} = c_{1}s_{2}d_{3}-s_{1}d_{2}$$

$$p_{y} = s_{1}s_{2}d_{3}+c_{1}d_{2}$$

$$p_{z} = d_{3}c_{2}$$

Stanford manipulator IK [2] 2015

$$\theta_1 = \operatorname{Tan}^{-1}\left(\frac{p_y}{p_x}\right) - \operatorname{Tan}^{-1}\left(\frac{d_2}{+\sqrt{r^2 - d_2^2}}\right) \qquad r = \sqrt{p_x^2 + p_y^2}$$

$$\theta_2 = \operatorname{Tan}^{-1} \left(\frac{c_1 p_x + s_1 p_y}{p_z} \right)$$

$$d_3 = (p_x c_1 + s_1 p_y) s_2 + p_z c_2$$

$$\theta_{4} = \operatorname{Tan}^{-1} \left[\frac{-s_{1}w_{x} + c_{1}w_{y}}{c_{2}(c_{1}w_{x} + s_{1}w_{y}) - s_{2}w_{z}} \right]$$

$$\theta_5 = \operatorname{Tan}^{-1} \left(\frac{c_4 [c_2 (c_1 w_x + s_1 w_y) - s_2 w_z] + s_4 (c_1 w_y - s_1 w_x)}{s_2 (c_1 w_x + s_1 w_y) + c_2 w_z} \right)$$

$$\theta_6 = \operatorname{Tan}^{-1} \left[\frac{-c_5 [c_4 (c_2 I - s_2 v_z) + s_4 n] + s_5 (s_2 I + c_2 v_z)}{-s_4 (c_2 I - s_2 v_z) + c_4 n} \right]$$

$$\mathbf{I} = \mathbf{c}_1 \mathbf{v}_x + \mathbf{s}_1 \mathbf{v}_y, \mathbf{n} = -\mathbf{s}_1 \mathbf{v}_x + \mathbf{c}_1 \mathbf{v}_y$$

The Inverse Kinematics Problem

Search "around" for your robot of interest!! (or part of robot)

The secret: Use well known robots!!

(it was mentioned in the introduction: "...for the most common kinematic structures, a scheme for obtaining the solution has been found")