Inverse Kinematics

Given a desired position (p) & orientation (R) of the
end-effector
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Find the joint variables which can bring the robot the

desired configuration .




The Inverse Kinematics Problem

e Direct Kinematics

x =1(q)
e Inverse Kinematics
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The Inverse Kinematics Problem

The problem is not simple!

A general approach for the solution of this problem does not
exist

On the other hand, for the most common Kinematic structures, a
scheme for obtaining the solution has been found.
Unfortunately...

... The solution Is not unigue

In general we may have:

» No solution (e.g. starting with a position x not in the workspace)
» A finite set of solutions (one or more)

» Infinite solutions

We seek for closed form solutions not based on numerical

techniques:

* The analytic solution is more efficient from the computational point of view

 |If the solutions are known analytically, it is possible to select one of them on the
basis of proper criteria.



The Inverse Kinematics Problem
Difficulties

Possible Problems of Inverse Kinematics

J Nonlinear (Revolute joints — inverse trigonometry)

J Discontinuities and singularities

J Can lose one or more DOFs in some configurations
J Multiple solutions for a single Cartesian pose

d Infinitely many solutions

1 Possibly no solutions

J No closed-form (analytical) solutions

J Not enough!! [Dynamics: in reality, we want to apply
forces and torques (while respecting physical constraints),
not just move arm!]




The Inverse Kinematics Problem
What have we swept under the rug?

= Sensing
» Shape, pose of target object, accessibility of surfaces

» Classification of material type from sensor data
» Freespace through which grasping action will occur

= Prior knowledge

» Estimate of mass, moments given material type
» Internal, articulated, even active degrees of freedom

= Uncertainty & compliance

» Tolerate noise Inherent in sensing and actuation
»Ensure that slight sensing, actuation errors won’t cause damage
»Handle soft fingers making contact over a finite area (not a point)

= Dynamics
» All of the above factors may be changing in real time
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n:6 n=6
To (ql) (qz)'”Tn—1=5 (qn:G)
equivalent to 12 equations in the 6 unknowns g;, 1=1, ..., 6.
Example: spherical manipulator (only 3 DOF)
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Algebraic Approach

Fora 6 DOF manipulator the kinematic model Is described by the equation
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Since both the numerical values and the structure of the intermediate

matrices are known, then by suitable pre- / post-multiplications it is possible

too

otain equations

To(0)Ty ()

TI+2

1+1

i 1(q )]_1Ton :Tii+1(qi+1)

might be possible to obtain a solution to the problem.
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The other way: use geometry

It may be possible to exploit considerations
related to the geometrical structure of the
manipulator

Example 1. the 2 DOF arm



Analytical Inverse Kinematics of a 2 DOF Arm
Geometric approach
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Analytical Inverse Kinematics of a 2 DOF Arm

éE = (x7)’)

P2 =24y
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Analytical Inverse Kinematics of a 2 DOF Arm

r2:x2+y2
rz—a2+a2—2a a» COS O
— s 162
a%—i—a%—rz
COS Ol =
2a1as
2 2 2 2
2a1a»
Q2 =7T— U
COSgy = —COS X
x2+y2—a%—a%
COSgr =

2a1a»



Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm

y ‘SE — (xay)
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Analytical Inverse Kinematics of a 2 DOF Arm

&E — (-xay)
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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2 2 2 2
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Not independent!



Analytical Inverse Kinematics of a 2 DOF Arm




Analytical Inverse Kinematics of a 2 DOF Arm
Solve for g,

y=tan~'2
X
y q1 =7+
q1 = tan ! . +tan ! a25ing,
X a) +azcosq»

> X



Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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The other way: use geometry

It may be possible to exploit considerations
related to the geometrical structure of the
manipulator

Example 2. the 3 DOF planar arm



Inverse Kinematics of a 3 DOF
Planar Articulated Robot

I
Shoulder Tool

roll

'Bam X



Inverse Kinematics of a 3 DOF
Planar Articulated Robot

Apply DH algorithm:




Inverse Kinematics of a 3 DOF
Planar Articulated Robot

Kinematic parameters from DH algorithm:

Axis 7, d a o Home
1 g, 0 d 0 /3
2 {2 0 ) 0 —*n',/??
3 3 dj 0 0 0

Articulated robot — g =6



Inverse Kinematics of a 3 DOF
Planar Articulated Robot

Proposition 2-6-1: Link-Coordinate Transformation. Let {Lo,, L, . . . ,
L.} be a set of link-coordinate frames assigned by Algorithm 2-5-1, and let [g]* and
[g]*~" be the homogeneous coordinates of a point g with respect to frames L, and
L, respectively. Then, for 1 < k < n, we have [¢g]*"' = Ti-,[q]", where:

COk —Cak SOk Sak SOk di COk
S6, Cay COk —~Sa; CO& i S6,
0 Say Cay di
0 0 0 |

Tl/f—-l —



Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot

Combine tool-tip position and tool orientation into a
tool-configuration vector w

a,C, + a,Cy,
a|S| + ap_S]z



(tool-configuration)

Describing the orientation with a matrix is redundant

Definition 3-3-1: Tml-Cnnﬁgurﬁtiun Vector. Let p and R denote the posi-
tion and orientation of the tool frame relative to the base frame where ¢, represents
the tool roll angle. Then the tool-configuration vector is a vector w in R°® defined:

" lwe| | fexplan/mi

r3 is the third column of R
Tool roll angle g,

g, = mlIn (Wi + wi + wj)"/?



Inverse Kinematics of a 3 DOF
Planar Articulated Robot

2 2 a2 a2
Wit wp —ay - aj

Q, = *arccos -

2a, a,

¢, = atan2 [{a, — a,C,lw, + 3,5, w., (a; + a8,Colw, — 2,5, w, ]

Gz =7 Inwg



Is a generalization possible?

Yes! The PIEPER APPROACH s

Many industrial manipulators have a kinematically
decoupled structure, for which it is possible to
decompose the problem into two (simpler) sub-
problems:

1) Inverse kinematics for the position

P=(X,¥,2) — 0y, 0y, 03
2) Inverse Kinematics for the orientation

R — 04, 05, Je-



The Pileper Approach

Given a 6 DOF manipulator, a sufficient condition to
find a closed form solution for the IK problem is that the
Kinematic structure presents:

1. three consecutive rotational joints with axes
Intersecting In a single point, or
2. three consecutive rotational joints with parallel axes.




The Pieper Approach

In many 6 DOF industrial manipulators, the first 3 DOF
are usually devoted to position the wrist, that has 3
additional DOF give the correct orientation to the

end-effector.

In these cases, It Is quite simple to decompose the IK
problem In the two subproblems (posmon and
orientation). -




The Pieper Approach

In case of a manipulator with a spherical wrist, a natural
choice Is to decompose the problem In

A. IK for the point p, (center of the spherical wrist)
B. solution of the orientation IK problem

Therefore:
1) The point p, is computed since Ty’ is known
(submatrices R and p): p, =p — dga
p, depends only on the joint variables (0, , d,, 3 );
2) The IK problem is solved for (0,,0,,0;);

3) The rotation matrixR; related to the first three joints
IS computed;

4) The matrix R; =(R§)T R Is computed,;
5) The IK problem for the rotational part is solved (Euler)



Solution of the spherical manipulator |1]

Direct kinematic model:

3 - n s a P
TO o {0 0 0 1}
LE I C1C2 —51
C251 Cl
-5 0
0 0
17 If the whole matrix T,
L I " - - —_
2 is known, it is possible gl —
to compute: =
d3 —

CiSy —dhS +dz S, ]
5152 dz Cl -+ d35152

Co d3 (o

0 1

atan2 (—syx. Sy )
atan2 (—n,, a, )

p,/ cos b

Unfortunately, according to the Pieper approach, only p Is known!



Solution of the spherical manipulator |2]

e We know only the position vector p
Z KS/ "3
@E L, |2 . We have
X/ Ll1 X’i/
Lo
/ST _ -
C1 51 0 0 N, Sy dy Px Cg 0 Sg ngz
|:-|-1:|_ -|-3 . 0 0 —1 0 ny Sy dy Py | Sg 0 —Cg —dgCg
0 0 -S G 0 0 n. s, a. p-| | 0 1 O d>
0 0 0 1 o 0 0 1 0 O 0 1




Solution of the spherical manipulator |3]
By equating the position vectors

pxC1+ pySy d35;
lpp — — Pz — —dz (&
PSPy G| A

The vector 'p, depends only on 8, and d,. Let’s define a = tan 6, /2
Then

1 — a° oF
C = S, —
: 1 + g2 1 1 L g2
By substitution in the last element of 'p,
_ . 2 1 L2 2
(o + py)a’ + 2pxa+do — p, =0 . L _ZPEVpEtp — b
d> + py

Two possible solutions!
of course: ((ps + p; — d3) > 077)
Then

f1 = 2 atan2 (—py 4 \/pf, + pg — ds. dr+ py)



Solution of the spherical manipulator [4]
Since

- G+ pS - d3S,
1pp — — Pz — —d3 ()
PSSt py G - d

From the first two elements pxC1 + Py _ d35;
— Pz —d3 ()

fromwhich 6o = atan2 (p.Cy + pyS1. p)

Finally, if the first two elements are squared and added together

d3 = \/(px C1 + pyS1)® + p3




Solution of the spherical manipulator |5]

Note that two possible solutions exist considering the position of
the end-effector (wrist) only. If also the orientation Is considered,
the solution (if It exists) Is unique.

We have seen that the relation (p? + pﬁ — d#) > 0 must hold:




Solution of the spherical manipulator |5]

Note that two possible solutions exist considering the position of
the end-effector (wrist) only. If also the orientation Is considered,
the solution (if It exists) Is unique.

We have seen that the relation (p? + pﬁ — d#) > 0 must hold:




Solution of the spherical manipulator |6]

Numerical example: Given a spherical manipulator with d, = 0.8 m

In the pose
91 — 20ﬂ. 92 — 300. d3 — 0.bm

\WWe have:
[ 0.8138 —0.342 0.4698 | —0.0387 ]
3 0.2062 0.9397 0.171 | 0.8373
To — —0.5 0 0.866 0.433
0 0 0 1 |

The solution based on the whole matrix TO3 IS:
f1 = 20°, 0, = 30°, d3 = 0.5.
The solution based on the vector p gives:
a) 6 =20°, 6, =30° d; =0.5 (with the “4" sign).
b) 81 = —14.7°, 6, = —30°, d3 =0.5 (with the “-" sign).




Solution of the spherical manipulator |7]

a) 6 =20°, 6, =30° d; =0.5 (with the “4" sign).
b) 81 = —14.7°, 6, = —30°, d3 =0.5 (with the “-" sign).
v
@
|k_j *




Solution of the 3 DOF anthropomorphic arm |[1]

From the kinematic structure, one obtains

2 6)1 — atan? (py-y Px)

Concerning 6, and 6,, note that the arm
X moves In a plane defined by 6, only

-
| Co — p;‘; + pj% T P.g - 3% . a% 53 =+ \/ 1-G
We obtain 3 2a5 a3 T o

3 — atan2 (53, C3)

Moreover, by geometrical arguments, it is possible to state that:

0> = atan2 (p;, \/pf + py ) — atan2(a,S,, a,+ a,C,)




Solution of the 3 DOF anthropomorphic arm |2]

Note that also the following solution is valid

#1 = m+ atan2 (p,, px). 0, =7 — 0,
Then, FOUR possible solutions exist:
shoulder right - elbow up; shoulder right - elbow down,;
shoulder left - eloow up; shoulder left - elbow down;

Same position, but different orientation!

Note that the conditions p, # 0, p, # 0 must hold (o.w. singular configuration)



Solution of the spherical wrist [1]

X

X . -

3| " e et us consider the matrix
X3 X, /ﬂ Lﬁf J O /-
/z &\ Zg B N
Js\z L L, y ne Sx dx
6

=) Re=| n, s, a

J‘I= n; Sz dz
T LE

[ /77777

From the direct kinematic equations one obtains

GG Ce — SuSe —SuCe — GiGsSe GuSs
Re = | S4CsCs + CaSs CaCs — SaCsSs S4Ss
—55 ij 5.5 56 C5




Solution of the spherical wrist [2]

GG Cs — S1Ss —S1Cs — CiGCsSs  (C44Ss
Re = | S4CsCs+ CuSs  CaCs — S4CsSs SuSs
—55 ij 55 56 C5

The solution is then computed as (ZYZ Euler angles):

@ 05 € [0, 7]:
s = atan2(ay,, ax)
05 = atan2(\/a§ + ay, az)
e = atan2(s;, —nz)
@ 05 € [—m,0l:
#s = atan2(—a,, —ax)
fs = atan2(—\/a§ +ay, az)

e = atan2(—s;, n;)



Solution of the spherical wrist |3]

Numerical example: Let us consider a spherical wrist in the pose
0, = 10° 05 = 20°, B¢ = 30°

Then ] )
0.7146 —0.6131 0.3368

R = | 0.6337  0.7713  0.0594
| —0.2062 0.1710 0.9397

Therefore, If
e 05 € [0, 7] 0, = 10° 05 = 20°, Hg = 30°

o 05 e [—m. 0] 0y = —170° @5 = —20°, @ = —30°

* Note that the PUMA has an anthropomorphic structure (4 solutions)
and a spherical wrist (2 solutions):

= 8 different configurations are possible!



STANFORD MANIPULATOR
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Stanford manipulator IK [1]

We need the forward kinematics:

cile (cgeycs5-5 5g5)858,05)8;[cgCs58,7C,54]

s;le (cgeycs-5,845)s58,c6]FC [eges8,FC,84]
-E1EEE4EE-EEE:EE_EEE:E4

¢il-c,(sgc cs+s cg)Fsss,s4]s,[-sgcs55,7c, 0]

sil-c (sgcycs+s, cg)Fsss,85]+c,[-s4058,+C,04]
E1EEE4EE_EEE:EE_EEE:E4

c,[lc,c,85+Ccs8,]-8,8,58;

-

s.[e,cys5+Css, ] e 8,8,
"5, 0,4857C50C,
c,5,d5-5,d,
5,8,d;+c,d,

dsc,



Stanford manipulator IK [2] s

" i

I I a, ' 2 2
6, = Tan™} = |-Tan™ — | r=\p. +p,
t.__px __Iu' l+ — j""i _afz" r,ll
(e1p, +51p, )
6, = Tan™'|— =it
) |'. pz '
d3 = (’PIEI‘FSIPF)S:‘FPIC:
— 5w, T oW,
&, = Tan™ :
c,(ew, +5,w, ) —5,w,

B ( cile,(epw, +sw ) —s,w_ | +5,(cow, — .slwx)HI
‘9;: = Tan I - . l
\ s,(cyw, +5,w, ) +cyw, |
6 = Tan" —c:[e, (e, ] —5.v. )+ s,m) +5:(5,] +¢c,v.)
—5,(c ] —5,v. ) +eyn
[ = ¢, v ts,v,.n=-s,v *c,Vv,



The Inverse Kinematics Problem

Search “around” for your robot of interest!!
(or part of robot)

The secret: Use well known robots!!

(It was mentioned In the Introduction: «...for the most common
kinematic structures, a scheme for obtaining the solution has been found”)





