
Inverse Kinematics

Given a desired position (p) & orientation (R) of the 
end-effector 

Find the joint variables which can bring the robot the 
desired configuration
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The Inverse Kinematics Problem

Direct Kinematics

x = f(q)

 Inverse Kinematics

q = f −1(x)
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The Inverse Kinematics Problem
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• The problem is not simple!

• A general approach for the solution of this problem does not 

exist

• On the other hand, for the most common kinematic structures, a 

scheme for obtaining the solution has been found. 

Unfortunately…

• …The solution is not unique

• In general we may have:
 No solution (e.g. starting with a position x not in the workspace)

 A finite set of solutions (one or more)

 Infinite solutions

• We seek for closed form solutions not based on numerical 

techniques:
• The analytic solution is more efficient from the computational point of view

• If the solutions are known analytically, it is possible to select one of them on the 

basis of proper criteria.



The Inverse Kinematics Problem
Difficulties

Possible Problems of Inverse Kinematics

 Nonlinear (Revolute joints → inverse trigonometry)

 Discontinuities and singularities

 Can lose one or more DOFs in some configurations

 Multiple solutions for a single Cartesian pose

 Infinitely many solutions

 Possibly no solutions

 No closed-form (analytical) solutions

 Not enough!! [Dynamics: in reality, we want to apply 

forces and torques (while respecting physical constraints), 

not just move arm!]
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The Inverse Kinematics Problem
What have we swept under the rug?

 Sensing
Shape, pose of target object, accessibility of surfaces

Classification of material type from sensor data

Freespace through which grasping action will occur

 Prior knowledge
Estimate of mass, moments given material type

Internal, articulated, even active degrees of freedom

Uncertainty & compliance
Tolerate noise inherent in sensing and actuation

Ensure that slight sensing, actuation errors won’t cause damage

Handle soft fingers making contact over a finite area (not a point)

Dynamics
All of the above factors may be changing in real time
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Algebraic Approach
For a 6 DOF manipulator, the kinematic model is described by the equation

equivalent to 12 equations in the 6 unknowns qi , i = 1, . . . , 6.

Example: spherical manipulator (only 3 DOF)

Since both the numerical values and the structure of the intermediate  
matrices are known, then by suitable pre- / post-multiplications it is possible 
to obtain equations

There will be 12 new equations for each i, covering the range 1 to n.

Then, by selecting the most simple equations among all those obtained, it 
might be possible to obtain a solution to the problem. 8
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The other way: use geometry

It may be possible to exploit considerations 
related to the geometrical structure of the 
manipulator

Example 1:  the 2 DOF arm
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Analytical Inverse Kinematics of a 2 DOF Arm
Geometric approach
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
Partial results
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Analytical Inverse Kinematics of a 2 DOF Arm
Solution for positive angle q2
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Not independent!
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Analytical Inverse Kinematics of a 2 DOF Arm
Case of negative angle q2
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Analytical Inverse Kinematics of a 2 DOF Arm
Solve for q1



Analytical Inverse Kinematics of a 2 DOF Arm
Solution for negative angle q2
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Analytical Inverse Kinematics of a 2 DOF Arm
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The other way: use geometry

It may be possible to exploit considerations 
related to the geometrical structure of the 
manipulator

Example 2:  the 3 DOF planar arm
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Apply DH algorithm:

a1 d3

a2



Inverse Kinematics of a 3 DOF
Planar Articulated Robot

25

Kinematic parameters from DH algorithm:

Articulated robot → q = θ



Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Combine tool-tip position and tool orientation into a 

tool-configuration vector w



(tool-configuration)
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Tool roll angle qn:

Describing the orientation with a matrix is redundant

r3 is the third column of R



Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Is a generalization possible?

Yes! The PIEPER APPROACH (1968)

Many industrial manipulators have a kinematically
decoupled structure, for which it is possible to 
decompose the problem into two (simpler) sub-
problems:

1) Inverse kinematics for the position

p = (x, y, z) → q1, q2, q3

2) Inverse kinematics for the orientation 

R → q4, q5, q6.
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The Pieper Approach
Given a 6 DOF manipulator, a sufficient condition to 
find a closed form solution for the IK problem is that the 
kinematic structure presents:

1. three consecutive rotational joints with axes 
intersecting in a single point, or

2. three consecutive rotational joints with parallel axes.
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The Pieper Approach

In many 6 DOF industrial manipulators, the first 3 DOF
are usually devoted to position the wrist, that has 3 
additional DOF give the correct orientation to the

end-effector.

In these cases, it is quite simple to decompose the IK
problem in the two subproblems (position and 
orientation).

33



The Pieper Approach

In case of a manipulator with a spherical wrist, a natural 
choice is to decompose the problem in

A.  IK for the point pp (center of the spherical wrist)

B.  solution of the orientation IK problem

Therefore:

1) The point pp is computed since      is known 
(submatrices R and p):   pp = p − d6a

pp depends only on the joint variables                    ;

2) The IK problem is solved for                 ;

3) The rotation matrix      related to the first three joints 
is computed;

4) The matrix is computed;

5) The IK problem for the rotational part is solved (Euler)34
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Solution of the spherical manipulator [1]
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Direct kinematic model:

If the whole matrix   

is known, it is possible 

to compute:
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Unfortunately, according to the Pieper approach, only p is known!



Solution of the spherical manipulator [2]
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We know only the position vector p

We have
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Solution of the spherical manipulator [3]
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By equating the position vectors

The vector     depends only on θ2 and d3. Let’s define

Then

By substitution in the last element of        

Two possible solutions! 

of course: 

Then



Solution of the spherical manipulator [4]
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Since

From the first two elements

from which       

Finally, if the first two elements are squared and added together



Solution of the spherical manipulator [5]
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Note that two possible solutions exist considering the position of 

the end-effector (wrist) only. If also the orientation is considered, 

the solution (if it exists) is unique.

We have seen that the relation                                       must hold:



Solution of the spherical manipulator [5]
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Note that two possible solutions exist considering the position of 

the end-effector (wrist) only. If also the orientation is considered, 

the solution (if it exists) is unique.

We have seen that the relation                                       must hold:



Solution of the spherical manipulator [6]
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Numerical example: Given a spherical manipulator with d2 = 0.8 m 

in the pose

We have:

The solution based on the whole matrix      is:

The solution based on the vector p gives:
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Solution of the spherical manipulator [7]
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Solution of the 3 DOF anthropomorphic arm [1]
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From the kinematic structure, one obtains

Concerning θ2 and θ3, note that the arm

moves in a plane defined by θ1 only

We obtain

Moreover, by geometrical arguments, it is possible to state that:



Solution of the 3 DOF anthropomorphic arm [2]
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Note that also the following solution is valid

Then, FOUR possible solutions exist:

shoulder right - elbow up; shoulder right - elbow down;

shoulder left - elbow up; shoulder left - elbow down;

Same position, but different orientation!

Note that the conditions px ≠ 0, py ≠ 0 must hold (o.w. singular configuration)



Solution of the spherical wrist [1]
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Let us consider the matrix

From the direct kinematic equations one obtains



Solution of the spherical wrist [2]

46

The solution is then computed as (ZYZ Euler angles):



Solution of the spherical wrist [3]
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Numerical example: Let us consider a spherical wrist in the pose

Then

Therefore, if

• Note that the PUMA has an anthropomorphic structure (4 solutions) 

and a spherical wrist (2 solutions):

⇒ 8 different configurations are possible!



STANFORD MANIPULATOR
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Stanford manipulator IK [1]
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We need the forward kinematics:



Stanford manipulator IK [2]
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The Inverse Kinematics Problem
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Search “around” for your robot of interest!!

(or part of robot)

The secret:  Use well known robots!! 
(it was mentioned in the introduction: “…for the most common 

kinematic structures, a scheme for obtaining the solution has been found”)




