
Inverse Kinematics

Given a desired position (p) & orientation (R) of the 
end-effector 

Find the joint variables which can bring the robot the 
desired configuration
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The Inverse Kinematics Problem

Direct Kinematics

x = f(q)

 Inverse Kinematics

q = f −1(x)
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The Inverse Kinematics Problem
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• The problem is not simple!

• A general approach for the solution of this problem does not 

exist

• On the other hand, for the most common kinematic structures, a 

scheme for obtaining the solution has been found. 

Unfortunately…

• …The solution is not unique

• In general we may have:
 No solution (e.g. starting with a position x not in the workspace)

 A finite set of solutions (one or more)

 Infinite solutions

• We seek for closed form solutions not based on numerical 

techniques:
• The analytic solution is more efficient from the computational point of view

• If the solutions are known analytically, it is possible to select one of them on the 

basis of proper criteria.



The Inverse Kinematics Problem
Difficulties

Possible Problems of Inverse Kinematics

 Nonlinear (Revolute joints → inverse trigonometry)

 Discontinuities and singularities

 Can lose one or more DOFs in some configurations

 Multiple solutions for a single Cartesian pose

 Infinitely many solutions

 Possibly no solutions

 No closed-form (analytical) solutions

 Not enough!! [Dynamics: in reality, we want to apply 

forces and torques (while respecting physical constraints), 

not just move arm!]
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The Inverse Kinematics Problem
What have we swept under the rug?

 Sensing
Shape, pose of target object, accessibility of surfaces

Classification of material type from sensor data

Freespace through which grasping action will occur

 Prior knowledge
Estimate of mass, moments given material type

Internal, articulated, even active degrees of freedom

Uncertainty & compliance
Tolerate noise inherent in sensing and actuation

Ensure that slight sensing, actuation errors won’t cause damage

Handle soft fingers making contact over a finite area (not a point)

Dynamics
All of the above factors may be changing in real time
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Algebraic Approach
For a 6 DOF manipulator, the kinematic model is described by the equation

equivalent to 12 equations in the 6 unknowns qi , i = 1, . . . , 6.

Example: spherical manipulator (only 3 DOF)

Since both the numerical values and the structure of the intermediate  
matrices are known, then by suitable pre- / post-multiplications it is possible 
to obtain equations

There will be 12 new equations for each i, covering the range 1 to n.

Then, by selecting the most simple equations among all those obtained, it 
might be possible to obtain a solution to the problem. 8
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The other way: use geometry

It may be possible to exploit considerations 
related to the geometrical structure of the 
manipulator

Example 1:  the 2 DOF arm
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Analytical Inverse Kinematics of a 2 DOF Arm
Geometric approach
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
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Analytical Inverse Kinematics of a 2 DOF Arm
Partial results
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Analytical Inverse Kinematics of a 2 DOF Arm
Solution for positive angle q2
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Not independent!
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Analytical Inverse Kinematics of a 2 DOF Arm
Case of negative angle q2
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Analytical Inverse Kinematics of a 2 DOF Arm
Solve for q1



Analytical Inverse Kinematics of a 2 DOF Arm
Solution for negative angle q2
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Analytical Inverse Kinematics of a 2 DOF Arm
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The other way: use geometry

It may be possible to exploit considerations 
related to the geometrical structure of the 
manipulator

Example 2:  the 3 DOF planar arm
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Apply DH algorithm:

a1 d3

a2



Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Kinematic parameters from DH algorithm:

Articulated robot → q = θ



Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Combine tool-tip position and tool orientation into a 

tool-configuration vector w



(tool-configuration)
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Tool roll angle qn:

Describing the orientation with a matrix is redundant

r3 is the third column of R



Inverse Kinematics of a 3 DOF
Planar Articulated Robot
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Is a generalization possible?

Yes! The PIEPER APPROACH (1968)

Many industrial manipulators have a kinematically
decoupled structure, for which it is possible to 
decompose the problem into two (simpler) sub-
problems:

1) Inverse kinematics for the position

p = (x, y, z) → q1, q2, q3

2) Inverse kinematics for the orientation 

R → q4, q5, q6.
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The Pieper Approach
Given a 6 DOF manipulator, a sufficient condition to 
find a closed form solution for the IK problem is that the 
kinematic structure presents:

1. three consecutive rotational joints with axes 
intersecting in a single point, or

2. three consecutive rotational joints with parallel axes.
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The Pieper Approach

In many 6 DOF industrial manipulators, the first 3 DOF
are usually devoted to position the wrist, that has 3 
additional DOF give the correct orientation to the

end-effector.

In these cases, it is quite simple to decompose the IK
problem in the two subproblems (position and 
orientation).
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The Pieper Approach

In case of a manipulator with a spherical wrist, a natural 
choice is to decompose the problem in

A.  IK for the point pp (center of the spherical wrist)

B.  solution of the orientation IK problem

Therefore:

1) The point pp is computed since      is known 
(submatrices R and p):   pp = p − d6a

pp depends only on the joint variables                    ;

2) The IK problem is solved for                 ;

3) The rotation matrix      related to the first three joints 
is computed;

4) The matrix is computed;

5) The IK problem for the rotational part is solved (Euler)34
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Solution of the spherical manipulator [1]
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Direct kinematic model:

If the whole matrix   

is known, it is possible 

to compute:
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Unfortunately, according to the Pieper approach, only p is known!



Solution of the spherical manipulator [2]
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We know only the position vector p

We have
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Solution of the spherical manipulator [3]
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By equating the position vectors

The vector     depends only on θ2 and d3. Let’s define

Then

By substitution in the last element of        

Two possible solutions! 

of course: 

Then



Solution of the spherical manipulator [4]
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Since

From the first two elements

from which       

Finally, if the first two elements are squared and added together



Solution of the spherical manipulator [5]
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Note that two possible solutions exist considering the position of 

the end-effector (wrist) only. If also the orientation is considered, 

the solution (if it exists) is unique.

We have seen that the relation                                       must hold:



Solution of the spherical manipulator [5]

40

Note that two possible solutions exist considering the position of 

the end-effector (wrist) only. If also the orientation is considered, 

the solution (if it exists) is unique.

We have seen that the relation                                       must hold:



Solution of the spherical manipulator [6]
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Numerical example: Given a spherical manipulator with d2 = 0.8 m 

in the pose

We have:

The solution based on the whole matrix      is:

The solution based on the vector p gives:
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Solution of the spherical manipulator [7]
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Solution of the 3 DOF anthropomorphic arm [1]
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From the kinematic structure, one obtains

Concerning θ2 and θ3, note that the arm

moves in a plane defined by θ1 only

We obtain

Moreover, by geometrical arguments, it is possible to state that:



Solution of the 3 DOF anthropomorphic arm [2]
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Note that also the following solution is valid

Then, FOUR possible solutions exist:

shoulder right - elbow up; shoulder right - elbow down;

shoulder left - elbow up; shoulder left - elbow down;

Same position, but different orientation!

Note that the conditions px ≠ 0, py ≠ 0 must hold (o.w. singular configuration)



Solution of the spherical wrist [1]
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Let us consider the matrix

From the direct kinematic equations one obtains



Solution of the spherical wrist [2]

46

The solution is then computed as (ZYZ Euler angles):



Solution of the spherical wrist [3]
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Numerical example: Let us consider a spherical wrist in the pose

Then

Therefore, if

• Note that the PUMA has an anthropomorphic structure (4 solutions) 

and a spherical wrist (2 solutions):

⇒ 8 different configurations are possible!



STANFORD MANIPULATOR
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Stanford manipulator IK [1]

49

We need the forward kinematics:



Stanford manipulator IK [2]
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The Inverse Kinematics Problem
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Search “around” for your robot of interest!!

(or part of robot)

The secret:  Use well known robots!! 
(it was mentioned in the introduction: “…for the most common 

kinematic structures, a scheme for obtaining the solution has been found”)




