Differential Kinematics

 Relations between motion (velocity) in joint space and
motion (linear/angular velocity) in task space (e.q.,
Cartesian space)

« Instantaneous velocity mappings can be obtained
through time derivation of the direct kinematics or in a
geometric way, directly at the differential level

 Different treatments arise for rotational quantities

 establish the link between angular velocity and time
derivative of a rotation matrix

 establish the link between angular velocity and time
derivative of the angles in a minimal representation of
orientation



Differential Kinematics: the Jacobian matrix

In robotics it is of interest to define, besides
the mapping between the joint and
workspace position and orientation (i.e. the
kinematic equations), also:

= The relationship between the joints and
end-effector velocities:

Vv :
— q

W

= The relationship between the force applied
on the environment by the manipulator and
the corresponding joint torques

f

n

— T

These two relationships are based on a linear operator, a matrix J,
called the Jacobian of the manipulator.



Differential Kinematics: the Jacobian matrix

X d,
| q,
wW=| z Cartesian Velocity .
o, q= C!?’ Joint Velocity . .
Y 4,
Os W - q

| O |
If It "exists' we can define the Inverse Jacobian as:

1.

d:J W

% The Jacobian is a mapping tool that relates Cartesian
velocities (of the n frame) to the movement of the
individual robot joints

“ The Jacobian collectively represents the sensitivities of
individual end-effector coordinates to individual joint
displacements




The Jacobian matrix

In robotics, the Jacobian is used for several purposes:

d To define the relationship between joint and workspace
velocities

d To define the relationship between forces/torques between
the spaces

1 To study the singular configurations

1 To define numerical procedures for the solution of the IK
problem

d To study the manipulability properties



(Angular velocity of a rigid body)

“rigidity” constraint on distances among points: ||r;|| = constant

Vpi — Vp; Orthogonal to r;;

Vpy = Vp1 = W1 X T (p)

Vpz = Vp1 = Wy XT3 (B)

Vpz = Vpp = Wy XT3 (¢

vP1, P2, P3: (B)—(A) = (C) =
W, =W, =W

Vpj =Vp; TOX L =V, + S(w) L < r'ij = WX,

« the angular velocity w is associated to the whole body (not to a point)

 if 3 P1, P2 with vp; = vp, = 0: pure rotation (circular motion of all P; ¢ line
P1P)

 w = 0: pure translation (all points have the same velocity v;)



Velocity domain

- The translational and rotational velocities are considered separately
 Let us consider two frames:

> F, (base frame) and

> T, (integral with the rigid body)

*The translational velocity of point p of the rigid body, with respect
to F,, is defined as the derivative (w.r.t time) of p, denoted as P :

. dp
P =t



Velocity domain

For the rotational velocity, two different definitions are possible:

> A triplet ¥ € R° giving the orientation of F; with respect to F, (Euler,

RPY,... angles) is adopted, and its derivative is used to define the
rotational velocity ¥ : dy

F=

» An angular velocity vector w is defined, giving the rotational velocity of
a third frame F, with origin coincident with f, and axes parallel to F;

W

The velocity vector w is placed in
the origin, and its direction
coincides with the instantaneous
rotation axis of the rigid body




Jacobian: Analytical and Geometrical expressions

* The two descriptions lead to different results concerning the
expression of the Jacobian matrix, in particular in the part
relative to the rotational velocity

« One obtains (respectively) the:

o Analytic Jacobian J,

The end-effector pose is expressed with reference to a minimal
representation in the operational space; then, we can compute the
Jacobian matrix via differentiation of the direct kinematics function w.r.t.
the joint variables

A Geometric Jacobian J.

The relationship between the joint velocities and the corresponding end-
effector linear and angular velocity

These two expressions are different (in general)!



Two problems

Problem 1: Integration of the rotational velocity w

jydt —s y (orientation of the rigid body)

ja)dt—> ??



Example: Let's consider a rigid body and the following rotational velocities

Case a)
w = [r/2,0, 0]" 0<t<1
w = [0, 7/2, 0] 1<t<?2
Case b)
w = [0, /2, 0]" 0<t<1
w = [r/2.0,0]" 1 <t<?2

By integrating the velocities in the two cases, one obtains:

2
/ wdt = [r/2, /2, 0]"
<0



}
@ |1 -, =
X t=20 X
Zl Z
(b) -y
X X/
t =0

Case a)

W

W =

Case

[7/2, 0,
[0, /2.

b)

[0, /2.
[7/2, 0.

'

On the other hand, the rotation matrices in the two cases are:

R, =

0 1
0 O
-1 O

0
—1
0

Rp

O = O

= O O

/hwdf = |7 /2,
Jo

o O =

/2, 0]

—> The integration of w does not have a clear physical interpretation



So vy is the winner? NO!

Problem 2: while w represents the velocity components about the
three axes of F,, the elements of ¥ are defined with respect to a frame

that:
a) Is not Cartesian (its axes are not orthogonal to each other)

b) varies in time according to y




Problem 2

- v and w are “vectors”, namely are elements of vector spaces

o they can be obtained as the sum of single contributions (in any order)
o these contributions will be those of the joint velocities

- On the other hand, y (and dy/dt) is not an element of a vector
space

O a minimal representation of a sequence of two rotations is not obtained
summing the corresponding minimal representations (accordingly, for their time
derivatives)

— Ingeneral w # dy/dt

However, the two expressions physically define the
same phenomenon (velocity of the manipulator) and
therefore a relationship between them must exist.



Finite and infinitesimal translations

Finite Ax, Ay, Az or infinitesimal dx, dy, dz translations
(linear displacements) always commute

7 ﬁy Az

Az Ay

same final
position




Finite rotations do not commmute

We just saw an example:

Zl I
: 1
a - L_
() —F'y —F'y — F'y
t =20 X t =1 @t=2
X
'.Z.l Z Z
b
N - /&‘y ’
X X X
t =20 t =1 t =2

However . .



Infinitesimal rotations do commmutel!

Infinitesimal rotations do,, d¢,, d¢, around X, y, Z axes

10 0 1 0 o0
Ry(dy) =1 0 cos ¢y —sin ¢y j> Ry(doy) = | 0 1 —dy
0 sin ¢y cos ¢y | 0 doy 1
- cos ¢y O sinkpy 1 0 doy
R(@)=| 0 1 0 ) R(dp)=| 0 1 0
-singy 0 cos ¢y —d¢y O 1 _
cos ¢, -sing, O 1 -d¢; O
Rz2(¢2) = | sin¢, cos¢, O ) Rf{dé)=|dp, 1 O
o0 0 1 0 0 1
= - ect
1 -dg, doy second- and

= R(d¢) = R(d¢'xf ‘d‘t"‘r’f d¢'Z) . ;l(?:j d{bx —df);,( h (15?;;?;52?11&;0

— terms




In summary

The two expressions of the Jacobian matrix physically define
the same phenomenon (velocity of the manipulator) and
therefore a relationship between them must exist

For example, if the Euler angles ¢, 6, @ are used for the
triplet y, it is possible to show that

0 —sin® cososinf
w= |0 cosp singsinf |4 = T(y)~
1 0 cos
2y 2, 2 - Note that matrix T(y) is singular when sin § = 0.
%2 ® 3y In this case, some rotational velocities may be
¢ zl 5.0 Y+ expressed by @ and not by 7, e.g.
‘ 0 w = [Cc0Sp, Sing, 0]T
X, Xy Xz X X3
o These cases are called representation
1 - S
o/ ) singularities of .
|
/ Y




Definition of matrix T(y):

[wx, wy, w;]

_ —Cq'}SH -
S{I'JSQ

0

ts
Lp l:..L:;._' — Q)
-
-ﬁ?l_."'
st O
0
7 7
1
%)
19:\} Y1 Wyx = —Sg'ﬂ
VA 4
%1
2
Y




If sin@ = 0, then the components perpendicular to z of the
velocity expressed by y are linearly dependent (a) + o, _6’2)

while physically this constraint may not exist!

From:

0
W = 0
I 1

one obtains:
_ 0 —Sg‘; 0 1 [ Q
0 C, O 6
10 1|4

—sin o

COS O
0

_ —5(;)9 .

b+ 1)

cososinf
sin®sin

cos

=1

w+‘—92

u.sz—()—}—I‘



Finally...:

In general, given a triplet of angles y, a transformation matrix

T(y) exists such that
w=T(7)7

Once the matrix T(y) is known, it is possible to relate the
analytical and geometrical expressions of the Jacobian matrix:

Vv I 0 p
W _ _ 0 T(,.}) _ ,.} _

Then




Until now:

« We saw how we can define velocities in a
robot/rigid-body environment

« We know the connection between the analytical
Jacobian and the geometric Jacobian

« Now we calculate both of them



Analytical Jacobian

The analytical expression of the Jacobian is obtained by
differentiating a vector x = f(q) € R, that defines the position

and orientation (according to some convention) of the
manipulator in F,

By differentiating f(q), one obtains

of(q)

dx = ~—d

X E‘)q q

= J(q)dq

where the m x n matrix

(*_’)f q .i‘]ql agfg v E)qn mx n
J(q) = i)() . | J(q) e R

q Iy Ofy Of,,

L 9q1 Oq ' Ogn,

Is called the Jacobian matrix or JACOBIAN of the manipulator



C

Analytical Jacobian

If the infinitesimal period of time dt is considered, one obtains

dx d q
dt = a2 dt
hat is _ _
. vV
X = A — J(q) q

relating the velocity vector X expressed in F, and the joint
velocity vector

" The elements J;; of the Jacobian are nonlinear functions of
q(t): therefore these elements change in time according to the

value of the joint variables
he Jacobian’s dimensions depend on the number n of joints

and on the dimension m of the considered operative space:

J(a)

E men



AJ-Example: 2 DOF manipulator

<

5, a v

|_1 91 a1l OG
|_2 0 92 d? OG

Ol -

The end-effector position is

px = a1C +axCpo
p, = ai5 + a5
p = 0

If v is composed by the Euler angles ¢, 6, 1> defined about axes zg.,y1,2z>, and
considering that the z axes of the base frame and of the end effector are parallel,
the total rotation is equivalent to a single rotation about zg and therefore:

O O+ 0y
0 | = 0
1 J O




AJ-Example: 2 DOF manipulator

Euler angles:

0, 61 + 6>
0 | = 0

By differentiation of the expressions of p and + one obtains

—a151 —ax51,  —ax51 )
- a1C1 +aCo ax (o
P 0 0

1 1
0 0
0 0



Geometric
Jacobian




Geometric Expression of the Jacobian

« The geometric expression of the Jacobian is obtained considering
the rotational velocity vector w

« Each column of the Jacobian matrix defines the effect of the /-th
joint on the end-effector velocity and it is divided in two terms

+ The first term considers the effect of g; on the linear velocity v,
while the second one on the rotational velocity w, i.e.

V__ . o Jdu Jee J,,
u.;_—JCI —> J = le sz an_

 Therefore
vV = Jvl@l+Jv2q2+'“+JVﬂq”

A\

The analytic and geometric Jacobian differ for the rotational part

In order to obtain the geometric Jacobian, a general method
based on the geometrical structure of the manipulator is adopted

A\



Derivative of a Rotation Matrix

Let’s consider a rotation matrix R = R(t) and R(t)R' (t) =1

Let’s derive the equation: R()R' (t) =1 = R(@{)R" (t)+R(#)R" (t) =0

- A 3 x 3 (skew-symmetric) matrix S(t) is obtained

S(t) = R()RT (t)

« As a matter of fact

i O _wz wy |
S(t)+S'(t)=0 — S=| w, 0 —w,
—Ww o, 0
_ 4 X -

« Then

R(t) = S(t) R(t)

« This means that the derivative of a rotation matrix is expressed as

a function of the matrix itself



Derivative of a Rotation Matrix

Physical interpretation:
Matrix S(t) is expressed as a function of a vector w(t) = |wx,wy,w;
representing the angular velocity of R(t)

]T

Consider a constant vector p' and the vector p(t) = R(¢t)p'

The time derivative of p(t) is

p(t) = R(t)p’

which can be written as

(This last result is well known from the classical mechanics of rigid
bodies)



Derivative of a Rotation Matrix

« Moreover it can be shown that:

i.e. the matrix form of S(w) in a frame rotated by R is the
same as the skew-symmetric matrix S(R @) of the vector @
rotated by R

* (1) Note also that S(w) is linear in its argument:

S(k,w,+k,w, )=k S(w, )+k,S(w,)

« (2) Note also the property of S(w):
SW)p=wxp



Derivative of a Rotation Matrix

Consider two frames Fand F, which differ by the rotation R
Then S(w') operates on vectors in F and S(w) on vectors in F

Consider a vector Vv,' in  and assume that some operations must be
performed on that vector in f (then using S)

It Is necessary to:
1. Transform the vector(s) from F to F (by R')
2. Use S(w)
3. Transform back the result to F (by R)

That is:

v, = R S(w) R" v/
v, = S(w') V.

equivalent to the transformation using S(w)



Example

Consider the lementary rotation about z

cos# —sinf 0O
Rot(z.0) = | sinf cosf O

0 0 1
It @ is a function of time
" _fsin® —fOcos® 01 cos®@ sin® 071 [0 —0 07
S(t)=| 6fcosf —HOsinf O —sinf) cosf# 0 (= 0 O
0 o o] o o 1] o o o

Then

l.e. a rotational velocity about z.




Geometric Jacobian

The end-effector velocity is a linear composition of the
joint velocities

vV = JV1Q1—|—JVZCI?2_|’---+JVHQH
W — leql +Jud2q2 ++--+ané?n

Each column of the Jacobian
matrix defines the effect of
the /-th joint on the end-
effector velocity

[



Geometric Jacobian

P =z

L yl
A
<0 0 r :
P
IIIIIII Ol

-

o |

1 If

| X
> V 1

0, Y,




Geometric Jacobian - Link Velocity
Q%\f |

WA\ LINK 1
=
T

\ JOINT 1

Linear velocity

(of link / as a function of
velocities of link i—1)

f 1‘ I
0
Vi1 denotes
the velocity of the —1
. : i = Pi1+ Riari Ty
origin of Frame i Pi =Pi-1 i1,
with respect to the 0 .0 0.1 0 0
origin of Frame i—1 P = o1 Fip- Fwixm
1—1

: : ci—1
Pi = Pi—1 T Rz‘—fﬁ_m +w; 1 X R_y7r

1—1,1

= Pic1 TV Wi X1y



Geometric Jacobian - Link Velocity
Angular velocity

(of link 7 as a function of velocities of link i—1)

R, =R, R

S(wi)R; = S(w;—1)R; + R, _1S(w!=; ;) R™!

= S(w;,_1)R; + S(R,_w!"{ )R,

1—1.,2

1—1

1—1.1

w; = w;_1 + R;_jw

= W;_1] + W;_1;



Geometric Jacobian — Link Velocity

W; = W;_1] +W;_1;

Pi =Pi—1 TV _1; TWi—1 XTi_1;

Prismatic joint: Wi_1,i =

Vi—1.i — dizé—l

W; — W;_1

Pi = PDi—1 + dizi_1 + w; X Ti—1.,i
Revolute joint: wi—1,; = V%1
Vi1 —=Wi—1,: X Ti—1,4

w; =w;—1 + Uiz

Di =Pi—1 +W; X1Ti_1,



Geometric Jacobian - Computatlon

Jri JP

J = V = Z

_.701 JOn_ =1 q =1

Pi

Linear velocity
Joint / prismatic

qiJpPi — d;z;_1 — JpPi — Zi—1

Joint / revolute




Geometric Jacobian — Computation

_]Pl JPn

n n
J = We = Wp = E :wi—l,t‘ — E .?CMQ’E
i=1 i=1

_]Ol ]On_

Angular velocity

Joint / prismatic

¢i30: = 0 — 70i =0
Joint / revolute

¢iJoi = Vizi 1 — Joi = Zi—1



Geometric Jacobian — Computation

Column of geometric Jacobian

- Zi_1 prismatic joint

Jri| ) L 0

JOi _Z'_l X — Pi—1 _ -

LS ? z(p Pi-1) revolute 1ot
i—1 )

* p=AVq1)... A2 Hgn)Po

x Pii1=AYNq1) ... A3 (qi1)Po



Geometric Jacobian -
Representation in a Different Frame

The Jacobian matrix depends on the frame in which the
end-effector velocity is expressed

The above equations allow computation of the geometric
Jacobian with respect to the base frame

For a different Frame t:

pt B Rf O D
w'| |0 R'||w
R O] ..
“lo mr|
.
I |




RECAP: Geometric Jacobian —
Contribution of a Prismatic Joint

Note: joints beyond the /-th one are considered to be “frozen”,
so that the distal part of the robot is a single rigid body

Ji(9) g =z g
E
prismatic
I-th joint

JLi(q) C.li Zi-l di

joint | 1,(9) g 0

RF,




RECAP: Geometric Jacobian —
Contribution of a Revolute Joint

Note: joints beyond the /-th one are considered to be “frozen”,
so that the distal part of the robot is a single rigid body

N(e) ‘lih = Zi41 5,

revolute

I-th joint
% J'Dlint i JLi(q) di (Zi—l X pi—l,E) ei
RF, .

Jn(a) ".:li Zi 1 Eli




RECAP: Geometric Jacobian

It is possible to show that the /-th column of the Jacobian can be computed as

J 9z x (Op,— Ypi_ .
v = 1 gp” Pi-1) revolute joint
i le‘ ) i Zj_1
[ Jw' | i OZ,;_l : C
= rismatic joint
Ju;f 0 P .

where °z;_1 and °r;_1, = °p, — ®pi_1 depend on the joint variables
qi. qo, ....q,. In particular:
@ 9p,, is the end-effector position, defined in the first three elements of the last
column of °T, = °Hi(q1)... ""tH,(q,);

@ 9p;_1 is the position of F;_q, defined in the first three elements of the last
column of °T;_; = °Hi(q1)... "°H;_1(qg;_1);
Oz, 1 is the third column of °R;_1:

"Ri_1 = "Ri(q1) 'Ra(q2) ... "*Ri_1(qi-1)



GJ-Example: 2 DOF manipulator

The Jacobian is computed as

y_ | 20X (P2—po) z1x(p2—p1)
B Z0 Z]

The origins of the frames are

0 a1 G| - a1Cr +axCrp |
po= | O p1= | a151 P> = | a151 + a2510
I 0 ] ] 0 ] I 0 ]

and the rotational axes are




GJ-Example: 2 DOF manipulator

Then ] )
0 0 a151 + ax 51
Zo X (Pz — Pﬂ) — — 0 0 —a1 G — axCoo
—a151 — a5 a1G + axCr 0 _
| —a151 — ax S ]
= a1CG + a2 Coo
- 0 -
i O 0 325]_2 | i 0 | ) —325]_2 |
z; X (p2—p1) = -— 0 0 —an o 0 | = a> Cio
] —32512 a2 C12 0 1 L 1 1 i O |

In conclusion:

—3151 — 32512 —32512
a1C+ axCypo a>C12
0 0

0 0
0 0
1 1




GJ-Example: 2 DOF manipulator

Jacobian: ] )
—a151 — a5 —ax51
a1C + ax (oo a>Cyo

0 0
J(q) = 0 0
0 0

If the orientation is not of interest, only the first two rows may be considered

—a151 — a5 —axS5p

J(a) = a1Ci +axCia ax(yo

maximum rankis 2 = at most 2 components of the
linear/angular end-effector velocity can be independently assigned



3-link planar manipulator

GJ-Example




GJ-Example: 3-link planar manipulator

y3 Y"""r-—r.,

A
/T3

[P

./

3

0 L3
.1’,'2

po= 1|0

11Cq a1C1 — aA92C19
0 0
a1€C1 T a2€12 T A3C€123
P = | @151 T a2s12 T @35123
0
zo =21 =20= |0
1

J(q) = zZo X (p—po) z1X(p—p1) z2x(p—p2)




GJ-Example: 3-link planar manipulator

- —@a1S] —a512 — 35123
a1C1 + agClo + azcyo3
0

0
0
|

—@a1S1 — 95192 — A351923
a1C1 + ascio + azci93

—a2S512 — A35123
(19C12 + A3C123
0

0
0
|

—a9519 — 351923
A9C19 + A3C193

—a35123
3123
0

0
0
1

— 35123
13C123

50



GJ-Example: 3 DOF anthropomorphic manipulator

The canonical transformation matrices are

Cl 0 51 0 C2 —Sg 0 =) C2 |
X5 .;)H o 51 0 —Cl 0 1H o 52 C2 0 3252
“lo 1 0 o0 "l o o0 1 o0
0 O 0 1 0 0 0 1
X B ) B )
C3 —53 0 d3 C3 1
2H o 53 C3 0 3353
"] 0o 0 1 0
0 0 0 1

and the kinematic model

CiCxn —GSxn S GaxG + a3(y3)
51C3 =553 -G Si(a2G + a3 (3)
503 Co3 0 225 + a3523
0 0 0 1




GJ-Example: 3 DOF anthropomorphic manipulator

The Jacobian results

y_ | zox(P3—po) z1x(P3—p1) z2x(p3—p2)

£y Z] L)
where
i 0 | i 82C1C2 | i C1(82C2 83C23) |
po=p1=| 0 po= | a255 p3 = | Si(a2G + a3Cos)
i 0 | i 8252 | i 8252 —+ 83523 |

T he rotational axes are




GJ-Example: 3 DOF anthropomorphic manipulator

T herefore
—S1(a2C + a3Co3) —Ci(a2S + a3523) —a3 (523
Ci(ax G+ a3Cp3)  —S1(a252 + a3523) —a351523
] _ 0 ar (o + a3 (3 a3 (3
0 54 5
0 —( — (4
_ 1 0 0o

- Only three rows are linearly independent (3 dof).
- Note that it is not possible to achieve all the rotational velocities w in IR>.
(L:..?X — 5.0, + 5193? Wy = —C160, — C193,_ )

By considering the linear velocity only, one obtains:

- Moreover 51w, = —Cjwy

- —Si1(ax G+ a3C3) —Ci(aS +a353) —a3Ci Sy
J = Ci(aa G+ a3Coz) —51(a252 + a3523) —a351523
i 0 ar> (o + a3 (o3 azC




GJ-Example: 3 DOF anthropomorphic manipulator

Note that:
@ #; does not affect v, (nor wy, wy)
@ w, depends only by 6;
@ Siwy, = —CGwy:  wy and wy are not independent

@ the first three rows may also be obtained by derivation of “ps

In the “linear velocity” case (i.e. the first three rows only)
det(J) = —apazS3(axCo + a3(3)

Therefore det(J) = 0 in two cases:
0

T

/|

@ 55=0 — 93{

@ (a2, + a3Cy3) = 0 i.e. when the wrist is on the z axis (px = p, = 0):
shoulder singularity



GJ-Example: 3 DOF spherical manipulator

Canonical transformation matrices

;«:3,/—"}?3 G 0 -S; 0| G 0 S, 0
Z, by OH - 51 0 Cl 0 1H o 52 0 —Cg 0
N A "l o -1 o of|""? |0 1 0 d
b, - 0 0 0 1 0 0 0 1
6 PR _ _
> 2 1 0 0 O
; >, | 0 1 0 0
H:=190 0 1 4
Lo
f f,[,// 0 0 0 1
Kinematic model:
i GGG =5 1S —dbS5 +d;G S |
O, — GS G 55 G+ d35S
—52 0 C2 C2d3
0 0 0 1 .




GJ-Example: 3 DOF spherical manipulator

The Jacobian is
y_ | ZoxX(P3—po) zix(ps—p1) 2

y Ay Z1 0
with
- -5 -GS, |
Zp = Z1 = C1 Ly = 55
0 G
and
0 ] - —dhS; | - —db S + d3CL S, ]
po=p1= | 0 p2 = d>Cy p3 = d>Cy + d35:1 5
0 | 0 ] Cods ]




GJ-Example: 3 DOF spherical manipulator

-3 Then
XH/ ]_,S

70 - —dbC, — 35S ;GG G S, |
Illpr ,-’“‘\.: L, “g Y —d>51 +d;C1S, d:35 G 55
NS\ I, ° J— 0 —d3 5 C
s = B 0 —5i 0

; 0 1 0

] 1 0 0 |
L Ifﬂ

777777
Note that:

@ g3 does not affect w;
@ w, depends only on g;;



GJ-Example: 3 DOF spherical wrist

z, Xs X,

X, L _ - —deS54Ss deC4Cs 0
= /7255{ I (F—=—,. dsCsSs  dsCsSs O
Js\z, L, L, y, J_ 0 —de S5 0

B 0 — S Cy4 S5
@ 0 Cy 5455
I, 1 0 Cs

1 —

77777
By choosing ds = 0, i.e. the origin of F¢ is in the intersection point of the three
joint axes, then

With this expression, however, the linear

"0 0 0 velocity of the end-effector is not com-
0 O 0 puted.
J— 0 0 0
L0 =514 (45
0 G SiS |
10 G det(J)) =0 — S5 =0, ie 65 =0, 7.

In this case it is not possible to determine
individually 6, and 6.



GJ-Example: PUMA 560

Ji— 20 X (ps — po) 21 X (P6 —p1) Z2 X (Ps — P2)




GJ-Example: PUMA 560

If dg¢ = O:
- —d3 (1 — S1(a2Co 4 daS3)  Ci(daCoz — a252)  daCy (o3
—d351 + Ci(a2Co + daS23)  S1(daCoz — a252)  daS1C3
] 0 ar Co + ds 523 dsSo3
- 0 51 51
0 -G -G
_ 1 0 0
0 0 0
0 0 0
0 0 0

C1S523  51C — G138 (1523Cs + C1 3Gy S5 + 515455
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