## Differential Kinematics

- Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space)
- Instantaneous velocity mappings can be obtained through time derivation of the direct kinematics or in a geometric way, directly at the differential level
- Different treatments arise for rotational quantities a establish the link between angular velocity and time derivative of a rotation matrix
$\square$ establish the link between angular velocity and time derivative of the angles in a minimal representation of orientation


## Differential Kinematics: the Jacobian matrix

In robotics it is of interest to define, besides the mapping between the joint and workspace position and orientation (i.e. the kinematic equations), also:


- The relationship between the joints and end-effector velocities:

$$
\left[\begin{array}{l}
\mathbf{v} \\
\omega
\end{array}\right]
$$



- The relationship between the force applied on the environment by the manipulator and the corresponding joint torques

$$
\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{n}
\end{array}\right] \Longleftrightarrow \tau
$$

These two relationships are based on a linear operator, a matrix J, called the Jacobian of the manipulator.

## Differential Kinematics: the Jacobian matrix



$$
w=J q
$$

If it 'exists' we can define the Inverse Jacobian as:

$$
\dot{q}=J^{-1} \dot{w}
$$

The Jacobian is a mapping tool that relates Cartesian velocities (of the $n$ frame) to the movement of the individual robot joints

* The Jacobian collectively represents the sensitivities of individual end-effector coordinates to individual joint displacements


## The Jacobian matrix

In robotics, the Jacobian is used for several purposes:
$\square$ To define the relationship between joint and workspace velocities
$\square$ To define the relationship between forces/torques between the spaces

- To study the singular configurations
$\square$ To define numerical procedures for the solution of the IK problem
- To study the manipulability properties


## (Angular velocity of a rigid body)

"rigidity" constraint on distances among points: $\left\|r_{i j}\right\|=$ constant


- the angular velocity $\omega$ is associated to the whole body (not to a point)
- if $\exists \mathrm{P} 1, \mathrm{P} 2$ with $v_{\mathrm{P} 1}=v_{\mathrm{P} 2}=0$ : pure rotation (circular motion of all $\mathrm{P}_{j} \notin$ line $\mathrm{P}_{1} \mathrm{P}_{2}$ )
- $\omega=0$ : pure translation (all points have the same velocity $v_{\mathrm{P}}$ )


## Velocity domain

- The translational and rotational velocities are considered separately
- Let us consider two frames:
$>F_{0}$ (base frame) and
$>F_{1}$ (integral with the rigid body)

-The translational velocity of point $\mathbf{p}$ of the rigid body, with respect to $F_{0}$, is defined as the derivative (w.r.t time) of $\mathbf{p}$, denoted as $\dot{\mathbf{p}}$ :

$$
\dot{\mathbf{p}}=\frac{d \mathbf{p}}{d t}
$$

## Velocity domain

For the rotational velocity, two different definitions are possible:
$>$ A triplet $\gamma \in \mathbb{R}^{3}$ giving the orientation of $F_{1}$ with respect to $F_{0}$ (Euler, RPY,... angles) is adopted, and its derivative is used to define the rotational velocity $\dot{\gamma}$ :

$$
\dot{\gamma}=\frac{d \gamma}{d t}
$$

> An angular velocity vector $\omega$ is defined, giving the rotational velocity of a third frame $F$, with origin coincident with $F_{0}$ and axes parallel to $F_{1}$


The velocity vector $\omega$ is placed in the origin, and its direction coincides with the instantaneous rotation axis of the rigid body

## Jacobian: Analytical and Geometrical expressions

- The two descriptions lead to different results concerning the expression of the Jacobian matrix, in particular in the part relative to the rotational velocity
- One obtains (respectively) the:


## - Analytic Jacobian $\mathrm{J}_{\mathrm{A}}$

The end-effector pose is expressed with reference to a minimal representation in the operational space; then, we can compute the Jacobian matrix via differentiation of the direct kinematics function w.r.t. the joint variables

## $\square$ Geometric Jacobian $\mathbf{J}_{G}$

The relationship between the joint velocities and the corresponding endeffector linear and angular velocity

These two expressions are different (in general)!

## Two problems

## Problem 1: Integration of the rotational velocity $\omega$

$\int \dot{\gamma} d t \rightarrow \gamma$ (orientation of the rigid body)

$$
\int \omega d t \rightarrow ? ?
$$

Example: Let's consider a rigid body and the following rotational velocities Case a)

$$
\begin{array}{lll}
\boldsymbol{\omega} & =[\pi / 2,0,0]^{T} & 0 \leq t \leq 1 \\
\boldsymbol{\omega} & =[0, \pi / 2,0]^{T} & 1<t \leq 2
\end{array}
$$

Case b)

$$
\begin{array}{rll}
\boldsymbol{\omega} & =[0, \pi / 2,0]^{T} & 0 \leq t \leq 1 \\
\boldsymbol{\omega} & =[\pi / 2,0,0]^{T} & 1<t \leq 2
\end{array}
$$

By integrating the velocities in the two cases, one obtains:

$$
\int_{0}^{2} \boldsymbol{\omega} d t=[\pi / 2, \pi / 2,0]^{T}
$$

## Case a)



On the other hand, the rotation matrices in the two cases are:

$$
R_{a}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right] \quad R_{b}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$\Rightarrow$ The integration of $\omega$ does not have a clear physical interpretation

So $y$ is the winner? NO!
Problem 2: while $\boldsymbol{\omega}$ represents the velocity components about the three axes of $F_{0}$, the elements of $\dot{\gamma}$ are defined with respect to a frame that:
a) is not Cartesian (its axes are not orthogonal to each other)
b) varies in time according to $\gamma$


## Problem 2

- $v$ and $\omega$ are "vectors", namely are elements of vector spaces
- they can be obtained as the sum of single contributions (in any order)
- these contributions will be those of the joint velocities
- On the other hand, $\gamma$ (and $d \gamma / d t$ ) is not an element of a vector space
- a minimal representation of a sequence of two rotations is not obtained summing the corresponding minimal representations (accordingly, for their time derivatives)
$\Rightarrow$ In general $\omega \neq d \gamma / d t$

However, the two expressions physically define the same phenomenon (velocity of the manipulator) and therefore a relationship between them must exist.

## Finite and infinitesimal translations

Finite $\Delta x, \Delta y, \Delta z$ or infinitesimal $d x, d y, d z$ translations (linear displacements) always commute


## Finite rotations do not commute

We just saw an example:
(a)


(b)



However...

## Infinitesimal rotations do commute!

Infinitesimal rotations $d \varphi_{x}, d \varphi_{Y}, d \varphi_{z}$ around $x, y, z$ axes

$$
\left.\begin{array}{l}
R_{X}\left(\phi_{X}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{X} & -\sin \phi_{X} \\
0 & \sin \phi_{X} & \cos \phi_{X}
\end{array}\right] \quad \square R_{X}\left(d \phi_{X}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -d \phi_{X} \\
0 & d \phi_{X} & 1
\end{array}\right] \\
R_{Y}\left(\phi_{Y}\right)=\left[\begin{array}{ccc}
\cos \phi_{Y} & 0 & \sin \phi_{Y} \\
0 & 1 & 0 \\
-\sin \phi_{Y} & 0 & \cos \phi_{Y}
\end{array}\right] \quad \square \\
R_{Y}\left(d \phi_{Y}\right)=\left[\begin{array}{ccc}
1 & 0 & d \phi_{Y} \\
0 & 1 & 0 \\
-d \phi_{Y} & 0 & 1
\end{array}\right] \\
R_{Z}\left(\phi_{Z}\right)=\left[\begin{array}{ccc}
\cos \phi_{Z} & -\sin \phi_{Z} & 0 \\
\sin \phi_{Z} & \cos \phi_{Z} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \square
\end{array} \begin{array}{ll}
\end{array}\right]\left(d \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & -d \phi_{Z} & 0 \\
d \phi_{Z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

$-\mathrm{R}(\mathrm{d} \phi)=\mathrm{R}\left(\mathrm{d} \phi_{X}, \mathrm{~d} \phi_{Y}, \mathrm{~d} \phi_{Z}\right)=\left[\begin{array}{ccc}1 & -\mathrm{d} \phi_{Z} & \mathrm{~d} \phi_{Y} \\ \mathrm{~d} \phi_{Z} & 1 & -\mathrm{d} \phi_{X} \\ -\mathrm{d} \phi_{Y} & \mathrm{~d} \phi_{X} & 1\end{array}\right] \stackrel{\begin{array}{c}\text { neglecting } \\ \text { second- and } \\ \text { third-order } \\ \text { (infinitesimal) } \\ \text { terms }\end{array}}{\left.\begin{array}{c}\text { ( }\end{array}\right]}$

## In summary

The two expressions of the Jacobian matrix physically define the same phenomenon (velocity of the manipulator) and therefore a relationship between them must exist For example, if the Euler angles $\varphi, \theta, \psi$ are used for the triplet $\gamma$, it is possible to show that

$$
\boldsymbol{\omega}=\left[\begin{array}{ccc}
0 & -\sin \phi & \cos \phi \sin \theta \\
0 & \cos \phi & \sin \phi \sin \theta \\
1 & 0 & \cos \theta
\end{array}\right] \dot{\gamma}=\mathbf{T}(\gamma) \dot{\gamma}
$$

Note that matrix $T(\gamma)$ is singular when $\sin \theta=0$.
In this case, some rotational velocities may be expressed by $\omega$ and not by $\dot{\gamma}$, e.g.

$$
\omega=[\cos \varphi, \sin \varphi, 0]^{T}
$$

These cases are called representation singularities of $\gamma$.

## Definition of matrix $\mathbf{T}(\gamma)$ :

$$
\begin{gathered}
\dot{\phi}:\left[\omega_{x}, \omega_{y}, \omega_{z}\right]^{T}=\dot{\phi}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\dot{\theta}: \quad\left[\omega_{x}, \omega_{y}, \omega_{z}\right]^{T}=\dot{\theta}\left[\begin{array}{c}
-S_{\phi} \\
C_{\phi} \\
0
\end{array}\right] \\
\dot{\psi}: \quad\left[\omega_{x}, \omega_{y}, \omega_{z}\right]^{T}=\dot{\psi}\left[\begin{array}{c}
-C_{\phi} S_{\theta} \\
S_{\phi} S_{\theta} \\
C_{\theta}
\end{array}\right]
\end{gathered}
$$

If $\sin \theta=0$, then the components perpendicular to $\mathbf{z}$ of the velocity expressed by $\dot{\gamma}$ are linearly dependent $\left(\omega_{x}^{2}+\omega_{y}^{2}=\dot{\theta}^{2}\right)$, while physically this constraint may not exist!
From:

$$
\boldsymbol{\omega}=\left[\begin{array}{ccc}
0 & -\sin \phi & \cos \phi \sin \theta \\
0 & \cos \phi & \sin \phi \sin \theta \\
1 & 0 & \cos \theta
\end{array}\right] \dot{\gamma}
$$

one obtains:

$$
\left[\begin{array}{ccc}
0 & -S_{\phi} & 0 \\
0 & C_{\phi} & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right] \Longrightarrow\left[\begin{array}{c}
-S_{\phi} \dot{\theta} \\
C_{\phi} \dot{\theta} \\
\dot{\phi}+\dot{\psi}
\end{array}\right]=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \Longrightarrow\left\{\begin{array}{l}
\omega_{x}^{2}+\omega_{y}^{2}=\dot{\theta}^{2} \\
\omega_{z}=\dot{\phi}+\dot{\psi}
\end{array}\right.
$$

## Finally...:

In general, given a triplet of angles $\gamma$, a transformation matrix $\mathbf{T}(\gamma)$ exists such that

$$
\boldsymbol{\omega}=\mathbf{T}(\gamma) \dot{\gamma}
$$

Once the matrix $\mathbf{T}(\gamma)$ is known, it is possible to relate the analytical and geometrical expressions of the Jacobian matrix:

$$
\left[\begin{array}{c}
\mathbf{v} \\
\boldsymbol{\omega}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{T}(\gamma)
\end{array}\right]\left[\begin{array}{l}
\dot{\mathbf{p}} \\
\dot{\gamma}
\end{array}\right]
$$

Then

$$
\mathbf{J}_{G}=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{T}(\gamma)
\end{array}\right] \mathbf{J}_{A}=\mathbf{T}_{A}(\gamma) \mathbf{J}_{A}
$$

## Until now:

- We saw how we can define velocities in a robot/rigid-body environment
- We know the connection between the analytical Jacobian and the geometric Jacobian

$$
\mathbf{J}_{G}=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{T}(\gamma)
\end{array}\right] \mathbf{J}_{A}=\mathbf{T}_{A}(\gamma) \mathbf{J}_{A}
$$

- Now we calculate both of them


## Analytical Jacobian

The analytical expression of the Jacobian is obtained by differentiating a vector $\mathbf{x}=\mathbf{f}(\mathbf{q}) \in \mathbb{R}^{6}$, that defines the position and orientation (according to some convention) of the manipulator in $F_{0}$
By differentiating $\mathbf{f}(\mathbf{q})$, one obtains

$$
\begin{aligned}
d \mathbf{x} & =\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}} d \mathbf{q} \\
& =\mathbf{J}(\mathbf{q}) d \mathbf{q}
\end{aligned}
$$

where the $m \times n$ matrix

$$
\mathbf{J}(\mathbf{q})=\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}=\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial q_{1}} & \frac{\partial f_{1}}{\partial q_{2}} & \cdots & \frac{\partial f_{1}}{\partial q_{n}} \\
\hdashline \ddot{f}_{m} & \frac{\partial f_{m}}{\partial q_{2}} & \cdots & \frac{\partial f_{m}}{\partial q_{n}}
\end{array}\right] \quad \mathbf{J}(\mathbf{q}) \in \mathbb{R}^{m \times n}
$$

is called the Jacobian matrix or JACOBIAN of the manipulator

## Analytical Jacobian

If the infinitesimal period of time $d t$ is considered, one obtains

$$
\frac{d \mathbf{x}}{d t}=\mathbf{J}(\mathbf{q}) \frac{d \mathbf{q}}{d t}
$$

that is

$$
\dot{\mathbf{x}}=\left[\begin{array}{l}
\mathbf{v} \\
\dot{\gamma}
\end{array}\right]=\mathbf{J}(\mathbf{q}) \quad \dot{\mathbf{q}}
$$

relating the velocity vector $\dot{\mathbf{x}}$ expressed in $F_{0}$ and the joint velocity vector $\dot{\mathbf{q}}$

- The elements $J_{i, j}$ of the Jacobian are nonlinear functions of $\mathbf{q}(t)$ : therefore these elements change in time according to the value of the joint variables
- The Jacobian's dimensions depend on the number $n$ of joints and on the dimension $m$ of the considered operative space:

$$
\mathbf{J}(\mathbf{q}) \in \mathbb{R}^{m \times n}
$$

## AJ-Example: 2 DOF manipulator



|  | $d$ | $\theta$ | $a$ | $\alpha$ |
| :---: | :---: | :---: | :---: | :---: |
| L 1 | 0 | $\theta_{1}$ | $a_{1}$ | $0^{\circ}$ |
| L 2 | 0 | $\theta_{2}$ | $a_{2}$ | $0^{\circ}$ |

The end-effector position is

$$
\begin{aligned}
p_{x} & =a_{1} C_{1}+a_{2} C_{12} \\
p_{y} & =a_{1} S_{1}+a_{2} S_{12} \\
p_{z} & =0
\end{aligned}
$$

If $\gamma$ is composed by the Euler angles $\phi, \theta, \psi$ defined about axes $\mathbf{z}_{0}, \mathbf{y}_{1}, \mathbf{z}_{2}$, and considering that the $\mathbf{z}$ axes of the base frame and of the end effector are parallel, the total rotation is equivalent to a single rotation about $\mathbf{z}_{0}$ and therefore:

$$
\left[\begin{array}{c}
\phi \\
\theta \\
\psi
\end{array}\right]=\left[\begin{array}{c}
\theta_{1}+\theta_{2} \\
0 \\
0
\end{array}\right]
$$

## AJ-Example: 2 DOF manipulator

Euler angles:

$$
\left[\begin{array}{c}
\phi \\
\theta \\
\psi
\end{array}\right]=\left[\begin{array}{c}
\theta_{1}+\theta_{2} \\
0 \\
0
\end{array}\right]
$$

By differentiation of the expressions of $\mathbf{p}$ and $\gamma$ one obtains

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\mathbf{p}} \\
\dot{\gamma}
\end{array}\right] } & =\left[\begin{array}{cc}
-a_{1} S_{1}-a_{2} S_{12} & -a_{2} S_{12} \\
a_{1} C_{1}+a_{2} C_{12} & a_{2} C_{12} \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] \dot{\mathbf{q}} \\
& =\mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}
\end{aligned}
$$

## Geometric Jacobian

## Geometric Expression of the Jacobian

- The geometric expression of the Jacobian is obtained considering the rotational velocity vector $\boldsymbol{\omega}$
- Each column of the Jacobian matrix defines the effect of the $i$-th joint on the end-effector velocity and it is divided in two terms
- The first term considers the effect of $\dot{q}_{i}$ on the linear velocity $\mathbf{v}$, while the second one on the rotational velocity $\boldsymbol{\omega}$, i.e.

$$
\left[\begin{array}{c}
\mathbf{v} \\
\boldsymbol{\omega}
\end{array}\right]=\mathbf{J} \dot{\mathbf{q}} \quad \Longrightarrow \quad \mathbf{J}=\left[\begin{array}{llll}
\mathbf{J}_{v 1} & \mathbf{J}_{v 2} & \ldots & \mathbf{J}_{v n} \\
\mathbf{J}_{\omega 1} & \mathbf{J}_{\omega 2} & \ldots & \mathbf{J}_{\omega n}
\end{array}\right]
$$

- Therefore

$$
\begin{aligned}
\mathbf{v} & =\mathbf{J}_{v 1} \dot{q}_{1}+\mathbf{J}_{v 2} \dot{q}_{2}+\ldots+\mathbf{J}_{v n} \dot{q}_{n} \\
\boldsymbol{\omega} & =\mathbf{J}_{\omega 1} \dot{q}_{1}+\mathbf{J}_{\omega 2} \dot{q}_{2}+\ldots+\mathbf{J}_{\omega n} \dot{q}_{n}
\end{aligned}
$$

$>$ The analytic and geometric Jacobian differ for the rotational part
$>$ In order to obtain the geometric Jacobian, a general method based on the geometrical structure of the manipulator is adopted

## Derivative of a Rotation Matrix

- Let's consider a rotation matrix $\mathbf{R}=\mathbf{R}(t)$ and $\mathbf{R}(t) \mathbf{R}^{T}(t)=\mathbf{I}$
- Let's derive the equation: $\mathbf{R}(t) \mathbf{R}^{T}(t)=\mathbf{I} \Rightarrow \dot{\mathbf{R}}(t) \mathbf{R}^{T}(t)+\mathbf{R}(t) \dot{\mathbf{R}}^{T}(t)=\mathbf{0}$
- A $3 \times 3$ (skew-symmetric) matrix $\mathbf{S}(t)$ is obtained

$$
\mathbf{S}(t)=\dot{\mathbf{R}}(t) \mathbf{R}^{T}(t)
$$

- As a matter of fact

$$
\mathbf{S}(t)+\mathbf{S}^{T}(t)=\mathbf{0} \quad \Longrightarrow \quad \mathbf{S}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

- Then

$$
\dot{\mathbf{R}}(t)=\mathbf{S}(t) \mathbf{R}(t)
$$

- This means that the derivative of a rotation matrix is expressed as a function of the matrix itself


## Derivative of a Rotation Matrix

## Physical interpretation:

Matrix $\mathbf{S}(t)$ is expressed as a function of a vector $\boldsymbol{\omega}(t)=\left[\omega_{x}, \omega_{y}, \omega_{z}\right]^{T}$ representing the angular velocity of $\mathbf{R}(t)$

Consider a constant vector $\mathbf{p}^{\prime}$ and the vector $\mathbf{p}(t)=\mathbf{R}(t) \mathbf{p}^{\prime}$
The time derivative of $\mathbf{p}(t)$ is

$$
\dot{\mathbf{p}}(t)=\dot{\mathbf{R}}(t) \mathbf{p}^{\prime}
$$

which can be written as

$$
\dot{\mathbf{p}}(t)=\mathbf{S}(t) \mathbf{R}(t) \mathbf{p}^{\prime}=\boldsymbol{\omega} \times\left(\mathbf{R}(t) \mathbf{p}^{\prime}\right)
$$

(This last result is well known from the classical mechanics of rigid bodies)

## Derivative of a Rotation Matrix

- Moreover it can be shown that:

$$
\mathbf{R} \mathbf{S}(\omega) \mathbf{R}^{T}=\mathbf{S}(\mathbf{R} \omega)
$$

i.e. the matrix form of $\mathbf{S}(\boldsymbol{\omega})$ in a frame rotated by $\mathbf{R}$ is the same as the skew-symmetric matrix $\mathbf{S}(\mathbf{R} \boldsymbol{\omega})$ of the vector $\boldsymbol{\omega}$ rotated by $\mathbf{R}$

- (1) Note also that $\mathbf{S}(\boldsymbol{\omega})$ is linear in its argument:

$$
\mathbf{S}\left(k_{1} \boldsymbol{\omega}_{1}+k_{2} \boldsymbol{\omega}_{2}\right)=k_{1} \mathbf{S}\left(\boldsymbol{\omega}_{1}\right)+k_{2} \mathbf{S}\left(\boldsymbol{\omega}_{2}\right)
$$

- (2) Note also the property of $\mathbf{S}(\boldsymbol{\omega})$ :

$$
\mathbf{S}(\boldsymbol{\omega}) \mathbf{p}=\boldsymbol{\omega} \times \mathbf{p}
$$

## Derivative of a Rotation Matrix

Consider two frames $F$ and $F^{\prime}$, which differ by the rotation $\mathbf{R}\left(\omega^{\prime}=\mathrm{R} \omega\right)$ Then $\mathbf{S}\left(\boldsymbol{\omega}^{\prime}\right)$ operates on vectors in $F^{\prime}$ and $\mathbf{S}(\boldsymbol{\omega})$ on vectors in $F$ Consider a vector $\mathbf{V}_{\mathbf{a}}{ }^{\prime}$ in $F^{\prime}$ and assume that some operations must be performed on that vector in $F$ (then using $\mathbf{S}$ )
It is necessary to:

1. Transform the vector(s) from $F$ to $F$ (by $\mathbf{R}^{T}$ )
2. Use $\mathbf{S}(\boldsymbol{\omega})$
3. Transform back the result to $\bar{F}^{\prime}($ by $\mathbf{R})$

That is:

$$
\begin{aligned}
\mathbf{v}_{b}^{\prime} & =\mathbf{R} \mathbf{S}(\omega) \mathbf{R}^{T} \mathbf{v}_{a}^{\prime} \\
\mathbf{v}_{b}^{\prime} & =\mathbf{S}\left(\omega^{\prime}\right) \mathbf{v}_{a}^{\prime}
\end{aligned}
$$

equivalent to the transformation using $\mathbf{S}(\boldsymbol{\omega})$

## Example

Consider the elementary rotation about z

$$
\operatorname{Rot}(\mathbf{z}, \theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If $\theta$ is a function of time
$\mathbf{S}(t)=\left[\begin{array}{ccc}-\dot{\theta} \sin \theta & -\dot{\theta} \cos \theta & 0 \\ \dot{\theta} \cos \theta & -\dot{\theta} \sin \theta & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & -\dot{\theta} & 0 \\ \dot{\theta} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\mathbf{S}(\omega(t))$

Then

$$
\omega=\left[\begin{array}{l}
0 \\
0 \\
\dot{\theta}
\end{array}\right]
$$

i.e. a rotational velocity about $\mathbf{z}$.

## Geometric Jacobian

The end-effector velocity is a linear composition of the joint velocities

$$
\begin{aligned}
\mathbf{v} & =\mathbf{J}_{v 1} \dot{q}_{1}+\mathbf{J}_{v 2} \dot{q}_{2}+\ldots+\mathbf{J}_{v n} \dot{q}_{n} \\
\omega & =\mathbf{J}_{\omega 1} \dot{q}_{1}+\mathbf{J}_{\omega 2} \dot{q}_{2}+\ldots+\mathbf{J}_{\omega n} \dot{q}_{n}
\end{aligned}
$$



Each column of the Jacobian matrix defines the effect of the $i$-th joint on the endeffector velocity

## Geometric Jacobian



$$
\boldsymbol{p}^{0}=\boldsymbol{o}_{1}^{0}+\boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1}
$$

$$
\begin{aligned}
\dot{\boldsymbol{p}}^{0} & =\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\dot{\boldsymbol{R}}_{1}^{0} \boldsymbol{p}^{1} \\
& =\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{S}\left(\boldsymbol{\omega}_{1}^{0}\right) \boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1} \\
& \left.=\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{\omega}_{1}^{0} \times \boldsymbol{r}_{1}^{0} \triangleq \boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1}\right) \\
\dot{\boldsymbol{p}}^{0} & =\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{\omega}_{1}^{0} \times \boldsymbol{r}_{1}^{0}
\end{aligned}
$$

## Geometric Jacobian - Link Velocity

## Linear velocity

(of link $i$ as a function of velocities of link $i-1$ )

$\boldsymbol{v}_{i-1, i}$ denotes the velocity of the origin of Frame $i$

$$
\boldsymbol{p}_{i}=\boldsymbol{p}_{i-1}+\boldsymbol{R}_{i-1} \boldsymbol{r}_{i-1, i}^{i-1}
$$

with respect to the origin of Frame $i-1$

$$
\begin{aligned}
\dot{\boldsymbol{p}}^{0} & =\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{\omega}_{1}^{0} \times \boldsymbol{r}_{1}^{0} \\
\dot{\boldsymbol{p}}_{i} & =\dot{\boldsymbol{p}}_{i-1}+\boldsymbol{R}_{i-1} \dot{\boldsymbol{r}}_{i-1, i}^{i-1}+\boldsymbol{\omega}_{i-1} \times \boldsymbol{R}_{i-1} \boldsymbol{r}_{i-1, i}^{i-1} \\
& =\dot{\boldsymbol{p}}_{i-1}+\boldsymbol{v}_{i-1, i}+\boldsymbol{\omega}_{i-1} \times \boldsymbol{r}_{i-1, i}
\end{aligned}
$$

## Geometric Jacobian - Link Velocity

Angular velocity
(of link $i$ as a function of velocities of link $i-1$ )

$$
\boldsymbol{R}_{i}=\boldsymbol{R}_{i-1} \boldsymbol{R}_{i}^{i-1}
$$

$$
\begin{gathered}
\boldsymbol{S}\left(\boldsymbol{\omega}_{i}\right) \boldsymbol{R}_{i}=\boldsymbol{S}\left(\boldsymbol{\omega}_{i-1}\right) \boldsymbol{R}_{i}+\boldsymbol{R}_{i-1} \boldsymbol{S}\left(\boldsymbol{\omega}_{i-1, i}^{i-1}\right) \boldsymbol{R}_{i}^{i-1} \\
=\boldsymbol{S}\left(\boldsymbol{\omega}_{i-1}\right) \boldsymbol{R}_{i}+\boldsymbol{S}\left(\boldsymbol{R}_{i-1} \boldsymbol{\omega}_{i-1, i}^{i-1}\right) \boldsymbol{R}_{i} \\
\boldsymbol{\omega}_{i}=\boldsymbol{\omega}_{i-1}+\boldsymbol{R}_{i-1} \boldsymbol{\omega}_{i-1, i}^{i-1} \\
=\boldsymbol{\omega}_{i-1}+\boldsymbol{\omega}_{i-1, i}
\end{gathered}
$$

## Geometric Jacobian - Link Velocity

$$
\begin{aligned}
\boldsymbol{\omega}_{i} & =\boldsymbol{\omega}_{i-1}+\boldsymbol{\omega}_{i-1, i} \\
\dot{\boldsymbol{p}}_{i} & =\dot{\boldsymbol{p}}_{i-1}+\boldsymbol{v}_{i-1, i}+\boldsymbol{\omega}_{i-1} \times \boldsymbol{r}_{i-1, i}
\end{aligned}
$$

Prismatic joint:

$$
\begin{aligned}
\boldsymbol{\omega}_{i-1, i} & =\mathbf{0} \\
\boldsymbol{v}_{i-1, i} & =\dot{d}_{i} \boldsymbol{z}_{i-1} \\
\boldsymbol{\omega}_{i} & =\boldsymbol{\omega}_{i-1} \\
\dot{\boldsymbol{p}}_{i} & =\dot{\boldsymbol{p}}_{i-1}+\dot{d}_{i} \boldsymbol{z}_{i-1}+\boldsymbol{\omega}_{i} \times \boldsymbol{r}_{i-1, i}
\end{aligned}
$$

Revolute joint:

$$
\begin{aligned}
\boldsymbol{\omega}_{i-1, i} & =\dot{\vartheta}_{i} \boldsymbol{z}_{i-1} \\
\boldsymbol{v}_{i-1, i} & =\boldsymbol{\omega}_{i-1, i} \times \boldsymbol{r}_{i-1, i} \\
\boldsymbol{\omega}_{i} & =\boldsymbol{\omega}_{i-1}+\dot{\vartheta}_{i} \boldsymbol{z}_{i-1} \\
\dot{\boldsymbol{p}}_{i} & =\dot{\boldsymbol{p}}_{i-1}+\boldsymbol{\omega}_{i} \times \boldsymbol{r}_{i-1, i}
\end{aligned}
$$

Geometric Jacobian - Computation

## Linear velocity

$$
J=\left[\begin{array}{lll}
\jmath_{P 1} & & \jmath_{P n} \\
\jmath_{O 1} & \cdots & \jmath_{O n}
\end{array}\right] \quad \dot{v}=\sum_{i=1}^{n} \frac{\partial v}{\partial q_{i}} \dot{q}_{i}=\sum_{i=1}^{n} J_{P i} \dot{q}_{i}
$$

Joint i prismatic

$$
\dot{q}_{i} \boldsymbol{J}_{P i}=\dot{d}_{i} \boldsymbol{z}_{i-1} \quad \Longrightarrow \quad \boldsymbol{\jmath}_{P i}=\boldsymbol{z}_{i-1}
$$

Joint i revolute


$$
\begin{aligned}
\dot{q}_{i} \boldsymbol{J}_{P i} & =\boldsymbol{\omega}_{i-1, i} \times \boldsymbol{r}_{i-1, n} \\
& =\dot{\vartheta}_{i} \boldsymbol{z}_{i-1} \times\left(\boldsymbol{p}-\boldsymbol{p}_{i-1}\right)
\end{aligned}
$$

$$
\boldsymbol{\jmath}_{P i}=\boldsymbol{z}_{i-1} \times\left(\boldsymbol{p}-\boldsymbol{p}_{i-1}\right)
$$

## Geometric Jacobian - Computation

$$
\boldsymbol{J}=\left[\begin{array}{lll}
\boldsymbol{y}_{P 1} & & \boldsymbol{J}_{P n} \\
& \ldots & \\
\boldsymbol{J}_{O 1} & & \boldsymbol{J}_{O n}
\end{array}\right]
$$

$$
\boldsymbol{\omega}_{e}=\boldsymbol{\omega}_{n}=\sum_{i=1}^{n} \boldsymbol{\omega}_{i-1, i}=\sum_{i=1}^{n} \boldsymbol{J}_{O i} \dot{q}_{i}
$$

## Angular velocity

Joint i prismatic

$$
\dot{q}_{i} \boldsymbol{J}_{O i}=\mathbf{0} \quad \Longrightarrow \quad \jmath_{O i}=\mathbf{0}
$$

Joint i revolute

$$
\dot{q}_{i} \boldsymbol{J}_{O i}=\dot{\vartheta}_{i} \boldsymbol{z}_{i-1} \quad \Longrightarrow \quad \jmath_{O i}=\boldsymbol{z}_{i-1}
$$

## Geometric Jacobian - Computation

## Column of geometric Jacobian

$$
\begin{aligned}
& {\left[\begin{array}{c}
\boldsymbol{J}_{P i} \\
\boldsymbol{\jmath}_{O i}
\end{array}\right]= \begin{cases}{\left[\begin{array}{c}
\boldsymbol{z}_{i-1} \\
\mathbf{0}
\end{array}\right]} & \text { prismatic joint } \\
{\left[\begin{array}{c}
\boldsymbol{z}_{i-1} \times\left(\boldsymbol{p}-\boldsymbol{p}_{i-1}\right) \\
\boldsymbol{z}_{i-1}
\end{array}\right]} & \text { revolute joint } \\
\star \boldsymbol{z}_{i-1}=\boldsymbol{R}_{1}^{0}\left(q_{1}\right) \ldots \boldsymbol{R}_{i-1}^{i-2}\left(q_{i-1}\right) \boldsymbol{z}_{0} \\
\star & \tilde{\boldsymbol{p}}=\boldsymbol{A}_{1}^{0}\left(q_{1}\right) \ldots \boldsymbol{A}_{n}^{n-1}\left(q_{n}\right) \tilde{\boldsymbol{p}}_{0} \\
\star \tilde{\boldsymbol{p}}_{i-1}=\boldsymbol{A}_{1}^{0}\left(q_{1}\right) \ldots \boldsymbol{A}_{i-1}^{i-2}\left(q_{i-1}\right) \tilde{\boldsymbol{p}}_{0}\end{cases} }
\end{aligned}
$$

## Geometric Jacobian Representation in a Different Frame

- The Jacobian matrix depends on the frame in which the end-effector velocity is expressed
- The above equations allow computation of the geometric Jacobian with respect to the base frame
- For a different Frame $t$ :

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{p}^{t} \\
\boldsymbol{\omega}^{t}
\end{array}\right] } & =\left[\begin{array}{cc}
\boldsymbol{R}^{t} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{R}^{t}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{p}} \\
\boldsymbol{\omega}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\boldsymbol{R}^{t} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{R}^{t}
\end{array}\right] \boldsymbol{J} \dot{\boldsymbol{q}} \\
\boldsymbol{J}^{t} & =\left[\begin{array}{cc}
\boldsymbol{R}^{t} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{R}^{t}
\end{array}\right] \boldsymbol{J}
\end{aligned}
$$

## RECAP: Geometric Jacobian Contribution of a Prismatic Joint

Note: joints beyond the $i$-th one are considered to be "frozen", so that the distal part of the robot is a single rigid body


## RECAP: Geometric Jacobian Contribution of a Revolute Joint

Note: joints beyond the $i$-th one are considered to be "frozen", so that the distal part of the robot is a single rigid body


## RECAP: Geometric Jacobian

It is possible to show that the $i$-th column of the Jacobian can be computed as

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{J}_{v i} \\
\mathbf{J}_{\omega i}
\end{array}\right]=\left[\begin{array}{c}
{ }^{0} \mathbf{z}_{i-1} \times\left({ }^{0} \mathbf{p}_{n}-{ }^{0} \mathbf{p}_{i-1}\right) \\
{ }^{0} \mathbf{z}_{i-1}
\end{array}\right] \quad \text { revolute joint }} \\
& {\left[\begin{array}{l}
\mathbf{J}_{v i} \\
\mathbf{J}_{\omega i}
\end{array}\right]=\left[\begin{array}{c}
{ }^{0} \mathbf{z}_{i-1} \\
\mathbf{0}
\end{array}\right]} \\
& \text { prismatic joint }
\end{aligned}
$$

where ${ }^{0} \mathbf{z}_{i-1}$ and ${ }^{0} \mathbf{r}_{i-1, n}={ }^{0} \mathbf{p}_{n}-{ }^{0} \mathbf{p}_{i-1}$ depend on the joint variables $q_{1}, q_{2}, \ldots, q_{n}$. In particular:

- ${ }^{0} \mathbf{p}_{n}$ is the end-effector position, defined in the first three elements of the last column of ${ }^{0} \mathbf{T}_{n}={ }^{0} \mathbf{H}_{1}\left(q_{1}\right) \ldots{ }^{n-1} \mathbf{H}_{n}\left(q_{n}\right)$;
- ${ }^{0} \mathbf{p}_{i-1}$ is the position of $\mathcal{F}_{i-1}$, defined in the first three elements of the last column of ${ }^{0} \mathbf{T}_{i-1}={ }^{0} \mathbf{H}_{1}\left(q_{1}\right) \ldots{ }^{i-2} \mathbf{H}_{i-1}\left(q_{i-1}\right)$;
- ${ }^{0} \mathbf{z}_{i-1}$ is the third column of ${ }^{0} \mathbf{R}_{i-1}$ :

$$
{ }^{0} \mathbf{R}_{i-1}={ }^{0} \mathbf{R}_{1}\left(q_{1}\right){ }^{1} \mathbf{R}_{2}\left(q_{2}\right) \ldots{ }^{i-2} \mathbf{R}_{i-1}\left(q_{i-1}\right)
$$

## GJ-Example: 2 DOF manipulator



The Jacobian is computed as

$$
\mathbf{J}=\left[\begin{array}{cc}
\mathbf{z}_{0} \times\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right) & \mathbf{z}_{1} \times\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \\
\mathbf{z}_{0} & \mathbf{z}_{1}
\end{array}\right]
$$

The origins of the frames are

$$
\mathbf{p}_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{p}_{1}=\left[\begin{array}{c}
a_{1} C_{1} \\
a_{1} S_{1} \\
0
\end{array}\right] \quad \mathbf{p}_{2}=\left[\begin{array}{c}
a_{1} C_{1}+a_{2} C_{12} \\
a_{1} S_{1}+a_{2} S_{12} \\
0
\end{array}\right]
$$

and the rotational axes are

$$
\mathbf{z}_{0}=\mathbf{z}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

## GJ-Example: 2 DOF manipulator

Then

$$
\begin{aligned}
\mathbf{z}_{0} \times\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right) & =-\left[\begin{array}{ccc}
0 & 0 & a_{1} S_{1}+a_{2} S_{12} \\
0 & 0 & -a_{1} C_{1}-a_{2} C_{12} \\
-a_{1} S_{1}-a_{2} S_{12} & a_{1} C_{1}+a_{2} C_{12} & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-a_{1} S_{1}-a_{2} S_{12} \\
a_{1} C_{1}+a_{2} C_{12} \\
0
\end{array}\right] \\
\mathbf{z}_{1} \times\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) & =-\left[\begin{array}{ccc}
0 & 0 & a_{2} S_{12} \\
0 & 0 & -a_{2} C_{12} \\
-a_{2} S_{12} & a_{2} C_{12} & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-a_{2} S_{12} \\
a_{2} C_{12} \\
0
\end{array}\right]
\end{aligned}
$$

In conclusion:

$$
\mathbf{J}(\mathbf{q})=\left[\begin{array}{cc}
-a_{1} S_{1}-a_{2} S_{12} & -a_{2} S_{12} \\
a_{1} C_{1}+a_{2} C_{12} & a_{2} C_{12} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$

## GJ-Example: 2 DOF manipulator

Jacobian:

$$
\mathbf{J}(\mathbf{q})=\left[\begin{array}{cc}
-a_{1} S_{1}-a_{2} S_{12} & -a_{2} S_{12} \\
a_{1} C_{1}+a_{2} C_{12} & a_{2} C_{12} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$

If the orientation is not of interest, only the first two rows may be considered

$$
\mathbf{J}(\mathbf{q})=\left[\begin{array}{cc}
-a_{1} S_{1}-a_{2} S_{12} & -a_{2} S_{12} \\
a_{1} C_{1}+a_{2} C_{12} & a_{2} C_{12}
\end{array}\right]
$$

maximum rank is $\mathbf{2} \Rightarrow$ at most $\mathbf{2}$ components of the linear/angular end-effector velocity can be independently assigned

## GJ-Example: 3-link planar manipulator



## GJ-Example: 3-link planar manipulator



$$
\begin{aligned}
& \boldsymbol{J}(\boldsymbol{q})=\left[\begin{array}{cc}
\boldsymbol{z}_{0} \times\left(\boldsymbol{p}-\boldsymbol{p}_{0}\right) & \boldsymbol{z}_{1} \times\left(\boldsymbol{p}-\boldsymbol{p}_{1}\right) \\
\boldsymbol{z}_{0} & \boldsymbol{z}_{2} \times\left(\boldsymbol{p}-\boldsymbol{p}_{2}\right) \\
\boldsymbol{z}_{2}
\end{array}\right] \\
& \boldsymbol{p}_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \boldsymbol{p}_{1}=\left[\begin{array}{c}
a_{1} c_{1} \\
a_{1} s_{1} \\
0
\end{array}\right] \quad \boldsymbol{p}_{2}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
0
\end{array}\right]
\end{aligned}
$$

$$
\boldsymbol{p}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123} \\
0
\end{array}\right]
$$

$$
\boldsymbol{z}_{0}=\boldsymbol{z}_{1}=\boldsymbol{z}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

## GJ-Example: 3-link planar manipulator

$$
\boldsymbol{J}=\left[\begin{array}{ccc}
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} & -a_{2} s_{12}-a_{3} s_{123} & -a_{3} s_{123} \\
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} & a_{2} c_{12}+a_{3} c_{123} & a_{3} c_{123} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

$$
\boldsymbol{J}_{P}=\left[\begin{array}{ccc}
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} & -a_{2} s_{12}-a_{3} s_{123} & -a_{3} s_{123} \\
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} & a_{2} c_{12}+a_{3} c_{123} & a_{3} c_{123}
\end{array}\right]
$$

## GJ-Example: 3 DOF anthropomorphic manipulator

The canonical transformation matrices are


$$
\begin{aligned}
{ }^{0} \mathbf{H}_{1}= & {\left[\begin{array}{cccc}
C_{1} & 0 & S_{1} & 0 \\
S_{1} & 0 & -C_{1} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{1} \mathbf{H}_{2}=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & a_{2} C_{2} \\
S_{2} & C_{2} & 0 & a_{2} S_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
{ }^{2} \mathbf{H}_{3} & =\left[\begin{array}{cccc}
C_{3} & -S_{3} & 0 & a_{3} C_{3} \\
S_{3} & C_{3} & 0 & a_{3} S_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and the kinematic model

$$
{ }^{0} \mathbf{T}_{3}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & S_{1} & C_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) \\
S_{1} C_{23} & -S_{1} S_{23} & -C_{1} & S_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) \\
S_{23} & C_{23} & 0 & a_{2} S_{2}+a_{3} S_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## GJ-Example: 3 DOF anthropomorphic manipulator

The Jacobian results

$$
\mathbf{J}=\left[\begin{array}{ccc}
\mathbf{z}_{0} \times\left(\mathbf{p}_{3}-\mathbf{p}_{0}\right) & \mathbf{z}_{1} \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right) & \mathbf{z}_{2} \times\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right) \\
\mathbf{z}_{0} & \mathbf{z}_{1} & \mathbf{z}_{2}
\end{array}\right]
$$

where

$$
\mathbf{p}_{0}=\mathbf{p}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{p}_{2}=\left[\begin{array}{c}
a_{2} C_{1} C_{2} \\
a_{2} S_{1} S_{2} \\
a_{2} S_{2}
\end{array}\right] \quad \mathbf{p}_{3}=\left[\begin{array}{c}
C_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) \\
S_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) \\
a_{2} S_{2}+a_{3} S_{23}
\end{array}\right]
$$

The rotational axes are

$$
\mathbf{z}_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{z}_{1}=\mathbf{z}_{2}=\left[\begin{array}{c}
S_{1} \\
-C_{1} \\
0
\end{array}\right]
$$

## GJ-Example: 3 DOF anthropomorphic manipulator

Therefore

$$
\mathbf{J}=\left[\begin{array}{ccc}
-S_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) & -C_{1}\left(a_{2} S_{2}+a_{3} S_{23}\right) & -a_{3} C_{1} S_{23} \\
C_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) & -S_{1}\left(a_{2} S_{2}+a_{3} S_{23}\right) & -a_{3} S_{1} S_{23} \\
0 & a_{2} C_{2}+a_{3} C_{23} & a_{3} C_{23} \\
0 & S_{1} & S_{1} \\
0 & -C_{1} & -C_{1} \\
1 & 0 & 0
\end{array}\right]
$$

- Only three rows are linearly independent (3 dof).
- Note that it is not possible to achieve all the rotational velocities $\omega$ in $\mathbb{R}^{3}$.
- Moreover $S_{1} \omega_{y}=-C_{1} \omega_{x} \quad\left(\omega_{x}=S_{1} \dot{\theta}_{2}+S_{1} \dot{\theta}_{3}, \omega_{y}=-C_{1} \dot{\theta}_{2}-C_{1} \dot{\theta}_{3},\right)$.

By considering the linear velocity only, one obtains:

$$
\mathbf{J}=\left[\begin{array}{ccc}
-S_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) & -C_{1}\left(a_{2} S_{2}+a_{3} S_{23}\right) & -a_{3} C_{1} S_{23} \\
C_{1}\left(a_{2} C_{2}+a_{3} C_{23}\right) & -S_{1}\left(a_{2} S_{2}+a_{3} S_{23}\right) & -a_{3} S_{1} S_{23} \\
0 & a_{2} C_{2}+a_{3} C_{23} & a_{3} C_{23}
\end{array}\right]
$$

## GJ-Example: 3 DOF anthropomorphic manipulator

Note that:

- $\dot{\theta}_{1}$ does not affect $v_{z}\left(\operatorname{nor} \omega_{x}, \omega_{y}\right)$
- $\omega_{z}$ depends only by $\dot{\theta}_{1}$
- $S_{1} \omega_{y}=-C_{1} \omega_{x}: \quad \omega_{x}$ and $\omega_{y}$ are not independent
- the first three rows may also be obtained by derivation of ${ }^{0} \mathbf{p}_{3}$

In the "linear velocity" case (i.e. the first three rows only)

$$
\operatorname{det}(\mathbf{J})=-a_{2} a_{3} S_{3}\left(a_{2} C_{2}+a_{3} C_{23}\right)
$$

Therefore $\operatorname{det}(\mathbf{J})=0$ in two cases:

- $S_{3}=0 \quad \Longrightarrow \quad \theta_{3}=\left\{\begin{array}{l}0 \\ \pi\end{array}\right.$
- $\left(a_{2} C_{2}+a_{3} C_{23}\right)=0$ i.e. when the wrist is on the $z$ axis $\left(p_{x}=p_{y}=0\right)$ : shoulder singularity


## GJ-Example: 3 DOF spherical manipulator



Canonical transformation matrices

$$
\begin{gathered}
{ }^{0} \mathbf{H}_{1}=\left[\begin{array}{cccc}
C_{1} & 0 & -S_{1} & 0 \\
S_{1} & 0 & C_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }^{1} \mathbf{H}_{2}=\left[\begin{array}{cccc}
C_{2} & 0 & S_{2} & 0 \\
S_{2} & 0 & -C_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{2} \mathbf{H}_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Kinematic model:

$$
{ }^{0} \mathbf{T}_{3}=\left[\begin{array}{cccc}
C_{1} C_{2} & -S_{1} & C_{1} S_{2} & -d_{2} S_{1}+d_{3} C_{1} S_{2} \\
C_{2} S_{1} & C_{1} & S_{1} S_{2} & d_{2} C_{1}+d_{3} S_{1} S_{2} \\
-S_{2} & 0 & C_{2} & C_{2} d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## GJ-Example: 3 DOF spherical manipulator

The Jacobian is

$$
\mathbf{J}=\left[\begin{array}{ccc}
\mathbf{z}_{0} \times\left(\mathbf{p}_{3}-\mathbf{p}_{0}\right) & \mathbf{z}_{1} \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right) & \mathbf{z}_{2} \\
\mathbf{z}_{0} & \mathbf{z}_{1} & \mathbf{0}
\end{array}\right]
$$

with

$$
\mathbf{z}_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{z}_{1}=\left[\begin{array}{c}
-S_{1} \\
C_{1} \\
0
\end{array}\right] \quad \mathbf{z}_{2}=\left[\begin{array}{c}
C_{1} S_{2} \\
S_{1} S_{2} \\
C_{2}
\end{array}\right]
$$

and

$$
\mathbf{p}_{0}=\mathbf{p}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{p}_{2}=\left[\begin{array}{c}
-d_{2} S_{1} \\
d_{2} C_{1} \\
0
\end{array}\right] \quad \mathbf{p}_{3}=\left[\begin{array}{c}
-d_{2} S_{1}+d_{3} C_{1} S_{2} \\
d_{2} C_{1}+d_{3} S_{1} S_{2} \\
C_{2} d_{3}
\end{array}\right]
$$

## GJ-Example: 3 DOF spherical manipulator



Then

$$
J=\left[\begin{array}{ccc}
-d_{2} C_{1}-d_{3} S_{1} S_{2} & d_{3} C_{1} C_{2} & C_{1} S_{2} \\
-d_{2} S_{1}+d_{3} C_{1} S_{2} & d_{3} S_{1} C_{2} & S_{1} S_{2} \\
0 & -d_{3} S_{2} & C_{2} \\
0 & -S_{1} & 0 \\
0 & C_{1} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Note that:

- $\dot{q}_{3}$ does not affect $\omega$;
- $\omega_{z}$ depends only on $\dot{q}_{1}$;
- $S_{1} \omega_{y}=-C_{1} \omega_{x}$.


## GJ-Example: 3 DOF spherical wrist



$$
J=\left[\begin{array}{ccc}
-d_{6} S_{4} S_{5} & d_{6} C_{4} C_{5} & 0 \\
d_{6} C_{4} S_{5} & d_{6} C_{5} S_{4} & 0 \\
0 & -d_{6} S_{5} & 0 \\
0 & -S_{4} & C_{4} S_{5} \\
0 & C_{4} & S_{4} S_{5} \\
1 & 0 & C_{5}
\end{array}\right]
$$

By choosing $d_{6}=0$, i.e. the origin of $\mathcal{F}_{6}$ is in the intersection point of the three joint axes, then

With this expression, however, the linear

$$
J=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -S_{4} & C_{4} S_{5} \\
0 & C_{4} & S_{4} S_{5} \\
1 & 0 & C_{5}
\end{array}\right]
$$

velocity of the end-effector is not computed.
$\operatorname{det}(\mathbf{J})=0 \Longrightarrow S_{5}=0$, i.e. $\theta_{5}=0, \pi$. In this case it is not possible to determine individually $\dot{\theta}_{4}$ and $\dot{\theta}_{6}$.

## GJ-Example: PUMA 560



Only revolute joints are present:

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{ccc}
\mathbf{z}_{0} \times\left(\mathbf{p}_{6}-\mathbf{p}_{0}\right) & \mathbf{z}_{1} \times\left(\mathbf{p}_{6}-\mathbf{p}_{1}\right) & \mathbf{z}_{2} \times\left(\mathbf{p}_{6}-\mathbf{p}_{2}\right) \\
\mathbf{z}_{0} & \mathbf{z}_{1} & \mathbf{z}_{2} \\
\mathbf{z}_{3} \times\left(\mathbf{p}_{6}-\mathbf{p}_{3}\right) & \mathbf{z}_{4} \times\left(\mathbf{p}_{6}-\mathbf{p}_{4}\right) & \mathbf{z}_{5} \times\left(\mathbf{p}_{6}-\mathbf{p}_{5}\right) \\
\mathbf{z}_{3} & \mathbf{z}_{4} & \mathbf{z}_{5}
\end{array}\right]
\end{gathered}
$$

## GJ-Example: PUMA 560

If $d_{6}=0$ :

$$
\mathbf{J}=\left[\begin{array}{ccc}
-d_{3} C_{1}-S_{1}\left(a_{2} C_{2}+d_{4} S_{23}\right) & C_{1}\left(d_{4} C_{23}-a_{2} S_{2}\right) & d_{4} C_{1} C_{23} \\
-d_{3} S_{1}+C_{1}\left(a_{2} C_{2}+d_{4} S_{23}\right) & S_{1}\left(d_{4} C_{23}-a_{2} S_{2}\right) & d_{4} S_{1} C_{23} \\
0 & a_{2} C_{2}+d_{4} S_{23} & d_{4} S_{23} \\
0 & S_{1} & S_{1} \\
0 & -C_{1} & -C_{1} \\
1 & 0 & 0
\end{array}\right.
$$

$\left.\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ C_{1} S_{23} & S_{1} C_{4}-C_{1} C_{23} S_{4} & C_{1} S_{23} C_{5}+C_{1} C_{23} C_{4} S_{5}+S_{1} S_{4} S_{5} \\ S_{1} S_{23} & -C_{1} C_{4}-S_{1} C_{23} S_{4} & S_{1} S_{23} C_{5}+S_{1} C_{23} C_{4} S_{5}-C_{1} S_{4} S_{5} \\ -C_{23} & -S_{23} S_{4} & -C_{23} C_{5}+S_{23} C_{4} S_{5}\end{array}\right]$

## GJ-Example: Stanford manipulator



## GJ-Example: Stanford manipulator

$$
\begin{gathered}
\boldsymbol{J}=\left[\begin{array}{cccc}
\boldsymbol{z}_{0} \times\left(\boldsymbol{p}-\boldsymbol{p}_{0}\right) & \boldsymbol{z}_{1} \times\left(\boldsymbol{p}-\boldsymbol{p}_{1}\right) & \boldsymbol{z}_{2} & \boldsymbol{z}_{3} \times\left(\boldsymbol{p}-\boldsymbol{p}_{3}\right) \\
\boldsymbol{z}_{1} & \mathbf{0} & \boldsymbol{z}_{4} \times\left(\boldsymbol{p}-\boldsymbol{p}_{4}\right) & \boldsymbol{z}_{5} \times\left(\boldsymbol{p}-\boldsymbol{p}_{5}\right) \\
\boldsymbol{z}_{3} & \boldsymbol{z}_{5}
\end{array}\right] \\
\boldsymbol{p}_{0}=\boldsymbol{p}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \boldsymbol{p}_{3}=\boldsymbol{p}_{4}=\boldsymbol{p}_{5}=\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2} \\
s_{1} s_{2} d_{3}+c_{1} d_{2} \\
c_{2} d_{3}
\end{array}\right] \\
\boldsymbol{p}=\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2}+d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)
\end{array}\right] \\
\boldsymbol{z}_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \boldsymbol{z}_{1}=\left[\begin{array}{c}
-s_{1} \\
c_{1} \\
0
\end{array}\right] \quad \boldsymbol{z}_{2}=\boldsymbol{z}_{3}=\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right] \\
\boldsymbol{z}_{4}=\left[\begin{array}{c}
-c_{1} c_{2} s_{4}-s_{1} c_{4} \\
-s_{1} c_{2} s_{4}+c_{1} c_{4} \\
s_{2} s_{4}
\end{array}\right] \quad \boldsymbol{z}_{5}=\left[\begin{array}{c}
c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5} \\
s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c_{5} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{array}\right]
\end{gathered}
$$

