
Differential Kinematics
• Relations between motion (velocity) in joint space and 
motion (linear/angular velocity) in task space (e.g., 
Cartesian space)

• Instantaneous velocity mappings can be obtained 
through time derivation of the direct kinematics or in a 
geometric way, directly at the differential level

• Different treatments arise for rotational quantities

 establish the link between angular velocity and time 
derivative of a rotation matrix

 establish the link between angular velocity and time 
derivative of the angles in a minimal representation of 
orientation
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Differential Kinematics: the Jacobian matrix
In robotics it is of interest to define, besides 
the mapping between the joint and 
workspace position and orientation (i.e. the 
kinematic equations), also: 

 The relationship between the joints and 
end-effector velocities:

 The relationship between the force applied 
on the environment by the manipulator and 
the corresponding joint torques
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These two relationships are based on a linear operator, a matrix J, 
called the Jacobian of the manipulator.



Differential Kinematics: the Jacobian matrix
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 The Jacobian is a mapping tool that relates Cartesian 
velocities (of the n frame) to the movement of the 
individual robot joints

 The Jacobian collectively represents the sensitivities of 
individual end-effector coordinates to individual joint 
displacements
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If it 'exists' we can define the Inverse Jacobian as:



The Jacobian matrix

In robotics, the Jacobian is used for several purposes:

 To define the relationship between joint and workspace 
velocities

 To define the relationship between forces/torques between 
the spaces

 To study the singular configurations

 To define numerical procedures for the solution of the IK
problem

 To study the manipulability properties
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(Angular velocity of a rigid body)
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vPi − vPj orthogonal to rij

vP2 − vP1 = ω1  r12       (A) 

vP3 − vP1 = ω1  r13 (B)

vP3 − vP2 = ω2  r23 (C)

P1, P2, P3:  (B)−(A) = (C)  

ω1 = ω2 = ω

“rigidity” constraint on distances among points: ||rij|| = constant

• the angular velocity ω is associated to the whole body (not to a point)

• if  P1, P2 with vP1 = vP2 = 0: pure rotation (circular motion of all Pj  line 
P1P2)

• ω = 0: pure translation (all points have the same velocity vP)

( )Pj Pi ij Pi ij ij ijv v r v S r r r         



• The translational and rotational velocities are considered separately

• Let us consider two frames:

 F0 (base frame) and 

 F1 (integral with the rigid body)

•The translational velocity of point p of the rigid body, with respect 

to F0, is defined as the derivative (w.r.t time) of p, denoted as :

Velocity domain
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Velocity domain
For the rotational velocity, two different definitions are possible:

 A triplet             giving the orientation of F1 with respect to F0 (Euler, 

RPY,... angles) is adopted, and its derivative is used to define the 

rotational velocity :

 An angular velocity vector ω is defined, giving the rotational velocity of 

a third frame F2 with origin coincident with F0 and axes parallel to F1
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The velocity vector ω is placed in 
the origin, and its direction 
coincides with the instantaneous 
rotation axis of the rigid body



• The two descriptions lead to different results concerning the 
expression of the Jacobian matrix, in particular in the part 
relative to the rotational velocity

• One obtains (respectively) the:

 Analytic Jacobian JA

The end-effector pose is expressed with reference to a minimal 
representation in the operational space; then, we can compute the 
Jacobian matrix via differentiation of the direct kinematics function w.r.t. 
the joint variables

 Geometric Jacobian JG

The relationship between the joint velocities and the corresponding end-
effector linear and angular velocity

These two expressions are different (in general)!

Jacobian: Analytical and Geometrical expressions
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Problem 1: Integration of the rotational velocity ω

Two problems
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 ??dt 

    (orientation of the rigid body)dt
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 The integration of ω does not have a clear physical interpretation
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So γ is the winner? NO! 

Problem 2: while ω represents the velocity components about the 
three axes of F0, the elements of     are defined with respect to a frame 

that: 

a) is not Cartesian (its axes are not orthogonal to each other)

b) varies in time according to γ
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Problem 2
• v and ω are “vectors”, namely are elements of vector spaces

o they can be obtained as the sum of single contributions (in any order)

o these contributions will be those of the joint velocities

• On the other hand, γ (and dγ/dt) is not an element of a vector 

space

o a minimal representation of a sequence of two rotations is not obtained 

summing the corresponding minimal representations (accordingly, for their time 
derivatives)

 In general    ω ≠  dγ/dt

However, the two expressions physically define the 
same phenomenon (velocity of the manipulator) and 
therefore a relationship between them must exist. 
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Finite and infinitesimal translations

Finite Δx, Δy, Δz or infinitesimal dx, dy, dz translations 
(linear displacements) always commute
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Finite rotations do not commute

We just  saw an example:
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However…



Infinitesimal rotations do commute!

Infinitesimal rotations dφX, dφY, dφZ around x, y, z axes
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In summary
The two expressions of the Jacobian matrix physically define 
the same phenomenon (velocity of the manipulator) and 
therefore a relationship between them must exist 

For example, if the Euler angles φ, θ, ψ are used for the 

triplet γ, it is possible to show that
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Note that matrix T(γ) is singular when sin θ = 0.
In this case, some rotational velocities may be 

expressed by ω and not by , e.g. 

ω = [cosφ, sinφ, 0]T

These cases are called representation 

singularities of γ.





Definition of matrix T(γ):

18



If sinθ = 0, then the components perpendicular to z of the 
velocity expressed by   are linearly dependent , 
while physically this constraint may not exist!

From:

one obtains:
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Finally...:

In general, given a triplet of angles γ, a transformation matrix 

T(γ) exists such that

Once the matrix T(γ) is known, it is possible to relate the 

analytical and geometrical expressions of the Jacobian matrix:

Then
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Until now:

• We saw how we can define velocities in a 
robot/rigid-body environment

• We know the connection between the analytical 
Jacobian and the geometric Jacobian

• Now we calculate both of them
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Analytical Jacobian
The analytical expression of the Jacobian is obtained by 

differentiating a vector x = f(q) ∈ 6, that defines the position 

and orientation (according to some convention) of the 

manipulator in F0

By differentiating f(q), one obtains

where the m × n matrix

is called the Jacobian matrix or JACOBIAN of the manipulator
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Analytical Jacobian
If the infinitesimal period of time dt is considered, one obtains 

that is

relating the velocity vector  expressed in F0 and the joint 

velocity vector 

 The elements Ji,j of the Jacobian are nonlinear functions of 
q(t): therefore these elements change in time according to the 
value of the joint variables

 The Jacobian’s dimensions depend on the number n of joints 
and on the dimension m of the considered operative space:
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AJ-Example: 2 DOF manipulator
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AJ-Example: 2 DOF manipulator
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Geometric 
Jacobian
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Geometric Expression of the Jacobian
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• The geometric expression of the Jacobian is obtained considering 
the rotational velocity vector ω

• Each column of the Jacobian matrix defines the effect of the i-th
joint on the end-effector velocity and it is divided in two terms

• The first term considers the effect of on the linear velocity v, 
while the second one on the rotational  velocity ω, i.e.

• Therefore

 The analytic and geometric Jacobian differ for the rotational part

 In order to obtain the geometric Jacobian, a general method 
based on the geometrical structure of the manipulator is adopted



Derivative of a Rotation Matrix
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• Let’s consider a rotation matrix R = R(t) and 

• Let’s derive the equation: 

• A 3 × 3 (skew-symmetric) matrix S(t) is obtained

• As a matter of fact

• Then

• This means that the derivative of a rotation matrix is expressed as 
a function of the matrix itself

( ) ( ) ( ) ( ) ( ) ( )T T Tt t t t t t   R R R R R 0RI

( ) ( )Tt t R R I

( ) ( ) ( )Tt t tS R R

( ) ( ) ( )t t tR S R



Derivative of a Rotation Matrix
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Physical interpretation:

Matrix S(t) is expressed as a function of a vector

representing the angular velocity of R(t)

Consider a constant vector p′ and the vector p(t) = R(t)p′

The time derivative of p(t) is

which can be written as

(This last result is well known from the classical mechanics of rigid 
bodies)

( ) ( )t t p R p



Derivative of a Rotation Matrix
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• Moreover it can be shown that:

i.e. the matrix form of S(ω) in a frame rotated by R is the 

same as the skew-symmetric matrix S(R ω) of the vector ω
rotated by R

• (1) Note also that S(ω) is linear in its argument:

• (2) Note also the property of S(ω):

1 1 2 2 1 1 2 2
( + )= ( )+ ( )k k k kS ω ω S ω S ω

 ( )S ω p ω p



Derivative of a Rotation Matrix
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Consider two frames F and F’, which differ by the rotation R (ω′ = R ω)

Then S(ω′) operates on vectors in F’ and S(ω) on vectors in F

Consider a vector va’ in F’ and assume that some operations must be 

performed on that vector in F (then using S)

It is necessary to:

1. Transform the vector(s) from F’ to F (by RT)

2. Use S(ω)

3. Transform back the result to F’ (by R)

That is:

equivalent to the transformation using S(ω)



Example
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Geometric Jacobian
The end-effector velocity is a linear composition of the 
joint velocities
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Each column of the Jacobian
matrix defines the effect of 
the i-th joint on the end-
effector velocity



Geometric Jacobian
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Geometric Jacobian – Link Velocity
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Linear velocity
(of link i as a function of 
velocities of link i−1)

vi−1,i denotes

the velocity of the 

origin of Frame i
with respect to the 

origin of Frame i−1



Geometric Jacobian – Link Velocity

36

Angular velocity 
(of link i as a function of velocities of link i−1)



Geometric Jacobian – Link Velocity
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Prismatic joint:

Revolute joint:



Geometric Jacobian – Computation
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Joint i prismatic

Linear velocity

Joint i revolute
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Geometric Jacobian – Computation
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Joint i prismatic

Angular velocity

Joint i revolute



Geometric Jacobian – Computation
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Column of geometric Jacobian



Geometric Jacobian –
Representation in a Different Frame
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 The Jacobian matrix depends on the frame in which the 
end-effector velocity is expressed

 The above equations allow computation of the geometric 
Jacobian with respect to the base frame

 For a different Frame t:



RECAP: Geometric Jacobian –
Contribution of a Prismatic Joint

Note: joints beyond the i-th one are considered to be “frozen”, 
so that the distal part of the robot is a single rigid body
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RECAP: Geometric Jacobian –
Contribution of a Revolute Joint

Note: joints beyond the i-th one are considered to be “frozen”, 
so that the distal part of the robot is a single rigid body 
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RECAP: Geometric Jacobian

It is possible to show that the i-th column of the Jacobian can be computed as

44



GJ-Example: 2 DOF manipulator
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GJ-Example: 2 DOF manipulator

46



GJ-Example: 2 DOF manipulator

47

maximum rank is 2  at most 2 components of the 
linear/angular end-effector velocity can be independently assigned



GJ-Example: 3-link planar manipulator
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GJ-Example: 3-link planar manipulator

49



GJ-Example: 3-link planar manipulator
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GJ-Example: 3 DOF anthropomorphic manipulator
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GJ-Example: 3 DOF anthropomorphic manipulator
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GJ-Example: 3 DOF anthropomorphic manipulator
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GJ-Example: 3 DOF anthropomorphic manipulator
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GJ-Example: 3 DOF spherical manipulator
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GJ-Example: 3 DOF spherical manipulator
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GJ-Example: 3 DOF spherical manipulator
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GJ-Example: 3 DOF spherical wrist
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GJ-Example: PUMA 560
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GJ-Example: PUMA 560
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GJ-Example: Stanford manipulator
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GJ-Example: Stanford manipulator
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