SO FAR:

e Direct Kinematics X = f(q)

e Inverse Kinematics g=f _1(x)

e Jacobian Y l=1 q
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KINEMATIC SINGULARITIES

The Jacobian is a 6 x n matrix mapping the R” joint velocity
space to the R° operational velocity space:

x=J(q)g = dx=1J(q)dq

® SO, this can be interpreted as a relationship between infinitesimal
. . n 6
displacements in[R""and R

® In general, rank(J(q)) = min (6, n)

e On the other hand, since the elements of J are functions of the
joints, some robot configurations exist such that the Jacobian loses
rank

e These configurations are denoted as kinematic singularities

In these configurations, there are “directions” (vectors x) in R® without any

correspondent “direction” (q) in R": these directions cannot be actuated

and the robot loses motion capabilities



Singular configurations

The singular configurations are important for several reasons:

1. They represent configurations in which the motion
capabilities of the robot are reduced: it is not possible to
impose arbitrary motions of the end-effector

2. In the proximity of a singularity, small velocities in the
operational space may generate large (infinite) velocities in
the joint space

3. They correspond to configurations that have not a well
defined solution to the inverse kinematic problem: either no
solution or infinite solutions



Singular configurations

There are two types of singularities:

1. Boundary singularities, that correspond to points on the
border of the workspace, i.e. when the robot is either fully
extended or retracted. These singularities may be easily
avoided by not driving the manipulator to the border of its

workspace.

2. Internal singularities, that occur inside the reachable
workspace and are generally caused by the alignment of
two or more axes of motion, or else by the attainment of
particular end-effector configurations. These singularities
constitute a serious problem, as they can be encountered
anywhere in the reachable workspace for a planned path in
the operational space.



KINEMATIC SINGULARITIES-Example

e Two-link planar arm

T — i —a1sS1 —ag2s512  —U2512 ]
| a1C] T 2012 €12 |
A det(J) = ajass
v, , 1252
|
Vo = 0 Uo = 7
[ —(a1 +a2)s1 (a1 +ag)er ]! parallel to | —a2s1 azcy It

(components of end-effector velocity non-independent)



SINGULARITY DECOUPLING

In case of complex structures, the analysis of the kinematic
singularities via the Jacobian determinant det(J) may prove
quite difficult

In case of manipulators with spherical wrist, by similarity
with the inverse kinematics, it is possible to decompose the
study of the singular configurations into two sub-problems:

e computation of arm singularities

e computation of wrist singularities

If J € R®" then
] —

J Jo

- Jor I
where, since the last three joints are of the revolute type:

-
-

Jio =[z3 X (Pe — P3), Z2 X (P6 —P4), Z5 X (P6 — P5)

Joo = |z3, z4. z5]



SINGULARITY DECOUPLING

Singularities depend on the mechanical structure, not on
the frames chosen to describe kinematics

Therefore, it is convenient to choose the origin of the end-
effector frame at the intersection of the wrist axes, where
also the last frames are placed

Then " Jy 0
J12:[0? 0 0] e J =

o Joo
In this manner, J is a block lower-triangular matrix, and
det(J) = det(Jdq1)det(Jdrr)
The singularities are then decoupled, since
det(J11) =0  gives the arm singularities

while
det(J22) =0  gives the wrist singularities



SINGULARITY DECOUPLING-EXAMPLE

e computation of arm singularities
e computation of wrist singularities




SINGULARITY DECOUPLING

Ji Jio
7 —
{Jm JQQ}

J12:[213><(P—P3) z24 X (p — p4) ZSX(P—PSH
Joo = |z3 z4 25|

e p=pPw — pPw — p;parallelto z;,2=3.4.5

Jo=[0 0 0]
det(J) = det(Jyq)det(Ja2)

det(Jll) =0 det(JQQ) = (



Wrist singularities

e 2z parallel to z5

AN
_—

Rotations of equal magnitude about opposite directions on J,
and I, do not produce any rotation at the end-effector



Wrist singularities




Arm singularities
e Anthropomorphic arm

det(.]p) — —aza3s3 (QQCQ + aBCQB)

S3 — 0 A9Co + A3Co3 = 0

« Elbow singularity

Ve = 0 U =
< % 2
”5‘2 \_7"193:0




Arm singularities
« Shoulder singularity

pﬂ::pyzo




KINEMATIC SINGULARITIES-Movie




KINEMATIC SINGULARITIES
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KINEMATIC SINGULARITIES-Movie




KINEMATIC SINGULARITIES-Movie




AVOIDING KINEMATIC SINGULARITIES
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INVERSE DIFFERENTIAL KINEMATICS

e Nonlinear kinematics equation

e Differential kinematics equation linear in the velocities
e Given v(t) + initial conditions = (q(?),q(%))

qg=J '(q)v

alt) = /0 d(o)do+ q(0)

« (Euler) numerical integration

q(try1) = qltr) + qtr) At

It is necessary that the Jacobian be square and of full rank



INVERSE DIFFERENTIAL KINEMATICS ALGORITHMS
» Kinematic inversion
q(tre1) = q(te) + T (q(ty))v(te) At
~ drift of solution

« Closed-Loop Inverse Kinematics (CLIK) algorithm
* operational space error

e =T, — T

e=xTy— T

=xq—Ja(q)q

« find q=gq(e): e—0



Jacobian (pseudo-) inverse

« Linearization of error dynamics

q=J,"(q)(xa+ Ke)

:’iﬁ{i
_I_
Xy + 2 . +

The eigenvalues of K
determine stability and
speed of convergence




Jacobian transpose

» Solve q = J_l(q)’ve without linearizing error dynamics

« Lyapunov method

Vie) = %BTKB
where

Vie)>0 Ve#0 V(0) =0

Vie)=e' Kig—e' K
—e' Ki,—e' KJA(q)q
+ the choice

qg=J\(qgKe
leads to

V(e) —e K&, — eTKJA(q)Jg(q)Ke



Jacobian transpose

Vie)=e Kig—e' KJi(q)J}(q)Ke

vif &4, = 0 =— V < OwithV > 0
(asymptotic stability)

if N(J)) #£0 = V=0if Kee N(J})

g = 0 with e # 0 (stuck?)

_________________________

de + e . T q r
—m@?—» K > J, (9) >
x

Uses only direct kinematics functions!

k() -

If x4 # 0 then e(t) bounded and e (0) = 0



0
0

(13923

25



Example

T
Compute the null space of Jp

If v,, v, and v, denote the components of

vector v along the axes of the base frame,

we obtain
1/ 1
—J = l v, = ()
Vo tan 14

which means that the direction of N (J5)

coincides with the direction orthogonal to

the plane of the structure



Example

d The Jacobian transpose algorithm gets stuck if, with K diagonal
and having all equal elements, the desired position is along the
line normal to the plane of the structure at the intersection with
the wrist point

d On the other hand, the end-effector cannot physically move from
the singular configuration along such a line

A Instead, if the prescribed path has a

non-null component in the plane of N (J;
the structure at the singularity,

algorithm convergence is ensured
because then Ke & N(Jp)




THAT WAS JUST THE BEGINNING:---
® Dynamics
® Control
® Path/Trajectory Planning
® Redundant robots

® Parallel manipulators

Also:

» Mobile robotics

> Aerial robotics

» Underwater robotics

» Combinations (e.g. a manipulator riding on a mobile)

» Walking, jumping, exoskeletons/power suits, ++



Samples-Parallel manipulators
Gough-Stewart Platform Concept




Samples-Parallel manipulators
Gough-Stewart Platform Implemented
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DELTA 4

Samples-Parallel manipulators

D3EO4EO 5

32



Samples-Parallel manipulators




Samples-Parallel manipulators




Samples-Mobile robots
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Samples-Mobile robots

A& -

PEOPLE'S DAILY

This is how robots helpsort parcels for

quicker delivery at a Chinese firm
» -~




Samples-Mobile robots

A wheeled mobile robot (WMR) can be driven by wheels
In various formations:

_
— @\ L1

Differential Omni Directional Steering




Samples-Mobile robots
e Kinematic Model

(%) (cos® 0

y|=[singd O
\
1,

(v )

0) \0

e Nonholonomic Constraint

(

Xsin@ —ycosd =0

Differential Wheel Robot

d Nonhonolonic (Nonintegrable) and underactuated (2-input~3-output)

d Cannot be stabilized by time-invariant or smooth feedback control



Samples-Mobile robots

Cannot be stabilized by time-invariant or smooth feedback control




Mobile robots-Trajectory tracking

(Cartesian coordinates based)
Given X4, Yy, X4 and y,
find vandw

to make X—=>X,,y—>V,

M

> ¥
@ |
' |
A f(‘vxl -

‘J* N (X;.5,)
; X
F 2
\




Mobile robots-Trajectory tracking

(Cartesian coordinates based)

It can be proved (due to Lyapunov and Barbalat), the following
control can meet the objective:

V=V, cos(6, —6)+k,[cosO(x, —X)+sInE(y, —Y)]
@ = @y + K, sgn(Vy)[sin 8(Xqy —X) —cosB(yy — Y)] +Kk3(64 —6)

vV, = i\/xj n yj Desired linear velocity (along the
trajectory)
W, = Yo . .dzyd Desired angular velocity
X T Yo

YT

0, = ATAN2(y,,%,)+kz  Desired direction

Alo309lely pauue|d ayy wo.l4

k, =k, =2&\J@? +bV?, k, =hlv,

'The controller fails when v, =0





