
SO FAR:
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 Direct Kinematics x = f(q)

 Inverse Kinematics q = f −1(x)

 Jacobian

Geometric, Analytic



KINEMATIC SINGULARITIES
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• So, this can be interpreted as a relationship between infinitesimal 

displacements in      and 

• In general, rank(J(q)) = min (6, n)

• On the other hand, since the elements of J are functions of the 
joints, some robot configurations exist such that the Jacobian loses 
rank

• These configurations are denoted as kinematic singularities

In these configurations, there are “directions” (vectors ) in without any 

correspondent “direction” (  ) in     : these directions cannot be actuated 

and the robot loses motion capabilities

The Jacobian is a 6 × n matrix mapping the  joint velocity 
space to the operational velocity space:
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Singular configurations
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The singular configurations are important for several reasons:

1. They represent configurations in which the motion 
capabilities of the robot are reduced: it is not possible to 
impose arbitrary motions of the end-effector

2. In the proximity of a singularity, small velocities in the 
operational space may generate large (infinite) velocities in 
the joint space

3. They correspond to configurations that have not a well 
defined solution to the inverse kinematic problem: either no 
solution or infinite solutions



Singular configurations
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There are two types of singularities:

1. Boundary singularities, that correspond to points on the 
border of the workspace, i.e. when the robot is either fully 
extended or retracted. These singularities may be easily 
avoided by not driving the manipulator to the border of its 
workspace.

2. Internal singularities, that occur inside the reachable 
workspace and are generally caused by the alignment of 
two or more axes of motion, or else by the attainment of 
particular end-effector configurations. These singularities 
constitute a serious problem, as they can be encountered 
anywhere in the reachable workspace for a planned path in 
the operational space.



KINEMATIC SINGULARITIES-Example
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• Two–link planar arm

parallel to

(components of end-effector velocity non-independent)



SINGULARITY DECOUPLING
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In case of complex structures, the analysis of the kinematic 
singularities via the Jacobian determinant det(J) may prove 
quite difficult

In case of manipulators with spherical wrist, by similarity 
with the inverse kinematics, it is possible to decompose the 
study of the singular configurations into two sub-problems:

• computation of arm singularities

• computation of wrist singularities

If J ∈ then

where, since the last three joints are of the revolute type:

6 n



SINGULARITY DECOUPLING
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Singularities depend on the mechanical structure, not on 
the frames chosen to describe kinematics

Therefore, it is convenient to choose the origin of the end-
effector frame at the intersection of the wrist axes, where 
also the last frames are placed

Then

In this manner, J is a block lower-triangular matrix, and

The singularities are then decoupled, since

gives the arm singularities 

while

gives the wrist singularities



SINGULARITY DECOUPLING-EXAMPLE
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• computation of arm singularities

• computation of wrist singularities



SINGULARITY DECOUPLING
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Wrist singularities
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Rotations of equal magnitude about opposite directions on ϑ4

and ϑ6 do not produce any rotation at the end-effector



Wrist singularities
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Arm singularities
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• Anthropomorphic arm

⋆ Elbow singularity



Arm singularities
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⋆ Shoulder singularity



KINEMATIC SINGULARITIES-Movie
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KINEMATIC SINGULARITIES
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KINEMATIC SINGULARITIES-Movie
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KINEMATIC SINGULARITIES-Movie
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AVOIDING KINEMATIC SINGULARITIES
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INVERSE DIFFERENTIAL KINEMATICS
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• Nonlinear kinematics equation

• Differential kinematics equation linear in the velocities

• Given v(t) + initial conditions ⇒ 

⋆ (Euler) numerical integration

It is necessary that the Jacobian be square and of full rank



INVERSE DIFFERENTIAL KINEMATICS ALGORITHMS
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• Kinematic inversion

⋆ drift of solution

• Closed-Loop Inverse Kinematics (CLIK) algorithm
⋆ operational space error

⋆ find



Jacobian (pseudo-) inverse
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• Linearization of error dynamics

The eigenvalues of K
determine stability and 
speed of convergence



Jacobian transpose
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• Solve                       without linearizing error dynamics

• Lyapunov method

where

⋆ the choice

leads to



⋆ if
(asymptotic stability)

⋆ if 

with            (stuck?)

If then e(t) bounded and e (∞) → 0

Jacobian transpose
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Uses only direct kinematics functions!



Example
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Example
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Compute the null space of           

If νx, νy and νz denote the components of 

vector ν along the axes of the base frame, 

we obtain

which means that the direction of           

coincides with the direction orthogonal to 

the plane of the structure



Example
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 The Jacobian transpose algorithm gets stuck if, with K diagonal 

and having all equal elements, the desired position is along the 

line normal to the plane of the structure at the intersection with 

the wrist point

 On the other hand, the end-effector cannot physically move from 

the singular configuration along such a line

 Instead, if the prescribed path has a 

non-null component in the plane of 

the structure at the singularity, 

algorithm convergence is ensured 

because then                     



THAT WAS JUST THE BEGINNING…
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 Dynamics

 Control

 Path/Trajectory Planning

 Redundant robots

 Parallel manipulators

Also:

 Mobile robotics

 Aerial robotics

 Underwater robotics

 Combinations (e.g. a manipulator riding on a mobile)

 Walking, jumping, exoskeletons/power suits, ++



Samples-Parallel manipulators
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Gough-Stewart Platform Concept



Samples-Parallel manipulators
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Gough-Stewart Platform Implemented



Samples-Parallel manipulators
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Samples-Parallel manipulators
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Samples-Parallel manipulators
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Samples-Mobile robots
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Samples-Mobile robots
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Samples-Mobile robots
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A wheeled mobile robot (WMR)  can be driven by wheels 
in  various  formations:



Samples-Mobile robots

38

0cossin   yx 

Differential Wheel Robot

• Nonholonomic Constraint 
(rolling contact without slipping) 
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• Kinematic Model

 Nonhonolonic (Nonintegrable) and underactuated (2-input~3-output)

 Cannot be stabilized by time-invariant  or smooth feedback control



Samples-Mobile robots
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Cannot be stabilized by time-invariant  or smooth feedback control



Mobile robots-Trajectory tracking 
(Cartesian coordinates based)

40

Given dddd
yxyx  and,

,

andvfind  

to make
dd yyxx  ,



Mobile robots-Trajectory tracking 
(Cartesian coordinates based)
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It can be proved (due to Lyapunov and Barbalat), the following 
control can meet the objective:
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!The controller fails when 0dv




