

Fig.1 – Simple mechanics and their configuration manifolds.

Fig.2 – Part of configuration manifold of mobile robot.

It is evident from the drawings that

$$\theta_x \hat{\mathbf{i}} + \theta_y \hat{\mathbf{j}} \neq \theta_y \hat{\mathbf{j}} + \theta_x \hat{\mathbf{i}}.$$

Billerentiable Manifeld

Definition

A manifold of dimension n is a set M which is locally homeomorphic to R^n .

Homeomorphism:

A map f from M to N and its inverse, f^{-1} are both continuous.

Smooth map

A map f from $U \subset R^m$ to $V \subset R^n$ is smooth if all partial derivatives of f, of all orders, exist and are continuous.

Diffeomorphism

A smooth map f from $U \subset R^n$ to $V \subset R^n$ is a diffeomorphism if all partial derivatives of f^{-1} , of all orders, exist and are continuous.

Rigid Body Kinematics

Smooth Manifold

- Differentiable manifold is locally homeomorphic to R^n
- Parametrize the manifold using a set of local coordinate charts
 - $(U, \phi), (V, \Psi), \dots$

Require compatibility on overlaps

 C^{∞} related

Collection of charts covering M

