Figure 9.2.5: Manipulator moving along slanted surface.

EXAMPLE 9.2-1: Task Space Formulation for a Slanted Surface

We want to find the manipulator dynamics for the Cartesian manipulator
system (i.e., both joints are prismatic) given in Figure 9.2.5 and to
decompose the forces exerted on the surface into a normal force and a
tangent force. First, the motion portion of the dynamics can easily be
determined when the robot is not constrained by the surface. After
removing the surface and the interaction forces f, and f,, the manipulator
dynamics can be shown to be

r=Mi+G+F(g), 1)

where

1T __'5'1 _ 0
T_[Tz]’q_‘Qz]’g_l[m1+mz}§]’

"-m1 0
M—_ﬂ m|+mg:|’

To account for the interaction forces, let x be the 2x1 task space vector
defined by
z=|" g
- k] ¥ {"'JII

where # and v define a fixed coordinate system such that u represents the
normal distance to the surface, and v represents the tangent distance along
the surface. As in (9.2.9), the task space coordinates can be expressed in
terms of the joint space coordinates by

z=h(q), (3)

where b{g) is found from the geometry of the problem to be

h(q (4)

J_[m+%]

The task space Jacobian matrix is found from (9.2.11) by utilizing the
tact that T is the identity matrix for this problem because we do not have
to concern ourselves with any end-effector angles of orientation. That is,

Jiq) is given as

= azq J_[] “

Following (9.2.14), the robot manipulator equation is given by
T=Mi+G+F(@)+J7], (6)

where
_| A
I= [fa]]

It is important to realize that the normal force (i.e., f;) and the tangent
torce (i.e., f,) are drawn in the direction of the task space coordinate system

given by (2) (see Fig. 9.2.5).

EXAMPLE 9.2-2: Task Space Formulation for an Elliptical Surface

We wish to find the manipulator dynamics for the Cartesian
manipulator system given in Figure 9.2.6 and to decompose the forces
exerted on the surface into a normal force and a tangent force. The
motion portion of the dynamics is the same as in Example 9.2.1;
however, due to the change in the environmental surface, a new task
space coordinate system must be defined. Specitically, let x be the 2x1
task space vector defined by

U
]

where # and v define a rotating coordinate system such that u represents
the normal distance to the surface and v represents the tangent distance
along the surface. Asin (9.2.9), the task space coordinates can be expressed
in terms of the joint space coordinates by

z=h(qg), (2)

2 9 "
1I - &
% 1, 1,
¥ iq: '
\Aﬂ.
i N g
| 2
t] E'ﬁ + q;=1
| |
—E = -f.'z < E

Figure 9.2.6: Manipulator moving along elliptical surface.

where b{g) is found to be

=B
=]
—

2

EHH 3)

with #, v, g; and g; being appropriately defined unit vectors used in the dot
product notation given in (3). The unit vectors g, and g, are defined in terms
of the fixed coordinate set given by g, and g,. These unit vectors are defined

ho) = |

as
- Q1 1 _ q1 0
e[2]-3] = e[
To find the unit vectors u and v, we first use the function of the surface
Yagi + ¢ =1 (5)

to parameterize the surface in terms of one variable (i.e., g,) as follows:

R ©

The partial derivative of (6) with respect to g; divided by the length of the
vector yields a unit vector (i.e., v) that is always tangent to the surface. That

is, ¢ is given by

-

1

53

] 1 [2 [1- 2] J

where

A= J1 +4g3 (1-g3) "

By using (5) again, the expression for can be simplified to yield

]

=

where

A = /1+16¢3/}.

Because the vectors # and v must be orthogonal (i.e., u.0=0), via (8) and the
geometry of the problem, we know that

__ 1 1
“TA | defn |)
Substituting (4}, (8), and (9) into (3) yields

h(g) = - lql+4q§fﬂ1]

Al -3 10)

A

The task space Jacobian matrix is found trom (9.2.11) by utnlizing the fact
that T is the identity matrix. That is, [{g) i1s given as

_ | Ju iz
s@=| e, 1)

Ju =Yg [Vaa} + 743 [Yagi + 443) I
ha = g2 (843 - qi] [Vaa? + 03],

Jo1 = —6g3 [Vagi +4q3] EH

Jaz = =3/sq} [aqi +4¢3] Hﬂ

Following (9.2.14), the robot manipulator equation is given by
r=Mi+G+F(Q)+I7 (9], (12)

where 7, M, g, G, f, and F(gq) are as defined in Example 9.2.1. It is important
to note that the normal force (i.e., f;) and the tangent force (i.e., f;} are
drawn in the direction of the task space coordinate system given by (1) (see

Fig. 9.2.6).

Torque Controller:
7= J7(q) (—Kut + KpZ) + G (g) + F (4)
where .J (g} is the task space Jacobian.
Stability:
Nonconstrained directions: set-point positional control
Jim z; (1) = za;

Constrained directions: steady-state force control approximated by
Jim_ f; () = Kpi (2ai — i)
Comments: Control gains K,; are used to adjust stiffness of the

manipulator.

EXAMPLE 9.2-3: Stiffness Controller for a Cartesian Manipulator

We want to design and simulate a stiffness controller for the robot
manipulator system given in Figure 9.2.5. The control objective is to move
the end effector to a desired final position of ;=3 m while exerting a final
desired normal force of f;=2 N. We neglect the surface friction (i.e., f) and
joint friction, and assume that the normal force (i.e., f;) satisfies the

relationship
Ji=ke (u—u), (1)

where e = 3/v2 mand k,=1000 N/m. The robot link masses are assumed

to be unity, and the initial end-effector position is given by

v(0)=5m and u{u]=3/v‘§m- (2)

To accomplish the control objective, the stiffness controller from Table 9.2.1

is given by

r=J"(q) (—K.,& + K,3) + G (q), (3)

where
- Ug — U
r = 3
Vg — v

7, . G, and x are as defined in Example 9.2.1, 1, is defined as the desired
normal position, and the gain matrices K, and K, have been taken to be
K=k, and K,=k,I. For this example we select k,= k,=10, which will
guarantee that k,<k, as required in the stiffness control formulation. To
satisty the control objective that f;=2 N, we utilize (9.2.27) to determine
the desired normal position. Specifically, substituting the values of f;, &,
and #, into

S = kp (ug —) (4)

yields ug = (0.2 + 3/v/2) m.

The simulation of the stiffness controller given by (3) for the robot
manipulator system (Figure 9.2.5) is given in Figure 9.2.7. As indicated by
the simulation, the desired tangential position and normal force are reached
in about 4 s.

| | | 1 1

0 1 p. 3 4 5
Force {fJ}'

i | | 1 [i

0 | 2 3 4 5

Figure 9.2.7: Simulation of stiffness controller.

f
: FH': di'l —-]—-
j——= Imi
A
4
“i'| =3
!
4y
T

Figure 9.3.1: Manipulator moving along perpendicular surface.

Hybrid Position/Force Control of a Cartesian Two-Link Arm

$=[2]=h{q}=[g;], (9.3.1)

with the task-space Jacobian matrix given by

_hq}h 1 0
7= _[”1]'

To design the position/force controller for the manipulator system, we
must first determine the dynamic equations for the task space formulation
given by (9.3.1). Using this task space formulation and neglecting joint
friction, the manipulator dynamics can be shown to be

T=Mji+G+ f, (9.3.2)

where 7, M, G, and f are as defined in Example 9.2.1. The two dynamic
equations given in the matrix form represented by (9.3.2) are

o= mudy + i (9.3.3)
and

T2 = (my +m2)d + (my +ma) g + fa. (9.3.4)

In formulating a hybrid position/force controller, we design separate
controllers tor the dynamics given by (9.3.3) and (9.3.4). As illustrated by
Figure 9.3.1, the position along the task space direction q; should be position
controlled; therefore, we should use (9.3.4) tor designing the position
controller. [This is obvious because the dynamics given by (9.3.3) do not

contain the task space variable g2.]
Because we are designing a position controller to track a desired trajectory,

we will define the “tangent space™ tracking error to be
T = qaz — G, (9.3.5)

where g4 represents the desired position trajectory along or tangent to the
surface. The position controller will be the computed-torque controller (see

Chapter 3)
Ty = (my +ma) ar + (my +m3) g + fa, (9.3.6)

where
ar = a2 + kro + krp#, (9.3.7)

with kr, and kg, being positive control gains. Substituting (9.3.6) into (9.3.4)
gives the position tracking error system

I + kryd + krpd = 0 (9.3.8)
By using the fact that ky, and ky, are positive, we can apply standard linear

control results to (9.3.8) to yield

lim £ =0;
t—ron

Specifically, the normal force f; exerted on the environment is given by

fi=k. [:'Tl - Qe} ' (9.3.9)

where k, represents the environment stiffness and g.=3. Taking the second
derivative of (9.3.9) with respect to time gives the expression

1 -
g1 = Kﬂ’ (9.3.10)

where the normal task space acceleration is written in terms of the second
derivative of the normal force. Substituting (9.3.10) into (9.3.3) yields the
force dynamic equation

n = ?fwﬁ. (9.3.11)
g
F=tfa-fi (9.3.12)

where fs represents the desired normal force that is to be exerted on the
environment. Similar to the position controller, the torce controller will be
the computed-torque controller

T
n=-—an + fi. (9.3.13)
e

an = fa + kﬂruf'i' kﬁpf: (9.3.14)

with ky, and kyy being positive control gains. Substituting (9.3.13) into
(9.3.11) gives the force tracking error system,

f+knof +knpf=0. (9.3.15)

Using the fact ky, and ky, are positive in (9.3.15) yields
lim f=0;

t—+oo
therefore, asymptotic force tracking is guaranteed with the controller given
by (9.3.13). It is important to realize that the force controller requires
measurement of the normal force and the derivative of the normal force.
Because the force derivative is often not available for measurement, it is
manufactured from (9.3.9), that is,

fi = kedn; (9.3.16)

therefore, the stiffness of the environment and the normal task space velocity
are used to simulate the derivative of the force.

EXAMPLE 9.3-1: Hybrid Position/Force Control Along a Slanted Surface

We want to design and simulate a hybrid position/force controller for the
robot manipulator system given in Figure 9.2.5. The control objective is
to move the end effector with a desired surface trajectory of v,=sin(#) m
while exerting a normal force trajectory of fg; = 1 — e”?N. We neglect
joint friction and assume that the normal force (i.e., f;) satisfies the
relationship

f].:kﬂiu_ﬂﬁjj (1)

whereu, = 3/v/2 mand k=1000 N/m. The robot link masses are assumed

to be unity, and the initial end-effector position is given by

»(0)=0m and u{mzs/v‘ﬁm. 2)

To accomplish the control objective, the hybrid position/force controller

from Table 9.3.1 is given by
r=MJ'a+G+JT], (3)

where a is a 2x1 vector representing the linear position and force
controllers with 7, J, G, and f as defined in Example 9.2.1. The controller

given by (3) decouples the robot dynamics in the task space as follows:
= U a
=5 l==)

From Figure 9.2.5, we can see that the task space variable u represents the
normal space, and the task space variable v represents the tangent space;
therefore, (4) may rewritten in the notation given in Table 9.3.1 as

=[] =[5] =[] == g

From Table 9.3.1, the corresponding linear position and force controllers
are then given by

ary = ¥ra1 + kroaZr + krpi i (6)

and

1

any = o (del + knor g + ka1fN1) (7)

where 74 = sint, I and k,,=1000.

The simulation of the hybrid position/force controller given by (3), (6),
and (7) for the robotic manipulator system (Figure 9.2.5) is given in Figure
9.3.2. The controller gains were selected as

knvi = knpt = ko1 = krpp = 10.

As indicated by the simulation, the position and force tracking error go to
zero in about 4 s.

Table 9.3.1: Hybrid Position/Force Controller

Torque Controller:

T=M(q)J ' (q) (a- J[qlé) + Vi (g,9)d+G(q)
+F(q)+J"(q) f

where J (q) is the task space Jacobian.

Position control:
ari = Frai + krwidTi + krpiZTi
Force control:
an; = 11—1 (.dej + knuif + kij.fwj)
Stability:
Nonconstrained directions: position tracking control
li () = zrq: (T
!j-}IEc-ITi(} ert(]
Constrained directions: force tracking control
li (t) = :
Jim fvg(t) = fng (t)

Comments: Environment is modeled as a spring.

